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Abstract

We introduce Steerable Transformers, an exten-
sion of the Vision Transformer that is equivari-
ant to the action of the Special Euclidean group
SE(d). We propose an steerable self-attention
mechanism that operates on features extracted
by steerable convolutions. Our experiments in
both two and three dimensions show augmenting
steerable convolutional networks with steerable
transformer leads to improved performance.

1. Introduction

Transformers have emerged as the preferred architecture
for natural language processing tasks, with recent powerful
models like Chat-GPT employing this framework. Their
relatively straightforward design, coupled with remarkable
success, has led to their widespread adoption across various
domains, including image classification (Dosovitskiy et al.,
2021)), object detection (Carion et al.l 2020), and graph
based problems (Dwivedi & Bresson, 2020). The self-
attention mechanism (Bahdanau et al., [2014) employed in
transformer architectures has proven to be crucial for cap-
turing relationships between different parts of the input se-
quence. |Dosovitskiy et al.| (2021)) introduced transformers
as an alternative to traditional convolutional architectures
for vision tasks. Unlike convolutional neural networks
(CNNs), which focus on local neighborhoods, transform-
ers excel at capturing relations across different parts of the
mput.

Equivariant neural network architectures have gained sig-
nificant popularity in recent years due to their inherent abil-
ity to comprehend the underlying symmetries of problems,
making them highly effective tools for real world tasks. For
instance, achieving equivariance to the permutation group
Sy, is crucial in graph based problems, since the structure

"Department of Statistics, University of Chicago, Chicago,
USA “Department of Computer Science, University of Chicago,
Chicago, USA. Correspondence to: Soumyabrata Kundu
<soumyabratakundu@uchicago.edu>.

Proceedings of the 42™¢ International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

of the graph remains invariant under permutations of node
labels (Thiede et al., [2020; Wang et al.l 2020). Similarly,
in vision tasks, it is desirable to have equivariance to rigid
body transformations such as rotations and translations.
Recent studies by (Cohen & Welling| (2016; 2017); Worrall
et al.| (2017); [Weiler et al.| (2018a); Weiler & Cesal (2019);
Thiede et al.| (2020); |Anderson et al.| (2019), and many
more, have demonstrated the remarkable efficacy of these
equivariant architectures in enforcing symmetry, without
relying on brute force techniques like data augmentation.

In vision tasks, steerable convolutions have proven to be a
powerful tool for enforcing equivariance to rotations and
translations (Cohen & Welling, [2016} Worrall et al., 2017;
Cohen & Welling, 2017} |Cohen et al., 2018} Weiler et al.,
2018a; |Weiler & Cesal, 2019). These networks primarily
operate in Fourier space, leveraging representations of the
underlying group to extract rotation and translation equiv-
ariant features from the data. These architectures are ef-
fective at learning relevant features in local neighborhoods.
Conversely, transformer architectures excel at learning re-
lationships between distant regions of an image. Our con-
tribution lies in combining these two concepts, yielding
equivariant architectures that are capable of capturing both
local and global patterns in images.

1.1. Related Work

The concept of attention was first proposed by [Bahdanau
et al.|(2014) in the context of sequence modeling. Building
on this, Vaswani et al.| (2017) developed the transformer
architecture for natural language translation tasks. Later,
Dosovitskiy et al.|(2021) extended the transformer frame-
work to visual domains, proposing a hybrid model that in-
tegrates features extracted from conventional CNNs. In
contrast, Ramachandran et al.|(2019) introduced a fully at-
tention based architecture that entirely replaces traditional
convolutional networks.

Transformer architectures are inherently nonlinear in their
inputs, and applying them directly into equivariant archi-
tectures can break equivariance. This has motivated in-
creasing interest in developing transformer models that are
designed to preserve equivariance. [Romero & Cordonnier
(2021)) demonstrated that vision transformers using relative
positional encoding (Shaw et al.,|2018) exhibit translation
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equivariance. They extended the attention based frame-
work of [Ramachandran et al.| (2019) by formulating the
attention mechanism over the group SE(2), thereby achiev-
ing both rotation and translation equivariance in two di-
mensions. Building on this approach, Xu et al.|(2023) pro-
posed a novel positional encoding operator to further im-
prove performance. Additionally, Romero et al.| (2020) in-
corporated attention directly into convolution by defining
the attention scores over the equivariance group.

In three dimensions, attention based methods that enforce
equivariance to rotations and translations have been ex-
plored. However, to the best of our knowledge, these ef-
forts have been limited to point cloud data. [Fuchs et al.
(2020) introduced an SE(3)-equivariant architecture for
point clouds by incorporating the self-attention mecha-
nism into the Tensor Field Network (Thomas et al., [2018)).
Liao & Smidt (2023) proposed Equiformer, an equivari-
ant extension of the Graph Attention Network (Velickovié
et al.l 2018) for 3D point clouds, and subsequently, [Liao
et al.| (2024) presented EquiformerV2, a more computa-
tionally efficient variant that reduces SO(3) convolutions
to SO(2), leveraging ideas from |Passaro & Zitnickl (2023).
Chen & Villar|(2022) achieved equivariant attention by pro-
jecting data onto SE(3)-equivariant and invariant features,
based on equivariant feature maps developed by |Villar et al.
(2021). [Hutchinson et al.| (2021) proposed a transformer
framework with attention mechanism that is equivariant un-
der the action of general Lie groups, using regular rep-
resentations. For shape reconstruction tasks, |Chatzipan-
tazis et al.[(2023) introduced an SE(3)-equivariant atten-
tion model.

1.2. Our Contribution

Romero et al| (2020) explored equivariant transformer
architectures for two dimensional images by integrating
the self-attention mechanism within convolutional layers.
While effective, this comes at the cost of significantly
higher memory usage. In contrast, the architectures intro-
duced by Xu et al.|(2023), which build on the model of Ra-
machandran et al.| (2019), entirely eliminate convolutional
components in favor of self-attention based mechanisms.
Nevertheless, as noted by |Xiao et al.[|(2021), incorporating
a convolutional encoder prior to the transformer leads to
better performance, suggesting a more balanced and effec-
tive design.

In three dimensions, [Fuchs et al.| (2020); [Hutchinson et al.
(2021); [Liao & Smidt| (2023) proposed SE(3)-equivariant
transformer architectures tailored for point cloud data. Al-
though volumetric data, in principle, can be conceptual-
ized as point clouds arranged on a regular grid, using these
point cloud based methods on dense volumetric inputs can
impose inappropriate inductive biases, as it overlooks the

structured nature of the underlying grid. Furthermore,
treating volumetric data as point clouds and applying these
methods can lead to excessive memory usage, often result-
ing in out-of-memory errors.

To address these challenges, we present a novel steerable
transformer architecture specifically designed for volumet-
ric data in d dimensions. Our proposed steerable trans-
former integrates on top of a steerable convolutional en-
coder and, as demonstrated through our experiments, en-
hances the performance of steerable convolutions. Draw-
ing inspiration primarily from|Dosovitskiy et al.|(2021) and
Fuchs et al.| (2020), our method operates in the Fourier do-
main, by using group representations to learn equivariant
features. While [Vaswani et al.| (2017)) employ fixed posi-
tional functions and [Dosovitskiy et al.|(2021) use learnable
positional encodings, our method integrates both ideas by
modulating a fixed positional function with learnable scal-
ing parameters.

2. Background

In this section we introduce the relevant background re-
quired to design the steerable transformer architecture.

2.1. The Multihead Self-Attention Mechanism

The attention mechanism, originally introduced by [Bah-
danau et al.| (2014) for sequence-to-sequence learning, re-
lies on three core components for each element in the input
sequence: query vector g;, key vector k;, and value vector
v;. The scores s;; measure the compatibility between the
query and key vectors using a scaled dot product. These
scores are passed through a softmax function to produce
attention weights «;;, which quantify the contribution of
each value vector to the output. The output is then com-
puted as a weighted sum of the value vectors:

N
ATTN(qi, {k;}, {v;}) = Z%‘Uj-

The attention weights «;; are given by

_ 4k _ exp(siy)

Sii = [0 e v ———
1) /7dK 9 1) Z;YZI exp(sij/) )

where dx denotes the dimension of the query and key vec-
tors, and N represents the number of elements in the input
sequence. [Vaswani et al.| (2017) proposed a Multihead ver-
sion of this attention mechanism which involves stacking
multiple attention mechanisms, concatenating their outputs
and applying a linear transformation to get the final result:

WO c thv X dmodel .

Concat(ATTN', ..., ATTN")Wp,

Here, dy denotes the dimension of the value vectors, and
dmodel denotes the dimension of the output. Typically, the
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query, key, and value vectors are obtained by multiplying
the input sequence with learnable weight matrices followed
by adding positional encoding.

Positional Encoding: Positional encoding in transform-
ers is used to embed information about the position of
words or tokens within a sequence into their input repre-
sentations. In vision applications, these encodings help the
model retain spatial awareness by indicating the original
locations of image patches. Vaswani et al.|(2017) used sine
and cosine functions at different frequencies to encode po-
sitions. A refinement of this approach, known as relative
positional encoding, was proposed by [Shaw et al.| (2018)).
Unlike fixed encodings, this method learns representations
that capture relative distances between elements in the in-
put. As we will discuss later, incorporating relative posi-
tional encoding is essential for preserving equivariance.

2.2. Vision Transformers

Dosovitskiy et al.|(2021) adapted the transformer architec-
ture for vision tasks. Their method involves partitioning an
image into equal sized patches, which are then processed
by a transformer. The resulting feature representations are
used for downstream tasks like image classification. As-
suming a single input channel, the operations of a vision
transformer layer can be summarized as follows:

zZo = [X1E7X2E, e ,XNE] + Epos
21 = MULTI-ATTN(LN(2p7-1)) + 2p—1
Zm = MLP(LN(zp,—1)) + 2.,

m=1,...M

Here, x; € RP represents a flattened image patch, £ €
RP*dmel jg the learnable linear weights matrix, Eys €
RN *dmoael ig the positional encoding, and m indexes the
various blocks of the transformer. LN denotes a normal-
ization layer, and MLP stands for a Multilayer Perceptron.
dmodel 1S the dimension of the features fed into the trans-
former, which remains fixed throughout the entire trans-
former layer. Typically, the MLP layer comprises two hid-
den layers separated by a non-linearity (Vaswani et al.,
2017 Dosovitskiy et al., |2021)).

2.3. Equivariance

Equivariance describes a property in which a map between
vector spaces commutes with the action of a group G (see
Appendix [A.2] for definition of group action). Specifically,
for each element g € G, suppose we have linear operators
Ty:V — Vand T, : W — W that represent the action of
g on vector spaces V and W, respectively. Amap A : V —
W is said to be equivariant if, forall v € V and g € G,

m=1,... M.

Intuitively, this means that applying the group action be-
fore or after the map A leads to the same outcome, guar-
anteeing that the resulting features respect the symmetry
structure imposed by the group. Equivariance naturally
arises as a desirable property in many real world applica-
tions that involve underlying symmetries, such as permu-
tations in graph structured data or rigid body transforma-
tions in images. There is extensive research on equivari-
ant neural networks, particularly in the setting where the
map A is linear (Worrall et al.l 2017} |[Cohen et al. 2018}
Weiler et al.,2018a; |Cohen & Welling, 2017520165 Weiler
& Cesa, 2019; [Kondor et al., [2018; |/Anderson et al., [2019;
Thomas et al., 2018)).

2.4. Steerable Convolutions

Steerable neural networks are designed to exhibit equivari-
ance to the action of the Special Euclidean group SE(d)
in d dimensions (see Appendix for definition). Steer-
able convolutions represent the most general class of lin-
ear maps that are equivariant with respect to the action
of SE(d) (Kondor & Trivedi, [2018). Although practical
neural networks work with finite resolution rasterized im-
ages, we adopt a continuous formulation for the network’s
inputs and filters to simplify the mathematical exposition
and provide a clear overview of steerable convolutions.
In this setting, a d dimensional image with a single input
channel is represented as a compactly supported function
fio . RY — R, and analogously, a filter is also repre-
sented as a compactly supported function w : R? — R.
The output of a steerable convolution layer is a function
fo": SE(d) — R that can be expressed as

) = [ Ry e dy. 0

F(x, R) = / / f"(x + Ry, RR')
SO(d) Jre
w(y, R )dydu(R'). (2

Here, x € R%, R € SO(d) and u denotes the Haar measure
on SO(d) (see Appendix for definition). The presence
of two distinct formulas is due to the fact that the input to
the first layer is a vector field on R¢, whereas the input to
subsequent layers is a vector field on SE(d). Equation (TJ
represents the formula for the first layer, while (2)) repre-
sents subsequent layers. These layers are equivariant under
the action of the group SE(d). Specifically, if the input
function " is transformed by an element (t, R) € SE(d)
according to

(6, R)~! - f1)(x) = f"(Bx + ), (3)
then the corresponding output " transforms as

[(t,R)~'- f(x,R) = f(Rx+t,RR). (4)
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For compact groups like SO(d), where discretization is not
straightforward, it is advantageous to compute the rotation
component of the output feature map of (I)-(2) in Fourier
space (Worrall et al., 2017). The Fourier transform of a
function f on a compact group can be computed by inte-
grating it against it’s irreducible representations or irreps
(see Appendix [A.3]for definition):

Flp) = / F(R) p(R) du(R). )
SO(d)

Leveraging the Convolution Theorem, equations (I)-(2)) in
Fourier space becomes a matrix product of the Fourier
transforms of the input and the filter. By the translation
property of the Fourier transform, the vector fields satisfy
the property that when the input transforms under the action
of SE(d) as in (3)), the corresponding output transforms as

[(t,R) ™" - f)(x, p) = p(R)T Fu(Rx +,p).  (6)

In the two dimensions, the irreps of SO(2) are just complex
exponential indexed by integers, pr(6) = e*? for k € Z.
Therefore, the k™ frequency component of the output fea-
ture map is a function

foui(. k) : R? — C. (7

In three dimensions, the irreps of SO(3) are indexed by
non-negative integers £ € Zxg, and are given by py(R) =
D*(R), the so called Wigner D-matrices (Wigner, 1932),
which are unitary matrices of size 2/4-1. Since the columns
of the output can be interpreted as separate channels, the /"
Fourier component of the output feature map for a single
channel can be represented as a function

Foui(. f) 1 R? — C24H1, (8)

Non-linearities: In steerable neural networks, applying
non-linearities like ReLU in Fourier space can disrupt
equivariance. One approach to mitigate this issue is to tran-
sition back to time domain, apply the desired non-linearity
there, and then return to Fourier domain (Cohen et al.,
2018). However, this back and forth transformation can
be computationally expensive and error prone, especially
on groups like SO(3), where the uniform grid gives rise to
singularities.

As an alternative, Fourier space non-linearities are pre-
ferred in steerable neural networks. These non-linearities
act directly on Fourier space while preserving equivari-
ance. Several such non-linearities can be found in the liter-
ature. |Worrall et al.|(2017)) apply non-linearity to the norm
of the Fourier vector, as the norm remains invariant under
rotations. |Kondor et al.| (2018); |Anderson et al.| (2019)
use the Clebsch—Gordan non-linearity, which involves a

tensor product of Fourier vectors followed by a Clebsch—
Gordan decomposition. [Weiler et al.| (2018a) introduce an-
other steerable convolution filter to serve as a non-linearity.
These methods enable effective non-linear transformations
in Fourier space, while preserving equivariance.

3. Method

The methodology behind steerable transformers builds on
the foundation of vision transformers (Dosovitskiy et al.,
2021)), which operate on “patchified” images, i.e., linear
projections of fixed sized patches extracted from the input
image. Conceptually, this patchification process is anal-
ogous to applying strided convolutions, where the stride
is equal to the kernel size. |Dosovitskiy et al.| (2021) also
propose a hybrid architecture that extends this idea by em-
ploying a deeper convolutional encoder to extract more ex-
pressive features, which are then used as input to the trans-
former layers. In steerable transformers, we build on this
idea by using feature maps extracted from steerable convo-
lution encoder as input to the transformer architecture.

In the discussion of steerable convolutions in Section [2.4]
the input, filter and consequently, the output were modeled
as compactly supported functions defined over continuous
domains. We adopt this continuous perspective in the dis-
cussion that follows, while acknowledging that, in practical
implementations, the output of a steerable convolutional
encoder for a given irrep is represented as a collection of
complex-valued vectors arranged on a discrete grid. Ac-
cordingly, any integrals in the theoretical formulation can
be approximated by summations over this grid. While the
number of channels associated with each irrep may vary
in practice, for brevity, we consider the simplified case in
which all irreps share the same number of channels. The
generalization to a variable channel setting is straightfor-
ward.

Assume that the input has dyoge1 channels for each irrep.
Then, the input to the transformer corresponding to an irrep
p can be represented as a function

f7(x, p) € Tl i, ©)

which has compact support Q(f™) for all p, and satisfies

the equivariance constraint @) Here, x € R%, and d, de-
notes the dimension of p . In two dimensions, all irreps are
one dimensional , whereas in three dimensions, the /™
representation has dimension 2¢ + 1 ().

3.1. Steerable Self-Attention Mechanism

The query, key, and value vectors are computed by apply-
ing learnable weight matrices to the input £ in (@), fol-
lowed by the addition of positional encodings. Romero &
Cordonnier| (2021)) showed that incorporating relative po-
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Figure 1: The schematic illustrates the steerable self-attention mechanism for a single head (h = 1) and one query
dimension (dx = 1) (left) and a steerable transformer encoder layer (right); c.f. Figure 1 by|Dosovitskiy et al. (2021).

sitional encodings (Shaw et al.l [2018)) into self-attention
enforces translation equivariance. Our design of steerable
positional encodings is inspired by this relative positional
encoding. We employ a hybrid strategy that blends learn-
able weights and fixed functions to encode positional infor-
mation.

In the context of steerable neural networks, it is essential
that positional encodings also encode rotational structure,
which is naturally expressed in Fourier space. Accordingly,
for each irrep p, we define the steerable positional encoding
as a continuous function

P R% x RY — C.

We elaborate on the exact forms of these encodings in the
next section. For now, we focus on the design of the steer-
able self-attention mechanism. Within this framework, the
query, key, and value vectors corresponding to an input map
fi are given by

q”(x) = f"(x, )W (10)
k) (x,y) = fO(x, )W + PO (xy) (1)
vO(x,y) = f(x, )W + PO (x)y),  (12)
where Wg’ ),W%) € Cdmouaxdc gnd W%f) € Cmosaxdv

Next, the score function is calculated by taking the scaled
dot product between the query and key vectors:

vec(q(”) vec(k() (x

Here, the vec operation flattens the matrix into a vector.
The attention scores are then obtained by applying the soft-
max function to the raw scores. In continous formulation

p

this can be expressed as

i, y) — (56 )

= . 14
Jaggm exp(|s(x,2)]) dz (14

Since we are dealing with complex numbers, we use the
absolute value of the scores, and the dot product involves
the conjugate transpose, denoted by -f, instead of a reg-
ular transpose. Finally, the output for each position and
Fourier component is computed as a linear combination of
the value vectors and attention scores:

f°“‘(x,p)=/ Caxy)vP(x,y)dy. (15
Q(f)

It is easy to verify that if the steerable positional encodings
are set to zero, then by the unitary nature of the irreps, the
output of the self-attention mechanism satisfies the equiv-
ariance constraint @ However, to encode the spatial in-
formation of the input patches, we want to use non-trivial
functions as steerable positional encodings. The following
theorem establishes the necessary and sufficient condition
that P(?) must satisfy for the self-attention mechanism to
preserve equivariance.

Theorem 1. For any f that transforms under the action
of SE(d) according to the equivariance constraint (6)), the
output of the self-attention mechanism also satisfies (6) for
any collection of weight matrices if and only if, for every
(t, R) € SE(d), the positional encodings PP) satisfy

P (Rx +t, Ry +t) = p(R) PP (x,y),  (16)
forall x,y € R and for all irreps p.

In the following section, we elaborate on the construction
of P(*) that satisfies the constraint (T6).
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Figure 2: Visual representation of steerable positional encoding. Arrows denote directional components, while the color

gradient indicates magnitude, decaying proportionally to r~

In practice, the integrals appearing in equations (14) and
(T3) are approximated by discrete summations over a finite
set of grid points. Specifically, the attention weights and
output are computed as

OZ(Xi,Xj) =

exp(]s(xi; X;)|)

Sy exp(|s(xi, %;)])

N

Out

(i, p) Za (X5, %)V ) (X4i,X5),
Jj=1

respectively, where {x;}~ ; denotes a set of discrete spa-
tial locations on a grid. For multihead self-attention, this
mechanism is repeated independently for h heads. Finally,
the outputs are concatenated, and each Fourier component

is scaled by another matrix W) & Chdv *dmat Consis-

tent with [Vaswani et al| (2017), we choose dyy = dg =
dmodel/h'

3.2. Steerable Positional Encoding

Theorem [I] establishes necessary and sufficient conditions
that P(?) must satisfy to ensure that the self-attention
mechanism preserves equivariance. In particular, for any
translation vector t € R, the positional encoding must
satisfy the condition

PP (x+t,y +t) = PP (x,y).

This implies that P(?) depends only on the relative posi-
tion, and can thus be expressed as a function of a single
argument P(®)(x — y). As a result, the encoding is in-
variant under translations. Furthermore, for any rotation
R € SO(d), it has the property that

P)(Rx) = p(R) P (x). (17)

A natural and expressive choice for such a function is the
Spherical Harmonic basis functions (Frye & Efthimioul
2012)). In two dimensions, this is takes the form

T COS 9]

rsin @

PP (x) = ¢(r, k)™, x = [ (18)

for k € Z. Here, ¢(r, k) modulates the encoding strength
for nearby and distant points. Similarly, in three dimen-
sions, we have

7 sin 6 cos ¢
rsinfsing | ,
rcosf

POx) = ¢(r, )Y (0,9), x=

19)
for ¢ € Z>o. Here Y¥) denotes the spherical harmonics
of the unit sphere S? in three dimensions 1893).
The steerability property of positional encoding im-
plies P(?)(0) = 0 for any p except for the constant rep-
resentation (k = 0 and ¢ = 0 in two and three dimen-
sions, respectively), since P(?)(0) = p(R)P»)(0) for all
R € SO(d). This condition can be enforced by setting ¢ to
zero when r = 0. For our experiments, we used

(b(ra P) = U}pT’_z]lT>07

where w, is a learnable scalar. This kind of inverse square
modulation of the radial component results in positional en-
coding assigning higher weight to neighboring points, and
the weights decrease as points move further apart (see Fig-
ure |Z|) In our implementation, we have different learnable
scalars, not only for different Fourier components, but also
for different heads and query dimensions.

3.3. Multilayer Perceptron

In a transformer architecture, the self-attention layer is fol-
lowed by an MLP, which consists of two linear layers sep-

arated by a non-linearity (Vaswani et al}[2017). The linear
layers themselves do not affect equivariance as they just

mix together the channels for each irrep:

7% p) = o (£ (x, )W) WA,

Here, Wl(p ) , WQ(p ) € CmoderXdniqaen - and dpiggen TEpresents
the hidden dimension between the two linear layers. When
selecting the non-linearity o, it is important to proceed with
caution, as commonly used functions like ReLL.U or sigmoid
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Figure 3: The figure demonstrates the equivariance of attention scores in a trained model. For a fixed pixel x;, we have
plotted the maximum attention score for that pixel (max; a(x;,X;)). The different subfigures represent individual heads.
The first and last heads appear to capture the object’s boundary, while the other two heads focus on the object’s body.

may break equivariance, as discussed in Section [2:4] For
our experiments, we use a Fourier space non-linearity pro-
posed by Worrall et al.| (2017), where they apply ReLU to
the magnitude of the equivariant vectors:

ReLU(||f(x, p)ll2 +b)
1F(x, )2

Here, b is a learnable bias. Since the norm of the fea-
tures in Fourier space is invariant to rotations, this non-
linearity preserves equivariance. Following the convention
in Vaswani et al.| (2017), we set dnigden = 2dmodel-

o(f(x,p)) =

f(x,p).

3.4. Layer Normalization

Another crucial component of the transformer architecture
is layer normalization. Notably, the norm of equivariant
vectors remains invariant under the Fourier transform, as it
preserves the £, norm. Leveraging this property, we can
derive a steerable normalization as

f(x,p) .
>, x )13

Indeed, the sum over p theoretically extends over all irreps
of the group, but in practical implementations, it is trun-
cated at particular values, which serves as a hyperparameter
that can be tuned. This type of normalization was employed
in the two dimensional case by |Worrall et al.|(2017).

LN(f)(x,p) =

3.5. Complexity

The computational complexity of a transformer block
mainly stems from its self-attention mechanism and MLP.
For a sequence of length N and model dimension C, the
self-attention mechanism has a complexity of O(NC? +
N2(C), and the MLP adds O(NC?), totaling O(NC? +
N2C). When N =< C, this becomes O(NC?). In steerable
self-attention mechanisms, each component effectively has

d,C channels, leading to a complexity of O(Nd2C?).
Analogously, vanilla convolutions in d dimensions, pro-
cessing IV pixels with C' input and output channels with a
kernel size k¢ has a complexity of O(NC?k?). In steerable
convolutions, replacing C with d,C' yields O(N diczkd).

In summary, with a fixed kernel size, the computational
complexity of steerable self-attention matches that of steer-
able convolution. Additionally, the increase in complexity
from standard to steerable methods is similar for both self-
attention mechanisms and convolutions when using many
channels and small kernels, as is common in practice. This
parallel implies that the additional complexity introduced
by steerable methods scales proportionally across both self-
attention mechanisms and convolution operations.

4. Experiments

We evaluate the performance of our steerable transformer
architecture in both two and three dimensions. Specifically,
we focus on two vision tasks: image classification and se-
mantic segmentation. In all experiments, we employed a
hybrid architecture that integrates steerable convolutions
with steerable transformer, and the trained using the Adam
Optimizer (Kingma & Bal 2014)).

The steerable convolution encoder is composed of multi-
ple steerable convolution blocks. A steerable convolution
block consists of two steerable convolution layers, sepa-
rated by non-linearity, and is followed by layer normaliza-
tion. Each steerable convolution block is followed by an
average pooling layer. In the baseline models for the clas-
sification tasks, this encoder is followed by a final convolu-
tion layer with a kernel size matching the input size, effec-
tively serving as a steerable analogue to a flattening layer.
In the steerable transformer model, a steerable transformer
with two blocks is inserted before this flattening layer. A
norm operation is then applied to enforce invariance to both
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Frequency | Accuracy/  Parameter | Avg Runtime Per Batch
Datasets Model Cutoff Dice Score (~ x10%) | Train(s) Inference (s)
Rotated Convolution k=8 98.9710.01 2.54 0.31 0.15
Transformer k=28 99.0340.04 2.24 0.30 0.14
90.13
ModelNetl0 | coeemble |y —3 e 108 1.22 0.46
(= Rotation) —y 90, 40ﬂ’-25
(SO(3) Rotation) teerable _ -2U+0.25
(3) Transtormer | £=3 | g6 80 .0 o8 0.92 1.20 0.45
Steerable k =4 89.31:‘:0‘17 035 027 009
PHD Convolution k=28 89.63+0.30 0.96 0.67 0.19
Steerable k =4 90.61:‘:().9() 044 028 0].0
Transformer k=28 90.72.¢.70 1.22 0.72 0.20
Steerabl 73.2940.76
eerable B
BraTS Convolution =2 51.07+41.03 0.12 5.04 1.00
(Enhancing Tumor) 74.4310.77
(Tumor Core) Steerabl 75.014039
(Whole Tumor) eerable _
Transformer =2 54.89.1¢.76 0.16 5.37 1.01
76-37:|:0.46

Table 1: Comparison of steerable transformers and steerable convolutions. The mean and sd are reported for 5 runs. For
ModelNet10 we have reported both the z rotation and SO(3) rotation variations. For PH2 dataset we have reported the
dice score for segmentation of the binary mask. For the BraTS dataset we have reported the dice score individually for

each tumor category.

rotation and translation. The output is passed through two
fully connected layers, with a ReLU activation in between
and a dropout layer with a probability of 0.7 (Marcos et al.}
2017). We evaluate performance on two datasets: Rotated
MNIST (2D) and ModelNet10 (3D).

For the segmentation tasks, we used a U-net architec-
ture (Ronneberger et al.l 2015), with steerable convolution
blocks and average pooling to downsample the input im-
age, and a combination of steerable convolution blocks and
interpolation to upsample the features back to the input res-
olution. The model includes skip connections, where fea-
tures from the downsampling path are added to the corre-
sponding resolution features in the upsampling path. In the
baseline model, an MLP is placed between the downsam-
pling and upsampling paths, while in the steerable trans-
former model, this is replaced by a steerable transformer
with two blocks. We report results on two datasets: PH2
(2D) and BraTS (3D).

Table [I| compares the baseline steerable convolutional
architecture with the proposed steerable transformer ar-
chitecture. For classification tasks, we report accuracy,
while for segmentation tasks, we present the dice score
for each class (excluding the background). The results
in Table [I] demonstrate consistent performance improve-
ments with the addition of the steerable transformer en-
coder layer across various datasets. For comparisons with

other methods, refer to Tables 2] and [3]in Appendix [C| Be-
low, we briefly describe the datasets used in our experi-
ments. Further details regarding the architecture and hy-
perparameters are provided in Appendix [Cl The code for
all experiments is available at https://github.com/
SoumyabrataKundu/Steerable-Transformerl

Rotated MNIST: Rotated MNIST, a variant of the orig-
inal MNIST dataset (LeCun et al,, [2010), includes gray-
scale images of handwritten digits with resolution 28 x 28
that have been randomly rotated. The dataset contains
12,000 training images and 50,000 testing images.

ModelNet10: The ModelNetl0 dataset (Wu et all
2015) consists of 3D CAD models from 10 common
object categories, with a train/test split of 3991:908.
Each category includes triangular meshes represent-
ing objects at various orientations and scales.  For
our experiments, we used the point cloud version
of the dataset available at https://github.com/
antao97/PointCloudDatasets, where the authors
employed the farthest point sampling algorithm to sam-
ple 2048 points from the surface of each object. These
point clouds were then embedded into grids to create vox-
elized representations. Additionally, rotated versions of the
dataset was generated by applying random rotations using
nearest-neighbor interpolation (see Figure [5).
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Ground Truth

Predicted

Probability

Figure 4: Illustration of ground truth and predicted segmentation, along with the predicted probability for the true class for
two examples from each dataset. The red in the PH2 example represent the binary mask. The red, blue and green in the
BraTS dataset represent enhancing tumor, tumor core and whole tumor respectively.

PH2: The PH2 dataset (Mendonga et al., 2013)) is a col-
lection of 200 dermoscopic images used for research in
classification and segmentation of skin lesions. We ran-
domly split the dataset into 100:50:50 for training, testing,
and validation, respectively. Each image has a resolution
of 578770 with RGB channels, and is accompanied by
binary masks of the same resolution that delineate lesion
regions.

BraTS: The Brain Tumor Segmentation (BraTS) dataset
(Menze et al., 2015) is used for developing and evaluat-
ing algorithms for brain tumor segmentation in MRI scans.
It includes pre-operative MRI scans across four modali-
ties, with each image having a resolution of 240x240x 155
and annotated to delineate three tumor regions. We used a
train/validation/test split of 243:96:145.

5. Limitations

While transformer architectures offer powerful modeling
capabilities, they also present significant computational
challenges. The dot product structure in the attention mech-
anism can lead to substantial memory consumption, espe-
cially when applied to high-resolution images. This lim-
its both the size of the network and the batch size dur-
ing training, thereby constraining the ability to fully lever-
age the potential of attention based models. To address
this, scaling up the architecture is crucial for unlocking
the full benefits of attention in improving model perfor-

mance. In our current experiments, we employed rela-
tively modest Fourier cutoffs, which served as a computa-
tional compromise. However, we hypothesize that increas-
ing these cutoff values could lead to better results. Realiz-
ing this improvement within a steerable transformer frame-
work would, however, require the model to be scaled up
significantly to handle the increased complexity and dimen-
sionality of the representation.

6. Conclusion

The transformer architecture has rapidly gained traction
across a wide range of machine learning domains, owing
to its remarkable capacity to model long range dependen-
cies and contextual relationships within the data. In this
work, we present steerable transformers, a novel architec-
tural component designed to work in tandem with steer-
able convolutions. While convolutions are highly effective
at encoding local geometric structures, they are inherently
limited in their ability to capture interactions across dis-
tant spatial regions. By integrating the transformer’s self-
attention mechanism, we create a hybrid architecture that
combines the strengths of both local and global represen-
tations. Our experimental results demonstrate that this in-
tegration leads to measurable performance improvements.
Furthermore, the steerable transformer framework holds
significant promise for high stakes applications like med-
ical imaging, where equivariance to rotations and transla-
tions is essential for robust and interpretable analysis.
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Impact Statement

This paper contributes to the ongoing advancement of ma-
chine learning, with a particular focus on computer vision
and the development of equivariant neural network archi-
tectures. By introducing novel techniques that respect the
symmetries inherent in visual data, our work pushes the
boundaries of how neural networks can effectively and ef-
ficiently process complex spatial information. Beyond the
technical contributions, this research carries the potential
for meaningful societal impact. In particular, the proposed
architecture can be applied to biomedical imaging, a field
where accurate interpretation of spatial patterns is critical.
Enhanced models for tasks such as tumor detection, dis-
ease classification, and anatomical structure segmentation
could significantly improve the capabilities of Al-assisted
diagnosis and precision medicine. By enabling more reli-
able and interpretable machine learning systems in health-
care, our work supports the broader goal of making medical
technologies more effective, accessible, and equitable.
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A. Prerequisites

A.1. Groups

TR

Definition: A group G is a non-empty set together with a binary operation (commonly denoted by ““-”, that combines any
two elements a and b of G to form an element of G, denoted a - b, such that the following three requirements, known as
group axioms, are satisfied:

* Associativity : For all a,b,c € G,onehas (a-b)-c=a- (b-¢)

e Identity Element : There exists as element e € G such that for every a € G, one has e-a = a-e = a. Such an element
is unique. It is called the identity element of the group.

e Inverse : For each a € G, there exists an element b € GG such that a - b = b - a = e, where e is the identity element.

For each a, the element b is unique and it is called the inverse of a and is commonly denoted by a~*.

Examples include set of integers Z with the addition operation and the set of non-zero reals R \ {0} with the multiplication
operation. From here on we will drop ““-”, for simplicity. The group operation will be clear from the elements of the group
concerned.

Group Homomorphism: Given two groups G and H, a function ¢ : G — H is called a group homomorphism if
@d(ab) = ¢(a)p(b) for any a,b € G. If the map ¢ is a bijection, it is called an isomorphism. Furthermore, if G = H, then
an isomorphism is called automorphism. The set of all automorphisms of a group G with the operation of composition
form a group in itself and is denoted by Aut(G).

Compact Groups: A topological group is a topological space that is also a group such that the group operation and the
inverse map are continuous. A compact group is a topological group whose topology realizes it as a compact topological
space (see (Munkres| |1974) for definition of compact topological spaces). Some classic examples of compact groups are
the groups SO(d) (the group of all real orthogonal matrices in d dimensions with determinant 1), U(d) (the group of all
complex unitary matrices) and SU(d) (the group of all complex unitary matrices with determinant 1).

Special Orthonormal Group SO(d): This group comprises all real orthogonal matrices in d dimensions with a determinant
of 1. These groups are associated with rotation matrices in d dimensions. in two dimensions, the group SO(2) can be
parametrized by a single angle 6 corresponding to the rotation matrix

| cos(f)  sin(0)
RO) = |_ sin(f) cos(h).

Here, R(#) signifies rotation in the x-y plane by an angle § € [0,27). In three dimensions, the group SO(3) can be
parameterized using the so called Euler angles. Consider the rotation matrices R («) and R, (), defined by

cos(a) —sin(a) 0 cos(8) 0 sin(B)
R.(a) = |sin(a) cos(a) 0], Ry(B)= 0 1 0 ,
0 0 1 —sin(8) 0 cos(B)

which represent rotations by angles v and 3 about the z-axis and y-axis, respectively. Using the z-y-z convention, any
rotation matrix R € SO(3) can be expressed as R = R.(a)Ry(8)R.(v), where o,y € [0,27) and § € [0, 7) are the
Euler angles.

Semi-direct Product Groups: Given two groups N and H and a group homomorphism ¢ : H — Aut(N), we can
construct a new group [N x4 H defined as follows:

» The underlying set is the Cartesian product N x H.
* The group operation is given by (n1, h1)(na, he) = (n1dp, (n2), hihs).

13
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Special Euclidean Group SE(d): The Special Euclidean group SE(d) consists of all combinations of rotations and transla-
tions in d dimensions. Translations in R? form a group isomorphic to R itself, while rotations are represented by the group
SO(d). We define a group homomorphism ¢ : SO(d) — Aut(R?) by setting ¢z (t) = Rt, which describes how a rotation
acts on a translation vector. Using this, the group SE(d) can be constructed as the semidirect product R? x, SO(d). The
group operation for two elements (t1, R;) and (t2, R2) in SE(d) is given by

(t1, R1)(t2, R2) = (t1 + Rita, R1R2).

The identity element of SE(d) is (0, I), and the inverse of an element (t, R) is given by (t, R) ™! = (-R~'t,R™1).

A.2. Group Actions
Definition: If G is a group with identity element e, and X is a set, then a (left) group action of G on X is a function
a: G x X — X, that satisfies the following two axioms for all g,h € Gand z € X:

o Identity: a(e, ) = z,

o Compatibility: a(g, a(h,z)) = a(gh, x).
Often a(g, x) is shortened to g - x. Any group G acts on itself by the group operation. If G acts on X, then it also naturally
acts on any function f defined on X, as (g - f)(z) = f(g~* - x).

Action of SE(d) on R%: The special Euclidean group acts on a vector in R? by first applying the rotation component
followed by translation. For x € R? and (t, R) € SE(d),

(t,R) - x=Rx+t

gives us the action of SE(d) on R<.

A.3. Group Representations

Definition: A representation of a group G is a group homomorphism from G to GL(C™) (group of invertible linear maps
on C™). Here n is called the dimension of the representation, which can possibly be infinite. A representation is unitary if
p maps to unitary linear transformation of C”.

Irreducible Representations: If we have two representations, p; and po of dimensions n; and no respectively, then the
two can be combined by a direct sum to give another representation of dimension n1 + ns,

p1(9) @ p2(9) = [m(()g) pz(zg)} '

A representation is said to be completely reducible if it can be expressed as a direct sum of other representations after
maybe a change of basis, i.e,

Up(g)U ™" = @pi(g)

where U is a unitary change of basis matrix and the direct sum extends over some number of representations. However,
for every group there are a some representations which cannot be broken further into a direct sum of other representations.
These are called the irreducible representations or irreps of the group. These irreps are the building blocks of the all other
representations of the group, in the sense that any representation can be written as a direct sum of the irreps:

EB P! (g)

where again U is a change of basis matrix and p(*) are the irreps. The Peter—-Weyl Theorem by (Peter & Weyl, |1927) tells
us that for a compact group G, any unitary representation p is completely reducible and splits into direct sum of irreducible
finite dimensional unitary representations of G.

plg) =U U,
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Irreducible Representations of SO(2) and SO(3): SO(d) being a compact group, all its irreps are finite dimensional
unitary representations. In the case of SO(2), every irrep is one-dimensional and indexed by an integer. The group SO(2)
can be parameterized by an angle 6 € [0, 27), corresponding to a rotation in the x-y plane by 6 radians. Under this
parameterization, the irreps of SO(2) take the form

P (9) = et ke Z.

The irreps of SO(3) are indexed by positive integers ¢ € Zx(, where the £’th representation is of dimension 2/ + 1 and are
given by the so called Wigner D-matrices (Wigner, [1932):

p(R)=DY(R), (eZs.

A.4. Fourier Transform

Haar Measure: There is, up to a positive multiplicative constant, a unique countably additive, nontrivial measure y on
the Borel subsets of G satisfying the following properties:

* s left-translation-invariant: p(gS) = p(S) for every g € G and all Borel sets S C G.
* s finite on every compact set: u(K) < oo for all compact K C G.
* 4 is outer regular on Borel sets S C G: p(S) = inf{u(U) : S C U, U open}.

* v is inner regular on open sets U C G: p(U) = sup{u(K) : K C U, K compact}.

Fourier Transform on Compact groups: A notable and useful property of compact groups is that the set of (iso-
morphism classes of) their irreps is countable (Robert| [1983)). This fact underpins a powerful generalization of classical
Fourier analysis to the setting of compact groups, enabling square-integrable functions to be decomposed into frequency
components indexed by group representations. Let f € L5(G), where L£2(G) denotes the space of complex-valued, square-
integrable functions on GG with respect to the (normalized) Haar measure. For each irrep p, the Fourier transform of f at p
is defined as

Flp) = /Gf(g) p(g) du(g),

~

where f(p) is a complex matrix of size d, x d,. The inverse Fourier transform allows one to reconstruct the original
function f from its Fourier coefficients via the formula

) =Y d,Tx (Flo) pl9)')

where the convergence is in the £4-sense. This formula is justified by the Peter—Weyl theorem, which states that the matrix
coefficients of all irreps form a complete orthonormal basis for £o(G). Consequently, any square integrable function on G
can be expressed as a (generalized) Fourier series in terms of these basis functions.

15



Steerable Transformers for Volumetric Data

B. Proof of Theorem [1]

Proof. Throughout the proof we will assume a single input channel (dyoger = 1). Fix (t, R) € SE(d). By equation (6),
under the action of (t, R) !, any input f transforms as

Fx) = (6, R) 7 f7)(x) = p(R)T ™ (Rx + t).

Analogously, the query, key and value vectors in equations (T0)-(12) transform as

a?(x) = [(6,R) "L fU)(x)WS) = p(R)T f™(Rx + )W) = p(R)'q” (Rx + t) (20)
k) (x,y) = [(t, R) " - [ ()W + PO (x,y) = p(R)! " (Rx + )W + P@(x,y) @)
v (x,y) = [(6,R) L M)W + PP (x,y) = p(R)! f(Rx + t)W{ + PP (x,y), (22)

respectively. The score function s is computed using a scaled dot product. Using the fact that p is unitary, the score function
transforms as

s(x,y)
_ Z dl_(1/2 vec (q(f’)(x))Tvec (k(ﬂ) (x, y))

(by equation (13))
T .
— Z d}l/z vec (p(R)Tq(p)(Rx + t)) vec (p(R)Tf"'(RX + t)W%) + P (x, y))
p

(by equation Q20)-(21))
=3 (o) a @ (Rx+ 1) (B £ (Rx + W + POk y)

(since we assumed diogel = 1)

=" di 2P (Rx+ 6) p(R)p(R)! [P (Bx + )W + dic g (Rx + £) 1 p(R)P)(x, y)
P
=" dq (Rx+ 6) U (Bx + )W + diPq ) (Rx + 6)T p(R)PY) (x, y)
P
(since p(R) is unitary)

=3 d2q P (Rx + 1) (fi“(Rx + )W + PO)(Rx +t, Ry + t))

P

+3 9P (Rx + 1)1 [p(R)PWx, y) — PO (Rx +t, Ry + t)}
P

= Z d}l/zq(”)(Rx +t)'k”(Rx +t, Ry + t) + Z d}l/Qq(”)(Rx +t)TA® (Rx + t, Ry + t)
P p

(by equation (1))
_Zd /2vec( W(Rx+t)) vec (k(ﬂ>(Rx+t Ry+t)+Zd 1240 (Rx + t)T AP (Rx + t, Ry + t)

(smce we assumed dmodel = 1)

=s(Rx+t,Ry +t)+ > d'/°q? (Rx + t)T AW (Rx + t, Ry + t), (23)
P

(by equation (13))

where A(P) (Rx 4+ t, Ry +t) := p(R)P¥)(x,y) — P(")(Rx + t, Ry + t). The attention scores are obtained by taking the
softmax of the scores (23). Therefore, the attention scores transform as

a(x,y)
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_exp(lsx,y)l)
Jogm 0 (5(x,2)]) dz

(by equation (14))
exp (‘s(Rx +t,Ry+t)+>, d}l/zq(P)(Rx +t)T AP (Rx + t, Ry + t)D

|_>

Jortte.py 1.y XD (’s(Rx +t, Rz +t) + Y, di/2q00) (Rx + t)TAW (Rx + t, Rz + t)D dz

(by equation (23))

exp (‘S(RX—Ft,RY‘i‘t) Ly, d;{lﬂq(p)(}zx+t)TA(P>(Rx+t,Ry+t)D (24)

f(t,R)—l-Q(f‘“) exp (’S(RX +t,Rz+t)+3, dl—(l/Qq(p)(Rx +t)tAC) (Rx + t, Rz + t)D .
(ifQ(fm) is the support of f™, then (t, R)_1 . Q(fi”) is the support of (t, R)_1 . fi")

Define the expression in (24) as S(Rx + t, Ry + t). Using these attention scores, the output of the attention mechanism
fou, for any input f™, transforms as

fout (X)
= / a(x,y)v?(x,y) dy
()

(by equation (13))

o B(Rx +t, Ry +t) [,;(R)T FM(Rx+ )W 4+ PO (x, y)} dy
(t,R)~1-Q(f)

(by equation (22))
—p(R)t / B(Rx +t, Ry + t) [fi“(Rx + )W + P@)(Rx +t, Ry + t)} dy
(6.R)~1-Q(f)

+/ B(Rx +t, Ry + t) [P<P>(x7y) —p(R)TP@)(RxH,RyH)} dy
(6,R)=1-Q(fin)
:p(R)T/ » B(Rx + t, Ry + t)v?) (Rx + t, Ry + t) dy

(t,R)~1-Q(f")

+p(R)T/ B(Rx + t, Ry + t)A) (Rx + t, Ry + t) dy. (25)
(t,R)=1-Q(fin)
(by equation (T2) and definition of AP))

According to the statement of the proposition, the output f°* should transform as

FoU(x, p) = p(R)TF(Rx + t, p) = p(R)T / a(Rx +t,y)v\? (Rx + t,y) dy
()

:p(R)T/ a(Rx+t, Ry +t)v? (Rx +t, Ry + t)dy.  (26)
(t,R)~1-Q(f)

The transformations in (23) and (26) are equivalent iff

/ B(Rx +t, Ry + t)v\?) (Rx + t, Ry + t) dy+/ B(Rx +t, Ry +t)A”) (Rx + t, Ry + t) dy
(t,R)~1-Q(f™) (t,R)~1-Q(fm)
:/ a(Rx + t, Ry + t)v(?) (Rx + t, Ry + t) dy (27)
(£,R)=1-Q(f)

for all inputs f™, and for all weights Wc(gp ), WI({’) ), W‘(,p ) for all irreps p. Note that, if A(®) = 0 for all irreps p, then a = 3
by equation (24)) and hence, the equality in (27) holds for all fi", Wéf ). WI({’J ), W‘(,p ), Conversely, suppose the equality (27)
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holds for any fn, W ), Wl(f ), W‘(,p ). In particular, setting Wé” ) = 0, by equations 0) and 29), we get o« = § x 1, and
therefore equation @27[) implies

/ a(Rx + t, Ry + t)v(?) (Rx + t, Ry + t) dy+/ a(Rx + t, Ry + t)A) (Rx + t, Ry + t) dy
(t,R)=1-Q(f) (t,R)=1-Q(fi)

= / a(Rx + t, Ry +t)v? (Rx + t, Ry + t) dy
(t,R)=1-Q(f)

= a(Rx+t, Ry + t)AP (Rx + t, Ry + t) dy = 0
(£, R)=1-Q(f")

= AW (Rx +t, Ry +t) dy = 0. (28)
(6, R)=1-Q(fim)
(since v x 1)

The equality in (28) holds for any compactly supported f". In particular, consider a class of functions supported on

a ball of radius 1 /n around Ry, + t, with n € N and a fixed y, € R, denoted by B, /n(Ryy + t). Then, setting
Q(.fm) = Bl/n(Ryo + t) in @, we have

/ A(p)(Rx+t,Ry+t)dy=0 foralln € N
(t,R)il‘Bl/n(RyO_"t)
— AP (Rx +t, Ry +t)dy = 0 foralln € N

B1/n(¥o)
1 AP (Rx+t,Ry +t)dy =0 foralln € N

1B1/n(¥o)l /B, .. (v)

1

= lim ——— AP (Rx+t,Ry +t)dy =0

n=00 | B1/n(Yo)| /B, .. (o)
— AP)(Rx +t, Ry, + t) = 0. 29

(using continuity ofP(p) and Lemma
Since y, € R? was arbitrarily fixed, the equality in (29) hold for all y, € R%. Hence, the equality in holds iff
P (Rx + t, Ry + t) = p(R)P(x,y).

for all x,y € R and irreps p. Since (t, R) € SE(d) was chosen arbitrarily, the result holds for all (t, R) € SE(d), which
completes the proof.

O
Lemma 1. Suppose f : R? — CP is a function continuous at xo € R%. Let B,.(xo), defined as
BT(XO) = {x S Rd : ||x0 —xH2 < T‘},
denote a ball of radius r around xq. Then,
1
hmi/ fde:fx(]
P2 1B, )] S ey T 7 )
where | B, (xo)| is the Lebesgue measure of By (xo).
Proof. By continuity of f at xg, for £ > 0, there exists 4 > 0 such that, forany 0 < r < ¢
1f(x0) = f(X)[|l2 <€ (30)

for all x € B,.(X¢). Therefore, we have

1 1
Texeent /B PRSI

B0l o, f(x) = f(xo) dx

2 2
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1
|Br<x0|/ XO)Hf ~ (o)l dx

o’
|B XO | XO)

(by equation (30))
=ec. (31)

The inequality in holds for 0 < r < ¢. Hence,

=0.

lim
r—0

f(x) dx — f(xo)

1B (x0)| JB,(xo) )

C. Experiment Details

In this section, we provide additional details on the datasets, architectural variations, and hyperparameters for all experi-
ments conducted in this work.

C.1. Rotated MNIST
Type Method Error% | Parameters
SVM (Larochelle et al.;[2007) 11.11 —
Miscellaneous TIRBM (Sohn & Lee, 2012) 4.2 —
TI-Pooling (Laptev et al.,|2016) 1.2 —
P4CNN (Cohen & Welling, [2016) 2.28 25k
L Harmonic Net (Worrall et al., 2017 1.69 33k
Sauranant | RotEqNet (Marcos et al}[2017) 1.09 -
onvolution

Weiler et al. (Weiler et al., 2018Db) 0.71 6M
E2CNN (Weiler & Cesa, 2019) 0.69 6M
a-R4 CNN (Romero et al.,[2020) 1.69 73k
o GSA-Nets (Romero & Cordonnier, 2021) 2.03 44k
E/g‘tltwar.la“t GE-ViT (Xu et al.; 2023) 1.99 44k

ention —_ a
Our (k = 4) 1.18 1.13M
Our (k = 8) 0.97 2.24M

Table 2: Comparison of the performance of the equivariant attentive architecture on the Rotated MNIST dataset.

The network architecture in this experiment consists of three convolutional blocks with progressively increasing numbers
of channels. These blocks are separated by average pooling layers, which down-sample the feature maps to improve com-
putational efficiency. The output is flattened and passed through fully connected layers that apply linear transformations,
batch normalization, ReLLU activation, and dropout to prevent overfitting. The final layer maps the output to ten classes. In
the case of the steerable transformer, a transformer block with a single layer follows the convolutional blocks.

The networks were trained using the Adam optimizer (Kingma & Bal, 2014), starting with a learning rate of 5 x 1073,
which was reduced by a factor of 0.5 every 20 epochs, along with a weight decay of 5 x 10~% for 150 epochs. A batch size
of 25 was used, and training the largest model took 4 hours on a 16GB GPU.

Table [2] compares the performance of the steerable transformers with other attention-based methods reported for this
dataset. Our approach significantly outperforms the other attention-based methods, which are standalone, while ours is
built on top of convolutions. The only methods that surpass our results, by [Weiler et al. (2018b) and |Weiler & Cesal(2019),
use a Fourier cutoff of 16, while we use a cutoff of 8. We believe this accounts for the performance difference, which is
due to implementation and resource limitations, as higher Fourier cutoffs lead to out-of-memory issues.
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Method Accuracy|Parameters
(~ x10%)
Point CLoud Voxels .. = |BECC (Simonovsky & Komodakis, |[2017)| 90.8 -
g 2 [SO-Net (Li et al., [2018) 93.9 2.5
= © Rot-SO-Net (Li et al.| 2019) 94.5 2.5
3D ShapeNets (Wu et al.,[2015) 83.5 12
VRN (Brock et al., 2016) 91.3 18
= VoxNet (Maturana & Scherer, [2015) 92.0 0.92
7 Rotation SO(3) Rotation % |FusionNet (Hegde & Zadeh, [2016) 93.1 120
= |ORION (Sedaghat et al.,[2016) 93.8 0.91
Figure 5: Examples from Cubenet (Worrall & Brostow, 2018) 94.6 4.5
the ModelNetl10 dataset are Our 91.1 0.92
shown in various formats:
point cloud, voxel representa- Table 3: Comparison of performance on ModelNet10 with z rotation pertur-
tion, and rotated perturbations bation. Other methods used both train and test time augmentation, while we
of voxels. applied augmentation only during test time, not during training.
C.2. ModelNet10

The point cloud data with 2048 points is available at https://github.com/antao97/PointCloudDatasets!
Similar to the Rotated MNIST experiment, we utilized three convolutional blocks. The features for each irrep are in a
1:1:1:1ratio. The number of features per irrep increases with each convolutional block, and the data is downsampled
using average pooling. For the steerable transformer, this convolutional encoder is supplemented with a transformer block
containing a single transformer layer. After an additional normalization step, the output is flattened and passed through
fully connected layers that reduce the dimensionality to 128 features. To ensure training stability and prevent overfitting,
batch normalization, ReLU activation, and dropout are applied, with the final output layer classifying the data into ten
classes.

The networks were trained using the Adam optimizer (Kingma & Bal [2014), with an initial learning rate of 1 x 1073,
which decreased by a factor of 0.5 every 20 epochs, for a total of 50 epochs. A batch size of 5 was used, and training the
largest model took 12 hours on a 16GB GPU.

Table [3] compares our method to other non-attention-based methods on the z-rotated version of the dataset. Unlike our
approach, which does not use augmentation during training, all other methods were trained with augmentation involving
12 uniformly stratified rotations along the z-axis. To ensure a fair comparison, we applied test-time augmentation by
averaging the accuracy of all 12 predictions for each test data point. Despite not using train-time augmentation and having
fewer parameters, our method achieves performance comparable to these other methods.

C.3. PH2

The data for the experiment is available at https://www.fc.up.pt/addi/ph2%20database.html. The net-
work begins with two convolutional blocks, each composed of steerable convolutional layers, non-linearities, and batch
normalization, which progressively downsample the input and extract relevant features. Then, a transformer encoder is
used to capture global dependencies in the data. After this, the model uses two convolutional blocks to upsample and refine
the extracted features. In between each block, the features are upsampled using bilinear interpolation. Finally, the features
are restored to the original resolutions. In the final step, the vector norm is computed, converting the complex-valued
feature maps into real values to produce the logits of each class.

The networks were trained using the Adam optimizer (Kingma & Ba,[2014), starting with an initial learning rate of 1 x 102,
which decreased by a factor of 0.5 every 20 epochs, for a total of 100 epochs. We used a batch size of 1, and training the
largest model took 2 hours on a 16GB GPU. A larger batch size could not be used due to out-of-memory errors.
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Input Ground Truth

Probability Predicted

PH2

BraTS

Figure 6: More segmented examples from the test datasets of PH2 and BraTsS.

C.4. BraTS

The data for the experiment is available at http://medicaldecathlon.com/. Only the training data is available
for this task, consisting of 484 images. We split this dataset into training, validation, and test sets for our experiments.

The network begins with two convolutional stem blocks that use steerable convolutions to extract multi-resolution features.
These blocks include non-linearities and batch normalization for stable training, as well as average pooling layers for
downsampling. The features for each irrep are in a ratio of 8:4:2, with the number of features increasing in subsequent
layers according to this ratio. The encoded features are then passed through a transformer encoder, which captures long-
range dependencies and spatial relationships using multiple layers and positional encodings. The decoder consists of
convolutional head blocks and trilinear interpolation kernel that upsample the features. The final output is generated by
taking the absolute value of these complex features, corresponding to the constant representation.

The networks were trained using the Adam optimizer (Kingma & Ba, [2014), with an initial learning rate of 1 x 102,
which was reduced by a factor of 0.5 every 20 epochs, for a total of 100 epochs. A batch size of 1 was used, and training
the largest model took 40 hours on a 16GB GPU. A larger batch size could not be used due to out-of-memory errors.
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