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ABSTRACT

In recent years, SIGNSGD has garnered interest as both a practical optimizer as
well as a simple model to understand adaptive optimizers like ADAM. Though
there is a general consensus that SIGNSGD acts to precondition optimization and
reshapes noise, quantitatively understanding these effects in theoretically solv-
able settings remains difficult. We present an analysis of SIGNSGD in a high
dimensional limit, and derive a limiting SDE and ODE to describe the risk. Us-
ing this framework we quantify four effects of SIGNSGD: effective learning rate,
noise compression, diagonal preconditioning, and gradient noise reshaping. Our
analysis is consistent with experimental observations but moves beyond that by
quantifying the dependence of these effects on the data and noise distributions.
We conclude with a conjecture on how these results might be extended to ADAM.

1 INTRODUCTION

The success of deep learning has been driven by the effectiveness of relatively simple stochastic
optimization algorithms. Stochastic gradient descent (SGD) with momentum can be used to train
models like ResNet50 with minimal hyperparameter tuning. The workhorse of modern machine
learning is ADAM, which was designed to give an approximation of preconditioning with a diago-
nal, online approximation of the Fisher information matrix (Kingma, 2014). Additional hypotheses
for the success of ADAM include its ability to maintain balanced updates to parameters across layers
and its potential noise-mitigating effects (Zhang et al., 2020b; 2024). Getting a quantitative, theo-
retical understanding of Adam and its variants is hindered by their complexity. While the multiple
exponential moving averages are easy to implement, they complicate analysis.

The practical desire for simpler, more efficient learning algorithms as well as the theoretical desire
for simpler models to analyze have led to a resurgence in the study of SIGNSGD. SIGNSGD is a
variant of SGD where the stochastic gradient is passed through the sign function σ, leading to an
update vector of ±1s. On average, SIGNSGD’s updates at every step have positive dot product with
the average SGD step, but it can have dramatically different convergence properties (Bernstein et al.,
2018a; Karimireddy et al., 2019). Multiple studies point towards sign-based methods as an effective
proxy given that the sign component of the gradient has been shown to play an important role in
ADAM (Kunstner et al., 2023; Balles & Hennig, 2018; Bernstein et al., 2018b). SIGNSGD is also
the basis for new practical methods; the LION algorithm (Chen et al., 2023) combines SIGNSGD
with multiple exponential moving averages, and SIGNSGD + momentum was used to train LLMs
with performance comparable to ADAM (Zhao et al., 2024).

Despite the promise of SIGNSGD, a detailed quantitative understanding of its dynamics in realis-
tic settings remain elusive—in particular the nature of the preconditioning and the effect of the σ
function on the noise are not well understood. A crucial first step is to understand these effects on
quadratic optimization problems.

Motivated by these questions, we provide the first analysis of the learning dynamics of SIGNSGD
in a high-dimensional stochastic setting (Section 2). We make the following contributions:
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• We derive a limiting stochastic differential equation (SDE) for SIGNSGD and combine it with
a concentration result to derive a deterministic ordinary differential equation (ODE) that de-
scribes the dynamics of the risk in our setting (Section 3).

• We compare the dynamics of SIGNSGD and vanilla SGD, isolating 4 effects: effective learning
rate, noise-compression, diagonal preconditioning, and gradient noise reshaping (Section 4).

• We quantitatively analyze these four effects and their contributions to learning, including exact
results in specific settings (remainder of Section 4).

Our work addresses significant technical challenges in analyzing both the preconditioning and noise
transformation effects of SIGNSGD. Our analysis is consistent with more general experimental ob-
servations about adaptive methods, but provides a more quantitative understanding in our setting. We
conclude with a discussion of the implications of our results for future study of adaptive algorithms,
including a conjecture on the limiting form of ADAM in an equivalent setting.

2 PROBLEM SETUP

Our work considers linear regression using the mean-squared loss L in the one-pass scenario, where
data is not reused. SIGNSGD, without mini-batching, is first initialized by some θ0 ∈ Rd and then
follows the update rule:

θk+1 = θk − η′kσ (∇θL(θk,xk+1, yk+1)) , L(θ,x, y) = ∥ ⟨x,θ⟩ − y∥2/2, (1)

where σ denotes the sign function applied element-wise and∇θL(θk,xk+1, yk+1) = (⟨θk,xk+1⟩−
yk+1)xk+1.

We will assume that the samples {(xk, yk)}k≥0, consisting of data xk and targets yk, satisfy the
following:
Assumption 1. The data x are mean 0 and Gaussian with positive definite covariance matrix K ∈
Rd×d. The targets y are generated by y = ⟨x,θ∗⟩+ ϵ, where θ∗ is the ground-truth and ϵ the label
noise.
Definition 1. Define the population risk and the noiseless risk:

P(θ) = E(x,y)

[
(⟨x,θ⟩ − y)2

]
/2 and R(θ) = Ex

[
⟨x,θ − θ∗⟩2

]
/2. (2)

Although our theory is framed in the setting of Gaussian data, as we will see, the results are still
a good description for real-world, a priori non-Gaussian settings (Figure 1). This is an instance of
universality, wherein the details of the data distribution do not affect the precise high-dimensional
limit law (see discussion in Tao (2023) section 2.2). Formalizing this is left to future work.

In contrast, the distribution of the label noise has a nontrivial impact on the behavior of the process.
We shall require that the noise is well-behaved in a neighborhood around 0.
Assumption 2. There exists a0 > 0 such that the law of the noise ϵ has an almost-everywhere C2

density on (−a0, a0).

Assumption 2 ensures our SDE (7) is Lipschitz (c.f. Lemma 12) and applies to many distributions; it
encompasses heavy-tailed distributions such as α-stable laws, and we make no assumptions on any
tail properties of the noise. Due to the non-smoothness of the σ function at 0, extraordinary behavior
of the noise near 0 will lead to degraded performance of SIGNSGD as the risk vanishes. At the cost
of a less-informative theorem, it is possible to drop Assumption 2; see Theorem 6 in the Appendix.

As we will see, an important characterizing feature of SIGNSGD is its effect on the covariance of
the signed stochastic gradients. We introduce the following transformations on K:

K ≡ D−1K and Kσ ≡
[π
2
Ex[σ(xi)σ(xj)]

]
i,j

=

[
arcsin

(
Kij√
KiiKjj

) ]
i,j

, (3)

where D =
√
diag(K). We remark that K is similar in the matrix-sense to D− 1

2KD− 1
2 , thus K

has all real, positive eigenvalues. Kσ is proportional to the covariance of σ(x). We assume some
properties of the matrices K, K, and Kσ .
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Assumption 3. Suppose:
i). The spectrum of K is bounded from above and away from 0 independently of d.

ii). The sign-data matrix Kσ also has operator norm bounded independent of d.
iii). The resolvent of K defined by R(z;K) = (K− zI)−1 satisfies

max
i≤d

max
i ̸=j

∥∥R(z;K)ij
∥∥ = O

(
dδ0√
d

)
, (4)

for all z ∈ ∂B2∥K∥ and for some δ0 < 1/12. (Equivalently, one may instead assume the

same bounds with K replaced by K).

The upper bound on K in Assumption 3 (i) is standard and can always be achieved by rescaling
the risk. But the lower bound is a nontrivial assumption that is necessary for analyzing how the
σ function affects the stochastic gradient. Assumption 3 (ii) is convenient for the proof. A full
understanding of when it holds is highly nontrivial; there exists some theory establishing when
it holds for some random K Fan & Montanari (2019). Assumption 3 (iii) can be interpreted as a
condition that the eigenvectors of K contain no low-dimensional structure: for example, it is satisfied
with high probability if the eigenvectors of K are taken to be uniformly random. Additionally, it
is trivially satisfied for any diagonal K. For a further discussion, including applicability in real
datasets, see (Paquette & Paquette, 2022, Figure 2).

We assume the learning rates have a high-dimensional limiting profile:
Assumption 4. The learning rates follow

η′t = η(t/d)/d, (5)

where η : R+ → R+ is a continuous bounded function. We will write ηt for η(t).

This scaling is critical: it ensures that as the problem size grows, both the bias and variance terms in
the risk evolution are balanced (see e.g. Equation (23)).

Finally, we assume the initialization remains (stochastically) bounded across d:
Assumption 5. The difference between θ∗ and initialization θ0 satisfies

P
(∣∣R(z;K)Ti (θ0 − θ∗)

∣∣ ≥ t) ≤ C exp
(
−ct2d/∥R(z;K)i∥2

)
, (6)

for all 1 ≤ i ≤ d with absolute, positive constants c, C.

For example, this assumption holds for deterministic θ0 and θ∗ with a dimension-independent bound
on ∥θ0 − θ∗∥ (e.g., θ0 = 0 and ∥θ∗∥ bounded independently of d), or for random θ0 and θ∗ with a
dimension-free subgaussian bound on ∥θ0 − θ∗∥.

3 SIGNHSGD

The analysis of SIGNSGD in high-dimensional settings presents a unique set of technical challenges
and requires careful mathematical treatment. A core difficulty lies in the transformative effect of
the sign operator on the gradient. Unlike traditional SGD, where the gradient direction remains
consistent with the magnitude of the update, SIGNSGD changes the gradient’s direction, via a non-
Lipschitz compression operation. This compression alters the optimization landscape observed by
the optimizer, in ways we will explore in Section 4.

Nonetheless, we show that under the assumptions above, there is a continuous stochastic pro-
cess Sign-Homogenized SGD (SIGNHSGD) which captures the high-dimensional behaviour of
SIGNSGD; see (Thygesen, 2023) or (Karatzas & Shreve, 1991) for background on SDEs.
Definition 2 (SIGNHSGD). We define Θt as the solution of the stochastic differential equation:

dΘt = −ηt
φ(R(Θt))√
2R(Θt)

K(Θt − θ∗)dt+ ηt

√
Kσ

πd
dBt, and Θ0 = θ0, (7)

where, with µϵ the law of ϵ

φ(R(Θt)) =
2

π

∫
R
exp

(
−y2

4R(Θt)

)
dµϵ(y) =

2

π
Eϵ

[
exp

(
−ϵ2

4R(Θt)

)]
. (8)

3
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(b) Non-centered Cauchy noise
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(c) CIFAR10 data, assumed Gaussian noise
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Figure 1: Dynamics of the risk under SIGNSGD and SIGNHSGD on synthetic and real datasets.
SIGNHSGD and its deterministic equivalent ODE are good models for the risk dynamics even for
d = 500 (a, b) or on real datasets (c, d). The convergence of SIGNSGD for Cauchy noise (b) is
remarkable given that SGD fails to converge there. The usefulness of the ODE on CIFAR10 and
IMDB movie reviews is remarkable due to the non-Gaussian nature of the data, and the significant
estimation of key quantities like θ∗ or ϵ. For the CIFAR10 dataset, we validate the results of Theorem
3 which gives the limit risk of SIGNODE under Gaussian data. Details of these experiments may be
found in Appendix H. See also Appendix B.1.1 for the definition of the VANILLAODE.

Remark 1. In the case where ϵ ≡ 0, we would take that φ(x) ≡ 2/π. While this ϵ does not satisfy
Assumption 2, we formulate in the Appendix Theorem 6 which covers this case.

It is worth noting that, in practice, φ is often easy and inexpensive to compute numerically; we
compute it analytically for some common distributions (Figure 2). In general, it is simple to fit a
Gaussian mixture model to your noise and use that to compute φ (Appendix H).

We can now state the first part of our main theorem:
Theorem 1 (Main Theorem, part 1). Given Assumptions 1–5 and choosing any fixed even moment
2p ∈ (0, d), there exists a constant C(K, ϵ) > 0 such that for any δ ∈ (1/3, 1/2) and all T > 3,

sup
0≤t≤T

|R(θ⌊td⌋)−R(Θt)| ≤
Tdδ ∥K∥√

d
exp

(
C(K, ϵ) ∥η∥∞ T

)
, (9)

with probability at least 1− c(2p,K)dp(1/3−δ) for a constant c(2p,K) independent to d.

In other words, the risk curves of SIGNSGD are well approximated by the risk curves of SIGNHSGD
and this approximation improves as dimension grows. Numerical simulations suggest that in practice
this correspondence is strong even by d = 500 (Figure 1 (a), (b)).

One may be interested in studying other statistics such as iterate norms or distance to optimality, for
this we present a more generalized result across all quadratics in Theorem 5, which may be found in
the Appendix.

The risk curves of both SIGNSGD and SIGNHSGD concentrate around the same deterministic path.
We will refer to this deterministic path as Rt, the deterministic equivalent of SIGNSGD. We call

4
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Distribution φ(x)

0 2
π

N
(
0, v2

)
2
√
2x

π
√
2x+v2

Rademacher 2
π exp

(
− 2

4x

)
Unif (−1, 1) 2

√
x
π erf

(
1

2
√
x

)
√
Levy(λ) 2

π exp

(
−
√

λ
2x

)
10 3 10 1 101 103

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ϕ
(x

)

0
N(0, v²)
Rademacher
Unif(-1,1)
Root-Levy

Figure 2: Examples of φ for simple noise distributions.
√
Levy has Cauchy type-tails and vanishing

density near 0. We note that φ(x) is trivially bounded above by 2
π and converges to 2

π as x → ∞;
the rate of convergence at∞ is related to the tail decay rate. At 0, φ(x)/

√
x converges to the density

of the noise at 0 scaled by 2/π.

Rt SIGNODE. In order to find the deterministic equivalent we introduce a family of scalars {ri}di=1
which loosely correspond to the magnitudes of the residual Θt − θ∗ projected onto an eigenbasis
(see Appendix B). The sum of these scalars then gives the deterministic equivalent for the risk:

Rt
def
=

d∑
i=1

ri(t). (10)

The scalars follow a coupled system of ODEs:

dri
dt

= −2ηt
φ(Rt)√
2Rt

λi(K)ri + η2t
wT

i KσKui

πd
, for all 1 ≤ i ≤ d, (11a)

ri(0) =
1

2
⟨θ0 − θ∗,Kui⟩ ⟨wi,θ0 − θ∗⟩ , for all 1 ≤ i ≤ d, (11b)

where λi(K), ui and wi are the eigenvalues and left/right eigenvectors of K respectively. We
remark that by a similar argument, we may derive a coupled system of ODEs that describe the risk
of vanilla SGD (Collins-Woodfin & Paquette, 2023). We call the deterministic equivalent of vanilla
SGD as VANILLAODE. See Appendix B for the formulation.

We can now present a deterministic version of Theorem 1:

Theorem 2 (Main Theorem, part 2). Let Rt be given by (10) and (11). Then given Assumptions 1–5
and choosing any fixed even moment 2p ∈ (0, d) there exists a constant C(K, ϵ) > 0 such that for
any δ ∈ (1/3, 1/2) and all T > 3,

sup
0≤t≤T

|R(θ⌊td⌋)−Rt| ≤
Tdδ ∥K∥√

d
exp

(
C(K, ϵ) ∥η∥∞ T

)
, (12)

with probability at least 1− c(2p,K)dp(1/3−δ) for a constant c(2p,K) independent to d.

This ODE captures the behavior of the risk even at finite d = 500 (Figure 1 (a), (b)). Moreover, it
seems to capture the behavior of high dimensional linear regression on real, non-Gaussian datasets
as well (Figure 1 (c), (d)).

4 COMPARING SIGNSGD TO VANILLA SGD

To produce an apples-to-apples comparison, we compare the SIGNHSGD to the analogous SDE for
vanilla SGD from Collins-Woodfin & Paquette (2023):

dΘSGD
t = −ηSGD

t ×K(ΘSGD
t −θ∗)dt+ η

SGD
t ×

√
2KP(ΘSGD

t )

d
dBt and ΘSGD

0 = θ0. (13)

5
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To control for the adaptive-scheduling inherent in SIGNSGD, we run vanilla SGD with a risk de-
pendent learning rate schedule ηSGD

t given by

ηSGD
t =

2

π

ηt√
2P(ΘSGD

t )
=

2

π

ηt√
E∥∇θL(θ,x, y)∥2

, (14)

which is to say that we scale the steps in SGD inversely proportional to the norm of the gradients.
We note that the P-risk requires the noise ϵ to have finite variance v; indeed if the variance is infinite,
then SIGNSGD is overwhelmingly favored, see (Zhang et al., 2020a, Remark 1). Training SIGNSGD
with learning rate ηt and SGD with learning rate ηSGD

t , we can use (7) to write, with ψ as in (16)),

dΘSGD
t = −ηSGD

t ×K(ΘSGD
t − θ∗)dt+ ηt

√
4K

π2d
dBt (15a)

dΘt = −ηSGD
t × ψ(R(Θt))︸ ︷︷ ︸

ϵ- compress.

× D−1︸︷︷︸
D.Precond.

×K(Θt − θ∗)dt+ ηt

√
Kσ

πd︸ ︷︷ ︸
Reshape

dBt. (15b)

We summarize the precise effects below:

Effective learning rate: The effective learning rate of SIGNSGD can be considered as risk de-
pendent, effectively matching the expected ℓ2–norm of a gradient.

ϵ- compression: The distribution of the label noise (be it from model-misspecification or
otherwise) rescales the bias term. Formally, letting v2 = E[ϵ2],

ψ(x) =
πφ(x)

√
2x+ v2

2
√
2x

. (16)

Diagonal preconditioner: The matrix D−1 gives the diagonal preconditioner (Dii =
√
Kii).

Gradient noise reshaping: Finally, passing the gradient through the σ function results in a differ-
ent covariance structure to the gradients, which is accounted for in the
differing diffusion term.

Although all the effects appear in concert in SIGNSGD, we will now attempt to isolate and address
each one separately in the following sections.

4.1 EFFECTIVE LEARNING RATE AND CONVERGENCE

We recall that to match the learning rate of SGD to SIGNSGD, we had to use the identification (14),

ηSGD
t =

2

π

ηt√
2P(ΘSGD

t )
.

In particular, the effective learning rate gets smaller when the optimizer’s position is far from op-
timality and gets larger as it gets closer. In the convex setting this is generally undesirable at both
extremes. When far from optimality, the algorithm slows far beyond what would tend to be favor-
able, while at small risks this behavior can impede convergence. On the other hand, it can easily be
rectified by appropriately rescaling the SIGNSGD learning rate ηt by the square root of the risk.

In a nonconvex setting, identifying 2P(ΘSGD
t ) with the expected square-norm of the gradients (c.f.

(14)) one possible benefit of this schedule is that it may be helpful in dynamically adjusting to saddle
manifolds in the loss landscape.

4.1.1 STATIONARY POINT OF SIGNSGD

If the learning rate is any constant ηt ≡ η, we have a unique stationary point of the ODE system
(11a) which is locally attractive. The η dependence of this stationary point demonstrates the effect
of an aggressive learning rate, which is accentuated in the presence of small noise variance v.
Theorem 3. With fixed learning rate ηt ≡ η ∈ (0,∞) and ϵ ∼ N(0, v2), the ODEs have a unique
stationary point [si : 1 ≤ i ≤ d] given by Equation (242). Then, the limiting risk, R∞ =

∑
si, is

given by

R∞ =
πη

32d
Tr(D)

(
πηTr(D)

2d
+

√
π2η2 Tr(D)2

4d2
+ 16v2

)
. (17)

6
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Notice that the limiting risk’s dependence on η changes depending on the relationship between η
and v, for small η it will be proportional to η. See Figure 6 for an illustration.

4.2 ϵ-COMPRESSION

The influence of the distribution of the noise ϵ on the optimization, in the case of finite variance, can
be summarized by (c.f. (16) and (8))

ψ(R) = E
[
exp

(
−ϵ2

4R

)]
×
√

1 +
E[ϵ2]
2R

. (18)

When ψ < 1, the descent term of (15b) is decreased, and hence SIGNSGD is slowed with respect
to SGD with learning rate ηSGD

t . Conversely, when ψ > 1 the descent term is increased, and
SIGNSGD is favored. When E[ϵ2] =∞, ψ can be interpreted as∞, corresponding to overwhelming
SIGNSGD favor, although the quantitative meaning in (15b) breaks down.

In the Gaussian case ψ = 1; we can interpret ψ as the effect that deviation from Gaussianity has on
the drift term of the SDE. We note that all the influence of the label noise ϵ on SIGNSGD is entirely
through (18) which in turn only depends on ϵ2. Hence SIGNSGD symmetrizes the noise distribution.

In general, a full comparison of SGD and SIGNSGD requires optimizing the learning rates of both
algorithms independently. We will show that in the case of isotropic data, this procedure is tractable
and produces a different threshold ψ = π

2 above which SIGNSGD is favored (see Equation (26)).

10 2 10 1 100 101 102

R

1.0

1.2

1.4

1.6

1.8

2.0

2.2

ψ
(R

)

df = 3
df = 5
df = 10
df = 30
π/2

0 10 2 10 1 100 101

R
0

10 2

10 1

100
ψ
(R

)

N(0, v²)
Rademacher
Unif(-1,1)
Root-Levy

Figure 3: Left: ψ for Student’s-t. Here ψ is always greater than 1 and ϵ-compression accelerates
SIGNSGD. For sufficiently small df , ψ > π/2 over some range ofR and SIGNSGD also converges
faster than SGD in the isotropic setting. Right: ψ for N(0, v2), Rademacher, Unif(−1, 1),

√
Levy.

Only Unif(−1, 1) admits ψ > 1.

Setups favoring SIGNSGD. In the presence of heavy tails, ψ(R) can be large and hence very
SIGNSGD favored. Indeed, among some parametric classes, such as the Student’s-t family, this is
observed numerically to always be larger than 1 (Figure 3, left) and increase to ∞ as the kurtosis
increases. More generally, asR tends to 0, letting fϵ(0) be the density of the noise at 0, one has

ψ(R)→R→0

√
2πfϵ(0)E[ϵ2], (19)

which can be arbitrarily large.

Conversely, for all distributions, we also observe that when the risk is relatively large, SIGNSGD is
always modestly favored over SGD under the ηSGD learning rate as we have

1 ≤ E
[
1− ϵ2

4R

]
×
√

1 +
E[ϵ2]
R
≤ ψ(R) ≤

√
1 +

E[ϵ2]
R

, for all
E[ϵ2]
R
≤ 3

2
. (20)

Setups where SIGNSGD does not improve. For light-tailed noises, the factor ψ can only mildly
favor SGD. A density f on R is called log-concave if it can be written as eg for concave g (see
Saumard & Wellner (2014) for discussion). The exponential, uniform and many other canonical
noise distributions are log-concave. Note these decay no slower than exponentially at infinity. Then

7
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as φ(R)/
√
4πR is the density at 0 of a log-concave density, we have from (Saumard & Wellner,

2014, Proposition 5.2),
ψ(R) ≤

√
2π. (21)

Hence, for these distributions, while there may be limited gains from using SIGNSGD, they are
bounded by an absolute constant factor.

Setups where SIGNSGD is catastrophic. In the situation that the noise is bounded away from 0
by some δ, it follows that we have the upper bound:

ψ(R) ≤ e−
δ2

4R ×
√
1 +

E[ϵ2]
2R

. (22)

This tends to 0 exponentially in 1/R (e.g. see the Rademacher case of Figure 3). For such noise
distributions, SIGNSGD will effectively experience a floor on the risk, which is completely induced
by distributional properties of the noise (and unrelated to the underlying optimization problem ge-
ometry). In this situation, SGD is heavily favored for small risks, which would be seen late in
training.

Scheduling SIGNSGD. We have discussed adjusting the SGD learning rate to match the be-
haviour of SIGNSGD. However, when using SIGNSGD there is the reciprocal question of how to
select its learning rate. We briefly discuss this in the case of isotropic data K = Id, in which K = K
and Kσ = π

2 Id which allows us to isolate the effects of the label noise. It is easy to check that the
d-system of ODEs for SIGNSGD in (10) may be reduced to the following single ODE:

dRt

dt
= −2ηtφ(Rt)√

2Rt

Rt +
η2t
2
, R0 = R(θ0). (23)

If we greedily optimize in ηt we arrive at
dRt

dt
= −φ(Rt)

2Rt, where η∗t = φ(Rt)
√

2Rt. (24)

So generally for large risks, the optimal stepsize compensates for the effective gradient rescaling in
(14). This compensation is seen for all risks in the Gaussian ϵ setting.

As a point of comparison, we may repeat the same procedure for the SGD risk ODE RS with
learning rate ηS, which can be derived from (13):

dRS
t

dt
= −2ηStRS

t +
(ηSt )

2

2
(2RS

t + v2)
optimizing in ηS

−−−−−−−−→ dRS
t

dt
= − 2RS

t

2RS
t + v2

RS
t . (25)

Hence (24) can also be expressed as

dRt

dt
= −

(
4

π2
ψ2(Rt)

)
× 2Rt

2Rt + v2
Rt. (26)

Thus the performance benefits of SIGNSGD having selected the optimal learning rate can again be
reduced to a question of the magnitude of ψ, albeit with a crossover at ψ = π/2.

In the non-isotropic setting, locally greedy stepsizes can be very far from optimal, even with two
eigenvalues (Collins-Woodfin et al., 2024). But we expect the conclusion of (26) remains mostly
true in well-conditioned settings.

4.3 DIAGONAL PRECONDITIONER

Next, and strikingly, we see that SIGNSGD performs a diagonal preconditioning step on the gradi-
ents, with the preconditioner given by Dii =

√
Kii =

√
E[x2

i ], where x is a sample. To produce
this bias term in SGD, we would need to run the algorithm

θk+1 = θk − ηkD−1 (∇θL(θ,x, y)) . (27)

We expect the dynamical preconditioner in ADAM can be compared to the same non-dynamical D
preconditioning in high-dimensions; for details, see Appendix E.

As K appears naturally in (7), its spectrum regulates the rate of convergence of the optimization to
stationarity. By utilizing our d-systems of ODEs we can establish the following convergence rate:

8
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Theorem 4. Assume ϵ ∼ N(0, v2) and let si be the stationary points to (11a). Then there is an
absolute constant c > 0 so that if

η
Tr(K)

2d
≤ min

{
c,
4v

π

}
, and R0 ≤ cv, (28)

then we have, setting R∞ =
∑d

i=1 si to be the limit risk,

|Rt −R∞| ≤ 2(R0 +R∞)e−tηλmin(K)/(πv). (29)

The proof is given in Appendix C. In contrast to vanilla SGD, where the risk converges (in a high-
dimensional setting) with rate 1

κ , where κ(K) = Tr(K)
dλmin(K) is the average condition number (Paquette

et al. (2022)). Theorem 4 states that the risk of SIGNSGD converges at a rate Tr(K)

dλmin(K)
, after se-

lecting the largest allowed η. SIGNSGD is therefore favored over SGD when κ(K) < κ(K). See
Figure 8 for experimental validation.

Settings in which the preconditioned K is preferable. Theorem 4 shows that the rate of conver-
gence is governed entirely by K. The clearest setting when this is favourable is if K is diagonal, so
that K =

√
K. In this case, the convergence rate is, up to constants

1

d

Tr(K)

λmin(K)
=

1

d

Tr(K)√
λmin(K)

≤

√
1
d Tr(K)√
λmin(K)

. (30)

Hence on diagonal problems, SIGNSGD attains a speedup over SGD commensurate to the speedup
of optimal deterministic convex optimization algorithms such as Conjugate gradient over gradient
descent (Nocedal & Wright, 2006).

A strictly diagonal K is not necessary to attain this speedup. Diagonally dominant matrices, which
are well-known to benefit from Jacobi preconditioning (in which one would rescale by D−2), should
see similar benefits. This supports the prior work of Balles et al. (2020) who show that SIGNSGD
is effective when the the Hessian of the risk, which in our setting is K, is sufficiently diagonally
concentrated.

A second situation in which one may have substantial speedups are for block-tridiagonal K, where
the blocks are scaled by greatly differing constants; diagonal preconditioning by D partially corrects
for this effect. It has been argued that one of the principal advantages of ADAM is that it correctly
adapts learning rates across different layers of Transformers and MLPs (Zhang et al., 2024), which
can have similar structures in their Jacobians.

Settings in which K does not help. Like preconditioning generally, K does not always have a
smaller condition number than K. See Appendix G for a counter example.

In addition, if the eigenvectors of K are randomized to make a new covariance matrix A, say by
performing a uniformly random orthogonal change of basis, the entries of the diagonal of A will
concentrate to be

max
i

∣∣∣∣Aii −
Tr(K)

d

∣∣∣∣ = O((log d)d−1/2), (31)

and so the preconditioner diag(A)−1/2 does not affect the condition number of A. Hence the benefit
of diagonal preconditioning is tied to special properties of the basis in which the optimization is
performed; see (Nocedal & Wright, 2006, Section 5.1) for a broader discussion on preconditioning.

4.4 GRADIENT NOISE RESHAPING

Finally, there is gradient noise reshaping, wherein the SGD gradient noise matrix K is replaced by
the matrix Kσ up to constants. This is a complicated mapping, and there is no short answer about
the impact of this replacement. In Figure 4, we show a simulation of the spectra illustrating that for
CIFAR10, a practical, non-diagonal dataset, passing from K→ Kσ might affect the magnitudes of
the eigenvalues but not their structure.

9
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In the case that K itself is a sample covariance matrix, the matrix Kσ is strongly related to a Kernel
inner product matrix, for which there is a large literature. This includes properties of bulk spectra
(Karoui, 2010; Cheng & Singer, 2013), norms (Fan & Montanari, 2019) and more.

When K is a diagonal matrix then Kσ = π
2 I and so this can be considered a type of preconditioning

of the gradient noise, albeit with a more aggressive preconditioner than D.

We expect that for power-law type covariances, in which K has powerlaw spectral dependence and
which are often seen in practice (e.g. in Figure 4), in language embeddings, and in image and video
datasets, Kσ again has powerlaw spectra of the same exponent. Beyond the spectral distribution,
replacing K by Kσ may also serve to slightly break the alignment of large directions of gradient
variance from large gradient biases (they are perfectly aligned in SGD), which should be beneficial
both to stability of the algorithm and performance.

5 DISCUSSION

10 2 10 1 100 101 102 103

Log eigenvalues

100

101

102

K

K

Kσ

Figure 4: Log eigenvalues of K,K,Kσ computed
for the CIFAR10 dataset.

Our high-dimensional limit sheds a quantitative
light on the precise ways in which SIGNSGD
can be compared to SGD, via change of effec-
tive learning rate, noise compression, precondi-
tioning, and reshaping of the gradient noise.

Theorem 2, the main technical contribution of
this work, required substantial technical efforts.
Although similar in formulation to existing
work like Collins-Woodfin et al. (2024), there
are technical complexities in working with the
nonsmooth σ function: both in terms of deriv-
ing the relevant concentration of measure esti-
mates (the textbook versions of which require
smoothness) and in terms of the additional pathology of the resulting SIGNHSGD (especially the
φ). We believe that a version of Theorem 2 is true in much greater generality than we have proven
it, even for the linear setting: two desirable mathematical generalizations are quantifying dimension
intrinsically (instead of through the ambient dimension) and generalizing the theory to settings of
non-Gaussian data.

Our high-dimensional SDE differs from the previously studied Weak-Approximation (WA) SDE
framework (Li et al., 2019; Malladi et al., 2022) in some key ways: first, our approximation im-
proves with dimension, whereas in WA one fixes a dimension and sends stepsize to 0. Secondly,
(Malladi et al., 2022) does not provide an explicit optimization problem, while SIGNHSGD is fully
determined given a learning rate schedule and covariance structure, which allows us to draw conclu-
sions about SIGNHSGD applied to these optimization problems (Theorems 3, 4). Finally, previous
works using WA to study adaptive algorithms like ADAM fail to quantitatively or qualitatively cap-
ture the dynamics of SIGNSGD; see Appendix F for details.

Though our work focuses on the case of MSE loss and linear regression, there is a path towards
extending results to more general settings using recent results in high-dimensional optimization
(Collins-Woodfin et al., 2023). In practical settings, models undergo dramatic changes in local
geometry during training; nonetheless, stability analysis of the linearized problem is still useful for
understanding aspects of the non-linear dynamics of these systems (Cohen et al., 2022; Agarwala &
Pennington, 2024).

Finally, our analysis of SIGNSGD gives hints towards understanding ADAM in a similar setting. A
heuristic analysis shows that ADAM has a homogenized process similar to SIGNHSGD: it appears to
share the preconditioner D while differing from SIGNHSGD by setting φ→ 1 and again modifying
the shape of the gradient noise Kσ (Appendix E). Thus for well-behaved noises ϵ, SIGNSGD should
be nearly path-identical to ADAM; we note that LION has been recently observed to do just that
(Zhao et al., 2024). We leave investigation of ADAM for future work.
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OVERVIEW OF SUPPLEMENTARY MATERIAL

The supplementary material is primarily dedicated to the proofs of the main theorems, Theorem 1
and 2. Here we give the organization of the appendices.

In Appendix A, we give the proof of these main theorems, including their extensions in Theorem
5 and 6. The key approximations to the update rules of SIGNSGD are given in Appendix A.1,
including the key technical Lemma 3. In Appendix A.2, we show how these tools are used to give
the main proof (but we defer the estimates on the stochastic errors to Appendix A.4), culminating in
Lemma 7, which in fact proves the main theorem statement (that of Theorem 5). In Appendix A.3,
we discuss the extension Theorem 6 – as this is a modification of the proof of Theorem 5, we do not
go into details.

In Appendix B, we give the derivation of the ODEs SIGNODE and VANILLAODE from their ho-
mogenized counterparts, and discuss the proof of Theorem 2, which follows the same strategy as
Theorem 5 (for full details of this type of ODE comparison, see Collins-Woodfin et al. (2023)). Here
also, we discuss the derivation of the VANILLAODE, which is a special case of Collins-Woodfin et al.
(2023).

In Appendix C, we proof the analysis of the SIGNODE and VANILLAODE that gives its limit level
(Theorem 3) and a local convergence rate (Theorem 4).

In Appendix D, we provide additional supporting simulations, corroborating aspects of the main
theorems.

In Appendix E, we give a heuristic derivation of the high-dimensional limit of ADAM.

In Appendix F we show the “Weak Approximation” theory of ADAM produces a different SDE
prediction (see the discussion there as well).

In Appendix G, we give an example of a matrix where diagonal preconditioning hurts.

Finally in Appendix H, we give some additional information on how the experiments were per-
formed.
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A PROOF OF MAIN THEOREM

A.1 APPROXIMATION OF THE CONDITIONAL UPDATES

For simplicity of our proofs, we will assume η is constant. The proof remains unchanged if η is
defined as in Assumption 4. For the convenience of the reader and to avoid confusion, we provide
the typical notions of convergence in high-dimensions.

Definition 3. An event A ⊂ Rd holds with high-probability, if there exists some δ > 0 independent
to d such that P(A) ≥ 1− Cd−δ for some C independent to d.

Definition 4. An event A ⊂ Rd holds with overwhelming-probability, if for all δ > 0 there exists
Cδ such that P(A) ≥ 1− Cδd

−δ .

Denote Fk to be the natural filtration generated by the data {xj}kj=1 and the label noise {ϵj}kj=1.
For notational convenience, we define the ”centered” SIGNSGD iterate νk = θk − θ∗. We also
denoteRk = R(θk) when it is clear.

Notice now, that the k + 1th update of SIGNSGD is given by

νk+1 − νk = −η
d
σ(xk+1)σ(⟨xk+1,νk⟩ − ϵk+1). (32)

A key component of our proof aims to compute the mean of this update (conditioned on Fk) and
then simplify this mean by introducing errors which vanish in high-dimensions.

Lemma 1. Conditional on Fk, the mean of the i-th element of (32) is given by

E
[
νi
k+1 − νi

k|Fk

]
= −η

d

√
2

π
2hik(0)

〈
Ki,νk

〉
− η

d
E[σ(xi

k+1)R
i
k+1], (33)

where

hik(x) =
1√

2π
(
2Rk −

〈
Ki,νk

〉2)
∫
R
exp

 −(x+ y)2

2
(
2Rk −

〈
Ki,νk

〉2)
 dLϵ(y), (34)

and

Ri
k+1 = O

((
⟨Ki,νk⟩

Kii
xi
k+1

)3
)
. (35)

Proof. Following the update rule (1), we start by computing the conditional update of the i-th entry
of the iterates

E
[
νi
k+1 − νi

k|Fk

]
= −η

d
E
[
σ(xi

k+1)σ(⟨xk+1,νk⟩ − ϵk+1)|Fk

]
(36)

= −η
d
E

σ(xi
k+1)E

σ
νi

kx
i
k+1 +

∑
j ̸=i

νj
kx

j
k+1 − ϵk+1

∣∣∣∣Fk, x
i
k+1

 ∣∣∣∣Fk

 .
(37)

Given that the data is Gaussian distributed, upon conditioning on Fk we see that∑
j ̸=i

νj
kx

j
k+1 ∼ N(0, 2Rk − 2νi

k ⟨Ki,νk⟩+Kii(ν
i
k)

2). (38)

Additionally, for ci is any constant, we can write

∑
j ̸=i

νj
kx

j
k+1 =

∑
j ̸=i

νj
kx

j
k+1 − ciν

i
kx

i
k+1

+ ciν
i
kx

i
k+1. (39)
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Let yi =
∑

j ̸=i ν
j
kx

j
k+1− ciνi

kx
i
k+1. Choosing ci =

⟨Ki,νk⟩−Kiiν
i
k

Kiiνi
k

, makes yi uncorrelated to xi
k+1

and hence independent. Additionally, notice yi ∼ N(0, 2Rk −
〈
Ki,νk

〉2
). Moreover, since yi is

independent to ϵk+1 their difference yi − ϵk+1 has density given by

hik(x) =
1√

2π
(
2Rk −

〈
Ki,νk

〉2)
∫
R
exp

 −(x+ y)2

2
(
2Rk −

〈
Ki,νk

〉2)
 dLϵ(y). (40)

Using (40), we compute

E

σ
νi

kx
i
k+1 +

∑
j ̸=i

νj
kx

j
k+1 − ϵk+1

∣∣∣∣Fk,x
i
k+1


= E

[
σ
(
yi − ϵk+1 + (1 + ci)ν

i
kx

i
k+1

) ∣∣∣∣Fk,x
i
k+1

]
= PFk,xi

k+1

(
yi − ϵk+1 > −(1 + ci)ν

i
kx

i
k+1

)
− PFk,xi

k+1

(
yi − ϵk+1 ≤ −(1 + ci)ν

i
kx

i
k+1

)
=

∫ ∞

−(1+ci)νi
kx

i
k+1

hik(x) dx−
∫ −(1+ci)ν

i
kx

i
k+1

−∞
hik(x) dx. (41)

Define

H(s) =

∫ ∞

−s

hik(x) dx−
∫ −s

−∞
hik(x) dx, (42)

where upon differentiating it is easy to see that

H ′(s) = 2hik(−s). (43)

Taylor expanding around 0 we obtain,

E

σ
νi

kx
i
k+1 +

∑
j ̸=i

νj
kx

j
k+1 − ϵk+1

∣∣∣∣Fk, x
i
k+1

 = H((1 + ci)ν
i
kx

i
k+1)

= H(0) + 2hik(0)
⟨Ki,νk⟩

Kii
xi
k+1

+
d

ds
hik(0)

(
⟨Ki,νk⟩

Kii
xi
k+1

)2

+Ri
k+1,

(44)

where

Ri
k+1 = O

((
⟨Ki,νk⟩

Kii
xi
k+1

)3
)
. (45)

Plugging this back into (37) yields

E
[
νi
k+1 − νi

k|Fk

]
= −η

d
E
[
σ(xi

k+1)

(
H(0) + 2hik(0)

⟨Ki,νk⟩
Kii

xi
k+1

) ∣∣∣∣Fk

]
− η

d
E

[
σ(xi

k+1)

(
d

ds
hik(0)

(
⟨Ki,νk⟩

Kii
xi
k+1

)2

+Ri
k+1

)∣∣∣∣Fk

]

= −η
d
2hik(0)

⟨Ki,νk⟩
Kii

E|xi
k+1| −

η

d
E[σ(xi

k+1)R
i
k+1]

= −η
d
2hik(0)

〈
Ki,νk

〉√ 2

π
− η

d
E[σ(xi

k+1)R
i
k+1]. (46)
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In the next two lemmas we will show that for all 1 ≤ i ≤ d, the risk dependent factors 2
√

2
πh

i
k(0)

can be well-approximated by 1√
2Rk

φ(Rk), where

φ(Rk) =
2

π

∫
R
exp

(
−y2

4Rk

)
dLϵ(y). (47)

To do this, we will show that:
〈
Ki,νk

〉
= O(d−s) for some s > 0. Additionally, this would also

imply the error Ri
k+1 vanishes as d→∞. This simplifies (33) by removing the latter error term and

reducing each hik into a single constant factor, i.e.

E
[
νi
k+1 − νi

k

∣∣∣∣Fk

]
≈ −η

d

φ(Rk)√
2Rk

〈
Ki,νk

〉
. (48)

Our proof makes use of the resolvent R(z;K) = (K− zI)−1, a matrix valued function essentially
encoding powers of K. The following lemma will allows us to to control

〈
Ki,νk

〉
by a finite net of

resolvents.
Lemma 2. There exists a net Γ0 ⊂ Γ of orderO(d) andC(K) > 0 such that for all k and 1 ≤ i ≤ d,

|
〈
Ki,νk

〉
| ≤ CK max

z∈Γ0

max
1≤i≤d

∥∥R(z;K)Ti νk

∥∥ . (49)

Proof. It is easy to check by the Cauchy’s integral formula that〈
Ki,νk

〉
= − 1

2πi

∮
Γ

zR(z;K)Ti νk dz. (50)

By Assumption 3, we may bound
∥∥R(z;K)i

∥∥ for all z ∈ Γ by a finite collection of z0 ∈ Γ. Indeed,
if Γ0 is a 1/

√
d-net on Γ then |Γ0| = O(d). It follows that for all z ∈ Γ, there exists some z0 ∈ Γ0

such that |z − z0| ≤ 1/
√
d. Then, by resolvent identities we see that for all 1 ≤ i ≤ d and a ∈ Rd,

||R(z;K)Ti a|| = ||R(z0;K)Ti a+ (z − z0)[R(z;K)R(z0;K)]Ti a||

≤ ||R(z0;K)Ti a||+
1√
d

∥∥R(z;K)i
∥∥ ∥∥R(z0;K)a

∥∥
≤ (1 +MR) max

1≤i≤d
||R(z0;K)Ti a||. (51)

In particular,

max
z∈Γ

max
1≤i≤d

||R(z;K)Ti a|| ≤ (1 +MR) max
z0∈Γ0

max
1≤i≤d

||R(z0;K)Ti a||. (52)

Plugging this into (50),

|
〈
Ki,νk

〉
| ≤ 1

2π

∮
Γ

∥z∥ (1 +MR) max
z0∈Γ0

max
1≤i≤d

∥∥R(z0;K)Ti νk

∥∥ dz

= 4(1 +MR)
∥∥K∥∥2 max

z∈Γ0

max
1≤i≤d

∥∥R(z;K)Ti νk

∥∥
= CK max

z∈Γ0

max
1≤i≤d

∥∥R(z;K)Ti νk

∥∥ . (53)

Note that terms such as η and
∥∥K∥∥ are bounded by assumption, thus we make the convention moving

forward any constants independent to d such as CK may change from line to line. Therefore, to
show that

〈
Ki,vk

〉
shrinks as d→∞, it suffices to show that maxz∈Γ0 max1≤i≤d

∥∥R(z;K)Ti vk

∥∥
shrinks as d→∞.
Before we do so, it will be convenient to work under the setting that the risk is bounded. As such,
let L > 0 and define the following stopping time,

τ0 = min {k; ∥νk∥ > L} , (54)

as well as the stopped process vk = νk∧τ0 . We show in Lemma 8 that L may be chosen so that
vk = νk with overwhelming probability, effectively removing the bounded constraint.
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Lemma 3. Given Assumptions 1 - 5, there exists a net Γ0 ⊂ Γ of order O(d), such that for all t > 0
and 1/6 + δ0 < δ < 1/4,

max
z∈Γ0

max
1≤i≤d

max
0≤k≤⌊td⌋

||R(z;K)Ti vk|| <
dδ√
d

(55)

with high-probability.

Proof. For clarity of notation, let h̃ik = 2
√

2
πh

i
k(0) and h̃k = 1√

2Rk
φ(Rk). In addition, define Ak

be a diagonal matrix with entries given by h̃ik , as well as the vector Ek+1 = (E[σ(xi
k+1)R

i
k+1])

d
i=1.

By (33), for a fixed z ∈ Γ0 and 1 ≤ i ≤ d,

E
[
R(z;K)Ti (vk+1 − vk)|Fk

]
= R(z;K)Ti E [vk+1 − vk|Fk]

= −η
d
R(z;K)Ti

(
AkKvk + Ek+1

)
= −η

d
h̃kR(z;K)Ti Kvk

− η

d
R(z;K)Ti

(
AkKvk − h̃kKvk + Ek+1

)
= −η

d
h̃k
(
zR(z;K)Ti vk + vi

k

)
− η

d
R(z;K)Ti

(
AkKvk − h̃kKvk + Ek+1

)
= −η

d
h̃kzR(z;K)Ti vk

+
η

d

(
−h̃kvi

k +R(z;K)Ti

(
h̃kKvk −AkKvk − Ek+1

))
︸ ︷︷ ︸

:=Ei
k(z)

.

(56)

By the Doob decomposition we see that,

R(z;K)Ti vk+1 = R(z;K)Ti vk + E
[
R(z;K)Ti (vk+1 − vk)|Fk

]
+∆M i

k+1(z)

=
(
1− η

d
h̃kz
)
R(z;K)Ti vk +∆M i

k+1(z), (57)

where ∆M i
k+1(z) are the martingale increments of R(z;K)Ti (vk+1 − vk). Let

Lk =

k∏
j=0

(
1− η

d
h̃jz
)
,

then upon iterating (57) we obtain

R(z;K)Ti vk+1 = LkR(z;K)Ti v0 + Lk

k∑
j=0

1

Lj

(
E ij(z) + ∆M i

j+1(z)
)
. (58)

It is easy to check that
∑k

j=0
1
Lj

∆M i
j+1(z) is a martingale so we shall denote it byMi

k+1(z). Let

τ1 = min

{
k; ||R(z,K)Ti vk|| ≥

dδ√
d

for some 1 ≤ i ≤ d and z ∈ Γ0

}
. (59)

It suffices to show (55) holds for the stopped process vk∧τ1 given that

P
(

max
1≤k≤⌊td⌋

max
z∈Γ0

max
1≤i≤d

∥∥R(z;K)Ti vk

∥∥ ≥ dδ√
d

)
= P

(
max
z∈Γ0

max
1≤i≤d

∥∥R(z;K)Ti v⌊td⌋∧τ1

∥∥ ≥ dδ√
d

)
. (60)
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For notational clarity, we will write ṽk = vk∧τ1 . Note that (58) holds all k, so it must also hold
for the stopped process ṽk. Given that the entries of ṽk move at increments of η

d , we observe the
following bound on the stopped process,

||R(z;K)Ti ṽk|| ≤
dδ√
d
+
ηMR√
d

≤ ηM ′
Rd

δ

√
d

. (61)

Moreover, by Lemma 12 we know that h̃k ≤ Mϵ. This in turn implies Lk is bounded from above
and below. Indeed,

∥Lk∥ =
k∏

j=0

∥∥∥1− η

d
h̃kz
∥∥∥

≤
k∏

j=0

1 +
ηMϵ ∥z∥

d

≤

(
1 +

2ηMϵ

∥∥K∥∥
d

)⌊td⌋

≤ exp
(
ηCt,ϵ,K

)
. (62)

Similarly for the lower bound,

∥Lk∥ ≥
k∏

j=0

1− η

d
h̃k ∥z∥

≥

(
1−

2ηMϵ

∥∥K∥∥
d

)⌊td⌋

≥ exp

− 2ηMϵ∥K∥
d ⌊td⌋

1− 2ηMϵ∥K∥
d


≥ exp

(
−
2ηMϵ

∥∥K∥∥
d

⌊td⌋

)
= exp

(
−ηCt,ϵ,K

)
, (63)

provided that
ηMϵ∥K∥

d < 1
2 . Therefore, up to a constant factor

∥∥R(z;K)Ti ṽk

∥∥ ≤ Cη,t,ϵ,K

∥∥R(z;K)Ti ṽ0

∥∥+ ∥∥∥Mi

k+1(z)
∥∥∥+ k−1∑

j=0

∥∥E ij(z)∥∥
 . (64)

We will now bound the error E ij(z). By (49), we already know that

|
〈
Ki, ṽj

〉
| ≤ CK max

z∈Γ0

max
1≤i≤d

∥∥R(z;K)Ti ṽj

∥∥ . (65)

Similarly,

|ṽi
j | ≤ CK max

z∈Γ0

max
1≤i≤d

∥∥R(z;K)Ti ṽj

∥∥ . (66)
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We also observe for all 1 ≤ i ≤ d,

Ei
j+1 = E

[
σ(xi

j+1)R
i
j+1

]
≤ O

E

∣∣∣∣∣ ⟨Ki, ṽj⟩xi
j+1

Kii

∣∣∣∣∣
3


= O
(
|
〈
Ki, ṽj

〉
|3
)

= O

((
max
z∈Γ0

max
1≤i≤d

∥∥R(z;K)Ti ṽj

∥∥)3
)
. (67)

In particular, for some constant CK > 0,

∥Ej+1∥ =

√√√√ d∑
i=1

(
Ei

j+1

)2
≤
√
dCK

(
max
z∈Γ0

max
1≤i≤d

∥∥R(z;K)Ti ṽj

∥∥)3

. (68)

For our last error term we apply the Lipschitz bound obtained by Lemma 12. That is the map

s 7→ ψ(s) =
2

π
√
s

∫ ∞

−∞
exp

(
−y2

2s

)
dµϵ(y), (69)

is Lipschitz with constant Lϵ. Moreover, ψ(2Rj −
〈
Ki, ṽj

〉2
) = h̃ij and ψ(2Rj) = h̃j . By (65),

for all 1 ≤ i ≤ d,

|h̃ij − h̃j | ≤ Lϵ

〈
Ki, ṽj

〉2
≤ Lϵ

(
CK max

z∈Γ0

max
1≤i≤d

∥∥R(z;K)Ti ṽj

∥∥)2

. (70)

It follows that∥∥∥h̃jKṽj −AjKṽj

∥∥∥ ≤ ∥∥∥h̃jId −Aj

∥∥∥∥∥Kṽj

∥∥
≤ Lϵ

(
CK max

z∈Γ0

max
1≤i≤d

∥∥R(z;K)Ti ṽj

∥∥)2 ∥∥Kṽj

∥∥
≤ Cϵ,K

√
d

(
max
z∈Γ0

max
1≤i≤d

∥∥R(z;K)Ti ṽj

∥∥)3

. (71)

For notational clarity, let us write ωk = maxz∈Γ0
max1≤i≤d ||R(z;K)Ti ṽk||. Putting all this to-

gether we have up to constant factor,∥∥E ij(z)∥∥ ≤ η

d

(
|h̃jṽi

j |+
∥∥R(z;K)

∥∥(∥∥∥h̃jId −Aj

∥∥∥ ∥∥Kṽj

∥∥+ ∥Ej+1∥
))

≤
ηCϵ,K

d

(
ωj + 2

√
dω3

j

)
. (72)

Returning to (64), upon taking the max across z ∈ Γ0 and 1 ≤ i ≤ d and up to a constant Cη,t,ϵ,K >

0, we obtain for all k ≤ ⌊td⌋

ωk ≤ Cη,t,ϵ,K

ω0 +max
z∈Γ0

max
1≤i≤d

max
1≤k≤⌊td⌋

Mi

k(z) +

k−1∑
j=0

η

d

(
ωj + 2

√
dω3

j

) . (73)

Define

βt = Cη,t,ϵ,K

(
ω0 +max

z∈Γ0

max
1≤i≤d

max
1≤k≤⌊td⌋

Mi

k(z)

)
, (74)
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as well as the stopping time

τ2 = min
{
k ;ωk ≥ 3βt exp

(
Cη,t,ϵ,K

)}
. (75)

As before, we note that ωk can only move at increments of at-most ηMr√
d

. Thus,

ωk∧τ2 ≤ 3βt exp(Cη,t,ϵ,K) +
ηMr√
d

=: β′
t, (76)

for all k ∈ N. Plugging this into (73),

ω⌊td⌋∧τ2 ≤ βt + Cη,t,ϵ,K

(⌊td⌋−1)∧τ2∑
j=0

η

d
ωj +

⌊td⌋∑
j=0

η

d

(
2
√
dω3

j

)
≤ βt + Cη,t,ϵ,K

[
2
√
d(β′

t)
3
]
+

(⌊td⌋−1)∧τ2∑
j=0

Cη,t,ϵ,K

η

d
ωj . (77)

By Gronwall’s inequality,

ω⌊td⌋∧τ2 ≤
(
βt + Cη,t,ϵ,K

√
d
[
2(β′

t)
3
])

exp
(
Cη,t,ϵ,K

)
. (78)

If we can show that βt can be made sufficiently small so that

Cη,t,ϵ,K

[√
d(β′

t)
3
]
≤ βt, (79)

then ω⌊td⌋∧τ2 = ω⌊td⌋. To see this, recall by Assumption 5 we know that for any constant ξ > 0,
the former term of βt has the following tail bound,

P
(
max
z∈Γ0

max
1≤i≤d

||R(z;K)Ti v0|| ≥
ξdδ√
d

)
≤ Cd2 exp

(
−c′ξ2d2δ

)
. (80)

To bound the martingale term, we first fix z ∈ Γ0 and 1 ≤ i ≤ d, then let

τ3 = min

{
k ; |Mi

k(z)| ≥
ξdδ√
d

}
. (81)

Let Xk =Mi

k∧τ3(z). Notice that E
[
Mi

k(z)
]
= 0, so E [Xk] = 0. It follows that

P
(

max
1≤k≤⌊td⌋

|Mi

k(z)| ≥
ξdδ√
d

)
= P

(∥∥X⌊td⌋
∥∥ ≥ ξdδ√

d

)
. (82)

Notice that∥∥∥Mi

k+1(z)−M
i

k(z)
∥∥∥ =

1

∥Lk∥
∥∥R(z;K)Ti (vk+1 − vk)−R(z;K)Ti E

[
vk+1 − vk

∣∣Fk

]∥∥
≤
Ct,KηMR√

d
. (83)

Hence, ∥Xk −Xk−1∥ ≤
Ct,KηMR√

d
almost surely for all k. However, we may improve this increment

bound by ds

d for 1
6 + δ0 < s < δ. Indeed, by Corollary 2 for all even moments 2p < d, there exists

a constant C(2p, η,K) such that

P
(
∥Xk+1 −Xk∥ ≥

ds

d

)
≤ C(2p, η,K)dp(

1
3−2s+2δ0). (84)

It follows by Lemma 15,

P
(∥∥X⌊td⌋

∥∥ ≥ ξdδ√
d

)
≤ 2 exp

(
−ξ

2d2(δ−s)

Cη,t,K

)
+ ⌊td⌋C(2p, η,K)dp(

1
3−2s+2δ0) (85)
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Thus, taking union bounds across z ∈ Γ0 and 1 ≤ i ≤ d gives,

P
(
max
z∈Γ0

max
1≤i≤d

max
1≤k≤⌊td⌋+1

∥∥∥Mi

k(z)
∥∥∥ ≥ ξdδ√

d

)
≤ Cd2 exp

(
−ξ

2d2(δ−s)

Cη,t,K

)
+ 2Cd2⌊td⌋C(2p, η,K)dp(

1
3−2s+2δ0) (86)

It is easy to see that for d sufficiently large, we may choose p large so that s > 1
6 +δ0+

3
2p , implying

the latter term converges to 0 as d → ∞. Therefore, βt ≤ ξdδ

√
d

with high-probability. Returning to
(79), up to a constant factor that is independent to d,

P
(√

dβ3
t > βt

)
= P

(
β2
t >

1√
d

)
= P

(
d2δ

d
> β2

t >
1√
d

)
+ P

(
β2
t >

1√
d
, β2

t ≥
d2δ

d

)
= P

(
βt ≥

dδ√
d

)
, (87)

provided that δ < 1/4. Thus, (79) is satisfied and ω⌊td⌋∧τ2 = ω⌊td⌋ with high-probability. By
choosing ξ appropriately in accordance to (75), we conclude ω⌊td⌋ ≤ dδ

√
d

with high-probability.

We can now formalize our prior statement of

E
[
vi
k+1 − vi

k

∣∣∣∣Fk

]
≈ −η

d

φ(Rk)√
2Rk

〈
Ki,vk

〉
, (88)

for all 1 ≤ i ≤ d.
Lemma 4. Conditional on Fk, the mean of (32) is

E
[
vk+1 − vk

∣∣∣∣Fk

]
= −ηφ(Rk)

d
√
2Rk

Kvk + Ek+1, (89)

where Ek+1 is an error term such that for all ρ ∈ (1/6+ δ0, 1/4), with high-probability ∥Ek+1∥ =
O
(

d3ρ

d2

)
.

Proof. By (33), the coordinate-wise error can be defined as

Ei
k+1 =

η

d

(
E
[
σ(xi

k+1)R
i
k+1

]
+
φ(Rk)√
2Rk

〈
Ki,vk

〉
−
√

2

π
2hik(0)

〈
Ki,vk

〉)
. (90)

Applying Lemma 3 onto (68) and (71) yields the result.

A.2 CONVERGENCE OF SIGNSGD TO SIGNHSGD

In this section we will show convergence of the dynamics of SIGNSGD to that of SIGNHSGD.
Recall SIGNHSGD is defined as in (7). Similarly to SIGNSGD we will impose a stopping time onto
SIGNHSGD,

τ ′0 = min
t>0
{t; ∥Θt − θ∗∥ > L} . (91)

We will also define the stopped process by Vt = Θt∧τ ′
0
− θ∗. We will prove the main result for

the stopped SIGNSGD process vk and stopped SIGNHSGD process Vt, then in Lemma 8 we will
generalize to the non-stopped process θk and Θt.

We shall use the following:
Definition 5 (Quadratic). A function q : Rd → R is quadratic if it may be written in the form

q(x) = xTAx+ bTx+ c

for some A ∈ Rd×d, b ∈ Rd, and c ∈ R.
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Once again, for notational convenience we will denote σk+1 = σ(xk+1)σ(⟨xk+1,νk⟩−ϵk+1) when
it is clear. Now if q : Rd → R is quadratic, it is easy to see that

q(vk+1)− q(vk) = −
η

d
∇q(vk)

T (σk+1) +
η2

2d2
(σk+1)

T∇2q(vk)(σk+1). (92)

Thus, taking its conditional expectation we obtain

E[q(vk+1)− q(vk)|Fk] = −
ηφ(Rk)

d
√
2Rk

∇q(vk)
TKvk +

η2

d2π

〈
∇2q(vk),Kσ

〉
+O

(
d3ρ

d2

)
. (93)

By the Doob-decomposition, we have

q(vk+1)− q(vk) = −
ηφ(Rk)

d
√
2Rk

∇q(vk)
TKvk +

η2

d2π

〈
∇2q(vk),Kσ

〉
(94)

+O

(
d3ρ

d2

)
+∆Mlin

k+1 +∆Mquad
k+1 , (95)

where
∆Mlin

k+1 = −η
d
∇q(vk)

T (σk+1 − E[σk+1|Fk]) , (96)

and

∆Mquad
k+1 =

η2

2d2
(
σT
k+1∇2q(vk)σk+1 − E[σT

k+1∇2q(vk)σk+1|Fk]
)
. (97)

Similarly, by Ito’s lemma on Vt, we see that

dq(Vt) =

(
−ηφ(R(Vt))√

2R(Vt)
∇q(Vt)

TKVt +
η2

πd

〈
∇2q(Vt),Kσ

〉)
dt+ dMσ

t , (98)

where

dMσ
t = η∇q(Vt)

T

(√
2Kσ

dπ
dBt

)
. (99)

Comparing (95) and (98), we see that predictable part of signSGD and the total variation part of
HSGD depend only on ∇q(x)TKx and R(x). We capture these statistics in a “closed” manifold
defined by

Qq =
{
xTx, q(x), ∇q(x)TR(z;K)x, xTR(z;K)T∇2q(x)R(y;K)x; z, y ∈ Γ

}
. (100)

To be precise in our notion of closure, given any g ∈ Qq , the predictable part of (95) (not accounting
the error) and the drift part of (98) may be expressed via contour integral around Γ by a linear
combination of functions from Qq . Let us look at an example. Suppose g(x) = ∇q(x)TR(z;K)x.
It is easy to see that

E
[
∇g(vk)

T(vk+1 − vk)|Fk

]
= −ηφ(Rk)

d
√
2Rk

(
vT
k∇2qR(z;K)Kvk + vT

kR(z;K)T∇2qKvk

)
+O

(
d3ρ

d2

)
(101)

= −ηφ(Rk)

d
√
2Rk

(
vT
k∇2qvk

)
+O

(
d3ρ

d2

)
− ηφ(Rk)

d
√
2Rk

(
zvT

k∇2qR(z;K)vk + vT
kR(z;K)T∇2qKvk

)︸ ︷︷ ︸
p(vk)

.

(102)

Notice that our error O
(

d3ρ

d2

)
is independent to choice of g. This is because the resolvent R(z;K)

has uniformly bounded operator norm for all z ∈ Γ, thus the ∥·∥C2 is also uniformly bounded for
all g ∈ Qq . It then follows that

∇g(vk)
TEk+1 ≤ ∥∇g(vk)∥ ∥Ek+1∥ ≤ ∥g∥C2 (1 + ∥vk∥) ∥Ek+1∥ = O

(
d3ρ

d2

)
. (103)
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In addition, by the Cauchy’s integral theorem we may express p(vk) by

p(vk) = −
1

2πi

∮
Γ

zvT
kR(y;K)T∇2qR(z;K)vk + yvT

kR(z;K)T∇2qR(y;K)vk dy, (104)

as well as

vT
k∇2qvk =

1

4π2

∮
Γ

∮
Γ

vT
kR(z;K)∇2qR(y;K)vk dzdy. (105)

Consequently, we see that∣∣E [∇g(vk)
T(vk+1 − vk)|Fk

]∣∣ ≤ ηφ(Rk)

d
√
2Rk

12
∥∥K∥∥2 max

g∈Qq

|g(vk)|+O

(
d3ρ

d2

)
(106)

≤ 12ηMϵ

d

∥∥K∥∥2 max
g∈Qq

|g(vk)|+O

(
d3ρ

d2

)
, (107)

where we applied Lemma 12 in the second inequality. Note the constant factor of 12
∥∥K∥∥2 depended

on g. We may work around this quadratic dependent constant to obtain a uniform bound on (107)
for all g ∈ Qq with the following lemma:

Lemma 5. Let Qq be defined as above then for all n > 0 there exists Qq ⊂ Qq such that |Qq| ≤
C(K)d4n and for all g ∈ Qq , there exists g0 ∈ Qq satisfying ∥g − g0∥C2 ≤ d−2n.

The proof of Lemma 5 may be found in Collins-Woodfin et al. (2024).

Lemma 6. There exists constants C(K),Mϵ > 0 such that for all g ∈ Qq , k ∈ N and ρ ∈
(1/6 + δ0, 1/4)∣∣E [∇g(vk)

T(vk+1 − vk)|Fk

]∣∣ ≤ ηMϵ

d
C(K) max

g∈Qq

|g(vk)|+O

(
d3ρ

d2

)
. (108)

Proof. Let g ∈ Qq and n > 0, then by Lemma 5 there exists g0 ∈ Qq such that ∥g − g0∥C2 ≤ d−2n.
It follows that∣∣E [∇g(vk)

T(vk+1 − vk)|Fk

]∣∣ = ∣∣∣∣ηφ(Rk)

d
√
2Rk

∇g(vk)
TKvk

∣∣∣∣+O

(
d3ρ

d2

)
(109)

≤ ηφ(Rk)

d
√
2Rk

(∣∣∇(g − g0)(vk)
TKvk

∣∣+ ∣∣∇g0(vk)
TKvk

∣∣) (110)

+O

(
d3ρ

d2

)
(111)

≤ ηMϵ

d

(
∥g − g0∥C2

∥∥K∥∥ ∥vk∥2 + Cg0(K) max
g∈Qq

|g(vk)|
)
(112)

+O

(
d3ρ

d2

)
(113)

≤ ηMϵ

d

(
d−2n

∥∥K∥∥+ Cg0(K)
)
max
g∈Qq

|g(vk)|+O

(
d3ρ

d2

)
,

(114)

where Cg0(K) is the choice dependent constant as in (107). By taking the max across our finite net
Qq , there exists C(K) > 0 such that for all g ∈ Qq ,

∣∣E [∇g(vk)
T(vk+1 − vk)|Fk

]∣∣ ≤ ηMϵ

d
C(K) max

g∈Qq

|g(vk)|+O

(
d3ρ

d2

)
. (115)
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We are now ready to prove our main result. It would be convenient to extend the indexing of vk

from N to R by defining the sequence tk = k/d. With some slight abuse of notation, let vtk = vk.
If tk−1 ≤ t < tk, then define vt = vtk−1

.
Lemma 7. Given 0 < 2p < d and a quadratic q such that ||q||C2 ≤ 1, define Q = Qq ∪QR, where
R is the risk. For all T > 3 and 1/3 < δ < 1/2, there exists C(K, ϵ) > 0 such that

sup
0≤t≤T

|q(vt)− q(Vt)| ≤
Tdδ√
d
exp

(
C(K, ϵ) ∥η∥∞ T

)
, (116)

with probability at least 1− c(2p,K)dp(1/3−δ).

Proof. Let g ∈ Q, by (95), we see that

g(vt) = g(v0)−
η

d

⌊td⌋∑
i=0

φ(R(vi))√
2R(vi)

∇g(vi)
TKvi (117)

+ ⌊td⌋O
(
d3ρ

d2

)
+

η2

d2π

⌊td⌋∑
i=0

〈
∇2g(vk),Kσ

〉
+Mlin

t +Mquad
t

= g(v0)− η
∫ t

0

φ(R(vs))√
2R(vs)

∇g(vs)
TKvs ds+ (118)

+ ⌊td⌋O
(
d3ρ

d2

)
+
η2

dπ

∫ t

0

〈
∇2g(vs),Kσ

〉
ds

+Mlin
t +Mquad

t . (119)
Taking the difference with SIGNHSGD, we see that

|g(vt)− g(Vt)| ≤ η
∫ t

0

∣∣∣∣∣φ(R(vs))√
2R(vs)

∇g(vs)
TKvs −

φ(R(Vs))√
2R(Vs)

∇g(Vs)
TKVs

∣∣∣∣∣ ds
+ sup

0≤s≤t

(
|Mlin

s |+ |Mquad
s |+ |Mσ

s |
)
+O

(
d3ρ

d

)
t. (120)

However, Lemma 12 tells us the map

(a, b) 7→ φ(a)√
2a
b, (121)

is Lipschitz continuous with constant Lϵ > 0. Thus, using the same argument as in (108) we may
bound the integrand by∣∣∣∣∣φ(R(vs))√

2R(vs)
∇g(vs)

TKvs −
φ(R(Vs))√
2R(Vs)

∇g(Vs)
TKVs

∣∣∣∣∣
≤ Lϵ

√(
∇g(vs)TKvs −∇g(Vs)TKVs

)2
+ (R(vs)−R(Vs))

2

≤ LϵC(K)max
g∈Q
|g(vs)− g(Vs)|. (122)

Plugging into (120) we get

sup
g∈Q
|g(vt)− g(Vt)| ≤ sup

0≤s≤t

(
|Mlin

s |+ |Mquad
s |+ |Mσ

s |
)
+O

(
d3ρ

d

)
t

+ ηLϵC(K)

∫ t

0

max
g∈Q
|g(vs)− g(Vs)|ds. (123)

By Gronwall’s inequality,

sup
g∈Q
|g(vt)− g(Vt)| ≤

(
sup

0≤s≤t

(
|Mlin

s |+ |Mquad
s |+ |Mσ

s |
)
+O

(
d3ρ

d

)
t

)
exp

(
ηLϵC(K)t

)
.

(124)
Lemmas 9, 10 and 11 bound the martingales by dδ

√
d

for 1/3 < δ < 1/2. Subsequently, dδ
√
d

bounds

O
(

d3ρ

d

)
, concluding the proof.
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We have now shown that the stopped processes satisfy the conclusion of Theorem 1. We will con-
clude the proof of Theorem 1 by showing that, with high-probability, the process is not stopped.

Lemma 8. For all T > 0, there exists C(K,Kσ) > 0 such that

max
0≤t≤T

∥Vt∥ ≤ exp
(
TC(K,Kσ)

)
, (125)

with overwhelming probability.

Proof. For z ∈ Rd let ψ(z) = log(1 + ∥z∥2). By Itô’s lemma,

dψ(Vt) =

[
−2ηφ(Rt)√

2Rt(1 + ∥Vt∥2)
VT

t KVt −
η2

dπ(1 + ∥Vt∥2)
VT

t KσVt

]
dt

+

[
2η2

dπ(1 + ∥Vt∥2)
Tr(Kσ)

]
dt+

2η

(1 + ∥Vt∥2)
VT

t

√
Kσ

dπ
dBt. (126)

It is easy to check by the Cauchy-Schwarz inequality that the deterministic terms of may be uni-
formly bounded by some constant C(K,Kσ) > 0. Denote the martingale term byMσ−HSGD

t then
the quadratic variation is given by,

⟨Mσ−HSGD⟩t =
4η2

dπ(1 + ∥Vt∥2)2

∫ t

0

VT
s KσVs ds (127)

≤ η2 ∥Kσ∥ t
dπ

. (128)

By subgaussian concentration,

P
(

max
0≤t≤T

ψ(Vt) ≥ 2TC(K,Kσ)

)
≤ P

(
max
0≤t≤T

Mσ−HSGD
t ≥ TC(K,Kσ)

)
≤ 2 exp

(
−C(K,Kσ)

2Tdπ

2η2 ∥Kσ∥

)
. (129)

That is
max
0≤t≤T

∥Vt∥ ≤ exp
(
TC(K,Kσ)

)
, (130)

with overwhelming probability.

Therefore by choosing the upper bound in our stopping τ0 and τ ′0 in accordance to Lemma 8, we
obtain vt = θt−θ∗ and Vt = Θt−θ∗ for all 0 ≤ t ≤ T with overwhelming probability. Combining
this with Lemma 7 proves Theorem 1 as well as the following generalization:
Theorem 5. Given Assumptions 1–5 and a quadratic q : Rd → R, if g(x) = q(x − θ∗) then
choosing any fixed even moment 2p ∈ (0, d), there exists a constant C(K, ϵ) > 0 such that for any
δ ∈ (1/3, 1/2) and all T > 3,

sup
0≤t≤T

|g(θ⌊td⌋)− g(Θt)| ≤
Tdδ ∥g∥C2√

d
exp

(
C(K, ϵ) ∥η∥∞ T

)
, (131)

with probability at least 1− c(2p,K)dp(1/3−δ) for a constant c(2p,K) independent to d.

A.3 MAIN THEOREM WITH BADLY BEHAVED NOISE

In this section we formulate a version of Theorem 5 without Assumption 2. The key is that we must
work on subsets of the state space where the risk remains away from 0. So suppose that we let

ϑ := min
t>0
{t; ∥Θt − θ∗∥ < ϱ} ,

for a fixed positive ϱ > 0.
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We note that the map x 7→ φ(x) is Lipschitz on [ϱ,∞), even without Assumption 2, since

φ′(s) =
1

s

∫
R

y2

2s
exp

(
−y

2

2s

)
µ(dy).

The function xe−x is uniformly bounded on x ≥ 0 by e−1, and hence |φ′(s)| ≤ 1/ϱ on the interval
[ϱ,∞).

Thus, we can now proceed with the same proof as Theorem 5, although we do not remove the
stopping time ϑ. The end result is the following:

Theorem 6. Given Assumptions 1, 3, 4, 5 and a quadratic q : Rd → R, if g(x) = q(x − θ∗)
then choosing any fixed even moment 2p ∈ (0, d) and choosing any ϱ > 0, there exists a constant
C(K, ϵ, ϱ) > 0 such that for any δ ∈ (1/3, 1/2) and all T > 3,

sup
0≤t≤T∧ϑ

|g(θ⌊td⌋)− g(Θt)| ≤
Tdδ ∥g∥C2√

d
exp

(
C(K, ϵ, ϱ) ∥η∥∞ T

)
, (132)

with probability at least 1− c(2p,K)dp(1/3−δ) for a constant c(2p,K) independent to d.

We remark that if the risk of SIGNHSGD remains bounded away from 0, which will be the case for
constant stepsize and nonzero noise, one could additionally show that ϑ does not occur with high
probability. In that case, one can derive as a corollary of Theorem 6 a statement without ϑ.

A.4 BOUNDING MARTINGALE TERMS

Lemma 9. For all g ∈ Qq as defined in Equation (100) and 1/3 < δ < 1/2,

sup
0≤k≤⌊Td⌋

|Mlin
k | <

dδ√
d
, (133)

with high-probability.

Proof. Recall that under τ0, vk ≤ L. Moreover, given that ∥q∥C2 ≤ 1 and
∥∥R(z;K)

∥∥ ≤ MR, we
see that ∥g∥C2 is uniformly bounded for all g ∈ Q. Therefore,

∥∇g(vk−1)∥ ≤ ∥g∥C2(1 + L) (134)

for all k. Now by Corollary 3, for every even moment 2p < d, there exists C(2p,K) > 0 such that

P
(
|∆Mlin

k | ≥
dδ

d

)
≤
C(2p,K)E

[
∥∇g(vk−1)∥4p

]1/2
d2p/3

d2δp

≤ C(2p,K) (1 + L)
2p
d2p(

1
3−δ). (135)

Lemma 10. For all g ∈ Q and 0 < s < 1/2,

sup
0≤k≤⌊Td⌋

|Mquad
k | < 1

ds
(136)

with overwhelming probability.

Proof. From Cauchy-Schwarz, we see that

∣∣∣∆Mquad
k

∣∣∣ ≤ η2

d
∥g∥C2 (137)
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Then, Azuma’s inequality shows that

P
(

max
1≤k≤⌊Td⌋

|Mquad
k | ≥ 1

ds

)
≤ 2 exp

(
−d−2s+1

CT η4∥g∥2C2

)
, (138)

which gives the result.

Lemma 11. For all g ∈ Q and s < 1,

sup
0≤t≤T

|Mσ
t | ≤

1

ds
, (139)

with overwhelming probability.

Proof. From Equation (99), we know that

Mσ
t = η

∫ t

0

∇q(Vs)
T

√
2Kσ

dπ
dBt. (140)

Using the ∥q∥C2 norm we can bound

∥∇g(Vs)∥ ≤ ∥g∥C2 (1 + ∥Vs∥). (141)

Then, with Assumption 3 and Equation (141) we can bound the quadratic variation as,

⟨Mσ⟩t =
2η2

dπ

∫ t

0

∇g(Vτ
s )

TKσ∇g(Vτ
s ) ds

≤ 2η2

dπ

∫ t

0

∥Kσ∥ ∥∇g(Vs)∥2 ds

≤ 2η2

dπ
∥Kσ∥ ∥g∥2C2 (1 +M)2t. (142)

Then, using the subgaussian tail bound for continuous martingales we see that the stopped martingale
satisfies,

P
(

sup
0≤t≤T

|Mσ
t | ≥ t

)
≤ 2 exp

(
−t2dπ

4η2 ∥Kσ∥ ∥g∥2C2(1 +M)2T

)
. (143)

Lemma 12. If µ is a probability measure on R with the property that there exists a0 > 0 such that
dµ
dx = g(x) on [−a0, a0] for g ∈ C2([−a0, a0]), then the map α : R+ → R defined by

s 7→ 1√
s

∫
R
exp

(
−y2

2s

)
dµ(y), (144)

is bounded as well as Lipschitz.

Proof. Notice that it suffices to show (144) is bounded and Lipschitz for 0 < s < 1. Let fs(y) =
2

π
√
s
exp

(
−y2

2s

)
, as well as G(y) = µ((−∞, y]). Decomposing the integral into∫
R
fs(y) dµ(y) =

∫
[−a0,a0]

fs(y) dµ(y) +

∫
R\[−a0,a0]

fs(y) dµ(y), (145)

we see that the latter term may be easily bounded by∫
R\[−a0,a0]

fs(y) dµ(y) ≤
1√
s
exp

(
−a20
2s

)
, (146)
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which decays to 0 as s→ 0. The former term we apply the integration by parts formula to get∫
[−a0,a0]

fs(y) dµ(y) = fs(y)G(y)

∣∣∣∣y=a0

y=−a0

+

∫
[−a0,a0]

y

s3/2
exp

(
−y2

2s

)
G(y) dy. (147)

Further decomposing the latter integral into positive and negative regions we get∫ a0

0

y

s3/2
exp

(
−y2

2s

)
G(y) dy =

∫ a0

0

y

s3/2
exp

(
−y2

2s

)
[G(−a0) + µ((−a0, y])] dy, (148)

and∫ 0

−a0

y

s3/2
exp

(
−y2

2s

)
G(y) dy =

∫ 0

−a0

y

s3/2
exp

(
−y2

2s

)
[G(−a0) + µ((−a0, y])] dy (149)

= −
∫ a0

0

y

s3/2
exp

(
−y2

2s

)
[G(−a0) + µ((−a0,−y])] dy.

(150)

Thus, ∫
[−a0,a0]

y

s3/2
exp

(
−y2

2s

)
G(y) dy =

∫ a0

0

y

s3/2
exp

(
−y2

2s

)
µ((−y, y]) dy (151)

≤ C
∫ a0

0

y2

s3/2
exp

(
−y2

2s

)
dy (152)

= C

∫ a0/
√
s

0

y2 exp

(
−y2

2

)
dy. (153)

Putting this all together, we conclude that φ(s) is uniformly bounded for all s > 0. To see lipschitz,
we apply a similar argument. We first differentiate fs(y) with respect to s to we get

d

ds
fs(y) =

1

2s5/2
exp

(
−y2

2s

)(
y2 − s

)
. (154)

Therefore,

α′(s) =

∫
[−a0,a0]

d

ds
fs(y) dµ(y) +

∫
R\[−a0,a0]

d

ds
fs(y) dµ(y). (155)

There exists s0 > 0 such that if s < s0, then
√
3s < a0. It is easy to check that if y >

√
3s then

d
dsfs(y) is decreasing in y. Likewise, if y < −

√
3s then d

dsfs(y) is increasing in y. It follows that∫
R\[−a0,a0]

d

ds
fs(y) dµ(y) ≤

1

s5/2
exp

(
−a20
2s

)
(a20 − s), (156)

which decays to 0 as s→ 0. Finally, we apply integration by parts once more to get∫
[−a0,a0]

d

ds
fs(y) =

d

ds
fs(y)G(y)

∣∣∣∣y=a0

y=−a0

(157)

+

∫ a0

0

1

2s7/2
exp

(
−y2

2s

)
(y3 − 3sy)µ((−y, y]) dy. (158)

Since g ∈ C2([−a0, a0]) we may express µ((−y, y]) as

µ((−y, y]) =
∫ y

−y

g(0) + g′(0)x+O(x2) dx = 2g(0)y +O(y3). (159)

Plugging this into (158) it is easy to check that∣∣∣∣∫ a0

0

g(0)

s7/2
exp

(
−y2

2s

)
(y3 − 3sy)y dy

∣∣∣∣ = g(0)a30 exp
(

−a2
0

2s

)
s5/2

, (160)
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and∣∣∣∣∫ a0

0

1

2s7/2
exp

(
−y2

2s

)
(y3 − 3sy)O(y3) dy

∣∣∣∣ ≤ C ∫ a0

0

1

2s7/2
exp

(
−y2

2s

)
(y3 + 3sy)y3 dy

(161)

= C

∫ a0/
√
s

0

exp

(
−y

2

2

)
(y3 + 3y)y3 dy. (162)

Combining this with (156), we conclude that |α′(s)| is uniformly bounded for all s > 0.

Lemma 13. Let x ∼ N(0,K) such that K is positive-definite. If a ∈ Rd, then for all even moments
2k ≤ d,

E
[
⟨a, σ(x)⟩2k

]
≤ C(2k,K)∥a∥2k∞d4k/3, (163)

where C(2k,K) > 0 depends only on 2k, λmin(K) and λmax(K).

Proof. We start by fixing a δ > 0 and defining the smooth approximation of σ(x) to be σδ(x) =
ρδ ∗ σ(x), where ρδ : R → R is the standard compactly-supported mollifier convolved entry-wise
to σ(x), i.e. (σδ(x))i = ρδ ∗ σ(xi). It follows that

∥ ⟨a, σ(x)⟩ ∥L2k ≤ ∥ ⟨a, σ(x)− σδ(x)⟩ ∥L2k + ∥ ⟨a, σδ(x)⟩ ∥L2k . (164)

Note that ρδ has support contained in [−δ, δ], thus the entry-wise difference of σ(x) − σδ(x) may
be bounded by

|σ(xi)− σδ(xi)| ≤
{
0 |xi| > 2δ

2 |xi| ≤ 2δ.

DefineNδ(x) =
∑d

i=1 1{|xi|≤2δ} to be the number of coordinates of x within the interval (−2δ, 2δ),
we see that

E
[
⟨a, σ(x)− σδ(x)⟩2k

]
≤ ∥a∥2k∞ 22kE

[
Nδ(x)

2k
]

(165)

= ∥a∥2k∞ 22k
∑
s∈I

P
(
(xi)i∈s′ ∈ [−2δ, 2δ]|s

′|
)
, (166)

where I = {1, . . . , d}2kand s′ is set of distinct elements of s. Let K(s′) = E
[
(xi)

⊗2
i∈s′

]
, then

(xi)i∈s′ ∼ N(0,K(s′)). Recall that there exists a permutation matrix P, such K(s′) forms the
top |s′| × |s′| sub-matrix of PKP−1. Given that PKP−1 and K are similar, they share the same
eigenvalues. Therefore, by the Cauchy interlacing-law,

λmin(K) ≤ λmin(K
(s′)). (167)

In particular this implies

detK(s′) =

|s′|∏
i=1

λi(K
(s′)) ≥ λmin(K)|s

′|. (168)

Plugging this back into (166) and choosing δ = d−r, we get

E
[
⟨a, σ(x)− σδ(x)⟩2k

]
≤ ∥a∥2k∞ 22k

∑
s∈I

(4δ)|s
′|

(2πλmin(K))|s′|/2
(169)

= ∥a∥2k∞ 22k
2k∑
l=1

(
d

l

)
l!

{
2k

l

}
(4δ)l

(2πλmin(K))l/2
(170)

≤ ∥a∥2k∞ 22k max
1≤l≤2k

(
l!

{
2k

l

}) 2k∑
l=1

(
ed

l

)l
(4δ)l

(2πλmin(K))l/2
(171)

≤ ∥a∥2k∞ 22kC(2k)

(
4ed1−r√

2πmin{λmin(K), 1}

)2k

(172)

= ∥a∥2k∞ C(2k,K)d(1−r)2k, (173)
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where
{
2k
l

}
is Stirling’s number of a second-kind. For clarity of notation moving forward, we note

that C(2k,K) may change up to factors of constants or powers of k from line to line, while always
being independent to d.

To control the second term of Equation (164), we modify the proof of concentration of Lipschitz
functions of Gaussian random variables. See Lemma 2.1.5 for more details Adler & Taylor (2007).
Let G(x) = ⟨a, σδ(x)⟩. and z ∼ N(0,K) be independent to x. Define the Gaussian interpolation
zα to be

z(α) = αx+
√
1− α2z,

and note that x law
= z(α) for all α ∈ [0, 1]. Then by Lemma 2.1.4 in Adler & Taylor (2007),

E[G(x)2k] = (2k − 1)

∫ 1

0

E
[〈

K(a⊙ σ′
δ(x)), a⊙ σ′

δ(z
(α))

〉
·G2k−2(x)

]
dα, (174)

where ⊙ represents the Hadamard product. Going forward, we will use Hölder’s inequality to break
up the expectation and form a recursive equation. As such, consider

E[⟨K(a⊙ σ′
δ(x), a⊙ σ′

δ(y
α)⟩2p], (175)

for some p. Standard linear algebra gives us

E[
〈
K(a⊙ σ′

δ(x), a⊙ σ′
δ(z

(α)
〉2p

] ≤ (∥K∥ ∥a∥2∞)2pE[(∥σ′
δ(x)∥∥σ′

δ(z
(α))∥)2p]

≤ (∥K∥ ∥a∥2∞)2pE[∥σ′
δ(x)∥∥4p],

(176)

with the last line following from Cauchy-Schwartz and equality in law of x and z(α). Given that
σ′
δ(xi) = 0 for xi ̸∈ [−2δ, 2δ], as well as |σ′

δ(xi)| ≤ Lρ

δ for xi ∈ [−2δ, 2δ] and Lρ a universal
constant depending on our mollifier,

E[∥σ′
δ(x)∥∥4p] ≤

L4p
ρ

δ4p
E[N2p

δ ]. (177)

As we have seen in Equation (173),

E[Nδ(x)
2p] ≤ C(p,K)d(1−r)2p. (178)

Therefore, up to absolute constants

E[⟨K(a⊙ σ′(x), a⊙ σ′(yα)⟩2p] ≤ C(p,K)(∥a∥2∞)2p
L4p
ρ

δ4p
d(1−r)2p

≤ C(p,K)(∥a∥2∞)2pd(1+r)2p.

(179)

Returning to (174) and choosing 2p = 2k − 1, we see by Hölder’s inequality

E[G(x)2k] ≤ (2k − 1)
∥∥G(x)2k−2

∥∥
L

2k−1
2k−2
∥[⟨K(a⊙ σ′

δ(x), a⊙ σ′
δ(y

α)⟩∥L2k−1 (180)

≤ (2k − 1)E[G(x)2k−1]
2k−2
2k−1C(k,K) ∥a∥2∞ d1+r. (181)

Iterating the same inequalities as above for E[G2k−1], we obtain

E[G(x)2k] ≤
2k−1∏
i=1

(
(2k − i)C(2k − i,K) ∥a∥2∞ d1+r

) 2k−i
2k−1

(182)

≤ C(2k,K) ∥a∥2k∞ d(1+r)k. (183)
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Equations (173) and (182)combined give control over Equation (164),

∥ ⟨a, σ(x)⟩ ∥L2k ≤ C(2k,K)∥a∥∞
(
d

1+r
2 + d1−r

)
. (184)

Optimizing over r yields r = 1/3 leading to

E
[
⟨a, σ(x)⟩ ∥2k

]
≤ C(2k,K)∥a∥2k∞d4k/3, (185)

as desired.

Lemma 14. Let x ∼ N(0,K) such K is positive-definite. If y ∈ Rd a random vector independent
to x, then for all even moments 2k ≤ d,

E
[
⟨y, σ(x)⟩2k

]
≤ C(2k,K)E

[
∥y∥4k

]1/2
d2k/3, (186)

where C(2k,K) > 0 depends only on 2k, λmin(K) and λmax(K).

Proof. The proof is almost identical to that of Lemma 13, but instead of taking the sup-norm of a
in (166), we take the l2 norm via the Cauchy Schwarz inequality. Now proceeding proceeding in a
similar fashion we get

E
[
⟨y, σ(x)− σδ(x)⟩2k

]
≤ E

[
∥y∥2k ∥σ(x)− σδ(x)∥2k

]
(187)

≤ E
[
∥y∥4k

]1/2
E
[
∥σ(x)− σδ(x)∥4k

]1/2
(188)

≤ E
[
∥y∥4k

]1/2
22k
(
E
[
Nδ(x)

2k
])1/2

(189)

≤ E
[
∥y∥4k

]1/2
C(k,K)d(1−r)k. (190)

Lastly, by the independence of y and x, upon conditioning on y we see by Gaussian-concentration
on ⟨y, σδ(x)⟩ that

E
[
⟨y, σδ(x)⟩2k

]
= E

[
E
[
⟨y, σδ(x)⟩2k

∣∣∣∣y]] (191)

≤ E

(C√2k ∥y∥√λmax(K)

δ

)2k
 (192)

= C(2k,K)E
[
∥y∥2k

]
d2kr, (193)

where C > 0 is an absolute constant. Combining (190) and (193) then optimizing in r > 0 yields
the result.

Corollary 1. Let a ∈ Rd and xk+1 ∼ N(0,K), then for all even moments 2p ≤ d, there exists
C(2p,K) > 0 such that

P (| ⟨a, σ(ℓk+1xk+1)− E [σ(ℓk+1xk+1)|Fk]⟩ | ≥ t) ≤
C(2p,K) ∥a∥2p∞ d4p/3

t2p
. (194)

Proof. For notational clarity, let us denote Y = ⟨a, σ(ℓk+1xk+1)⟩. By Jensen’s inequality and
convexity of x 7→ x2p,

E
[
|Y − E[Y |Fk]|2p

]
≤ 22pE

[
1

2
Y 2p +

1

2
E[Y |Fk]

2p

]
(195)

≤ 22pE
[
Y 2p

]
. (196)
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However, notice that E
[
Y 2p

]
= E

[
⟨a, σ(xk+1)⟩2p

]
. By Markov’s inequality and Lemma 13,

P (|Y − E[Y |Fk]| ≥ t) = P
(
|Y − E[Y |Fk]|2p ≥ t2p

)
(197)

≤
22pE

[
⟨a, σ(xk+1)⟩2p

]
t2p

(198)

≤
C(2p,K) ∥a∥2p∞ d4p/3

t2p
. (199)

Corollary 2. If a ∈ Rd such that max2≤i≤d |ai| = O
(

dδ
√
d

)
, then for all even moments 2p ≤ d and

s > 0, there exists C(2p,K) > 0 such that,

P (| ⟨a, σ(ℓk+1xk+1)− E [σ(ℓk+1xk+1)|Fk]⟩ | ≥ ds) ≤ C(2p,K)dp(
1
3−2s+2δ), (200)

provided that ds > 4|a1|.

Proof. For ease of notation, let σk+1 = σ(ℓk+1xk+1). Given that |a1 (σk+1 − E [σk+1|Fk]) | ≤
2|a1|, it follows by Corollary 1,

P (| ⟨a, σk+1 − E [σk+1|Fk]⟩ | ≥ ds) ≤ P

(∣∣∣∣ d∑
i=2

ai
(
σi
k+1 − E

[
σi
k+1

∣∣∣∣Fk

]) ∣∣∣∣ ≥ ds

2

)
(201)

≤
C(2p,K)

(
max2≤i≤d |ai|

)2p
d4p/3

d2ps
(202)

≤ C(2p,K)dp(
1
3−2s+2δ). (203)

Corollary 3. If xk+1 ∼ N(0,K) and y ∈ Rd a random vector independent to x, then for all even
moments 2p ≤ d, there exists C(2p,K) > 0 and independent to d such that

P (| ⟨y, σ(ℓk+1xk+1)− E [σ(ℓk+1xk+1)|Fk]⟩ | ≥ t) ≤
C(2p,K)E

[
∥y∥4p

]1/2
d2p/3

t2p
. (204)

The proof is identical to that of Corollary 1 but using Lemma 14 instead.
Lemma 15. Let Mk be a martingale such that |Mk −Mk−1| ≤ C almost-surely and let Sk ≤ C.
Then for all t > 0 and N > 0,

P (|MN | ≥ t) ≤ 2 exp

− t2

2
(
C2 +

∑N−1
k=1 S

2
k

)
+ P (∃ k ≤ N − 1 , |Mk −Mk−1| > Sk) .

(205)

Proof. Let τ = min{k ; |Mk −Mk−1| > Sk} and Yk = Mk∧τ , then on the event that {k < τ},
|Yk − Yk−1| ≤ Sk. On the other hand, if {τ ≤ k} then |Yk − Yk−1| ≤ C. Breaking the probability
space into the event {τ ≤ N − 1} and its complement gives,

P (|MN | ≥ t) ≤ P (|YN | ≥ t) + P (τ ≤ N − 1) . (206)

Azuma’s inequality completes the proof as

P (|YN | ≥ t) ≤ 2 exp

− t2

2
(
C2 +

∑N−1
k=1 S

2
k

)
 . (207)
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B RISK CURVE DYNAMICS

B.1 PROOF OF THEOREM 2

If Vt = Θt − θ∗ where Θt solves the SDE given by (7) then Itô’s lemma applied onto

q(x) =
1

2
xTKR(z;K)x, (208)

yields

dq(Vt) =

(
−ηφ(Rt)√

2Rt

VT
t

(
KR(z;K) +R(z;K)TK

2

)
KVt

)
dt (209)

+

(
2η2

πd

〈
KR(z;K),Kσ

〉)
dt+ dMσ

t , (210)

where we denoteRt = R(Vt) for ease of notation. By resolvent identities, we know that

KR(z;K)K = zKR(z;K) +K. (211)

Moreover,
R(z;K)TKK = (KKR(z;K))T = (zKR(z;K) +K)T , (212)

so

2 (zq(Vt) +Rt) = VT
t

(
KR(z;K) +R(z;K)TK

2

)
KVt. (213)

Returning to Itô’s we see that

dq(Vt) =

(
−2ηφ(Rt)√

2Rt

(zq(Vt) +Rt) +
η2

πd
Tr
(
KR(z;K)Kσ

))
dt+ dMσ

t . (214)

To recover the risk Rt, we once again turn towards the Cauchy-integral law as well as the Spectral
Theorem. Indeed,

K =

d∑
i=1

λi(K)ui ⊗wi R(z;K) =

d∑
i=1

1

λi(K)− z
ui ⊗wi, (215)

where ui and wi are left and right eigenvectors respectively of K. We may then write

q(Vt) =
1

2

d∑
i=1

1

λi(K)− z
VT

t (Kui ⊗wi)Vt. (216)

Denoting r̃i(t) = 1
2V

T
t (Kui⊗wi)Vt, then upon integrating over Γi, a closed curve enclosing only

λi(K), we see that

dr̃i =

∮
Γi

dq(Vt)

−2πi
dz (217)

=

(
−2ηφ(Rt)√

2Rt

λi(K)r̃i +
η2

πd
Tr (K(ui ⊗wi)Kσ)

)
dt+ dMi,σ

t , (218)

where
Mi,σ

t =

∮
Γi

Mσ
t

−2πi
dz. (219)

Let us define the deterministic equivalent of r̃i as

dri =

(
−2ηφ(Rt)√

Rt

λi(K)ri +
η2

πd
Tr (K(ui ⊗wi)Kσ)

)
dt, ri(0) = r̃i(0) (220)

where

Rt =

d∑
i=1

ri. (221)
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Note, if we integrate (216) around Γ, we obtain

Rt =

d∑
i=1

r̃i. (222)

We will show that Rt concentrates around Rt using the same idea as in Theorem 7. To that define
set of functions that map x ∈ Rd to R by

W =
{
J (z)Tx ; z ∈ Γ

}
, (223)

where
[J (z)]i =

1

λi(K)− z
. (224)

Let q(x) = J (z)Tx for some z ∈ Γ, then As in (120) it is easy to check that

|q(rt)− q(r̃t)| ≤
∫ t

0

∣∣∣∣∣2ηφ(Rs)√
Rs

d∑
i=1

λi(K) [J (z)]i ri −
2ηφ(Rs)√
Rs

d∑
i=1

λi(K) [J (z)]i r̃i

∣∣∣∣∣ ds
(225)

+ sup
0≤s≤t

|Ms|, (226)

whereMt are all the martingale terms grouped together. Utilizing the same Lipschtiz map found in
the proof of Lemma 7, there exists Lϵ > 0 such that the integrand may be bounded by∣∣∣∣∣2ηφ(Rs)√

Rs

d∑
i=1

λi(K)[J (z)]iri −
2ηφ(Rs)√
Rs

d∑
i=1

λi(K)[J (z)]ir̃i

∣∣∣∣∣ (227)

≤ Lϵ

√√√√|Rs −Rs|2 +

∣∣∣∣∣
d∑

i=1

λi(K) [J ] (ri − r̃i)

∣∣∣∣∣
2

(228)

The latter term may be further bounded by∣∣∣∣∣
d∑

i=1

λi(K) [J (z)]i (ri − r̃i)

∣∣∣∣∣ ≤
∣∣∣∣∣

d∑
i=1

(1 + z[J ]i)(ri − r̃i)

∣∣∣∣∣ (229)

≤ |Rs −Rs|+ 2
∥∥K∥∥ |q(r)− q(r̃)|. (230)

However, notice that

|Rs −Rs| =
∣∣∣∣ 1

2πi

∫
Γ

J (y)T(r − r̃) dy
∣∣∣∣ (231)

≤
∥∥K∥∥ sup

q∈W
|q(r)− q(r̃)|. (232)

Therefore, ∣∣∣∣∣2ηφ(Rs)√
Rs

d∑
i=1

λi(K)[J (z)]iri −
2ηφ(Rs)√
Rs

d∑
i=1

λi(K)[J ]ir̃(z)i

∣∣∣∣∣ (233)

≤ LϵC(K) sup
q∈W
|q(r)− q(r̃)|. (234)

Putting all this together we see that

sup
q∈W
|q(r)− q(r̃)| ≤ sup

0≤s≤t
|Ms|+

∫ t

0

LϵC(K) sup
q∈W
|q(r)− q(r̃)|ds. (235)

By Gronwall’s inequality,

sup
q∈W
|q(r)− q(r̃)| ≤ sup

0≤s≤t
|Ms| exp

(
LϵC(K)t

)
. (236)

By (232) and Lemma 9, we see that Rt and Rt concentrates. Finally, Theorem 1 concludes the
proof.
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B.1.1 RISK CURVES FOR SGD

Following a similar approach but taking

q(x) =
1

2
xTR(z;K)x, (237)

we may derive a system of d-ODEs for SGD. We note this is not novel, and a full derivation in much
greater generality is in (Collins-Woodfin et al., 2023); see also (Collins-Woodfin et al., 2024) for a
shorter discussion. Using the HSGD formulation of vanilla streaming SGD (Collins-Woodfin et al.,
2024), we arrive at the VANILLAODE for subgaussian noise and variance v2,

dvi
dt

= −2ηλi(K)vi +
η(t)2

d
λi(K)(RSGD

t + v2/2), ∀1 ≤ i ≤ d. (238)

RSGD
t =

d∑
i=1

λi(K)vi. (239)
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C CONVERGENCE AND PHASE-PROPERTIES OF THE ODES

Lemma 16. If ϵ ∼ N(0, v2), thenR(Θt) is bounded from above and below for all t > 0.

Proof. Take q(x) = 1
2x

TDx then plugging this into (98) we obtain

dq(Vt) = −
4η

π
√
2R(Vt) + v2

R(Vt) +
η2

πd
Tr(KσD) dt+Mσ

t . (240)

By concentration inequalities we know thatMσ
t vanishes as d→∞, thus we will omit the martin-

gale term. Solving for the stationary point yields the following roots,

R± =
C2

η ± Cη

√
C2

η + 64v2

64
, (241)

where Cη = η
4d Tr(KσD) = πη

8d Tr(D). Phase diagram analysis shows that if R(Vt) < R+, then
q(Vt) is increasing. Conversely, if R(Vt) > R+ then q(Vt) is decreasing. Since D is positive-
definite, q(Vt) > 0 provided that Vt ̸= 0. The growth and decay conditions of q(Vt) implies that
q(Vt) cannot converge to 0, nor diverge to∞. Therefore, q(Vt) is bounded from above and below.
Consequently, ∥Vt∥ is bounded from above and below and soR(Vt) is as well.

Theorem 7. If ϵ ∼ N(0, v2) and η ∈ (0,∞) is a fixed learning rate then there exists unique
stationary points

si =
ηTr(K(ui ⊗wi)Kσ)

16λi(K)d

(
ηTr(DKσ)

d
+

√
η2 Tr(DKσ)2

d2
+ 16v2

)
, (242)

and the limit risk is given by

R∞ =
η

16d
Tr(DKσ)

(
ηTr(DKσ)

d
+

√
η2 Tr(DKσ)2

d2
+ 16v2

)
. (243)

We note that in these formulas, Tr(DKσ) = π
2 Tr(D) = π

2 Tr(K) on account of Kσ having a
constant diagonal.

Proof. Let Yt = π
√
2Rt+v2

4η and mi =
Tr(K(ui⊗wi)Kσ)

πd , then our d coupled ODEs are given by

dri
dt

= −λi(K)ri
Yt

+ η2mi, ri(0) =
1

2
VT

0 (Kui ⊗ yi)V0. (244)

Solving for the stationary point, we see that for all 1 ≤ i ≤ d,

ri =
η2miYt

λi(K)
. (245)

Thus, at equilibrium

Rt =

d∑
i=1

ri = η2Yt

d∑
i=1

mi

λi(K)
=
η2Yt
πd

Tr(DKσ). (246)

However, Rt can be expressed in terms of Y by

Rt =
1

2

((
4ηYt
π

)2

− v2

)
. (247)

Plugging into (246) we see that

1

2

((
4ηYt
π

)2

− v2

)
=
η2Yt
πd

Tr(DKσ). (248)
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Solving for Yt yields the following positive root

Y∞ =
π

16η

(
ηTr(DKσ)

d
+

√
η2 Tr(DKσ)2

d2
+ 16v2

)
(249)

Therefore, by (245) and (247), dri
dt = 0 if and only if

ri = si :=
η2miY∞

λi(K)
, ∀1 ≤ i ≤ d. (250)

This concludes uniqueness. The limiting risk is then given by

R∞ =
η2Y∞
πd

Tr(DKσ). (251)

Similarly, fixing η, we may derive unique stationary points to VANILLAODE (238):
Theorem 8. If ϵ is subgaussian with variance v2, η ∈ (0,∞) is a fixed learning rate and {vi}di=1
as given by (238), then there exists unique stationary points

sSGD
i =

ηv2

2(2d− ηTrK)
, (252)

with limiting risk

RSGD
∞ =

ηv2 Tr(K)

2(2d− Tr(K)η)
. (253)

Theorem 9. Assume ϵ ∼ N(0, v2) and let si be the stationary points to (11a). Then there is an
absolute constant c > 0 so that if

η

(
Tr(DKσ)

πd

)
≤ min

{
c,
4v

π

}
, and R0 ≤ cv,

then we have, setting R∞ =
∑d

i=1 si to be the limit risk,

|Rt −R∞| ≤ 2(R0 +R∞)e−tηλmin(K)/(πv).

We note again that in these formulas, Tr(DKσ) =
π
2 Tr(D) = π

2 Tr(K) on account of Kσ having
a constant diagonal.

Proof. We recall (250), in terms of which we have

dri
dt

= −λi(K)

Yt
ri +

λi(K)

Y∞
si,

and where we recall

Yt =
π
√
2Rt + v2

4η
.

Then we rewrite the evolution of ri as

d

dt
(ri − si) = −

λi(K)

Y∞
(ri − si) +

(
λi(K)

Y∞
− λi(K)

Yt

)
ri,

and we set R∞ as
∑
si. Now we observe that

Y 2
t − Y 2

∞
Y 2
∞

=
π2

8η2Y 2
∞

(Rt −R∞) =: α (Rt −R∞) , (254)

from which it follows

1

Y∞
− 1

Yt
=

Y 2
t − Y 2

∞
YtY∞(Yt + Y∞)

=
Y 2
t − Y 2

∞
2Y 3

∞
+ Errt,
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where Errt is bounded by

Errt ≤ C
1

Y

(
Y 2
t − Y 2

∞
Y 2
∞

)2

≤ Cα
2

Y
(Rt −R∞)

2
, (255)

where Y is the minimum value of Yt over all time and C is an absolute constant. Hence we can
further develop

d

dt
(ri − si) = −

(
1

Y∞
− Y 2

t − Y 2
∞

2Y 3
∞

− Errt

)
λi(K)(ri − si) +

(
Y 2
t − Y 2

∞
2Y 3

∞
+ Errt

)
λi(K)si.

Define

ϱ(s) =

∫ s

0

(
1

Y∞
− Y 2

t − Y 2
∞

2Y 3
∞

− Errt

)
dt.

Then by variation of parameters, we have

(ri − si)(t) = (ri − si)(0)e−λiϱ(t) +

∫ t

0

e−λi(ϱ(t)−ϱ(s))

(
Y 2
s − Y 2

∞
2Y 3

∞
+ Errs

)
λi(K)sids.

Now if we sum over all i, we have

Rt −R∞ = F(t) +
∫ t

0

K(t, s)
(
Y 2
s − Y 2

∞
2Y 3

∞
+ Errs

)
ds,

where

F(t) =
∑
i

(ri − si)(0)e−λiϱ(t) where K(t, s) =
∑
i

e−λi(ϱ(t)−ϱ(s))λi(K)si.

Now suppose that on some interval of time [0, T ]

Errt ≤
Y 2
t − Y 2

∞
2Y 3

∞
and 2

Y 2
t − Y 2

∞
2Y 3

∞
≤ 1

2Y∞
. (256)

Then for s < t < T , we have

ϱ(t)− ϱ(s) ≥ 1

2Y∞
(t− s),

and so we have the convolution Volterra upper bound for t ≤ T

|Rt −R∞| ≤ |F(t)|+
α

Y∞

∫ t

0

(∑
i

e−λi(t−s)/(2Y∞)λi(K)si

)
|Rs −R∞|ds.

Now we note that we have the upper bound (for t ≤ T )

|F(t)| ≤ (R0 +R∞)e−(λmin/(2Y∞))t.

Now suppose that 0 < T ′ ≤ T is such that for s ≤ T ′

|Rs −R∞| ≤Me−(λmin/(4Y∞))t,

we have for t ≤ T ′,∫ t

0

(∑
i

e−λi(t−s)/(2Y∞)λi(K)si

)
Me−(λmin/(4Y∞))s ds

=

(∑
i

e−λit/(2Y∞)
(
eλit/(2Y∞)−λmint/(4Y∞) − 1

) λi(K)si
λi/(2Y∞)− λmin/(4Y∞)

)
M

≤ e−λmint/(4Y∞)

(∑
i

λi(K)si
λi/(2Y∞)− λmin/(4Y∞)

)
M

≤ e−λmint/(4Y∞)

(∑
i

λi(K)si
λi/(2Y∞)− λi/(4Y∞)

)
M

≤ e−λmint/(4Y∞)(4Y∞R∞)M.
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Hence T ′ = T , provided

4αR∞ < 1 and M =
(R0 +R∞)

1− 4αR∞
.

Now we return to showing T does not occur. Recall (256), which up to T are satisfied. Then it
suffices to have (compare (255)),

αM ≤ 1

2
and 2C

Y∞
Y
αM ≤ 1, where α =

π2

8η2Y 2
∞
.

in which case (256) is satisfied for all time. Note that we may always bound Y below by

Y ≥ (πv)/(4η).

Define HK = Tr(DKσ)
πd . We now recall (249) and (247), from which

Y∞ = π2

(
ηHK +

√
η2H2

K + 16v2/π2

16η

)
and R∞ = Y∞η

2HK.

Hence for ηHK ≤ 4v/π, we have
πv

4η
≤ Y∞ ≤

πv

η
≤ 4Y,

and hence we have
α ≤ 2

v
and R∞ ≤ ηπvHK.

Thus we conclude there is an absolute constant c > 0 so that if

ηHK ≤ min

{
c,
4v

π

}
, and R0 ≤ cv,

then we have
|Rt −R∞| ≤ 2(R0 +R∞)e−tηλmin(K)/(πv).
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D ADDITIONAL EXPERIMENTS

We begin by illustrating (Figure 5) the concentration effect: as d increases, the loss curves more
closely match the ODEs. We also note the spread of SIGNHSGD and SIGNSGD are close across
dimension.
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(a) d = 50
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(b) d = 100
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(c) d = 250
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(d) d = 750

Figure 5: A demonstration that SIGNSGD, SIGNHSGD, and their deterministic equivalent concen-
trate in high-dimensions over long time scales. In the limit as d→∞ our main theorem shows that
all these objects become the same.
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In the next figure we compare the limit risk prediction in Theorem 3.
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(a) η = 0.3

0 5 10 15 20
Iterations/d

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

R
is

k

signHSGD 80.0% CI
signSGD 80.0% CI
signODE
Vanilla ODE
Theorem 3

(b) η = 0.7
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(c) η = 1.1
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(d) η = 1.5

Figure 6: A demonstration of Theorem 3, over varying learning rates. Here d = 500, and we take
Gaussian noise with v = 0.7
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To demonstrate the convergence rates, we consider a set of diagonal covariance matrices. The eigen-
values on the diagonal are given by a uniform grid of [0.5, 1.0]. To these eigenvalues, we then raise
them to a power α over the range (1.0, . . . , 5.0). This causes the smallest eigenvalue to approach 0.
We then compare SIGNSGD vs SGD after n = Td steps with T = 30. The noise is set to v = 0.01.

The learning rates are taken ‘optimal’ which is to say that they are ηd/ tr(K) and ηd/ tr(K) for
SGD and SIGNSGD respectively for a fixed multiple η. The constant is given by η = 0.01. The
resulting risk curves look like:
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(a) Risk curves before removing limit risk

0 5 10 15 20 25 30
Iterations/d

10
3

10
2

10
1

R
is

k

vanilla SGD 80.0% CI
Vanilla ODE
signSGD 80.0% CI
signODE

(b) Risk curves after removing limit risk

Figure 7: These are the risk curves from the setup described in the text (with α = 5.0). After
recentering using the values from Theorem 3 and (253), (b) shows the linear convergence.

Now varying over these problems over α between 1.0 and 5.0. We have:
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Figure 8: We plot the limiting suboptimality against the averaged condition number of the problem
tr(K)/(dλmin(K)). SGD attains this convergence rate. The label A for each point is the ratio of
the averaged condition number of K to the averaged condition number of K. This measures the
speedup of SIGNSGD over SGD, and is the rate effect captured by Theorem 4.
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E HEURISTIC FOR ADAM

In this section we derive a heuristic for ADAM Kingma (2014). This is given, in our context, by:

Given:
η : learning rate
β1, β2 ∈ [0, 1) : exponential decay rates for moment estimates
ϵ0 : small constant for numerical stability

Initialize:
θ0 : initial parameter vector
m0 ← 0 : 1st moment vector
v0 ← 0 : 2nd moment vector
k ← 0 : timestep

Repeat until convergence:
k ← k + 1

gk ← ∇θL(θk−1,xk, yk) (Get gradients w.r.t. stochastic objective at timestep k)
mk ← β1 ·mk−1 + (1− β1) · gk (Update biased first moment estimate)

vk ← β2 · vk−1 + (1− β2) · g2
k (Update biased second raw moment estimate)

m̂k ←mk/(1− βk
1 ) (Compute bias-corrected first moment estimate)

v̂k ← vk/(1− βk
2 ) (Compute bias-corrected second raw moment estimate)

θk ← θk−1 − ηm̂k/(
√

v̂k + ϵ0) (Update parameters)

In a high-dimensional context, the first moment momentum β1 has been observed to be equivalent to
an effective change of learning rate, without inducing other benefits on the dynamics (see Paquette
& Paquette (2021)), and so we ignore it.

The role of the second moment, in contrast, should induce a preconditioner. If we assume that
exponential decay rate of β2 is chosen sufficiently close to 1, we would have

v̂k ≈β2
E(∇θL(θk−1,xk, yk))

2|Fk−1),

with the square applied entrywise. Using the definition of the stochastic gradient, we have

v̂k = E
(
(xk)

2 (⟨xk,θk−1 − θ∗⟩+ ϵk)
2 |Fk−1

)
.

This can be computed explicitly by Gaussian conditioning. Note that conditionally on the Gaussian
w = ⟨xk,θk−1 − θ∗⟩, xk develops a mean K(θk−1 − θ∗), which has norm O(1). Hence provided
it also has small L∞ norm, so too will all the variances of the entries of xk be nearly unaffected.
Hence we essentially have independence, in that

v̂k ≈ E
(
(xk)

2
)
E
(
(⟨xk,θk−1 − θ∗⟩+ ϵk)

2 |Fk−1

)
= diag(K)(2P).

Hence, we arrive at the approximate update rule for ADAM

θk+1 = θk −
ηk√

2P(θk)
D−1∇θL(θk,xk+1, yk+1). (257)

The corresponding homogenized ADAM equation is given by

dΘt = −
ηt√

2P(θt)
K(Θt − θ∗) + ηtD

−1/2
√

KdBt. (258)

F COMPARISON WITH WEAK APPROXIMATION FRAMEWORK

Adaptive method approximations via SDEs have in fact been developed for ADAM in prior works.
In particular, Malladi et al. (2022) adapts the weak approximation approach of Li et al. (2019) to
produce an SDE for ADAM. Their method utilizes a noisy gradient model gk = ∇f(θ)+σz, where
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∇f is the expected gradient and z has mean 0 and covariance Σ(θ). To more closely match our
set-up, we will take f to be the quadratic-loss and Σ(θ) = 2P(θ)K. We note that the covariance
of the quadratic-loss gradient typically involves higher moments, however in the high-dimensional
setting it can be well-approximated by just 2P(θ)K. See Collins-Woodfin & Paquette (2023) for
details. The ADAM weak approximation SDE is described by the following:
Let c1 = 1−β1

η2 and c2 = 1−β2

η2 , then the ADAM SDE is given by the system

dΘWA
t = − 1− exp (−c2t)√

1− exp (−c1t)
Q−1

t mtdt, (259)

dmt = c1(K(ΘWA
t − θ∗)−mt) dt+ ηc1

√
Σ(ΘWA

t ) dBt, (260)

dut = c2
(
diag

(
Σ
(
ΘWA

t

))
− ut

)
dt, (261)

where
Qt = η diag(ut)

1/2 + ϵ0
√
1− exp (−c2t).

Heuristically, c1 and c2 relate to the normalizing factor of m̂k and v̂k respectively by 1 − βk
1 ≈

1− exp
(
−c1kη2

)
and 1−βk

2 ≈ 1− exp
(
−c2kη2

)
. Malladi et al. (2022) show that the expectation

of the SDE and optimizer across suitable test functions g is O(η2), i.e.

max
k=0,...,⌊T/η2⌋

∣∣E[g (θk)]− E[g
(
ΘWA

kη2

)
]
∣∣ ≤ C(g)η2. (262)

We can recover SIGNSGD from the ADAM algorithm by setting β1 = β2 = ϵ0 = 0. Formally
following the recipe from Malladi et al. (2022), this means we should take c1 = c2 = 1/η2 (note
that this makes the heuristic fit 1 − βk

1 ≈ 1 − exp
(
−c1kη2

)
and 1 − βk

2 ≈ 1 − exp
(
−c2kη2

)
incorrect).

The SDE system for ΘWA
t depends on η, and so in (262), as we send η → 0, we are sending

c1 = c2 = 1/η2 to infinity. Therefore, to give a single SDE which approximates SIGNSGD, we can
use the ideas of a slow-fast system to give a heuristic approximation for the limit:

mtdt ≈ K(ΘWA
t − θ∗) dt+ η

√
2P(ΘWA

t )KdBt, (263)

ut ≈ 2P(ΘWA
t ) diag(K). (264)

Thus, Qt ≈ η
√

2P(ΘWA
t ) diag(K). Plugging this into (259) gives (heuristically) the weak approx-

imation SDE of SIGNSGD,

dΘsWA
t = − 1

η
√
2P(ΘsWA

t )
K(ΘsWA

t − θ∗) dt+
√
diag(K)−1K dBt. (265)

Recall, SIGNHSGD is given by

dΘt = −ηt
φ(R(Θt))√
2R(Θt)

K(Θt − θ∗)dt+ ηt

√
Kσ

πd
dBt. (266)

Interestingly, we observe the same preconditioned effect in the form of K as SIGNHSGD. However,
the effects from the noise is notably different. Particularly, in the high-dimensional setting with
non-Gaussian noise, higher moments of the label noise are an important feature of SIGNHSGD as
seen in φ. See Section 4 on ϵ-compression. In contrast, (265) only requires up to second moments
as seen in P . This remains the case even if Σ is the true conditional covariance of the gradient.
Moreover, the diffusion matrix between the two SDEs are also quite different. In SIGNHSGD
2
πKσ corresponds precisely to the conditional covariance of the sample sign-gradient. This may
suggest that a more delicate limit approach is required or that SIGNSGD falls outside the scope of
the weak approximation setting. We believe that to extend the ADAM weak approximation SDE to
non-continuous gradient transformations like SIGNSGD, the constants c1 and c2 must be uncoupled
from η in order for β1 and β2 to have unrestricted limits.

We develop a different method of error bounds between the statistics of the SDE approximate and
the optimizer (SIGNSGD), i.e. high-dimensional bounds versus weak approximation. For ease
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of comparison between (262) and (9), let us take g to be the risk R. The weak approximation
theorem states that the expected risk between the SDE and optimizer is O(η2). This is more akin
to convergence of distributional properties between the SDE and optimizer. In contrast, in Theorem
1 we show that the exact risk dynamics of SIGNHSGD and SIGNSGD closely track each other in
the high-dimensional limit. This is what allows us to directly study the behavior of the SIGNSGD
by studying SIGNHSGD. Our goal is not only to derive SDEs for signSGD but to also gain insight
into how adaptive methods like signSGD and eventually Adam, behave in the limit of large problem
sizes. The aspect of dimensionality is not addressed in Li et al. (2019) or Malladi et al. (2022) thus
requires a different set of tools.
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G K DOES NOT ALWAYS REDUCE THE CONDITION NUMBER

As a counter example consider the covariance matrix,

K =


0.17 −0.49 −0.19 −0.36
−0.49 2.34 0.71 1.79

−0.19 0.71 0.32 0.53

−0.36 1.79 0.53 1.44

 . (267)

Up to two decimals the condition number 2is κ(K) = 115.88. However, the condition number of
K is κ(K) = 129.78.

H EXPERIMENTAL DETAILS

The code to reproduce these results is available at https://anonymous.4open.science/
r/signSGD-6216/. We summarize the experimental setup of Figure 1 in Table 1.

Dataset Learning Rate (η) Dimension Noise Distribution Noise Details # Iterations

Synthetic (Gaussian noise) 0.7 500 Gaussian E[ϵ] = 0, E[ϵ2] = 1 5,000

Synthetic (Cauchy noise) 0.5 500 Cauchy Location = 2, Scale = 1 5,000

CIFAR10 0.9 400 Gaussian (assumed) E[ϵ] = 1, E[ϵ2] = 0.76 40,000

IMDB 0.2 50 2-GMM (assumed)

ϵ = π1g1 + π2g2

π1 = π2 = 0.5

E[g1] = −0.76, E[g21 ] = 0.18

E[g2] = 0.75, E[g22 ] = 0.17

25,000

Table 1: A summary of experimental details of Figure 1. The full details of the experiments are
available below.

The experiments creating Figure 1 were carried out on an M1 Macbook Air. Homogenized
SIGNHSGD is solved via a standard Euler-Maruyama algorithm. The procedure for solving for
the risk is described in Appendix B.

Synthetic data: The synthetic data was generated in dimension d = 500. The covariance matrix
K was generated by multiplying a random unitary matrix by a diagonal matrix of d log-spaced
eigenvalues between 0.01 and 0.5.

φ was explicitly computed in the Gaussian data case and was solved via numerical integration in the
case of Cauchy (Student’s-t family) noise. Note that vanilla SGD does not converge under Cauchy
noise and thus we cannot provide a comparison. We plot the 80% confidence interval across 20 runs.

CIFAR10: The CIFAR10 (Krizhevsky, 2009) data was used to perform binary classification by
regressing to ±1 labels being animals or vehicles. The ”frog” class was removed to retain balanced
classes. The data matrix D is first passed through a random features model so that

Drf = tanhDA (268)

where A is a random features matrix of independent standard Gaussians. This choice was found to
better condition the data so that SIGNODE could be effectively solved via numerical integration.

In order to estimate θ∗ the regression problem was first solved using Sci-kit learn (Pedregosa et al.,
2011) and the resulting solution was taken to be θ∗. The differences {yi−⟨θ∗,xi⟩} for all xi ∈ Drf
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Figure 9: Histograms of the estimated noise distributions for the CIFAR10 and IMDB datasets. Also
shown is the estimated PDFs used to compute φ for each case.

was then assumed to be the noise. A histogram of this noise is available in Figure 9a. The noise was
then fitted to a Gaussian. Finally, η = 0.5 and the SIGNSGD plot represents the 80% confidence
interval over 50 runs.

IMDB: The IMDB dataset (Maas et al., 2011) was first embedded using GLOVE (Pennington
et al., 2014) into dimension 50. Then, a 2-layer random features model was applied as well as some
noise added to regularize the problem. We add sG where G is a matrix of independent standard
Gaussians. We take s = 0.03. This additional regularization was required in the case of text data as
the covariance of the original GLOVE embedded data has extremely high condition number making
numerically solving our ODEs impossible. The choice of s = 0.03 was found to regularize the data
while maintaining the accuracy (≈= 73%) of trained models. Ultimately the data used is,

Drf = tanh(A′ tanhD(A+ sG)). (269)

Note that this regularization did not destroy the information contained in the original problem. Sci-
kit learn achieves an accuracy of ≈ 75% on the unregularized problem and the finally accuracy on
the regularized problem was ≈ 73%.

We perform the same method as in the CIFAR10 case to first estimate θ∗ and then to estimate the
distribution of the noise. We fit a mixture of two Gaussians model (GMM) to this noise. φ is trivial
to compute exactly when noise is assumed to come from a GMM. The estimated noise is again
available in Figure 9.

48


	Introduction
	Problem Setup
	signHSGD
	Comparing signSGD to vanilla SGD
	Effective learning rate and convergence
	Stationary point of signSGD

	Epsilon-compression
	Diagonal preconditioner
	Gradient noise reshaping

	Discussion
	Proof of Main Theorem
	Approximation of the conditional updates
	Convergence of signSGD to signHSGD
	Main theorem with badly behaved noise
	Bounding martingale terms

	Risk Curve Dynamics
	Proof of Theorem 2
	Risk curves for SGD


	Convergence and phase-properties of the ODEs
	Additional experiments
	Heuristic for ADAM
	Comparison with weak approximation framework
	K does not always reduce the condition number
	Experimental details

