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ABSTRACT

Weak gravitational lensing is the slight distortion of galaxy shapes caused primar-
ily by the gravitational effects of dark matter in the universe. In our work, we seek
to invert the weak lensing signal from 2D telescope images to reconstruct a 3D
map of the universe’s dark matter field. While inversion typically yields a 2D pro-
jection of the dark matter field, accurate 3D maps of the dark matter distribution
are essential for localizing structures of interest and testing theories of our uni-
verse. However, 3D inversion poses significant challenges. First, unlike standard
3D reconstruction that relies on multiple viewpoints, in this case, images are only
observed from a single viewpoint. This challenge can be partially addressed by
observing how galaxy emitters throughout the volume are lensed. However, this
leads to the second challenge: the shapes and exact locations of unlensed galaxies
are unknown, and can only be estimated with a very large degree of uncertainty.
This introduces an overwhelming amount of noise which nearly drowns out the
lensing signal completely. Previous approaches tackle this by imposing strong
assumptions about the structures in the volume. We instead propose a methodol-
ogy using a gravitationally-constrained neural field to flexibly model the contin-
uous matter distribution. We take an analysis-by-synthesis approach, optimizing
the weights of the neural network through a fully differentiable physical forward
model to reproduce the lensing signal present in image measurements. We show-
case our method on simulations, including realistic simulated measurements of
dark matter distributions that mimic data from upcoming telescope surveys. Our
results show that our method can not only outperform previous methods, but im-
portantly is also able to recover potentially surprising dark matter structures.

1 INTRODUCTION

According to Einstein’s theory of general relativity, massive objects in our universe bend their sur-
rounding spacetime, causing nearby light to travel on curved trajectories. As a result, images of
faraway galaxies as observed from Earth are warped due to the continuous deflection of their light
by intervening matter. This effect, called gravitational lensing, is a powerful probe of the distribu-
tion of the massive structures underlying our universe, referred to colloquially as the cosmic web.
Although the mass of visible matter can be directly measured by spectroscopic methods (Tinsley
(1972), Roberts (1962)), dark matter does not appear to interact with electromagnetic radiation and
thus cannot be observed directly. Nonetheless, gravitational lensing is an effect caused by the total
matter distribution in the universe, both dark and luminous. Because dark matter constitutes around
85% of total matter by recent estimates (Aghanim et al. (2020)), gravitational lensing serves as an
effective tool for estimating its distribution. In this work, we focus on the weak lensing regime,
where light deflections are too small to interpret for a single lensed galaxy. However, by observing
how weak lensing subtly shears the images of galaxies in dense fields, we aim to reconstruct a map
of the underlying matter.

Traditional weak lensing analysis is performed in 2D. Measured galaxy shears are interpolated to
form a single 2D shear map which is used to recover an estimate of the 2D projected matter density
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over the sky. Many methods for 2D density reconstruction have been proposed in the past (Kaiser &
Squires (1993), Lanusse et al. (2016)). However, analysis from these maps is limited; 2D mapping
techniques do not provide any information about the mass of structures or their distance from Earth.

We seek to tackle the problem of 3D mass mapping; that is, inverting the weak lensing signal from
2D telescope images to obtain a 3D reconstruction of the dark matter field. Detection and local-
ization of peaks in the 3D structure of dark matter is important for the study of its fundamental
properties, many of which are currently unknown. For example, an open question in physics is
whether or not dark matter emits trace amounts of gamma ray radiation (Bringmann & Weniger
(2012)); however, it is difficult to discriminate between potential weak dark matter emission and the
overwhelming background of gamma rays without attenuating to regions with peaks in dark matter
density. In addition, characterizing the exact nature of of the primordial matter field at times close
to the Big Bang requires studying the 3D structure of the current universe further than just statis-
tics from the 2D field (Bartolo et al. (2004)). Thus, studying the 3D structure of dark matter offers
exciting avenues for answering fundamental questions about our universe.

Recovering the 3D matter density field from projected cosmic shear measurements poses several
challenges. First, since galaxies are observed from a single viewing angle, reconstructing the 3D
distribution from shear data is inherently ill-posed, meaning many different dark matter configura-
tions could produce the same observational data. While observing galaxy emitters throughout the
volume helps to alleviate this issue, it introduces an even bigger challenge: the true unlensed shapes
of visible sources are largely unknown. Because weak lensing describes the change between the ob-
served shape and this “intrinsic” shape, this uncertainty introduces a nearly overwhelming amount of
noise. For example, for a single galaxy, the noise from a galaxy’s intrinsic shape can be on average
10 to 100 times the magnitude of the lensing shear signal.

We propose an approach that leverages the physics of gravitational lensing to recover a continuous
3D matter field represented using a neural field. In particular, we represent the spatially varying
matter density field with a coordinate-based neural network that we optimize through a fully differ-
entiable lensing forward model to reproduce a given set of observed shear measurements. We show
on a simplified simulation of dark matter that our method not only accurately recovers 3D matter
structures, but also surpasses the baseline in localizing these structures at their correct distances from
Earth, referred to as redshift. Crucially, we also show that our method can accurately reconstruct
non-Gaussian features not present in the simplified simulation where the baseline method struggles,
which will prove essential for constraining fundamental theories of structure formation in the uni-
verse. We believe that our work serves as a flexible and powerful approach that shows promise for
extension to upcoming weak lensing telescope surveys.

2 RELATED WORK

2.1 DARK MATTER MASS MAPPING

Dark matter mass mapping is the inverse problem of reconstructing the distribution of dark matter
in the universe from observations of its gravitational lensing effects on images of galaxies. In weak
lensing, which is the focus of this paper, the effects of lensing are very small and can be understood
as small rotations or changes in the axis ratios of approximately elliptical galaxy shapes. These two
effects are described by the complex components of the shear γ, a 2D field describing the spatial
distribution of elliptical shape changes in galaxy images across the sky.

It was discovered by Kaiser & Squires (1993) that a dense shear field can be analytically inverted
to obtain a 2D projected mass map of the sky. However, in practice we are limited in our ability to
measure the full shear field by the visibility and density of galaxies in the sky as well as uncertainty in
galaxies’ unlensed shapes. Thus the problem of obtaining the 2D projected matter density is in itself
difficult. Many methods for solving this 2D inversion have been developed: Kaiser & Squires (1993)
propose a smoothing of the observed shear field before directly applying the analytical inversion.
Regularized approaches such as a Gaussian prior (Horowitz et al. (2019)) and sparsity (Lanusse
et al. (2016)) have also been used. However, all these methods are fundamentally limited in that 2D
mass maps do not give information on the exact mass or redshift of detected structures. Only by
measuring galaxy redshifts to reason in 3D can we estimate these quantities.
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In the problem of 3D mass mapping we seek to recover not only the projected mass density but its
full 3D distribution. This amounts to solving an ill-posed single-view tomography along the line
of sight. Thus, some form of regularization is necessary for reconstruction. Previous work in 3D
reconstruction from weak lensing has focused on methods that incorporate very strong priors on the
spatial structure of the universe. Simon et al. (2009) proposed a Wiener filter method that combines a
Gaussian prior with an inverse variance filter to regularize a reconstruction. VanderPlas et al. (2011)
use an inverse variance filter as well, but regularize by truncating the singular value decomposition of
their reconstruction. While both methods introduce heavy smoothing of their reconstructions along
the line of sight, Leonard et al. (2014) proposed a method to achieve higher resolution in the line of
sight direction by using a sparsity prior. However, this method induces a strong constraint, i.e. that
the universe can be represented as a sparse sum of dark matter “halos”, and can be susceptible to
false peak detections along the line of sight. In addition, the optimal amount of sparsity is not clear,
and different values can result in significantly different reconstructions.

Out of the aforementioned 3D reconstruction methods, the Wiener filtering method that employs
a Gaussian prior based on the power spectrum of the dark matter field (Simon et al. (2009)) has
been the most widely used in real data (Oguri et al. (2018), Simon et al. (2012)). Assuming that
the underlying dark matter field is Gaussian, this method is favorable in that it is provably the
optimal reconstruction method. However, there is currently a plethora of evidence pointing towards
the non-Gaussian nature of the universe’s density field, especially at low redshift regions close to
Earth (Bartolo et al. (2004)). We show in this work that our method can reconstruct non-Gaussian
structures more accurately, which will become critical for studying non-Gaussian features of the
universe.

2.2 COORDINATE-BASED NEURAL FIELDS

Coordinate-based Neural Fields (Xie et al. (2022)), also commonly referred to as coordinate-based
neural representations, have gained popularity in computer vision and graphics across a wide range
of inverse problems. These models parameterize a continuous three-dimensional vector or scalar
field with the weights of a multi-layer perceptron (MLP) that takes a spatial coordinate as input and
outputs the value of the field at that coordinate. Typical approaches using neural fields formulate
inverse problems as an optimization, directly using an underlying physical forward model to recover
a single solution field that matches a set of observed measurements.

For ill-posed inverse problems where there are potentially many solution fields which fit a set of
observed measurements, neural fields have been shown to provide a good implicit prior. In particular,
MLPs favor learning lower spatial frequencies when optimized with gradient descent (Rahaman et al.
(2019)), an effect known as spectral bias. Tancik et al. (2020) conducted a theoretical analysis which
showed that by prepending a positional encoding layer one can modify the network’s bandwidth in
a tunable fashion. Thus, a positionally encoded MLP implicitly imposes a smoothness prior on the
final reconstruction as it will favor representing certain spatial frequencies of a signal. Neural fields
with positional encoding have been shown to provide impressive results on a wide range of ill-posed
inverse problems, such as medical imaging (Shen et al. (2022)), cryo-electron microscopy (Zhong
et al. (2021)), refractive field estimation (Zhao et al. (2024)), and black hole tomography (Levis
et al. (2022), Levis et al. (2024)). Recently, Zhao et al. (2024) presented an approach to 3D dark
matter mass mapping that optimizes a neural field model to fit to simulated weak lensing image
measurements and showed how it led to superior performance over a traditional voxel grid. While
this method is relevant to a larger range of gravitational lensing regimes, as it doesn’t require lensed
galaxies to be modeled as ellipses, it struggles when there is noise on the intrinsic shape of galaxies.
In contrast, our work focuses on the noise-dominated weak lensing regime and introduces a method
that takes advantage of fitting directly to the estimated shear of elliptical galaxies.

3 METHODS

3.1 WEAK LENSING MEASUREMENTS

As light travels towards us from faraway galaxies, its path is continuously perturbed by the dark
matter it encounters along the line of sight. In weak lensing, the degree of this perturbation is rel-
atively minor, and results in small changes in the observed shapes of galaxies. To quantify these
small changes, approximately elliptical galaxy shapes are described using a complex ellipticity pa-
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Figure 1: Weak Lensing Measurements. (Left) As light travels through the universe, it is lensed
by intervening matter structures, causing slight changes between the unlensed intrinsic shape eint
and the observed shape eobs of galaxies. Measurements of these faint shape changes is a useful
probe of the 3D structure of dark matter. (Right) To quantify the effects of cosmic shearing, it is
useful to consider galaxy shapes in the complex elliptical domain, where the components of the
complex ellipticity describe the axis ratio and orientation angle of a given ellipse (Figure adapted
from Schneider et al. (2006)). In kinematic weak lensing, the detectable cosmic shear signal is
outweighed by our uncertainty in a galaxy’s intrinsic shape by more than an order of magnitude.
In traditional weak lensing the uncertainty is more than two orders of magnitude greater than the
shear signal. The lensing effects of intervening matter can be described by a shear γ, which is
approximately additive in the ellipticity domain. In practice, we combine many shear measurements
from a dense field of galaxies to obtain a coherent signal from the underlying matter distribution.

rameterization e. Given an approximately elliptical galaxy with axis ratio r and orientation angle ϕ,
we can define the magnitude and phase of its ellipticity e as in Schneider et al. (2006):

|e| = 1− r

1 + r
∠e = 2ϕ. (1)

Weak lensing measurements relate a galaxy’s observed ellipticity eobs to its intrinsic ellipticity eint,
which describes what its observed shape would be in the absence of lensing. In the regime of weak
lensing, the lensing effects of intervening matter can be approximately described as a shear γ, which
is additive in the ellipticity domain (Schneider et al. (2006)):

eobs − eint = γ. (2)

An overview of shear measurements and the complex ellipticity can be found in Fig. 1. In prac-
tice, although the observed shape eobs can be measured directly from an image, a galaxy’s intrinsic
shape eint is much more difficult to estimate. In traditional weak lensing surveys, eint is completely
unknown (Schneider et al. (2006)). More recently a technique called kinematic weak lensing (Huff
et al. (2013)) has been proposed that leads to an estimate of eint using spectral data. Nonetheless,
even with kinematic estimates of the intrinsic shape, the noise on γ will still typically be more than
10 times larger than the signal itself; this uncertainty is called the shape noise. To mitigate the
effects of the shape noise, typical weak lensing surveys combine measurements from many galax-
ies into a galaxy catalog containing the sky position, redshift (distance), and observed and intrinsic
shape estimates of millions of galaxies, which constitute the measurements for the 3D mass mapping
problem.

3.2 FORWARD MODEL

The shear observed in a galaxy image arises from the cumulative lensing occurring along the line of
sight between us and the galaxy. Because a uniform sheet of mass does not induce any gravitational
shearing effect, the shear is a measurement of the overdensity δ = (ρ − ρ̄)/ρ̄, where ρ is the
continuous matter density field and ρ̄ is mean density at a given distance from Earth.

To compute the shear from the matter overdensity field δ, we first introduce the convergence κ
(Schneider et al. (2006)), which for a galaxy with sky position θ at distance w is:

κ(θ, w) = Qδ =
3H2

0Ωm

2c2

∫ w

0

dw′w
′(w − w′)

w

δ(w′θ, w′)

a(w′)
, (3)
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Figure 2: Proposed 3D Mass Mapping Pipeline. We model a 3D matter overdensity field δ̂ as a
continuous function using a fully-connected neural network. We then differentiably compute cosmic
shear measurements from a given galaxy catalog through this overdensity field with a physics-based
forward model to produce a set of predicted shear measurements. Next, we solve for the weights of
the neural network by minimizing a data loss between the model and observed shear measurements
plus a physically-motivated power spectrum regularization loss. We obtain a final reconstruction by
taking the median from a deep ensemble of 100 independently initialized neural fields.

where H0 and Ωm are assumed cosmological constants and c is the speed of light. The scale pa-
rameter a(w) represents the known expansion of the universe that occurs as light travels towards us,
and δ is the matter overdensity. The 3D shear γ is obtained by convolving the convergence κ with a
complex kernel D (Kaiser & Squires (1993)):

γ(θ, w) = Pκ =
1

π

∫ 2

C
d2θ′D(θ − θ′)κ(θ′, w), D(θ) =

−1

(θ∗)2
. (4)

Here, the angular position θ = θ1 + iθ2 is expressed in complex coordinates, and the asterisk ∗
represents complex conjugation.

Notably, the forward operators in Eqns. 3 and 4 are both linear with respect to the overdensity δ, so
obtaining the overdensity from the shear measurements is a linear inverse problem. Combining with
Eqn. 2 gives us the full formulation with the effects of the additive shape noise ε:

eobs = PQδ + ε ε ∼ N (ẽint, σshape), (5)

where Q and P are the linear forward operators from Eqns. 3 and 4, respectively, and ẽint is the
estimated intrinsic ellipticity. Note that even in traditional weak lensing, where no estimate of the
intrinsic shape is available, we can set ẽint = 0 and adjust σshape to account for the full range of
possible ellipses. In practice we calculate the forward model by discretizing the overdensity δ into
a set of lens planes spaced throughout the volume. We then efficiently compute Q with summation,
and the convolution P with the Fast Fourier Transform.

3.3 CONTINUOUS NEURAL REPRESENTATION

To solve the inverse problem of mass mapping, we take an analysis-by-synthesis approach. We
model the continuous matter overdensity field δ with a neural field consisting of a coordinate-based
Multi-Layer Perceptron (MLP), which is optimized to fit the observed measurements eobs through
the forward model described in Sec. 3.2. The MLP, parameterized by weights W , takes 3D spherical
coordinates x = (θ1, θ2, w) as input and outputs a scalar matter density:

δ̂(x) = MLPW(FL(x)), FL(x) = [sin(x), cos(x), . . . , sin(2L−1x), cos(2L−1x)]T , (6)

where FL(x) is a positional encoding layer mapping each input coordinate to a set of Fourier basis
functions with increasing frequencies. The positional encoding layer has been shown to control
the bandwidth of the neural network’s interpolation kernel (Tancik et al. (2020)), tunable via the
frequency parameter L. Higher levels of L allow the MLP to express higher spatial frequencies,
while lower levels of L encourage learning lower spatial frequencies. In our experiments we use
L = 2 for angular coordinates and L = 5 for the radial coordinate.

3.4 OPTIMIZATION

Because our network is a fully continuous estimate of the matter overdensity field δ, we can simulate
cosmic shear measurements that would have been observed had the galaxies in our catalog been
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lensed by the density distribution represented by our neural field. To do so, we simply apply the
forward operators P and Q detailed in Eqns. 4 and 3 to the neural overdensity estimate δ̂ to obtain
the modeled shear γ̂. We then optimize our network weights W to match the observed galaxy
ellipticities eobs to the specified level of shape noise, minimizing a χ2 data loss.

We regularize our reconstruction with an additional loss term equal to the mean squared error be-
tween the lens plane power spectra of the ground truth (P ) and the reconstruction (P̂ ). Inclusion of
this term helps us to prevent overfitting to the noise and produce physically realistic reconstructions.
The theoretical form of the power spectrum P can be analytically calculated and has been used to
characterize the covariance of a Gaussian prior in previous work; however, we expect the ground
truth field to contain non-Gaussian features in practice.

The full loss function is:

L(W) =
1

M

∑
m

∣∣∣∣∣ γ̂(m)
W − γ(m)

σshape

∣∣∣∣∣
2

+
λ

N

∑
n

∑
ℓ

(P̂
(n)
W (|ℓ|)− P (n)(|ℓ|))2 (7)

where m and n index over M galaxy catalog entries and N lens planes, and ℓ is the frequency vector
of a lensplane’s 2D Fourier transform. A diagram of our model’s optimization is shown in Fig. 2.

3.5 NEURAL DEEP ENSEMBLE

Because the forward operator Q is a weighted line-of-sight projection, solving the inverse problem
of 3D mass mapping is akin to computing a tomography from a single line of sight. This, in combi-
nation with the large degree of noise in the lensing signal, makes the inversion ill-posed; there exist
infinitely many mass fields that could produce the same set of shear observations. In particular, two
neural networks with different sets of randomly initialized weights could potentially converge to dif-
ferent reconstructions, both of which fit a given observed galaxy catalog equally well. We find that
constructing an ensemble estimator by taking the median values over many neural reconstructions
gives robust reconstruction results and mitigates artifacts from individual samples1.

In our experiments, we use a deep ensemble of 100 fully connected MLPs each with 4 layers, where
each layer is 256 units wide with the ReLU activation function. The network output is passed
through the sigmoid activation function followed by a final single node linear layer. We optimize the
network weights by minimizing the loss in Eqn. 7 via gradient descent using the Adam optimizer
(Kingma (2014)), with exponential learning rate decay from 1e−4 to 5e−6 over 100K iterations.
All code is implemented in JAX and will be made publicly available.

4 EXPERIMENTS

4.1 COSMIC SHEAR SIMULATIONS

To simulate ground truth dark matter fields we used the low resolution Particle-Mesh N-body solver
JaxPM (Initiative (2021)). The shear signal was simulated over a field of 5◦ × 5◦ with a resolution
of 75 × 75 pixels. For the kinematic weak lensing experiment in Sec. 4.2, we simulate shape
noise in line with current estimates for the instrument capabilities of the Roman Space Telescope
(Xu et al. (2023)), with a galaxy number density of ngal = 4 arcmin−1 and a shape noise level of
σshape = 0.035. For the traditional weak lensing survey in Sec. 4.3, we assume no estimation has
been done on the intrinsic shape of a denser field of galaxies, corresponding to a shape noise level of
σshape = 0.25 and a galaxy number density of ngal = 30 arcmin−1. Finally, we assume a realistically
distributed galaxy sample as in Leonard et al. (2014) of 360,000 galaxies for kinematic weak lensing
and 2,700,000 galaxies in the traditional weak lensing experiment; more details are in the appendix.

Throughout this section, we will use the term redshift, which should be understood as interchange-
able with distance in the radial direction; for reference, redshift z = 0 corresponds to Earth’s loca-
tion, while a redshift of z = 2 corresponds roughly to a distance of 15 billion light years away in the
present day. For our experiments, we divide the lensing volume into 18 equally spaced lens planes
from redshift z = 0 to 2. Although simulated galaxies are lensed throughout the whole volume, the
SNR of the reconstruction decreases with distance from the sensor, as most of the lensing is done by

1Interestingly, although the individual members of the so-called deep ensemble do not correspond to sam-
ples from a Bayesian posterior, deep ensembles have been shown to yield predictive uncertainty estimates
(Lakshminarayanan et al. (2017)).
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Figure 3: Kinematic weak lensing result: We present 3D reconstruction results of a realistic lensing
volume derived from an N-body simulation. Results includes 12 lens planes from redshift z = 0 to
z = 1. To concisely visualize reconstructions, we average every 3 adjacent lens planes to form 4
lensing regions, increasing in distance away from the sensor. Ground truth (GT) lensing regions are
shown on the far left. For visual comparison, we blur the ground truth volume with a Gaussian filter
in the line-of-sight direction that maximizes the cross-correlation with each reconstructed slice. We
then visualize this optimally blurred ground truth volume for each reconstruction, along with the
average line-of-sight standard deviation used for each region (top right corner). Our reconstruction
corresponds well with a GT volume with significantly lower radial blurring, especially at lower
redshift, showing that our method is less susceptible to smearing along the line of sight.

matter in the front half. Thus, we only present the reconstructed volume up to redshift z = 1; this is
a common practice in 3D mass mapping (Simon et al. (2009), Leonard et al. (2014)).

4.2 LARGE-SCALE STRUCTURE RECOVERY WITH KINEMATIC WEAK LENSING

We first use our approach to perform 3D mass reconstruction on realistic kinematic weak lensing
measurements of simulated dark matter fields. Results are shown in Fig. 3. We optimize a neural
field ensemble as described in Sec. 3.5, taking the median value over each neural reconstruction
at sampled points. As a baseline, we compare against the Wiener filter described in Simon et al.
(2009). This method has been the most widely used on real data (Simon et al. (2012), Oguri et al.
(2018)) and employs a Gaussian prior that requires knowledge of each lens plane’s power spectrum.

We present reconstruction results of our overdensity volume on 12 lens planes from redshift z = 0
to z = 1. To visualize our reconstruction, we average every 3 adjacent lens planes to form 4 lensing
regions. Due to large amounts of shape noise, we compare each reconstruction to a blurred version
of the ground truth volume. For each reconstructed lens plane we blur the ground truth volume with
a Gaussian filter using σ = 2px in the transverse (angular) directions, and a σ in the radial z di-
rection chosen to maximize cross-correlation with each reconstruction. This produces two volumes,
optimally blurred to match our reconstruction and the Wiener filtered reconstruction. Additionally,
we use the optimal radial blur as a metric for the amount of radial smearing in each reconstruction;
a reconstruction with large amounts of smearing along the line of sight would correlate most highly
with the ground truth blurred with a wide Gaussian filter in the z direction.

A quantitative analysis of reconstruction performance is shown in Table 1. Downstream applications
of 3D mass mapping include the study of mass peaks (areas with high overdensity) and voids (areas
with low overdensity); thus, it is important for our reconstruction methods to accurately discriminate
between the two. To evaluate the reconstruction quality of both methods, we use the normalized
cross-correlation metric without mean subtraction, which harshly penalizes predicting overdensities
of the wrong sign. We find that our method outperforms the Wiener filter on both the unblurred and
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Figure 4: Traditional weak lensing result: We perform 3D reconstruction on a simulated traditional
weak lensing survey assuming no information on the intrinsic shapes of galaxies. As in Fig. 3,
we use the same ground truth volume and setup, dividing our volume into four redshift regions and
generating blurred ground truth volumes for visual comparison. The optimal blur level for each
region and method is indicated in the top right corner of each blurred ground truth image. Our
reconstruction has less radial blurring than the Wiener filter baseline used in previous weak lensing
surveys, and has higher correlation with the ground truth volumes.

optimally blurred ground truth volumes. In addition, we find that the optimally blurred ground truth
volume for our reconstruction corresponds to a Gaussian filter with significantly lower width in the
radial direction, suggesting that our method better localizes structures along the line of sight; this is
especially evident at lower redshifts of the reconstruction.
Table 1: Quantitative Analysis: We report the normalized cross-correlation between the reconstruc-
tions and the ground truth, both with and without Gaussian blurring. Cross-correlation values range
from −1 to +1, where higher values signify better reconstruction performance.

Kinematic WL

CC CC (Blur)
Ours 0.60 0.80

Wiener 0.39 0.70

Traditional WL

CC CC (Blur)
Ours 0.52 0.77

Wiener 0.34 0.61

MNIST Reconstruction

CC CC (Blur)
Ours 0.61 0.86

Wiener 0.52 0.68
4.3 LARGE-SCALE STRUCTURE RECOVERY WITH TRADITIONAL WEAK LENSING

Although kinematic weak lensing measurements show great promise for enabling accurate 3D dark
matter reconstructions, kinematic surveys are still in the planning stage (Xu et al. (2023)). Tradi-
tional weak lensing surveys do not estimate galaxies’ intrinsic shapes, and instead use the fact that
they are distributed isotropically and are circular on average. As such, they are subject to much
higher levels of shape noise.

In this section we simulate shear measurements with shape noise in the amount expected from a tra-
ditional weak lensing survey. Although traditional weak lensing surveys detect a much denser field
of galaxies than expected from kinematic surveys, the statistical effect of shape noise only decays
with the galaxy density at a rate of √ngal (Schneider et al. (2006)); thus, the combined measure-
ments still contain more noise in aggregate (roughly 2.6x more noise than kinematic). Quantitative
results as described in Sec. 4.2 can be found in Table 1. We find that our method again outperforms
the Wiener filter baseline and better localizes structures radially, especially at lower redshifts. Thus,
we believe that our method could be a powerful tool for analyzing existing weak lensing surveys.

4.4 RECONSTRUCTION OF NON-GAUSSIAN STRUCTURES

As our reconstruction in Sec. 4.2 was performed on a low-resolution N-Body simulation, the ground
truth volume lacks non-Gaussian features such as sharp edges or peaks, and so was well-suited to
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Figure 5: Sensitivity to Non-Gaussianity: In this experiment, we perform reconstruction on a toy
lensing field of 4 lens planes, each with an MNIST digit 0 through 3 in one if its corners. Due to
the non-Gaussian nature of these images, the Wiener filter which uses a Gaussian prior struggles to
reconstruct the lens planes accurately. We blur the ground truth volume to match each reconstructed
lensplane as described in Sec. 4.2 and report the optimal z blur (px) in each corner; the Wiener filter
exhibits significantly more blurring in low redshifts.

the use of a Gaussian prior. However, recent observations Komatsu et al. (2009) as well as state-of-
the-art simulations Pillepich et al. (2018)2 reveal that some of the most fascinating and scientifically
important structures in the universe are highly non-Gaussian. These structures are ill-suited for
reconstruction with a Wiener filter, which uses a strong Gaussian prior.

In this experiment we consider a toy example of 4 lens planes, each with an MNIST digit 0 through
3 in a single quadrant, at 4 equally spaced distances from redshift z = 0 to 1. We simulate shear
measurements with the same galaxy parameters as in Sec. 4.2, where galaxies throughout the volume
are lensed only by these 4 lens planes. While the structures of each digit are apparent in both
reconstructions, the Wiener filter suffers from heavy amounts of artifacts due to the non-Gaussian
nature of the true lens planes. In addition, our method is better able to localize the central locations of
each digit in its reconstructions; for the Wiener filter, traces of the digit 2 can be found prominently
in the incorrect lens planes. As can be seen in Table 1, our method outperforms the Wiener filter
quantitatively on both blurred and unblurred ground truth volumes.

5 CONCLUSION

This work presents a method for recovering the 3D cosmic web using a neural field constrained by
galaxy shear measurements. First, we demonstrate accurate reconstruction results on simulations of
dark matter that outperform the leading baseline method for real data. Second, we show how our
method addresses key limitations of the baseline, particularly in capturing non-Gaussian structures
within the dark matter field. These structures, which are among the most intriguing and scientifically
significant, often exhibit highly non-Gaussian characteristics that are obscured by methods con-
strained by a Gaussian prior. Furthermore, the continuous and differentiable neural representation
underlying our model offers a flexible framework for future advancements, such as incorporating
stronger physically motivated constraints, non-discrete galaxy distributions, and more sophisticated
spatial priors. Our method offers a flexible yet still powerful solution for 3D dark matter mass map-
ping, potentially enabling insights into structure formation in the universe and the nature of dark
matter itself, two fundamental questions at the heart of physics.

2Although outputs from these simulations are publicly available, simulation of weak lensing shear measure-
ments from these volumes was prohibitively computationally expensive due to an exponentially greater particle
count compared to the simplified N-Body simulations shown in this work.
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A APPENDIX

A.1 N-BODY SIMULATION PARAMETERS

All measurements were simulated in a flat ΛCDM cosmology with Ωm = 0.3075, ΩΛ = 0.6925,
and H0 = 100 km/s/(h−1Mpc). We assume that galaxy redshifts are sampled from a distribution
with probability density function given by n(z) = zα exp

(
−(z/z0)

β
)
, where we take z0 = 1/1.4,

α = 2 and β = 1.5.

For simulated cosmic shear experiments (Figs 3 , 4), we used a multiple lensplane approximation
of the shear, dividing the volume into 18 equally spaced (in comoving distance) lens planes from
redshift z = 0 to 2. Reconstruction results are shown for the first 12 lensplanes from redshift z = 0
to 1. Radial distances to the center of each reconstructed lensplane are given in Table 2, as well as
the redshift with respect to the cosmological parameters used in our experiments:

Table 2: Reconstructed Lensplane Redshifts and Distances

Lensplane Comoving Distance (Mpc h−1) Redshift z Present Distance (109 Light Years)
1 100 0.03 0.48
2 300 0.10 1.44
3 500 0.17 2.41
4 700 0.25 3.37
5 900 0.33 4.33
6 1100 0.41 5.30
7 1300 0.49 6.26
8 1500 0.58 7.22
9 1700 0.68 8.19

10 1900 0.78 9.15
11 2100 0.88 10.11
12 2300 1.00 11.07

The MNIST experiment (Fig. 5) was done with 4 equally spaced (in redshift) lensplanes. A table of
distances to the center of each of these lensplanes can be found in Table 3.

Table 3: Reconstructed Lensplane Redshifts and Distances

Lensplane Comoving Distance (Mpc h−1) Redshift z Present Distance (109 Light Years)
1 705 0.25 3.39
2 1319 0.5 6.35
3 1848 0.75 8.90
4 2303 1.0 11.09

A.2 NEURAL ENSEMBLE SAMPLES

In this section we visualize samples from the Neural Field ensemble used for reconstruction in
Sec. 4.2. Due to the ill-posed nature of the reconstruction problem, individual samples can fit
the measurement data but vary in structure or contain reconstruction artifacts. However, taking the
ensemble mean or median yields a more robust reconstruction that matches well with the ground
truth volume.

In addition, we empirically find statistics from the ensemble can be used to perform uncertainty
quantification. Results are shown in Fig. 7. Our ensemble can give well-calibrated uncertainty
estimates for most reconstruction points, except for outliers at either tail.

A.3 ADDITIONAL RESULT FOR LARGE-SCALE STRUCTURE RECOVERY WITH KINEMATIC
WEAK LENSING

In this section we show a reconstruction experiment with the same simulation parameters as pre-
sented in Sec. 4.2 of the main paper, but on a simulated volume initialized with a different random
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Table 4: Cross correlation for the kinematic weak lensing experiment presented in Fig. 8

CC CC (Blur)
Ours 0.52 0.75

Wiener Filter 0.39 0.64

Figure 6: Neural ensemble samples: we visualize samples from the neural ensemble used for re-
construction in Sec. 4.2. Individual samples may fit the measurement data equally well but vary in
structure or contain artifacts due to the ill-posed nature of the reconstruction. However, taking the
ensemble median gives a robust reconstruction which matches well with the ground truth volume.

seed. We show similar findings as in the previous experiment; our method correlates more strongly
with both blurred and unblurred ground truth volumes. Moreover, our method exhibits less smearing
in the radial direction of reconstructed structures at low redshifts. Reconstruction results are shown
in Fig. 8, and quantitative results in Table 4.

A.4 FULL RECONSTRUCTION VOLUME OF LARGE-SCALE STRUCTURE RECOVERY WITH
KINEMATIC WEAK LENSING

In this section we present reconstruction results corresponding to Sec. 4.2 of the main paper. While
in Fig. 3 we average lensplanes and optimal z blur levels for sets of 3 adjacent lensplanes for visual
brevity, we present the same results in Fig. 9 without averaging.
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Figure 7: Ensemble Uncertainty Estimates. Although our current ensemble representation doesn’t
mathematically correspond to a Bayesian posterior, we find that our current method already provides
meaningful uncertainty estimates. We present an uncertainty calibration plot for the reconstruction
ensemble corresponding to Fig. 3. There is a strong correlation between the ensemble standard
deviation and reconstruction error, except for a few outlier regions. In regions with high ensemble
variance we find our model is underconfident. In regions with low ensemble variance our uncertainty
estimates are slightly overconfident, but the error is still well within 2 standard deviations.

Figure 8: Large-scale structure recovery for an additional simulated kinematic weak lensing survey.
We present reconstruction results for a mock kinematic lensing survey with the same parameters as
in the main paper, only where the N-Body simulation is initialized with a different random seed.
Our method again correlates more strongly with both blurred and unblurred ground truth volumes,
and is subject to significantly less radial smearing at low redshifts.
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Figure 9: Full Reconstruction volume for Kinematic WL. Reconstruction results in Fig. 3 are shown
with sets of 3 adjacent lensplanes averaged. This figure presents the full set of 12 lensplanes without
averaging.
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