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ABSTRACT

While Multimodal Large Language Models (MLLMs) have demonstrated impres-
sive capabilities in image and video understanding, their ability to comprehend
the physical world has become an increasingly important research focus. Despite
their improvements, current MLLMs struggle significantly with high-level physics
reasoning. In this work, we investigate the first step of physical reasoning, i.e., in-
tuitive physics understanding, revealing substantial limitations in understanding
the dynamics of continuum objects. To isolate and evaluate this specific capabil-
ity, we introduce two fundamental benchmark tasks: Next Frame Selection (NFS)
and Temporal Coherence Verification (TCV). Our experiments demonstrate that
even state-of-the-art MLLMs perform poorly on these foundational tasks. To ad-
dress this limitation, we propose Scene Dynamic Field (SDF), a concise approach
that leverages physics simulators within a multi-task fine-tuning framework. SDF
substantially improves performance, achieving up to 20.7% gains on fluid tasks
while showing strong generalization to unseen physical domains. This work not
only highlights a critical gap in current MLLMs but also presents a promising
cost-efficient approach for developing more physically grounded MLLMs. Our
code and data will be publicly available.

1 INTRODUCTION

Recently, Multimodal Large Language Models (MLLMs) have exhibited great success in image and
video understanding Yue et al. (2024); Li et al. (2024d). However, MLLMs still face significant
limitations in capturing the intuitive physical dynamics of real-world scenarios Zheng et al. (2024);
Chow et al. (2025). These shortcomings stem from the training recipe and data property. The
prevalent approach of treating videos as a sequence of frames processed by image encoders and
trained end-to-end fails to adequately capture the low-level dynamics essential for understanding
physics Labs (2024). On the other hand, video encoders Wang et al. (2023); Zhao et al. (2024a);
Wang et al. (2024d); Bardes et al. are often trained in an unsupervised manner on action-focused
datasets Kay et al. (2017); Goyal et al. (2017); Kuehne et al. (2011), which are effective for un-
derstanding human-centered activities but lack the dynamics of continuum objects such as liquids,
cloth, and other deformable materials.

As shown in Figure 1, existing benchmarks Zheng et al. (2024); Chow et al. (2025) mostly evaluate
the high-level physical reasoning capacities of multimodal large language models (MLLMs). These
frameworks assess multiple capabilities through diverse tasks, including physical property question-
answering (QA), predictive and counterfactual inference, and spatial-relational analysis. While such
tasks are critical for advancing intuitive physics understanding in MLLMs, they are related to not
only physics but also vision, language, common sense, logic, etc.. This has led to an alarming
performance gap revealed by empirical findings: MLLMs consistently fail across these benchmarks,
often performing only marginally better than random guessing.

Thus, similar to the concept of curriculum learning Bengio et al. (2009), we should also adopt
“curriculum benchmarking” for MLLM. In this work, we disentangle the physical reasoning
benchmarking itself and focus on its very first step, i.e., evaluating the most fundamental and prin-
cipal physical understanding ability: intuitive physics understanding. The reason is that, without
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Existing Benchmarks Next Frame Selection (NFS)

Temporal Coherence Verification (TCV)

Q: {Prompt} Which one of the following is the next frame?

Image0 Image1 Image2 Image4

Q: {Prompt} Does any frame look unnatural 
or not consistent in this video sequence? 
Please answer with yes or no.
A: Yes.

Low-Level Tasks

Scene Dynamic Field

Scene Dynamic Field (SDF)

Transfer

sand

Fluid NFS Task

Smoke NFS Task

smoke

Q: If the gray stick were 
removed, which stick would 
orange fluid pass?

A. Gray stick  B. Red stick 
C. Orange stick D. Blue stick

Physical 
Common 
Sense Dynamic

Perception

Logical
Inference

Temporal
Spatial 
Reasoning

Huge  
Gap

Figure 1: Existing benchmarks entangle multiple capabilities, leading to poor performance in SOTA
MLLMs. To address this, we introduce two low-level tasks to assess intuitive physics understand-
ing: Next Frame Selection and Temporal Coherence Verification. Our proposed Scene Dynamic
Field (SDF) directly enhances MLLMs’ dynamic understanding and shows strong generalization.

establishing whether MLLMs can accurately perceive physical motion and change over time, we
cannot meaningfully address their higher-level reasoning deficiencies or develop targeted enhance-
ment strategies. After grounding MLLMs in the fundamental perception of dynamics, we can then
enhance their capacity for more complex, causal physical reasoning, as they can operate on a more
faithful internal representation of the world’s state changes.

It is natural to ask How can we disentangle the problem to evaluate a model’s intuitive physics un-
derstanding capability effectively? and How can we further enhance this critical ability? To this
end, we introduce two low-level tasks: Next Frame Selection (NFS) and Temporal Coherence
Verification (TCV), which systematically assess intuitive physics understanding. Extensive exper-
iments reveal that current MLLMs still fall short of achieving a satisfactory level of understanding.
Even the best-performing model, Qwen2.5-VL Team (2025), achieves only a 30.0% accuracy on
multiple-choice NFS questions. To further investigate these limitations, we analyze the impact of
model scaling and find that increasing scale alone cannot lead to significant improvements.

In light of the current reasoning capability of MLLMs, we also explored the potential of language-
based reasoning. Despite observing improvement, there remains great potential, since leveraging
only language to reason is far from enough to capture real-world physics. Recent progress in think-
with-images yu Su et al. (2025) motivated us to introduce additional visionary supervisory signals
while leveraging existing MLLM capabilities.

To this end, we propose Scene Dynamic Field (SDF), a novel method designed to enhance intu-
itive physics understanding. SDF leverages physics simulators, which, despite their limitations in
fine-grained detail, consistently capture dynamic trends that align with real-world physical phenom-
ena. Through generating SDF data from simulators, we developed a carefully designed multi-task
fine-tuning strategy that integrates Chain-of-Thought (CoT) reasoning, where SDF acts as a visual
prompt to guide the model’s understanding of intuitive physics. Empirical experiments demonstrate
significant performance improvements across both benchmark tasks, with up to 20.7% gains on fluid
tasks and strong generalization to unseen physical domains, validating the effectiveness of our ap-
proach. Moreover, as particle-based physics simulation engines continue to advance in speed and
generation quality, our method provides a scalable and cost-effective approach for distilling physical
knowledge from these simulators. By abstracting synthetic data to an optimal representational level,
we enable MLLMs to better perceive underlying physical dynamics.

To summarize, our contributions are mainly three-fold:
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• We introduce Next Frame Selection (NFS) and Temporal Coherence Verification (TCV),
two complementary diagnostic tasks designed to disentangle and evaluate fundamental in-
tuitive physics understanding abilities in MLLMs, revealing their significant deficiencies.

• We propose Scene Dynamic Field (SDF), an intermediate representation that bridges the
gap between physics simulators and MLLMs, providing explicit dynamic cues that enhance
MLLMs’ physical understanding.

• Through extensive empirical analysis, we highlight the significant limitations in intuitive
physics understanding of current MLLMs, while demonstrating that our proposed SDF
achieves strong generalization, paving the way for more physically grounded MLLMs.

2 RELATED WORK

Intuitive Physics Understanding. Existing benchmarks for physical reasoning Zheng et al. (2024);
Chow et al. (2025) primarily evaluate high-level physical reasoning through complex tasks that en-
tangle multiple capabilities. ContPhy Zheng et al. (2024) integrates qualitative reasoning about di-
verse physical properties with dynamic scenario prediction through video question answering, while
PhysBench Chow et al. (2025) proposes a structured evaluation framework containing question-
answering tasks across different cognitive levels. These frameworks assess multiple capabilities
simultaneously, including vision, language, common sense, logical reasoning, and physical under-
standing through diverse tasks such as realistic physical simulation Chow et al. (2025); Zheng et al.
(2024); Tung et al. (2023), temporal sequence understanding Patel et al. (2022); Tung et al. (2023),
and physical property recognition Johnson et al. (2016); Chen et al. (2022); Jassim et al. (2024).

This entanglement has led to concerning empirical findings: studies examining MLLMs’ capabilities
in intuitive physics understanding reveal that performance approaches random chance levels on such
tasks Ballout et al. (2025). Garrido et al. (2025) further confirmed these poor performance findings
while revealing that V-JEPA Bardes et al. frameworks show more promise. However, the complexity
of existing benchmarks makes it difficult to pinpoint whether models fail due to inadequate physical
understanding or deficiencies in other cognitive abilities.

These existing benchmarks leave a fundamental gap: they do not isolate and evaluate low-level in-
tuitive physical perception, which is the most basic prerequisite for physical reasoning. Without
establishing whether MLLMs can accurately perceive physical motion and change over time, we
cannot meaningfully address their higher-level reasoning deficiencies or develop targeted enhance-
ment strategies. Drawing inspiration from curriculum learning principles, we propose a systematic
evaluation of this foundational capability through targeted, low-level tasks that isolate physical per-
ception from other cognitive requirements.

Current enhancement approaches have attempted to mitigate these performance issues through var-
ious strategies. Some work Sharma et al. (2025) incorporates external tools or components, while
other physics-aware AI systems integrate Graph Neural Networks (GNNs) to predict particle dy-
namics Kazemi et al. (2024) from state vectors or employ symbolic physics engines for explicit rea-
soning. However, these methods are often designed for multi-step logical deduction rather than em-
powering foundation models with fundamental perceptual capabilities. Moreover, language-based
reasoning improvements, while helpful, prove insufficient for capturing the complex temporal and
spatial relationships inherent in physical phenomena.

In contrast to these approaches, we propose enhancing MLLMs’ capability by leveraging physics
simulators to provide direct visual cues about physical motion and change, addressing the perceptual
limitations at their source rather than relying solely on language-mediated reasoning or external
computational modules.

Multi-modal Large Language Models. Recently, there has been remarkable progress in Multi-
modal Large Language Models (MLLMs), with state-of-the-art systems like Qwen-VL series Wang
et al. (2024b); Team (2025), InternVL series Chen et al. (2023); Zhu et al. (2025) and GLM-V
serires Hong et al. (2025) achieving impressive performance on traditional vision-language bench-
marks such as image captioning, visual question answering, and multi-modal reasoning tasks Wang
et al. (2024e).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Despite these remarkable achievements, current MLLMs exhibit significant limitations in under-
standing physical phenomena and dynamics, particularly in non-human-centric scenarios such as
fluid dynamics, material deformation, and object interactions governed by physical laws Zheng et al.
(2024); Chow et al. (2025). This stems from their training focus on high-level semantic understand-
ing rather than fundamental physical principles. Recent advances have introduced explicit reasoning
capabilities through reinforcement learning, with models like GLM-4.1V Hong et al. (2025) achiev-
ing success in mathematics and structured reasoning tasks. However, without an accurate perception
of physical motion and temporal dynamics, these reasoning mechanisms cannot compensate for the
lack of intuitive physics understanding. This creates a critical bottleneck: while current MLLMs
excel at complex logical reasoning about abstract concepts, they struggle with basic physical un-
derstanding that humans develop intuitively, highlighting the need for systematic evaluation and
targeted enhancement of low-level physical perception capabilities.

3 BENCHMARK CONSTRUCTION

3.1 MOTIVATION

Contemporary video understanding benchmarks Li et al. (2024c); Wang et al. (2024c); Yu et al.
(2019) have made significant strides in evaluating high-level event comprehension, successfully
capturing human actions, object interactions, and temporal relationships in videos. However, they
often overlook the crucial aspect of low-level dynamic understanding of MLLMs, particularly the
intricate physical behaviors and temporal evolution of objects and materials. This limitation is es-
pecially apparent when dealing with continuum objects, whose behavior is governed by complex
physical principles rather than discrete state changes. Among various continuum phenomena, fluid
dynamics presents an ideal testbed due to its ubiquity in everyday scenarios and its rich, continuous
dynamic patterns. Therefore, we choose fluid dynamics as our primary focus to comprehensively
evaluate current foundation models’ capability in intuitive dynamics.

To disentangle the problem of physical reasoning, we propose a focused benchmark that specifi-
cally evaluates models’ capability in intuitive physical understanding, allowing us to disentangle
and better comprehend this fundamental intelligence.

3.2 EVALUATION SYSTEM

Let F = {ft}Tt=1 denote a sequence of T input frames. The strategy proceeds as follows:

Interval Sampling with Stride. Partition F into non-overlapping intervals {Ii} via a temporal
stride s. Each interval Ii = {ftstart , ftstart+1, . . . , ftend} spans a subsequence of frames, where consec-
utive intervals satisfy t

(i+1)
start − t

(i)
start = s.

Distractor Candidate Generation. For each interval Ii, extract a distractor candidate set Di by
excluding frames within a temporal buffer of size δ around the interval, then

Di =
{
ft

∣∣ t ̸∈ [max(1, tstart − δ),min(tend + δ, T )]
}
, (1)

ensuring Di excludes frames that are temporally close to Ii.
Similarity-Based Pruning. Let fgt denote the ground truth frame associated with Ii. Using a
similarity metric sim(·, ·), filter out candidates overly aligned with fgt:

D′
i =

{
ft ∈ Di

∣∣ sim(ft, fgt) < τ
}
, (2)

where τ is a threshold ensuring only semantically distinct distractors are retained. The final evalua-
tion set for Ii combines fgt with D′

i, challenging models to isolate the true successor amid plausible
alternatives.

We employ two complementary protocols to assess temporal and dynamic understanding capabili-
ties:

Next Frame Selection (NFS). For interval Ii with ground truth fgt: First sampling 3 distractors
d1:3 ∼ D′

i, and then computing the selection accuracy AccNFS =

1

N

N∑
i=1

I
(
pmodel(fgt|Ii) > max

j
pmodel(dj |Ii)

)
. (3)
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Temporal Coherence Verification (TCV). Given sequence S and corrupted version S̃ with random
distractor insertion, we evaluate binary detection accuracy AccTCV =

1

M

M∑
m=1

I
(
argmax

Y/N
pmodel(·|S̃) = I(S̃ = S)

)
. (4)

This systematic approach mitigates evaluation bias by enforcing diversity in distractor frames while
preserving temporal coherence.

3.3 DATA PREPARATION

We have adopted fluid video data from multiple sources, including Contphy Zheng et al. (2024) and
PhysBench Chow et al. (2025). To enhance the diversity and real-world applicability of our dataset,
we supplement these synthetic simulations with real-world videos collected through web mining.
Specifically, we employ LLMs to generate structured search queries combining action verbs with
fluid types (e.g., “pour honey”).

To ensure data quality, we segment the collected videos into 5-second clips and implement a ro-
bust filtering mechanism. This mechanism utilizes an ensemble of MLLMs, including Qwen-VL-
Max Wang et al. (2024b), LLaVA-OneVision Li et al. (2024a), and InternVL2 OpenGVLab Team
(2024), to perform consensus-based filtering, eliminating clips that do not contain relevant fluid in-
teractions. Then, we use the above-described process to curate the benchmark. Specifically, we
use SigLIP Zhai et al. (2023) embeddings to compute frame-level representations and utilize cosine
similarity as our sim(·, ·) metric. To ensure benchmark quality, we incorporate a manual verification
phase where human annotators filter out ambiguous or low-quality samples. The final curated test
set comprises 4,000 samples derived from about 1,000 unique videos.

3.4 ANALYSIS AND INVESTIGATION

We evaluate our benchmark with state-of-the-art multimodal large language models, inclduing In-
ternVL2.5 OpenGVLab Team (2024), InternVL3 Zhu et al. (2025), mPLUG-Owl3 Ye et al. (2024),
Qwen2-VL Wang et al. (2024b), Qwen2.5-VL Team (2025) and GLM4.1V Hong et al. (2025).
These models have demonstrated superior performance in various vision-language tasks and fea-
ture different model architectures and pre-training strategies. All models are evaluated without any
task-specific fine-tuning to assess their zero-shot capabilities. For both of the Next Frame Selection
(NFS) and Temporal Coherence Verification (TCV) tasks, we conduct experiments with sequences
of 5 input frames, utilizing temporal strides of δ = 2 and δ = 4 frames. A detailed ablation is
presented in Section B.

Category Model #Param NFS Acc (%) TCV Acc (%)
Stride 2 Stride 4 Stride 2 Stride 4

Open-source

InternVL2.5 8B 17.53 20.19 52.95 52.31
InternVL3 8B 19.33 18.33 53.00 54.94
GLM-4.1V 9B 24.25 25.43 51.40 54.01

mPLUG-Owl3 7B 27.77 29.37 52.19 53.20
Qwen2-VL 7B 24.00 26.80 54.00 53.24

Qwen2.5-VL 7B 32.73 30.00 57.80 56.63

Closed-source GPT-4o — 33.19 39.79 70.10 69.91
Gemini-2.5-Flash — 31.20 31.37 67.00 70.06

Table 1: Performance of models on NFS and TCV tasks. NFS Acc: Accuracy on next frame selec-
tion (4-choice MCQ). TCV Acc: Accuracy on temporal coherence verification (Yes/No).

The experimental results in Table 1 reveal striking deficiencies in current models’ intuitive physics
understanding capabilities. Open-source models demonstrate particularly poor performance, with
most achieving NFS accuracies below 30% (compared to a 25% random baseline for 4-choice se-
lection). Even the best-performing open-source model, Qwen2.5-VL, reaches only 32.73% on NFS.
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Model #Param NFS TCV

Qwen2-VL
3B 24.4 51.9
7B 26.8 53.2
72B 28.1 52.1

InternVL2.5

2B 21.3 52.9
4B 22.2 51.6
8B 20.2 52.7
26B 20.6 55.1

Model NFS TCV
Qwen2.5-VL 30.00 56.63

+ CoT 31.12 (+1.12) 64.20 (+7.57)

GLM-4.1V 25.43 54.01
+ Thinking 37.20 (+11.77) 79.07 (+25.06)

Gemini-2.5-Flash 31.37 70.06
+ Thinking 37.33 (+5.96) 72.16 (+2.10)

Table 2: Model scaling analysis (left) and the effect of CoT prompting and thinking (right).

While closed-source models like GPT-4o and Gemini-2.5-Flash show limited improvements, their
performance remains far from satisfactory, with NFS accuracies peaking at 39.79%. For the TCV
task, open-source models cluster around 52-58% accuracy, only slightly above the 50% random
baseline for binary classification. These results collectively indicate that current MLLMs fail to
develop effective dynamic representations for intuitive physics understanding.

Scaling Performance. Most current foundation models evaluated in our benchmark have parameters
around 7-8B, showing limited performance on physical dynamics understanding. To investigate
whether this limitation can be addressed through model scaling, we conduct a comprehensive scaling
analysis using InternVL2.5 models and Qwen2-VL models on the NFS task.

As shown in Table 2, although larger model sizes generally correlate with better performance, the
observed improvements remain relatively incremental. For instance, Qwen2-VL demonstrates pro-
gressive gains on NFS, rising from 24.40% to 28.13% as parameters scale from 3B to 72B. However,
InternVL2.5 exhibits less consistent scaling behavior, with its NFS accuracy actually declining from
25.33% to 20.60% over the 2B to 26B parameter range. This divergence underscores the limitations
of parameter scaling alone for achieving robust comprehension of physical dynamics, suggesting
that targeted training methodologies may be necessary to complement pure model size expansion.

CoT Prompting and Thinking Mode. As shown in the right panel of Table 2, Chain-of-Thought
prompting and thinking modes demonstrate notable improvements over baseline performance.
GLM-4.1V benefits most dramatically from thinking mode, achieving gains of 11.77 on NFS and
25.06 on TCV, while CoT provides modest improvements for Qwen2.5-VL (1.12 on NFS, 7.57 on
TCV). These results indicate that explicit reasoning processes can enhance intuitive physics under-
standing, with thinking modes generally outperforming standard CoT approaches across both tasks.

However, while these language-based reasoning improvements are promising, they reveal funda-
mental limitations in addressing the core challenge of physical dynamics understanding. The gains,
though significant, still leave models far from satisfactory performance levels, suggesting that pure
linguistic reasoning is insufficient for capturing the complex temporal and spatial relationships in-
herent in physical phenomena. This observation motivates our approach: rather than relying solely
on language-mediated reasoning, we propose to enhance models’ perceptual capabilities through
explicit visual representations of physical dynamics, leading us to develop the Scene Dynamic Field
(SDF) method described in the following section.

4 SCENE DYNAMIC FIELD

Our evaluation and comprehensive analysis reveal a significant limitation in current MLLMs: they
struggle to effectively understand and reason about physical dynamics. This limitation persists
across model scales and architectures, suggesting a fundamental gap in their ability to process tem-
poral dynamics. While language-based reasoning improvements show promise, they are ultimately
insufficient for capturing the complex spatio-temporal relationships inherent in physical phenomena.

This observation motivates our approach to enhance the models’ perceptual capabilities through
explicit visual representations. To this end, we introduce the Scene Dynamic Field (SDF), a
lightweight, representation-level bridge that injects physical knowledge without requiring costly
architectural overhauls. SDF leverages physics simulators to generate visual prompts that represent
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motion. Although these simulators may lack fine-grained detail, they consistently capture dynamic
trends that align with real-world phenomena. By abstracting these dynamics, SDF provides a valu-
able foundation for learning, allowing for broad compatibility with existing MLLMs while directly
addressing the perceptual gap we identified.

SDF implements an explicit mechanism for modeling temporal evolution and physical interactions
through visual prompts derived from physics engines such as Unity Unity Technologies (2023) and
Blender Community (2018), thereby complementing MLLMs’ inherent strengths in high-level rea-
soning while addressing their deficiencies in low-level physical understanding.

4.1 CONSTRUCT SDF FROM SIMULATOR

Figure 2: Illustration of our Scene Dynamic Field
(SDF).

We utilized the Flip Fluids Fluids addon,
which performed well in Blender Community
(2018). To generate simulated videos that con-
tribute meaningfully to current research, we
constructed scenes commonly encountered in
video-related tasks, such as embodied manip-
ulation and VQA.

Settings. We generated a series of videos
featuring various liquid-related actions, such
as pouring, stirring, and property-comparison
demonstrations. To improve the model’s gen-
eralization capabilities across diverse scenar-
ios, we systematically varied multiple factors,
including the physical properties of the liq-
uids (e.g., initial velocity, viscosity, and color),
the visual characteristics of the containers, the
background environments, and the camera per-
spectives. For details, please refer to the Ap-
pendix D.

Visual Prompting Strategy. As shown in Figure 2, to enhance the utility of the Scene Dynamic
Field for MLLMs, we devised a visual prompting strategy as follows.

Consider a system of particles with velocity vectors vi ∈ R3. For a camera positioned at c ∈ R3,
the projected velocity magnitude vproj,i for each particle is computed as

vproj,i = ∥vi∥ cos θi = (vi · r̂i), (5)

where r̂i = c−pi

∥c−pi∥ is the unit vector pointing from the particle’s position pi to the camera. The
density of the blue channel DB is then modeled as a line integral:

DB(c) = κ

∫
Ω

∥vi∥
1 + α∥c− pi∥2

dΩ, (6)

where κ scales velocity to color intensity, α governs spatial attenuation, and Ω represents the observ-
able domain. Particles with larger vproj,i values contribute disproportionately to the blue channel due
to the ∥vi∥ term, creating depth perception through spectral segregation. This formulation effec-
tively maps dynamics into the camera’s reference frame to a perceptually calibrated blue gradient.

4.2 MULTI-TASK FINE-TUNING STRATEGY

Our analysis reveals fundamental gaps in intuitive physics understanding that cannot be resolved
through standard video pretraining. We propose a targeted adaptation strategy leveraging physics
simulator outputs, structured as follows:

Task 1: Dynamic Perception. As depicted in Figure 3, the MLLM is tasked with analyzing an
RGB video sequence alongside candidate images to identify the SDF representation, where regions
of higher velocity magnitude are encoded with increased blue chromatic intensity. The input consists
of two components: an RGB video VRGB = [I1RGB, . . . , I

T
RGB] depicting dynamic interactions, and

7
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Dynamic Perception SDF-Guided Chain-of-Thought

𝑃𝑆𝐷𝐹 Scene Dynamic Field visualize …

Given a sequence of video frames:𝑉𝑅𝐺𝐵

…

𝑉𝑆𝐷𝐹

DA B C

Which one of the following is 

the SDF of the last given frame?

𝑃𝑆𝐷𝐹
Scene Dynamic Field visualize the flow of motion by assigning 

colors to different velocity magnitudes, where regions with 

higher velocities are represented in deeper blue shades.

𝑉𝑅𝐺𝐵 Given a sequence of video frames:

…

𝐶𝑜𝑇 Let’s think step by step: 

Step 1: Analyze the fluid dynamics in the provided frames. 

Step 2: The Scene Dynamic Field of the last

frame should be the following: <𝑉𝑆𝐷𝐹>. 

Step3: Based on these dynamic, the next frame 

follows the same dynamic pattern 

as established in the previous frames. 𝑉𝑆𝐷𝐹

𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛 Which one of the following is the next frame?

A. B. C. D.

Original Low-Level Tasks

𝑁𝐹𝑆 Which one of the following is the next frame? 

A. <image>  B. <image>

C. <image>  D .<image>

𝑇𝐶𝑉 Does any frame look unnatural or not consistent?

Figure 3: Our multitask framework integrates low-level tasks, a dynamic perception task, and an
SDF-guided CoT reasoning task.

N candidate images {I1, . . . , IN}. Among these candidates, one image corresponds to the ground-
truth SDF (ISDF) generated through velocity-to-color mapping based on the formulation in Section 4,
while the remaining N − 1 images serve as distractors.

Following the approach in Section 3.2, we used a similar method to select distractors. These care-
fully chosen examples balance challenge and clarity, helping the model better understand movement
and flow in dynamic scenes.

Task 2: SDF-Guided Chain-of-Thought. We develop a three-stage Chain-of-Thought (CoT) rea-
soning framework enhanced by SDF visual prompts to generate a physics-grounded NFS task.

For input frames F = {ft}Tt=1, insert SDF frames at strategic positions as a visual prompt: FCoT =
[fRGB

1 , fRGB
2 , . . . , fRGB

t , fSDF
t ].

In the context of the NFS, the dynamic field of the final frame plays a critical role in the CoT process.
As shown in Figure 3, a meticulously designed three-step CoT framework was developed to enhance
dynamic reasoning and predictive capabilities. Initially, MLLM is tasked with analyzing the fluid
dynamics present in the provided sequence of frames. Subsequently, it integrates the given scene
dynamic field corresponding to the last frame. Finally, the model is required to select the subse-
quent frame based on the provided visual prompts and reasoned thought processes. This structured
approach aims to optimize the model’s ability to interpret and predict dynamic scenarios effectively.

Together with Task1, Task2, and the original task (NFS/TCV), we propose to further leverage the
model’s inherent reasoning capabilities through self-distillation of the thinking procedure. To en-
hance performance, we incorporate responses from stronger models (e.g., Gemini-2.5-Pro) to guide
the effective utilization of our proposed SDF as visual prompts in the reasoning process. However,
as demonstrated by recent work Chen et al. (2025), reasoning processes from expert models are not
always optimal solutions. Self-distillation approaches can also be promising Zhang et al. (2025),
as they exhibit smaller distribution shifts during model training. Therefore, we combine expert-
generated data with self-distilled data at a ratio of 1 : 10. We refer to the Appendix for ablation
studies 6 on this choice and the specific prompts employed.

4.3 EXPERIMENT

Settings. We evaluate four distinct experimental settings on our NFS and TCV benchmarks. The
Zero-Shot setting evaluates MLLMs without any task-specific tuning to establish baseline perfor-
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Figure 4: Performance of our SDF method across various evaluation scenarios. (A) shows results on
the Fluid dataset for both NFS and TCV tasks. (B) and (C) present transfer results to cloth, smoke,
and other particle-based objects on Qwen2-VL and GLM4.1V, respectively.

mance capabilities. The Finetune setting applies supervised fine-tuning to the base model on NFS
and TCV tasks separately, using an identical number of training instances as our SDF method to en-
sure fair comparison. The CoT (Reasoning Only) setting employs Chain-of-Thought prompting Wu
et al. (2023) without any additional training, leveraging its demonstrated effectiveness in enhanc-
ing intuitive physics understanding Jiang et al. (2025). We develop task-specific CoT prompts for
both NFS and TCV tasks (see Appendix for details B). Finally, SDF-Ours represents our proposed
approach, which fine-tunes models using our multi-task framework incorporating Dynamic Percep-
tion, SDF-guided CoT, and the original NFS/TCV tasks. Both Finetune and SDF-Ours employ
full-parameter supervised fine-tuning via the SWIFT Zhao et al. (2024b) framework, with a learning
rate of 1e − 5 across 3 epochs. To show the sim-to-real performance, we test on the previously
proposed NFS and TCV datasets, which contain real-world datasets. All experiments are conducted
over 5 independent runs on 4 A100 40G GPUs, and results are reported with confidence intervals.

To test the hypothesis that our SDF method facilitates a more fundamental learning of physical
dynamics rather than domain-specific memorization, we conducted exploratory transfer experiments
on other continuum phenomena, including cloth, sand, and smoke, and other particle-based objects.
We conducted transfer experiments on Qwen2-VL and GLM4.1V under identical settings, with both
the fine-tuned and SDF configurations trained exclusively on the Fluid dataset. These experiments
aim to assess the adaptability and robustness of SDF when applied to diverse physical simulation
domains. For more details, please refer to the Appendix 8.

Figure 4 demonstrates the effectiveness of our proposed SDF across various evaluation scenarios.
As shown in (A), SDF-Ours achieves substantial improvements on the Fluid benchmark for both
NFS and TCV tasks. For the NFS task, SDF-Ours shows a significant performance gain of 14.40%
on Qwen2-VL and 20.7% on GLM4.1V compared to Zero-Shot. More remarkably, as illustrated in
(B) and (C), while standard Finetune performs nearly identically to Zero-Shot when transferred to
other domains (e.g., 23.64% vs. 22.42% for cloth on Qwen2-VL), SDF-Ours maintains noticeable
improvements across all transfer domains. These results strongly suggest that our approach facili-
tates genuine learning of physical dynamics rather than mere domain-specific pattern recognition,
enabling effective generalization to diverse physical phenomena beyond the training domain. We
provide additional case studies E and failure case analysis G in the Appendix for further discussion.

5 CONCLUSION

In this work, we introduced two fundamental tasks for evaluating physical dynamics understanding
in multimodal large language models: Next Frame Selection and Temporal Coherence Verifica-
tion. Through comprehensive experiments, we revealed critical limitations in current MLLMs when
it comes to understanding intuitive physics. To address this, we proposed Scene Dynamic Field
(SDF), which effectively integrates knowledge from physical simulators into MLLMs. By abstract-
ing physical representations into visual reasoning cues, SDF enables models to better perceive and
understand physical dynamics. Our results demonstrate decent improvements across both bench-
mark tasks, with the method also exhibiting strong transfer capabilities to unseen scenarios.
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APPENDIX

A STATEMENT OF LLM USAGE

In the preparation of this manuscript, large language models were used as editorial tools. The LLM
assisted in the review of the text to identify potential issues with grammar, spelling, and punctuation.
It was also used to find out areas with potential logical inconsistencies or flaws in the presented
arguments. All suggestions were reviewed and approved by the human authors, who maintained full
control over the final content and voice. The authors take responsibility for the paper’s contents.

B ABLATION STUDY

Number of Input Frames. To investigate the impact of input frame count on model performance,
we conducted experiments using Qwen2.5-VL and InternVL2.5. Surprisingly, our results demon-
strate that the number of input frames does not significantly affect the model’s performance beyond
a certain threshold. As shown in Table 3, the performance metrics remain relatively stable across
different frame counts, with only marginal improvements when increasing the number of frames.
Based on this finding, we adopt 5 input frames as our default configuration for subsequent experi-
ments, as it provides an optimal balance between computational efficiency and model performance.

Stride. The selection of temporal stride is a pivotal hyperparameter in our low-level benchmark, as it
directly modulates the temporal resolution of frame sampling. As empirically validated in Figure 5,
extreme stride values yield suboptimal evaluation regimes. A stride of δ = 1 creates an artificially
simplistic task, where models exploit trivial frame-wise similarity cues rather than genuine motion
understanding. Conversely, strides exceeding δ = 5 introduce excessive temporal sparsity, causing
performance degradation that misrepresents a model’s true low-level intuitive physics understanding
capabilities due to information loss between sampled frames. To reconcile these competing objec-
tives, we establish δ = {2, 4} as the optimal configuration for our benchmark. This intermediate
range ensures sufficient temporal resolution to capture nuanced motion details while maintaining
tractable inter-frame variation for robust dynamic understanding evaluation.

Number of Frames 3 4 5 6
Qwen2.5-VL 29.45 30.00 30.28 29.93
InternVL2.5 16.80 20.19 20.27 20.18

Table 3: Performance analysis of Qwen2.5-VL and Intern2.5VL across different frame counts. Re-
sults show minimal variation in key metrics, indicating that the model maintains robust performance
regardless of input frame quantity.
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Figure 5: Stride ablation study on the NFS benchmark performance for Qwen2.5-VL and In-
ternVL2.5.

Prompt Design

As shown in Table 4, we designed five prompts with different lengths to ablate the performance on
the NFS task.

Results in Table 5 demonstrate that different prompts lead to minor performance variations, where
prompt complexity exhibits a non-linear relationship with model performance. Interestingly, Prompt
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Index Prompt Text
1 Focus on physical dynamics.
2 Focusing on the physical dynamics within the

sequence of video frames is crucial for under-
standing and solving the problem presented be-
low.

3 Please carefully pay attention to the physical
dynamics, including kinematic properties, dy-
namic properties, mechanical system properties,
fluid dynamics properties.

4 Understanding the kinematic properties, dy-
namic properties, mechanical system properties,
fluid dynamics properties in the video frame se-
quence is very helpful to tackle the problem be-
low.

5 Comprehensively analyze the physical dynam-
ics of the system, with detailed attention to:
1. Kinematic Properties: Displacement, ve-
locity, acceleration, and their relationships for
predicting motion within the system. 2. Dy-
namic Properties: Forces, momentum, and en-
ergy conservation. 3. Mechanical System Prop-
erties: Friction, elasticity, and damping effects.
4. Fluid Dynamics Properties: Pressure, viscos-
ity, Reynolds number, and flow characteristics.
Additionally, ensure both theoretical principles
(such as governing equations) and practical ap-
plications (e.g., motion prediction or flow be-
havior) are covered.

Table 4: The prompts used in the ablation study.

Prompt Index 1 2 3 4 5
Qwen2.5-VL 28.13 29.10 30.27 29.40 27.44
InternVL2.5 20.05 20.75 20.15 19.87 19.00

Table 5: NFS Task performance of Qwen2.5-VL and Intern2.5VL across different prompts. Prompt
Index herein corresponds one-to-one with the index in the Table 4 above.

3, which provides explicit guidance on specific physical properties to consider without overwhelm-
ing detail, yields the best performance for Qwen2.5-VL (30.27%). In contrast, more verbose
prompts (e.g., Prompt 5) or overly simplistic ones (e.g., Prompt 1) show reduced effectiveness.
This pattern suggests that MLLMs benefit from focused prompting that directs attention to relevant
physical aspects without excessive elaboration. The consistent performance ranking across prompts
between models indicates that prompt engineering alone cannot compensate for fundamental model
limitations in intuitive physics understanding. This finding reinforces the need for our proposed SDF
approach, which addresses these limitations at a more fundamental representational level.

Expert and Self-distilled Data Mixture Ratio To better understand the optimal balance between
expert data from Gemini-2.5-Pro and self-distilled data, we conduct an ablation study examining
model performance across different mixture ratios. We evaluate Qwen2-VL and GLM4.1V as our
target models, performing full-parameter supervised fine-tuning with a total of 3,000 data points.
Table 6 presents the NFS accuracy under different data mixture ratios. We employ consistent training
configurations across all experiments, training for 3 epochs with a learning rate of 1 × 10−5 on 4
A100 (40GB) GPUs. The results demonstrate that the optimal balance is achieved at the 1 : 10 ratio,
as excessive expert data can interfere with the model’s inherent reasoning processes, while relying
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Model Expert:Self Data Ratio
1:0 1:1 1:5 1:10 1:15 0:1

(Expert) (Self)
Qwen2-VL 32.91 38.10 39.10 41.18 39.20 31.00
GLM4.1V 39.91 40.70 45.90 46.11 40.20 41.00

Table 6: NFS accuracy (%) across different expert-to-self-distilled data mixture ratios.

solely on self-distilled data fails to adequately leverage the guidance provided by our proposed SDF
framework. Thus, we adopt the 1 : 10 ratio as our default setting in all the main experiments.

Different Representations.

Last Frame Depth Estimation

SDF (ours)Optical Flow

Figure 6: A demonstration of different representations.

Firstly, we argue that reconstructing motion representations from videos such as optical flow is
unnecessary for our setting. Our generated simulator provides precise velocity for each particle at
every time step. This velocity is a natural source for the Scene Dynamic Field and yields a clean and
physically grounded visual prompt for training. In contrast, reconstruction from real world videos
is noisy due to occlusion, texture aliasing, camera compression and illumination changes, which
weakens the learning signal for intuitive physics.

However, to ablate on the effectiveness of different visual representations, we still conducted an
additional comparison across four prompt conditions using the same question answering protocol.
To be precise, we randomly select a subset of NFS and TCV tasks and generates its corresponding
representations inserted the visual prompt into question as shown in Figure 6.

1. w/o Visual Prompt: Direct QA without any visual prompt.

2. w/ Optical Flow: Adding the reconstructed optical flow Xu et al. (2022) in the prompt for
QA.

3. w/ Depth: Adding depth estimation from Depth Anything 3 Lin et al. (2025) of the last
frame in the prompt for QA.

4. w/ SDF (Ours): Adding our proposed Scene Dynamic Field as a visual prompt for QA.

These results in Table 7 indicate that while optical flow provides some helpful motion cues for the
Temporal Coherence Verification (TCV) task, it is less effective on Next Frame Selection (NFS),
where reconstruction noise likely limits its discriminative value. In contrast, SDF achieves the best
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Table 7: Ablation study comparing the effectiveness of different visual prompts on NFS and TCV.

Visual Prompt NFS Acc (%) TCV Acc (%)
w/o Visual Prompt 29.1 57.5
w/ Optical Flow 27.0 65.1
w/ Depth 32.4 60.1
w/ SDF (Ours) 41.2 68.9

performance across both tasks, demonstrating that clean velocity data derived from the simulator
yields a more reliable and generalizable visual prompt.

C DATA PREPARATION PIPELINE

Clip

Existing Dataset

Videos from Web

5 seconds

Filter

Multi-modal LLMs

Refine

Human annotators

Generate key words  

LLMs

Retrive from web  

Figure 7: A demonstration of our data preparation pipeline.

We have architected and deployed a data preparation pipeline, as shown in Figure 7. We have curated
our fluid video dataset by aggregating synthetic simulation data from established repositories such
as Contphy Zheng et al. (2024) and PhysBench Chow et al. (2025), complemented by an extensive
collection of real-world scenario videos featuring liquid-related actions through web mining. During
implementation, we employ Large Language Models(LLMs) to generate retrieval keywords. The
keywords are mainly composed of two parts: actions (e.g., “pour”, “stir”, “shake”) and categories of
liquids (e.g., “oil”, “milk”, “juice”), with each action paired with a liquid category to form a search
query(e.g., “pour oil”, “pour juice”, “stir milk”). To ensure data quality, we segmented the collected
video data into 5-second clips and employed an ensemble of multimodal LLMs, including Qwen-
VL-Max Wang et al. (2024b), LLaVA-OneVision Li et al. (2024a), and InternVL2 OpenGVLab
Team (2024), to filter out those clips that do not contain liquid interactions. For data refinement, we
continue to develop a filtering interface for human annotators, as shown in Figure 8, which further
filters the videos with noticeable perspective shifts or obvious changes in playback speed from the
human perspective, ensuring that the content remains consistent and coherent. For potential ethical
concerns, this user interface incorporates dedicated options for annotators to report issues related to
privacy or other ethical considerations.

D SCENE DYNAMIC FIELD SETTINGS

To improve generalization, we construct scenes that encompass a variety of liquid-related actions,
systematically varying the physical properties of the liquid, the visual attributes of the containers, the
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Figure 8: The human evaluation interface in data refinement is designed to filter low-quality data
and flag potential ethical issues.

Blank Indoor Outdoor

Figure 9: A demonstration of various environment backgrounds, liquid color, viscosity, and camera
views settings.

background environments, and the camera perspectives. During implementation, we selected three
representative viscosity values within an appropriate range, corresponding to liquids with low vis-
cosity (e.g., water), moderate viscosity (e.g., oil), and high viscosity (e.g., honey). Additionally, we
introduced variations in liquid color to ensure a diverse visual representation by altering the materials
of the fluid surface in FLIPMeshes. Furthermore, we incorporated three representative background
environments—blank, indoor, and outdoor—along with five distinct camera perspectives to enhance
the robustness of our model across varying physical contexts. This was achieved by modifying the
environment HDRs and adding cameras from different angles in Blender. A demonstration of these
different settings is shown in Figure 9.
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E CASE STUDY

Input

To determine which image is most likely to be the next frame, let's analyze the 
sequence of actions in the frames:
Frame 0 to Frame 4: Milk is poured with a steady velocity (consistent flow rate) and 
a downward direction into the coffee cup. In Frame 4, the milk-pouring action is still 
ongoing (the stream of milk is visible).
Evaluate the options:
Image0: Shows the pouring action has stopped, with a stable liquid level. This does not 
match the ongoing action in Frame 4.
Image1: Shows the pouring action is still ongoing, with the liquid level rising. Retains 
the steady pouring velocity and downward direction of milk into the cup, consistent 
with the continuous action in Frame 4.
Image2: Shows the pouring action has stopped, with a stable liquid level. This does not 
match the ongoing action.
Image3: Shows the pouring action has stopped, with a stable liquid level. This does not 
match the ongoing action.
Since the pouring action is still in progress in Frame 4, the next frame should continue 
this action, which aligns with Image1.

Conclusion: Image1.

Qwen2-VL + SDF (ours)

Given a sequence of video frames [frame list]. Which one of the following four images is 
more likely to be the next frame? Your answer should be in the format of Conclusion: 
[Image0 or Image1 or Image2 or Image3].

Qwen2-VL
Conclusion: Image 0.

Figure 10: Case study on Qwen2-VL for zero-shot and SDF setting.
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Input

GLM4.1V + SDF (ours)

Given a sequence of video frames [frame list]. Which one of the following four images is 
more likely to be the next frame? Your answer should be in the format of Conclusion: 
[Image0 or Image1 or Image2 or Image3].

GLM4.1V + CoT
To determine the next frame, analyze the sequence of frames (Frame 0–4) for patterns in object movement and 
positioning. Compare these patterns with the four images (Image0–Image3). The brown shape, green line, 
pink/purple lines, and bottom shapes in Frame 4 show a consistent trajectory that matches Image3’s elements. 
Other images deviate from this progression.
Conclusion: Image3.

To determine which image is most likely to be the next frame, let's analyze the sequence of actions in the frames:
Frame 0 to Frame 4: The sequence shows colored elements flowing with consistent velocity and direction. The 
fluid dynamics demonstrate laminar flow patterns with the colored material maintaining its trajectory and 
showing predictable behavior based on fluid mechanics principles. The elements follow a parabolic trajectory 
under the influence of gravity and momentum conservation. In Frame 4, the flow is still in progress, with the 
stream maintaining its integrity and following the established path.
Evaluate the options: 
Image0: Shows the continuation of the fluid flow with the same velocity and direction established in Frames 0-4. 
The fluid dynamics remain consistent with Bernoulli's principle and conservation of momentum, showing the 
expected continuation of the laminar flow observed in the previous frames. The pattern of colored lines and 
blocks continues logically from Frame 4, maintaining the physical properties demonstrated throughout the 
sequence.
Image1: Shows a disruption in the fluid flow, with turbulence or a change in direction that doesn't align with the 
laminar flow pattern established in the previous frames. This would require an external force not evident in the 
sequence.
Image2: Shows the fluid flow has stopped or reached equilibrium, which would contradict the ongoing motion 
observed in Frame 4 and violate conservation of momentum.
Image3: Shows a reversal or significant alteration in the fluid dynamics that wouldn't naturally occur based on the 
physical principles demonstrated in the sequence. The trajectory and behavior of the colored elements change in 
a way that isn't supported by the physics established in Frames 0-4.
Based on the principles of fluid dynamics, including conservation of momentum, Bernoulli's principle, and the 
continuity equation, the fluid motion observed in Frames 0-4 would most logically continue in the manner shown 
in Image0. The velocity field and pressure distribution support this continuation without introducing external 
forces or violating physical laws.
Conclusion: Image0.

Figure 11: Case study on GLM4.1V for CoT and SDF setting.

As demonstrated in Figure 10, our proposed SDF method successfully enhances the Qwen2-VL
model’s ability to reason about the spatial and physical dynamics of continuum objects. The method
enables the model to generate physically grounded interpretations, such as recognizing that milk
maintains a steady pouring velocity and follows a downward trajectory into the cup. This exem-
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plifies how SDF can effectively inject physical visual perception and reasoning capabilities into
the model. Furthermore, Figure 11 illustrates a more challenging scenario where our SDF-trained
GLM4.1V tackles a complex problem from Contphy Zheng et al. (2024) involving multiple simulta-
neous fluid flows. Our trained model demonstrates the ability to compare and reason about velocity
and momentum characteristics to arrive at the correct answer. When we directly prompt the model
to think step-by-step, the CoT may be influenced by superficial visual features such as color or
appearance rather than relying purely on deeper physical knowledge.

F IMPLEMENTATION DETAILS

F.1 COT PROMPTS

Chain-of-Thought prompting can enhance the reasoning capabilities of Multi-modal Large Lan-
guage Models (MLLMs) in tasks such as Visual Question Answering (VQA) Wu et al. (2023). By
explicitly guiding the model through a series of intermediate reasoning steps, CoT enables a deeper
understanding and more accurate responses, particularly when complex visual or multimodal infor-
mation is involved. To demonstrate this, we have designed distinct CoT prompts tailored to both
the NFS (Next Frame Selection) and TCV (Temporal Coherence Verification) tasks, optimizing the
models’ ability to reason through intricate queries and generate more informed answers.

CoT prompt for NFS task:
Let’s think step by step. To determine which of the four images is most likely to be the next frame
in the sequence, we can approach the task by analyzing the sequence of frames and considering the
following chain of thought: Sequence Analysis: Look at the sequence of video frames from Frame-0
to Frame-4. Assess the general movement, objects, or changes between these frames. Identify any
objects or actions that are progressively changing, such as motion, appearance, or position. Motion
and Trends: Identify patterns or trends within the sequence: whether any objects are moving in
a consistent direction or interacting with other objects. This can help to predict the direction or
type of changes to expect in the next frame. Consistency with Previous Frames: Compare the four
candidate images (Image0, Image1, Image2, Image3) with the sequence. Which one follows the
motion, appearance, or transitions observed in the previous frames? Does one of the candidate
images exhibit the next logical state or movement? Discarding Outliers: If any of the candidate
images significantly diverges from the observed trends in the sequence (e.g., in terms of position,
motion, or object changes), it can be ruled out as less likely. Final Prediction: Based on the trends
and the consistency of the images with the observed dynamics, choose the most plausible candidate
image. Now, apply these steps to the sequence of frames and the candidate images, and determine
which one is most likely to be the next frame.

Figure 12: The demo of the data we collected and used in transfer experiments. In each field of the
image, the upper and lower frames are sampled in the same 3-second clip, and the lower frame is
later than the upper frame.
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CoT prompt for TCV task:
Let’s think step by step. Inspect the video frames one by one for obvious irregularities; compare
object movement and appearance for consistency across frames; check for any unusual transitions,
lighting, or distortions; assess background and environmental consistency; if any frame diverges in
a way that violates natural progression, answer “yes”, otherwise answer “no”.

Annotation prompt for self-annotating process:
You are an expert in visual reasoning. Your task is to generate a step-by-step ”thought process” that
logically explains how to arrive at the correct answer for a given question. You will be provided
with the question and its ground truth answer. Your output should only be the reasoning steps. Do
not repeat the question; just generate the thinking process. [START OF TASK] 1. QUESTION:
{question} 2. GROUND TRUTH ANSWER: {gt choice} You should end with ”Conclusion: {gt
choice}”.

Annotation prompt for Gemini-2.5-pro:
You are an expert in visual reasoning. Your task is to generate a step-by-step ”thought process” that
logically explains how to arrive at the correct answer for a given question. You will be provided
with the question and its ground truth answer. Your output should only be the reasoning steps. Do
not repeat the question; just generate the thinking process. [START OF TASK] 1. QUESTION:
Given a sequence of video frames: [Video Frames] Scene Dynamic Field (SDF) visualizes the flow
of motion by assigning colors to different velocity magnitudes, where regions with higher velocities
are represented in deeper blue shades. Which one of the following is the SDF of the last given
frame? [Choices] Your response should be one of the following: A, B, C, D. 2. GROUND TRUTH
ANSWER: {gt choice}
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Figure 13: Attention weight visualization for Qwen2-VL on the NFS task. Left panels show suc-
cessful cases, right panels show failed cases. Top row: zero-shot setting; bottom row: our proposed
SDF setting. Darker colors indicate higher attention weights.

Different from high-level physical reasoning tasks, which can be further disentangled into several
sub-steps, fundamental physical understanding tasks represent low-level perception capabilities that
are often harder to probe. Therefore, we quantify the attention weights for model inputs without
explicitly requiring output reasoning processes. As found by previous work Li et al. (2024b); Wang
et al. (2024a), MLLMs are weak at long-context reasoning, especially when the input consists of
multiple images. This similar phenomenon is also observed in our experiments.
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As shown in Figure 13, we average the attention weights across all output tokens and all layers to
analyze the model’s focus distribution. The attention weights of the output instruction and candidate
frames part are significantly higher than those of the previous video frames in the zero-shot setting.
This indicates that the model tends to focus on the most recent frames, potentially overlooking
important temporal dynamics present in earlier frames. This bias towards recent information can
lead to suboptimal performance in tasks that require a comprehensive understanding of the entire
sequence.

We can observe higher attention weights on earlier video frames in successful samples compared
to failed ones. The failed cases often focus more on choices and instruction parts, failing to attend
to the equally important video frames. This suggests that the model may be overly influenced by
the provided choices and instructions, rather than fully engaging with the visual content where con-
tinuum dynamics (e.g., fluid motion) are most apparent. Importantly, our proposed SDF method
demonstrates a clear improvement in attention distribution. As illustrated in the bottom row of Fig-
ure 13, SDF, to some extent, draws more attention to the equally important video frames where
continuum phenomena such as fluid dynamics can be observed. This enhanced attention allocation
enables the model to better capture the temporal evolution of physical processes and make more
informed predictions, ultimately leading to improved performance in selecting the correct choice.

Examining the explicit reasoning processes reveals additional insights into failure mechanisms. We
observe that visual hallucination becomes more prevalent in longer reasoning sequences, consistent
with findings from prior hallucination research Liu et al. (2025). Our analysis shows that extended
reasoning leads to approximately 31% reduced attention allocation to visual tokens, thereby dimin-
ishing perceptual capabilities. This attention degradation is particularly pronounced in later stages
of the reasoning process, where models increasingly rely on internally generated content rather than
grounding their responses in the provided visual information.

In all, these failure cases show the fundamental challenges MLLMs encounter when integrating
and reasoning over temporal visual sequences. The observed patterns highlight the critical need for
enhanced attention mechanisms and reasoning frameworks that can more effectively leverage the
complete contextual information within visual sequences, particularly for tasks involving complex
physical dynamics. These findings suggest that future research should pay more attention to de-
veloping more supervision mechanisms for visual perception capabilities throughout the reasoning
process. Additionally, incorporating physically grounded training data will be essential for cultivat-
ing more physics-aware MLLMs Polverini & Gregorcic (2025), ultimately enabling their broader
application across diverse physical reasoning domains Gao et al. (2023).

H ENCODER EVALUATION
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Figure 14: (a) Architectural illustration of the V-JEPA-like encoder test. (b) Performance evaluation
of various video encoders on TCV tasks.
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Given the relatively poor performance of current foundation models on physical dynamics under-
standing, a natural question arises: can we obtain better performance by effectively leveraging the
encoders? To investigate this possibility, we designed an experiment inspired by the V-JEPA Bardes
et al. (2024) architecture to directly test the representational power of various encoders.

We employ a three-layer Transformer-based prediction network (Pred(x)) that takes as input the rep-
resentation generated by a frozen video encoder. This encoder processes a sequence of consecutive
video frames — specifically, frames t - t+n — to produce a compact, contextualized embedding.

The output of the prediction network is then compared via a similarity function (e.g., cosine simi-
larity) against a fixed reference representation derived from a pre-trained Vision Transformer (ViT).
This reference ViT encodes a single target frame (frame t+n+1) representing the immediate future
frame.

Additionally, the same similarity metric is computed between the predicted representation and em-
beddings of “distractor” frames (also encoded by the same frozen ViT), which serve as negative
examples during training. This contrastive setup encourages the prediction network to learn repre-
sentations that are semantically aligned with the true future frame while being distinct from irrele-
vant distractors.

The entire system is trained end-to-end to maximize the similarity between predicted and target
representations, while minimizing similarity with distractors — effectively learning to anticipate
visual content in a self-supervised manner.

Upon evaluation on a simple subset of TCV tasks in Figure 14, it was observed that directly lever-
aging the visual representation alone was insufficient for capturing the complexities of dynamic
behavior, as evidenced by a significant performance gap compared to the Qwen2.5-VL model. It
motivates further exploration into harnessing the inherent capabilities of MLLMs to enhance the
representational power needed for intuitive physics understanding.

This finding led us to focus on the data-centric perspective. The recent improvements in models
like Qwen3-VL, which was trained on more embodied and spatial task data, lend strong support to
this view. It’s performance improved on our intuitive physical understanding tasks with the help of
these spatial and physical data. It indicates that the underlying architectures of MLLMs are capable
of learning physical reasoning, but they must be exposed to the right kind of data. We believe
that intuitive physical understanding is a foundational capability. Therefore, attempting to learn it
implicitly from high level, end to end task data (such as embodied action) would be akin to putting
the cart before the horse. A more effective strategy is to first equip MLLMs with this fundamental
capability using targeted data.

Therefore, our work adopts a data centric approach precisely to address this gap. By generating
structured data focused on physical dynamics (SDF), we aim to directly enhance the MLLM’s ca-
pacity for intuitive physical reasoning, providing a solid foundation for a wide range of real world
applications.

I TRANSFER EXPERIMENT DETAILS

Domain Object Action
Cloth cloth, skirt, shirt, ribbon fluttering
Sand sand, grain, lime, seeds pouring, falling

Smoke steam, smoke ejecting, spreading
Plasticine plasticine, kinetic sand pouring, cutting, stretching

Table 8: The data composition for transfer experiments.

During experiments within the liquid domain, we found that MLLMs can accurately predict the
deformation of liquids by capturing the viscosity of fluid particles, cohesive forces, and the laws
of momentum transfer. This suggests that MLLMs may have developed the capability to model
the ”dynamics of continuous objects formed by particle aggregates.” Fluids share deep-seated sim-
ilarities in physical essence with materials such as cloth, sand, smoke, and plasticine. Traditional
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methods require customized physics engines to model these materials, whereas the generalization
ability of MLLM may break through domain barriers and achieve unified representation. Therefore,
we adopted the same paradigm (shown in Section C) used for liquid dataset collection, as shown in
Figure 12, to gather data from four domains: cloth, sand, smoke, and plasticine. Table 8 shows the
composition of the data.

We acknowledge that our study primarily centers on fluid dynamics as a representative case for
continuum physics. And our exploratory transfer experiments show promising generalization to
other particle-based materials. We do not exhaust the full spectrum of intuitive physics, which
also includes principles governing rigid body collisions, thermodynamics, or optics, since fluid has
always been proposed to be a difficult Zheng et al. (2024) but useful material to start with (e.g.,
robotics manipulation tasks Lin et al. (2020)). Future work should develop more comprehensive
benchmarks that span a wider array of physical phenomena to fully assess and cultivate a holistic
physical understanding in MLLMs.
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