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Abstract
We introduce Steerable Transformers, an exten-
sion of the Vision Transformer mechanism that
maintains equivariance to the special Euclidean
group SE(d). We propose an equivariant at-
tention mechanism that operates on features ex-
tracted by steerable convolutions. Operating in
Fourier space, our network utilizes Fourier space
non-linearities. Our experiments in both two
and three dimensions show that adding steerable
transformer layers to steerable convolutional net-
works enhances performance.

1. Introduction
Transformers have emerged as the preferred architecture
for natural language processing tasks, with recent powerful
models like Chat-GPT employing this framework. Their
relatively straightforward design, coupled with remarkable
success, has led to their widespread adoption across various
domains, including image classification (Dosovitskiy et al.,
2021), object detection (Carion et al., 2020), and graph-
based problems (Dwivedi & Bresson, 2020). The self-
attention mechanism (Bahdanau et al., 2014) employed in
transformer architectures has proven to be crucial for cap-
turing relationships between different parts of input se-
quences. Dosovitskiy et al. (2021) introduced transform-
ers as an alternative to traditional convolutional architec-
tures for image classification tasks. Unlike convolutional
neural networks (CNNs), which focus on local neighbor-
hoods, transformers excel at capturing relations across dif-
ferent parts of the input.

Equivariant neural network architectures have gained sig-
nificant popularity in recent years due to their inherent
ability to comprehend the underlying symmetries of prob-
lems, making them highly effective tools for real-world
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scenarios characterized by such symmetries. For instance,
achieving equivariance to the permutation group Sn is cru-
cial in graph-based problems, where the structure of the
graph remains invariant under permutations. Similarly, in
image-related tasks, it is desirable to have equivariance to
rigid body transformations such as rotations and transla-
tions. Recent studies by Worrall et al. (2017); Marcos et al.
(2017), and many more, have demonstrated the remark-
able efficacy of these equivariant architectures in address-
ing such challenges, without relying on brute-force tech-
niques like data augmentation.

In vision tasks, steerable convolutions have proven to be
a powerful tool for achieving equivariance to the group
SE(d) (see supplementary material for definition), which
encompasses rotations and translations in d dimensions
(Worrall et al., 2017; Cohen et al., 2018; Weiler et al.,
2018a). Steerable convolution networks, as described by
Cohen & Welling (2016; 2017); Weiler et al. (2018a), pri-
marily operate in Fourier space, leveraging representations
of the underlying group to encode rotation and transla-
tion equivariant features from the data. Nevertheless, these
architectures, rooted in convolutions, retain the ability to
learn local neighborhoods. Conversely, transformer archi-
tectures excel in learning relationships between different
regions of an image. Our contribution lies in integrating
these two concepts—vision transformers and steerable con-
volutions—yielding steerable transformers capable of ef-
fectively capturing both local and global patterns in images.

1.1. Related Work

The original idea of attention was introduced by Bahdanau
et al. (2014), for sequence modeling. Vaswani et al. (2017)
introduced the transformer encoder-decoder architecture
for translation tasks in natural language processing. Doso-
vitskiy et al. (2021) proposed the transformer architecture
for vision tasks. They advocated for a hybrid architecture
where the features are extracted from traditional CNN. Ra-
machandran et al. (2019) introduced a stand alone attention
based architecture which completely replaces traditional
CNNs. Shaw et al. (2018) proposed learnable relative posi-
tional encoding instead of absolute positional encoding in
the original work of Vaswani et al. (2017), to encode the
relative positions of input sequences.
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These transformer architectures are not linear in their in-
puts and hence break the equivariance structure of tradi-
tional CNNs. Since then there has been a flurry of papers
trying to make these models equivariant. Romero & Cor-
donnier (2021) showed that vision transformers with rela-
tive positional encoding are translation equivariant. They
extended the idea of Ramachandran et al. (2019) to in-
corporate rotation and translation equivariance in the 2D
regime, by lifting the attention mechanism to be defined on
the group SE(2). For this they proposed a positional encod-
ing operator and use regular representations of the group
instead of irreducible representations. Xu et al. (2023) in-
troduced a novel positional encoding in the method pro-
posed by Romero & Cordonnier (2021) to enhance it’s per-
formance. Romero et al. (2020) incorporated attention in
convolution itself by defining attention score on the equiv-
ariance group.

In the 3D regime, there have been efforts to use atten-
tion in vision task, however to the best of our knowledge,
only on point cloud data and not volumetric data. Fuchs
et al. (2020) proposed an SE(3) equivariant architecture
for point cloud data by adding self-attention mechanism to
the rotation, translation and permutation equivariant Ten-
sor Field network (Thomas et al., 2018). Liao & Smidt
(2023) developed Equiformer, an equivariant version of
Graph Attention Network by Velicković et al. (2018) for
3D point cloud data and later Liao et al. (2024) introduced
Equiformerv2, a more efficient version, using insights from
Passaro & Zitnick (2023) to reduce SO(3) convolutions to
SO(2) convolutions. Chen & Villar (2022) achieved equiv-
ariance in attention mechanisms by mapping the data onto
SE(3) equivariant and invariant features. These maps are
based on the work of Villar et al. (2021). Hutchinson et al.
(2021) introduced an attention mechanism that is equivari-
ant to the action of Lie groups using regular representations
of the group and built a transformer architecture based on
that. Chatzipantazis et al. (2023) introduced SE(3) equiv-
ariant attention for shape reconstruction tasks.

1.2. Our Contribution

Romero & Cordonnier (2021) have explored steerable
transformers for volumetric data in the context of two di-
mensional images. Their method integrates an attention
mechanism within convolutional layers, which comes at the
cost of significantly higher memory usage. In contrast, the
architectures proposed in Xu et al. (2023); Romero & Cor-
donnier (2021) base their design on Ramachandran et al.
(2019), where they adopt a standalone approach and com-
pletely replace the convolution architecture for an attention
based mechanism. However, as highlighted by Xiao et al.
(2021), incorporating a convolutional encoder before trans-
formers typically enhances performance, offering a more
effective design.

In the context of three dimensions, Fuchs et al. (2020) and
Hutchinson et al. (2021) have explored SE(3) equivariant
transformers for point cloud data. While it is theoretically
possible to interpret volumetric data as point clouds po-
sitioned on a grid, applying point cloud-based algorithms
designed for sparse point clouds to dense volumetric grids
can introduce unsuitable inductive biases. Considering vol-
umetric data as point clouds disregards the inherent grid
structure that is crucial for our approach. Furthermore,
treating volumetric data as point clouds can cause out of
memory errors due to the increased computational load.

To address these challenges, we present a novel steerable
transformer architecture specifically designed for volumet-
ric data in d-dimensions. Our proposed steerable trans-
former integrates on top of a steerable convolutional en-
coder and, as demonstrated through our experiments, en-
hances the performance of steerable architectures. Draw-
ing inspiration primarily from Dosovitskiy et al. (2021) and
Fuchs et al. (2020), our method operates in the Fourier
domain, similar to steerable CNNs (Cohen & Welling,
2017), by using group representations to learn equivari-
ant features. The self-attention mechanism follows a sim-
ilar structure to Fuchs et al. (2020). Similar to Vaswani
et al. (2017), we integrate these transformers alongside
steerable convolutions. Both Dosovitskiy et al. (2021) and
Fuchs et al. (2020) employ learnable positional encodings,
whereas Vaswani et al. (2017) relies on predefined posi-
tional functions. Our work combines these two strategies
by scaling a fixed function with a learnable parameter. Fi-
nally, in contrast to Xu et al. (2023); Romero & Cordonnier
(2021), which implement invariant positional encodings,
our approach leverages equivariant positional encoding.

2. Background
In this section we introduce the relevant background re-
quired to design the steerable transformer architecture.

2.1. The Multihead Self-Attention Mechanism

The attention mechanism, initially introduced by Bahdanau
et al. (2014) for sequence-to-sequence tasks, involves three
main components: query vectors qi, key vectors ki, and
value vectors vi for each input in a sequence. These vec-
tors are utilized to compute attention weights, denoted αij ,
which determine the relevance of each input vector in pro-
ducing the output. The score function s(qi, kj) calculates
the compatibility between query and key vectors. The soft-
max of these scores yields the attention weights αij . Fi-
nally, we get the output by linearly combining αij with the
value vectors vi:
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ATN(qi, {ki}, {vi}) =
N∑
j=1

αijvj

where the attention weights αij are computed as,

αij =
exp(s(qi, kj))∑N
j=1 exp(s(qi, kj))

s(qi, kj) =
qTi kj√
dK

.

Vaswani et al. (2017) proposed a Multihead version of this
attention mechanism which involves stacking multiple at-
tention mechanisms, concatenating their outputs and apply-
ing a linear transformation to get the final result

MULTI-ATN(qi, {ki}, {vi}) = Concat(ATN1, . . . , ATNh)WO.

Here, WO ∈ RhdV ×dmodel , and dmodel is the dimension of the
output which is same as the dimension of the input vectors.
This dimension is fixed through the Transformer encoder
structure. Typically, the query, key, and value vectors are
obtained through learnable linear embedding followed by
adding positional encoding.

Positional Encoding: Positional encoding in transform-
ers is a technique employed to incorporate positional infor-
mation about words or tokens into the input embeddings
of a sequence. In vision tasks, these encodings inform the
network about the original locations of different portions
of the image. In the seminal work of Vaswani et al. (2017),
they utilized sine and cosine functions of varying frequen-
cies for positional encoding. Relative positional encoding,
introduced by Shaw et al. (2018), represents an extension
or variation of traditional positional encoding. It’s goal is
to use learnable position encodings that capture the relative
distances between input sequences. As we explain below,
relative positional encoding is crucial for achieving equiv-
ariance.

2.2. Vision Transformers

Dosovitskiy et al. (2021) extended the use of the trans-
former architecture to vision tasks. In their approach, they
divided the image into equal-sized portions and fed them
into the encoder part of the transformer architecture. They
utilize the features obtained from the encoder for classifi-
cation. Assuming a single input channel, the vision trans-
former layer can be summarized as follows:

z0 = [x1E, x2E, . . . , xNE] + Epos

z′ℓ = MULTI-ATTN(LN(zℓ−1)) + zℓ−1 ℓ = 1, . . . L

zℓ = MLP(LN(zℓ−1)) + z′ℓ ℓ = 1, . . . L.

Here, xi ∈ Rp represents a portion of the image which
serves as the input, E ∈ Rp×dmodel is the learnable linear

embedding matrix, Epos ∈ RN×dmodel is the positional en-
coding, and ℓ represents the various blocks of the trans-
former. LN denotes a normalization layer, and MLP stands
for a Multilayer Perceptron. dmodel is the dimension of the
embedding fed into the transformer, which remains fixed
throughout the entire encoder layer. Typically, the MLP
layer comprises two hidden layers separated by a non-
linearity (Vaswani et al., 2017; Dosovitskiy et al., 2021).

2.3. Equivariance

Equivariance refers to a property where a mapping between
vector spaces preserves the action of a group G. For each
g ∈ G, a linear map Tg : V → V is defined on a vector
space V . Given actions Tg and T ′

g on vector spaces V and
W respectively, a map ϕ : V → W is considered equivari-
ant if:

ϕ(Tg(v)) = T ′
g(ϕ(v)) v ∈ V.

Equivariance naturally emerges as a constraint in various
real-world scenarios. For instance, in graph neural net-
works, equivariance to the permutation group Sn is fun-
damental (Thiede et al., 2020; Wang et al., 2020). Simi-
larly, in vision tasks, equivariance to rotation and reflection
symmetries, i.e., the action of the Euclidean group, is de-
sirable. There is now an extensive literature on equivariant
neural networks, in particular, focusing on cases where ϕ is
linear, for instance the works of Worrall et al. (2017); Co-
hen et al. (2018); Weiler et al. (2018a); Cohen & Welling
(2017; 2016); Weiler & Cesa (2019); Kondor et al. (2018);
Anderson et al. (2019).

2.4. Steerable Convolutions

Steerable Networks are engineered to exhibit equivariance
to the special Euclidean group SE(d) in d dimensions.
Consider a d-dimensional image with a single input chan-
nel, represented by the function f in : Rd → R, which has
compact support. These networks employ steerable con-
volution layers, which can be expressed as convolutions
on the group SE(d) (Weiler et al., 2018a; Weiler & Cesa,
2019). The output of a steerable convolution layer is a func-
tion on f out : SE(d) → R and can be expressed as

f out(x, R) =

∫
Rd

f in(x +Ry)w(y) dy, (1)

f out(x, R) =

∫
SO(d)

∫
Rd

f in(x +Ry, RR′)

w(y, R′) dy dµ(R′). (2)

Here, x ∈ Rd, R ∈ SO(d) and µ denotes the Haar measure
on SO(d). Equation (1) represents the formula for the first
layer, while (2) represents subsequent layers. The presence
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of two distinct formulas is due to the fact that the input to
the first layer is a vector field on Rd, whereas the input to
subsequent layers is a vector field on SE(d). These linear
mappings possess a key property: whenever the input map
f in undergoes a transformation by an element in SE(d), the
resulting output f out also undergoes the same transforma-
tion. This property means that, if under the action of the
group f in changes to

(t, R) · f in(x) = f in(Rx + t) (3)

then f out changes to

(t, R) · f out(x, R′) = f out(Rx + t, RR′). (4)

For compact groups like SO(d), where discretization is not
straightforward, it is advantageous to compute the rotation
component of the output feature map of (2) in Fourier space
(Worrall et al., 2017). Leveraging the convolution theo-
rem, equation (2) in Fourier space becomes a product of
the Fourier transforms of the input and the weights. The
Fourier transform of a function f on a compact group can
be computed by integrating it against it’s irreducible repre-
sentations or irreps (see supplementary material for defini-
tion):

f̂(ρ) =

∫
SO(d)

f(R) ρ(R) dµ(R).

By the translation property of Fourier Transform, these
Fourier space vector fields possess the property that un-
der input transformations like (3), the output transforms to
ρ(R)f̂ out(Rx+t, ρ) (Cohen & Welling, 2017; Weiler et al.,
2018a).

In the 2D case, the irreps of SO(2) are just complex ex-
ponential indexed by integers, ρk(θ) = eιkθ. Therefore,
the k’th frequency component of the output feature map is
a function f̂ out

k : R2 → C. For the 3D case, the irreps
of SO(3) are indexed by integers ℓ ≥ 0, represented by
ρℓ(R) = Dℓ(R), known as the Wigner matrices (Wigner,
2012), which are unitary matrices of dimension 2ℓ+1. Cor-
respondingly, the ℓth Fourier component of the output fea-
ture map is a function f̂ out

ℓ : R3 → C2ℓ+1.

Non-linearities: In steerable neural networks, utilizing
non-linearities like ReLU in Fourier space can disrupt
equivariance. One approach to mitigate this issue is to tran-
sition back to real space, apply the desired non-linearity
there, and then return to Fourier space. This method,
for instance, is employed by Cohen et al. (2018). How-
ever, this back-and-forth transformation between real and
Fourier space can be computationally expensive and error-
prone, especially on groups like SO(3), where the grid is
non-uniform.

As an alternative, Fourier space non-linearities are pre-
ferred in steerable neural networks. These non-linearities

act directly on Fourier space while preserving equivariance.
Several such non-linearities can be found in the literature.
For instance, Worrall et al. (2017) apply non-linearity to the
norm of the Fourier vector, as the norm remains invariant
under rotations. Other works such as Kondor et al. (2018);
Anderson et al. (2019) utilize the Clebsch–Gordan non-
linearity, which involves a tensor product of Fourier vec-
tors followed by a Clebsch-Gordan decomposition. Weiler
et al. (2018a) introduce another steerable convolution filter
to serve as a non-linearity. These methods enable effective
non-linear transformations in Fourier space, while main-
taining equivariance.

3. Method
The methodology behind steerable transformers builds on
the foundation established by vision transformers, which
rely on linear embeddings of fixed-size image patches
along with positional encoding for these patches. A hybrid
architecture discussed in the same work integrates features
maps produced by CNNs as input to the transformer en-
coder. In the case of steerable transformers, we adopt this
hybrid approach, with feature maps generated by steerable
convolution layers serving as input to the transformer en-
coder (Dosovitskiy et al., 2021).

In Section 2.4, we discussed that the output of steerable
networks is a compactly supported function on a continu-
ous domain. However, practical neural networks operate on
finite resolution rasterized images. Consequently, in real-
world implementations, the output features for a particular
irrep are represented as a collection of complex vectors on
a grid. For simplicity, let us assume that there are N such
grid points. For dmodel channels, the input sequence to the
transformer is described by:

f in(xi, ρ) ∈ Cdρ×dmodel , i = 1, 2, . . . , N. (5)

In two dimensions, all components are one-dimensional,
while in three dimensions, the ℓth component has dimen-
sion 2ℓ+ 1.

3.1. Positional Encoding

Before we delve into the steerable version of self-attention,
let us first explore a steerable approach to positional encod-
ing. Vaswani et al. (2017) used fixed periodic functions of
varying frequencies to encode positions. In contrast, Doso-
vitskiy et al. (2021) employed learnable positional embed-
dings for vision transformers. In our approach, we adopt a
hybrid method by having both learnable and fixed compo-
nents in positional encoding.

Relative positional encoding, introduced by Shaw et al.
(2018), considers positional encoding as learned func-
tions of the relative distances between input sequences.
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Figure 1: Visual Representation of steerable positional encoding. The arrows indicate the directional component of the
relative positional encoding, which transforms consistently with the input image. The color gradient reflects the encoding’s
magnitude, which decays proportional to r−2.

Romero & Cordonnier (2021) demonstrated that self-
attention mechanisms with relative positional encoding ex-
hibit translation equivariance. Therefore, the positional
embeddings we seek are functions P ρ

ij = P (xi − xj , ρ),
inherently invariant to translations.

To introduce the notion of steerability, we aim for P ρ
ij to

transform as ρ(R)P ρ
ij whenever the grid locations xi un-

dergo a rotation R. Essentially we will be using the Fourier
basis to enforce the equivariance property (3,4). In two di-
mensions, this can be summarized as

P (x, k) = ϕ(r, k)e−ikθ, x =

[
r cos θ
r sin θ

]
, k ∈ Z. (6)

Here, ϕ(r, k) modulates the encoding strength for nearby
and distant points. In the 3D case, we have

P (x, ℓ) = ϕ(r, l)Y (ℓ)(θ, ϕ), x =

r sin θ cosϕr sin θ sinϕ
r cos θ

 , (7)

for ℓ ∈ Z≥0. Here Y (ℓ) denotes the spherical harmonics
(Byerly, 1893). The steerability property of positional en-
coding implies P ρ

ii = 0 for any ρ except for the constant
representation, i.e., k = 0 and ℓ = 0 in two and three di-
mensions, respectively (as P ρ

ii = ρ(R)P ρ
ii for any R). This

condition can be enforced by setting ϕ to zero when r = 0.
For our experiments, we employed ϕ(r, ρ) = wρr

−2
1r>0,

where wρ is a learnable scalar. This kind of inverse square
modulation of the radial component results in positional en-
coding assigning higher weight to neighboring points, and
the weights decrease as points move further apart. In our
actual implementation, we have different learnable scalars,
not only for different Fourier components, but also for dif-
ferent heads and query dimensions.

3.2. Steerable Self-Attention Mechanism

The query, key, and value embeddings are obtained by mul-
tiplying the input f in in (5) with learnable weight matrices.

Additionally, positional encoding is incorporated into the
key embeddings (Shaw et al., 2018).

qρ
i = f in(xi, ρ)W

ρ
Q Wρ

Q ∈ Cdmodel×dK

kρ
ij = f in(xi, ρ)W

ρ
K + P (xi − xj , ρ) Wρ

K ∈ Cdmodel×dK

vρ
ij = f in(xi, ρ)W

ρ
V + P (xi − xj , ρ) Wρ

V ∈ Cdmodel×dV

Next, the score function for each Fourier component is cal-
culated by taking the dot product between the query and
key embeddings. The attention scores are obtained by ap-
plying the softmax function to the raw scores. Since we are
dealing with complex numbers, we use the absolute value
of these scores:

sij =
∑
ρ

vec(qρ
j )

† vec(kρ
ij)√

dK
αij =

exp(|sij |)∑N
j′=1 exp(|sij′ |)

Here, the vec operation flattens the matrix into a vector.
Since the vectors are complex-valued, the dot product in-
volves the conjugate transpose, denoted by ·†, instead of a
regular transpose. Finally, the output for each position and
Fourier component is computed as a weighted sum of the
value vectors using the attention scores, and then combined
again using scalar weights:

f out(xi, ρ) =

N∑
j=1

αijv
ρ
ij .

This self-attention mechanism maintains equivariance, as
demonstrated by the following proposition.
Proposition 1. If the input to a steerable transformer self-
attention layer transforms as f in(xi, ρ) 7→ ρ(R) f in(Rxi+
t, ρ), then the output also transforms as f out(xi, ρ) 7→
ρ(R) f out(Rxi + t, ρ).

Despite the softmax operation’s lack of equivariance, in
this scenario, the dot product structure of the score function
maintains rotational invariance, thereby preserving equiv-
ariance. For multihead attention, this mechanism is re-
peated independently for h heads. Finally, the outputs are
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Figure 2: The schematic illustrates the steerable attention mechanism (left) and a steerable transformer encoder layer
(right); c.f. Figure 1 by Dosovitskiy et al. (2021). The steerable attention mechanism is shown for a single head (h = 1)
and one query dimension (dK = 1). The stacks of feature maps represent different Fourier components, and the H-
Nonlinearity denotes the harmonic non-linearity described by Worrall et al. (2017).

concatenated, and each Fourier component is scaled by an-
other matrix Wρ

O ∈ ChdV ×dmodel . Consistent with Vaswani
et al. (2017), we choose dV = dK = dmodel/h.

3.3. Position-wise Feed Forward Layer

In a transformer architecture, the self-attention layer is typ-
ically followed by a Multilayer Perceptron (MLP) layer.
This MLP layer commonly consists of two linear layers
separated by a non-linearity (Vaswani et al., 2017). The
linear layers themselves do not affect equivariance as they
are applied to the input from the right:

f out(xi, ρ) = σ
(
f in(xi, ρ)W1

)
W2,

where W1,W
T
2 ∈ Cdmodel×dhidden . Here, dhidden represents the

hidden dimension between the two linear layers. However,
when it comes to the non-linearity, caution is needed. As
discussed in Section 2.4, typical non-linearities like ReLU
or softmax may break equivariance. Instead, we require a
Fourier space non-linearity. For our experiments, we utilize
a non-linearity proposed by Worrall et al. (2017), where
they apply ReLU to the magnitude of the equivariant vec-
tors:

σ(f(x, ρ)) =
ReLU(||f(x, ρ)||+ b)

||f(x, ρ)||
f(x, ρ).

Here, b is a learnable weight. Since the norm of the fea-
tures in Fourier space is invariant to rotations, this non-
linearity preserves equivariance. Following the convention
in Vaswani et al. (2017), we set dhidden = 2dmodel.

3.4. Layer Normalization

Another crucial component of the transformer architecture
is layer normalization. Notably, the norm of equivariant
vectors remains invariant under the Fourier transform, as it
preserves the L2 norm. Leveraging this property, we can
derive a steerable normalization as follows:

LN(f)(x, ρ) =
f(x, ρ)√∑
ρ ||f(x, ρ)||2

.

Indeed, the sum over ρ theoretically extends over all irreps
of the group, but in practical implementations, it is trun-
cated at particular values, which serves as a hyperparameter
that can be tuned. This type of normalization was employed
in the 2D case by Worrall et al. (2017).

3.5. Complexity

The computational complexity of a transformer block
mainly stems from its Self-Attention (SA) mechanism and
Feed-Forward Networks (FFN). For sequence length N
and model dimension C, SA has a complexity of O(NC2+
N2C), and the FFN adds O(NC2), totaling O(NC2 +
N2C). When N ≍ C, this becomes O(NC2). In steerable
attention mechanisms, each component effectively has dρC
channels, leading to a complexity of O(Nd2ρC

2). Anal-
ogously, vanilla convolutions in d dimensions, processing
N pixels with C input and output channels with a kernel
size kd has a complexity of O(NC2kd). In steerable con-
volutions, replacing C with dρC yields O(Nd2ρC

2kd).

In summary, with a fixed kernel size, the computational
complexity of steerable attention matches that of convolu-
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Figure 3: The figure demonstrates the equivariance of attention scores in a trained steerable transformer. For a fixed pixel
i, we have plotted the maximum attention score for that pixel (maxj αij). The different subfigures represent individual
heads. The first and last heads appear to capture the object’s boundary, while the other two heads focus on the object’s
body.

Figure 4: The figure shows the predicted and a ground truth segmentation, along with the predicted probability for the true
class for one example in each dataset. The red in the PH2 example represent the binary mask. The red, blue and green in
the BraTS dataset represent enhancing Tumor, tumor core and whole tumor respectively.

tion. Additionally, the increase in complexity from stan-
dard to steerable methods is similar for both attention
mechanisms and convolutions when using many channels
and small kernels, as is common in practice. This means
the added complexity from steerable methods scales pro-
portionally in both cases. This parallel implies that the ad-
ditional complexity introduced by steerable methods scales
proportionally across both attention mechanisms and con-
volution operations.

4. Experiments
We evaluate the performance of our steerable transformer
architecture in both two and three dimensions. Specifi-
cally, we focus on two vision tasks: image classification
and semantic segmentation. In all experiments, we em-
ployed a hybrid architecture that integrates steerable con-
volutional blocks with steerable transformer encoder lay-
ers, and the training was conducted using the Adam Opti-
mizer (Kingma & Ba, 2014). Each steerable convolution

block consists of two steerable convolutions, separated by
Clebsch–Gordan nonlinearity (Anderson et al., 2019; Kon-
dor et al., 2018), and is followed by layer normalization
(Section 3.4).

In the classification networks, each convolution block is
followed by an average pooling layer, and finally a steer-
able transformer encoder with two blocks. Afterward, a
final convolution block with a kernel size equal to the input
size is applied, functioning as the steerable equivalent of a
flattening layer. This is followed by taking the norm, en-
suring invariance to both rotation and translation. The final
convolution layer is succeeded by two fully connected lay-
ers, with a ReLU activation between them and a dropout
layer with a probability of 0.7 (Marcos et al., 2017). We
report results on two datasets: Rotated MNIST (2D) and
ModelNet10 (3D).

For the segmentation tasks, we used a U-net architecture
(Ronneberger et al., 2015), with a steerable convolutional
encoder for downsampling, and a decoder that combines
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Datasets Model Frequency
Cutoff

Accuracy /
Dice Score

Parameter
(∼ ×106)

Avg Runtime Per Batch
Train (s) Inference (s)

Rotated
MNIST

Steerable
Convolution

k = 4 98.72±0.02 1.18 0.14 0.08
k = 8 98.97±0.01 2.54 0.31 0.15

Steerable
Transformer

k = 4 98.82±0.04 1.13 0.13 0.08
k = 8 99.03±0.04 2.24 0.30 0.14

ModelNet10
(z Rotation)

(SO(3) Rotation)

Steerable
Convolution

ℓ = 4
90.13±0.52 1.08 1.22 0.46
86.62±0.25

Steerable
Transformer

ℓ = 4
90.40±0.25 0.92 1.20 0.45
86.80±0.58

PH2

Steerable
Convolution

k = 4 89.31±0.17 0.35 0.27 0.09
k = 8 89.63±0.30 0.96 0.67 0.19

Steerable
Transformer

k = 4 90.61±0.90 0.44 0.28 0.10
k = 8 90.72±0.70 1.22 0.72 0.20

BraTS
(Enhancing Tumor)

(Tumor Core)
(Whole Tumor)

Steerable
Convolution ℓ = 3

73.29±0.76

0.12 5.04 1.0051.07±1.23

74.43±0.77

Steerable
Transformer ℓ = 3

75.01±0.32

0.16 5.37 1.0154.89±0.76

76.37±0.46

Table 1: Comparison of steerable transformers and steerable convolutions. The radial resolution was fixed for these
experiments. The mean and sd are reported for 5 runs. For ModelNet10 we have reported both the z rotation and SO(3)
rotation variations. For PH2 dataset we have reported the dice score for segmentation of the binary mask. For the BraTS
dataset we have reported the dice score individually for each tumor category.

interpolation with steerable convolutions to upsample the
image back to the input resolution. The model includes
skip connections, where features from the downsampling
path are added to the corresponding resolution features in
the upsampling path. Both the encoder and decoder consist
of convolution blocks separated by average pooling layers.
In the baseline model, a position-wise feed-forward layer is
placed between the encoder and decoder, while in the steer-
able transformer model, this is replaced by a transformer
encoder with two transformer blocks. We report results on
two datasets: PH2 (2D) and BraTS (3D).

Table 1 presents a comparison between the baseline steer-
able convolutional architecture and the steerable trans-
former architecture. For the classification tasks, we report
accuracy, while for the segmentation tasks, we provide the
dice score for each class (excluding the background). For
comparison of steerable transformers with other methods,
please refer to Table 2 in the supplementary material. The
code for the experiments can be found here.

Rotated MNIST: Rotated MNIST, a variant of the origi-
nal MNIST dataset (LeCun et al., 2010), includes images
that have been randomly rotated. The dataset contains
12,000 training images and 50,000 testing images. Table
1 compares the performance of steerable transformers and
steerable convolutions, clearly showing that the addition

of a transformer encoder to the steerable convolutions en-
hances performance, even with a low Fourier cutoff.

ModelNet10: The ModelNet10 dataset (Wu et al., 2015)
consists of 3D CAD models from 10 common object cat-
egories, with a train/test split of 3991:908. Each category
includes triangular meshes representing objects at various
orientations and scales. For our experiments, 2, 048 points
were uniformly sampled from the shape surfaces using the
farthest point sampling algorithm. The point cloud data
was then embedded into a grid to generate voxel data. Ad-
ditionally, we introduced two types of perturbations: ran-
dom rotations along the “gravity up” direction (z-axis) and
random rotations from SO(3). The voxel values were also
rescaled to [−1, 5] instead of [0, 1], following Brock et al.
(2016). Table 1 presents the comparison between the steer-
able transformer architecture and steerable convolutions.
The results show improvement in performance with the in-
troduction of the steerable transformer encoder layer across
both variations of the dataset.

PH2: The PH2 dataset (Mendonça et al., 2013) is a col-
lection of 200 dermoscopic images curated for research
and benchmarking in the classification and segmentation of
skin lesions. We randomly split the dataset into 100:50:50
for training, testing, and validation, respectively. Each im-
age has a resolution of 578×770 with RGB channels, and

8

https://github.com/SoumyabrataKundu/Steerable-Transformer


Steerable Transformers for Volumetric Data

is accompanied by comprehensive annotations, including
binary masks of the same resolution that delineate lesion
regions. Table 1 presents the dice score for predicting the
binary mask in the segmentation task. Steerable transform-
ers demonstrate superior performance compared to steer-
able convolutions.

BraTS: The Brain Tumor Segmentation (BraTS) dataset
(Menze et al., 2015) is an essential resource for develop-
ing and evaluating algorithms for brain tumor segmentation
in MRI scans. It includes pre-operative MRI scans across
four modalities, with each image having a resolution of
240×240×155 and annotated to delineate three tumor re-
gions. We used a train/validation/test split of 243:96:145.
As shown in Table 1, steerable transformers outperform
steerable convolutions in segmenting all three tumor re-
gions.

5. Limitations
The use of transformer architecture comes with its chal-
lenges. For instance, the dot product structure used in at-
tention scores can create a memory bottleneck for large
images, restricting the network size and batch size dur-
ing training. Scaling up these architectures is essential to
fully understand the benefits of the attention mechanism in
improving performance. Our experiments were conducted
with relatively small Fourier cutoffs. We believe that us-
ing higher values for these Fourier cutoffs would enhance
performance, but implementing them in a steerable trans-
former architecture would necessitate scaling up to accom-
modate larger models.

6. Conclusion
The transformer framework is increasingly being adopted
across various machine learning fields, including computer
vision, due to its exceptional ability to capture relation-
ships across different parts of the input. In this work, we
introduce steerable transformer encoders that can be used
in conjunction with steerable convolutions. While convo-
lutions excel at capturing local relationships, incorporating
the attention mechanism, which captures global relation-
ships, enhances performance, as demonstrated in our ex-
periments. This architecture has the potential to make a
significant impact in fields such as medical imaging, where
equivariance is critical.

Impact Statement
This paper presents work whose goal is to advance the
field of Machine Learning, specifically computer vision
and equivariant neural networks. This potentially has a pos-
itive societal impact as this architecture can be used in the

field of biomedical imaging to further the advance the fields
of AI assisted diagnosis and medicine.

References
Anderson, B., Hy, T. S., and Kondor, R. Cormorant: Co-

variant molecular neural networks. Advances in neural
information processing systems, 32, 2019.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate.
CoRR, abs/1409.0473, 2014.

Brock, A., Lim, T., Ritchie, J. M., and Weston, N. Gen-
erative and discriminative voxel modeling with convolu-
tional neural networks. ArXiv, abs/1608.04236, 2016.

Byerly, W. E. An elemenatary treatise on Fourier’s series,
and spherical, cylindrical, and ellipsoidal harmonics,
with applications to problems in mathematical physics.
Dover Publicatiions, 1893.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov,
A., and Zagoruyko, S. End-to-end object detection with
transformers. In European conference on computer vi-
sion, pp. 213–229. Springer, 2020.

Chatzipantazis, E., Pertigkiozoglou, S., Dobriban, E., and
Daniilidis, K. $\mathrm{SE}(3)$-equivariant attention
networks for shape reconstruction in function space.
In The Eleventh International Conference on Learning
Representations, 2023.

Chen, N. and Villar, S. Se (3)-equivariant self-attention
via invariant features. In Machine Learning for Physics
NeurIPS Workshop, 2022.

Cohen, T. and Welling, M. Group equivariant convolutional
networks. In International conference on machine learn-
ing, pp. 2990–2999. PMLR, 2016.

Cohen, T. S. and Welling, M. Steerable CNNs. In Interna-
tional Conference on Learning Representations, 2017.

Cohen, T. S., Geiger, M., Koehler, J., and Welling, M.
Spherical CNNs. In International Conference on Learn-
ing Representations, 2018.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An image is worth 16x16 words: Transformers for
image recognition at scale. In International Conference
on Learning Representations, 2021.

Dwivedi, V. P. and Bresson, X. A generalization of trans-
former networks to graphs. In AAAI Workshop on Deep
Learning on Graphs: Methods and Applications, 2020.

9



Steerable Transformers for Volumetric Data

Fuchs, F., Worrall, D., Fischer, V., and Welling, M. Se
(3)-transformers: 3d roto-translation equivariant atten-
tion networks. Advances in neural information process-
ing systems, 33:1970–1981, 2020.

Hegde, V. and Zadeh, R. Fusionnet: 3d object classifica-
tion using multiple data representations. arXiv preprint
arXiv:1607.05695, 2016.

Hutchinson, M. J., Le Lan, C., Zaidi, S., Dupont, E., Teh,
Y. W., and Kim, H. Lietransformer: Equivariant self-
attention for lie groups. In International Conference on
Machine Learning, pp. 4533–4543. PMLR, 2021.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014.

Kondor, R., Lin, Z., and Trivedi, S. Clebsch–gordan nets:
a fully fourier space spherical convolutional neural net-
work. In Bengio, S., Wallach, H., Larochelle, H., Grau-
man, K., Cesa-Bianchi, N., and Garnett, R. (eds.), Ad-
vances in Neural Information Processing Systems 31, pp.
10117–10126. Curran Associates, Inc., 2018.

Laptev, D., Savinov, N., Buhmann, J. M., and Pollefeys, M.
Ti-pooling: Transformation-invariant pooling for feature
learning in convolutional neural networks. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2016.

Larochelle, H., Erhan, D., Courville, A. C., Bergstra, J.,
and Bengio, Y. An empirical evaluation of deep archi-
tectures on problems with many factors of variation. In
International Conference on Machine Learning, 2007.

LeCun, Y., Cortes, C., and Burges, C. Mnist hand-
written digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2, 2010.

Li, J., Chen, B. M., and Lee, G. H. So-net: Self-organizing
network for point cloud analysis. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pp. 9397–9406, 2018. doi: 10.1109/CVPR.2018.
00979.

Li, J., Bi, Y., and Lee, G. H. Discrete rotation equivariance
for point cloud recognition. In 2019 International con-
ference on robotics and automation (ICRA), pp. 7269–
7275. IEEE, 2019.

Liao, Y.-L. and Smidt, T. Equiformer: Equivariant graph
attention transformer for 3d atomistic graphs. In The
Eleventh International Conference on Learning Repre-
sentations, 2023.

Liao, Y.-L., Wood, B. M., Das, A., and Smidt, T.
Equiformerv2: Improved equivariant transformer for
scaling to higher-degree representations. In The Twelfth

International Conference on Learning Representations,
2024.

Marcos, D., Volpi, M., Komodakis, N., and Tuia, D. Rota-
tion equivariant vector field networks. In Proceedings of
the IEEE International Conference on Computer Vision,
pp. 5048–5057, 2017.

Maturana, D. and Scherer, S. Voxnet: A 3d convolu-
tional neural network for real-time object recognition. In
2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 922–928, 2015. doi:
10.1109/IROS.2015.7353481.

Mendonça, T., Ferreira, P. M., Marques, J., Marcal, A.
R. S., and Rozeira, J. Ph2 - a dermoscopic image
database for research and benchmarking. In 35th An-
nual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC), pp. 5437–
5440. IEEE, 2013.

Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J.,
Farahani, K., and et al., J. K. The multimodal brain
tumor image segmentation benchmark (brats). IEEE
Transactions on Medical Imaging, 34(10):1993–2024,
2015. doi: 10.1109/TMI.2014.2377694.

Munkres, J. Topology; a First Course. Prentice-Hall, 1974.
ISBN 9780139254956.

Passaro, S. and Zitnick, C. L. Reducing so (3) convolu-
tions to so (2) for efficient equivariant gnns. In Inter-
national Conference on Machine Learning, pp. 27420–
27438. PMLR, 2023.

Peter, F. and Weyl, H. Die vollständigkeit der primi-
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A. Prerequisites
A.1. Groups

Definition : A group is a non-empty set G together with a binary operation (commonly denoted by “·”, that combines
any two elements a and b of G to form an element of G, denoted a · b, such that the following three requirements, known
as group axioms, are satisfied:

• Associativity : For all a, b, c ∈ G, one has (a · b) · c = a · (b · c)

• Identity Element : There exists as element e ∈ G such that for every a ∈ G, one has e ·a = a ·e = a. Such an element
is unique. It is called the identity element of the group.

• Inverse : For each a ∈ G, there exists an element b ∈ G such that a · b = b · a = e, where e is the identity element.
For each a, the element b is unique and it is called the inverse of a and is commonly denoted by a−1.

Examples include set of integers Z with the addition operation and the set of non-zero reals R \ {0} with the multiplication
operation. From here on, we will drop ‘·’, for simplicity. The group operation will be clear from the elements of the group
concerned.

Group Homomorphism : Given two groups G and H , a function ϕ : G → H is called a group homomorphism if
ϕ(ab) = ϕ(a)ϕ(b) for any a, b ∈ G. If the map ϕ is a bijection, it is called an isomorphism and furthermore, if G = H ,
then an isomorphism is called automorphism. The set of all automorphisms of a group G with the operation of composition
form a group in itself and is denoted by Aut(G).

Compact Groups : A topological group is a topological space that is also a group such that the group operation and the
inverse map are continuous. A compact group is a topological group whose topology realizes it as a compact topological
space (see Munkres (1974) for definition of topological and compact topological spaces). Some classic examples of
compact groups are the groups SO(d) (the group of all real orthogonal matrices in d dimensions with determinant 1), U(d)
(the group of all complex unitary matrices) and SU(d) (the group of all complex unitary matrices with determinant 1).

Special Orthonormal Group SO(d): This group comprises all real orthogonal matrices in d dimensions with a determinant
of 1. These groups are associated with rotation matrices in d dimensions. Specifically, we are focused on the groups SO(2)
and SO(3) in 2 and 3 dimensions, respectively. SO(2) can be parametrized by a single angle θ, corresponding to the
rotation matrix:

R(θ) =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
Here, R(θ) signifies rotation in the x-y plane by an angle θ ∈ [0, 2π). The group SO(3) can be parameterized by the
so-called Euler angles. In our discussions, we adopt the z-y-z convention:

Rz(α) =

 cos(α) 0 sin(α)
0 1 0

− sin(α) 0 cos(α)

 Ry(β) =

cos(β) − sin(β) 0
sin(β) cos(β) 0

0 0 1


Here, Rz(α) represents rotation about the z-axis by α radians, and Ry(β) represents rotation about the y-axis by β radians.
An element R ∈ SO(3) can then be expressed as R = Rz(α)Rz(β)Ry(γ), where α, γ ∈ [0, 2π) and β ∈ [0, π) are the
Euler angles.

Semi-direct Product Groups : Given two groups N and H and a group homomorphism ϕ : H → Aut(N), we can
construct a new group N ⋊ϕ H defined as follows,

• The underlying set is the Cartesian product N ×H

• The group operation is given by (n1, h1)(n2, h2) = (n1ϕh1(n2), h1h2)
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Special Euclidean Group SE(d) : The special Euclidean group SE(d) encompasses all rotations and translations in d
dimensions. The translation group for an d dimensional real vector is isomorphic to Rn and the rotation group is given
by SO(n). Then, we can define a group homomorphism ϕ : SO(d) → Aut(Rd), as [ϕ(R)](t) = Rt, for any rotation
R ∈ SO(d) and a translation vector t ∈ Rd. Then, the special Euclidean group SE(d) is defined as Rd ⋊ϕ SO(d). Hence
the group action is given by

(t1, R1)(t2, R2) = (t1 +R1t2, R1R2)

for any (t1, R1), (t2, R2) ∈ SE(d), the identity is given by (0, I), and the inverse is given by, (t, R)−1 = (−R−1t, R−1)
for any (t, R) ∈ SE(d).

A.2. Group Actions

Definition : If G is a group with identity element e, and X is a set, then a (left) group action α of G on X is a function
α : G×X → X , that satisfies the following two axioms for all g, h ∈ G and x ∈ X:

• Identity: α(e, x) = x,

• Compatibility: α(g, α(h, x)) = α(gh, x).

Often α(g, x) is shortened to g · x. Any group G acts on itself by the group operation g · h = gh for any g, h ∈ G. If G
acts on X , then it can also act on any function f defined on X , as (g · f)(x) = f(g−1 · x).

Action of SE(d): The special Euclidean group acts on a vector in Rd by first applying the rotation component followed by
translation. For x ∈ Rd and (t, R) ∈ SE(d)

(t, R) · x = Rx+ t,

gives us the action of SE(d) on Rd.

A.3. Group Representations

Definition : A representation of a group G is a group homomorphism ρ from G to GL(Cn) (group of invertible linear
maps on Cn), i.e,

ρ(g1g2) = ρ(g1)ρ(g2) ∀g1, g2 ∈ G

Here n is called the dimension of the representation, which can possibly be infinite. A representation is unitary if ρ maps
to unitary linear transformation of Cn.

Irreducible Representations : If we have two representations, ρ1 and ρ2 of dimensions n1 and n2 respectively, then the
two can be combined by a direct sum to give another representation of dimension n1 + n2,

ρ1(g)⊕ ρ2(g) =

[
ρ1(g) 0
0 ρ2(g)

]
.

A representation is said to be completely reducible if it can be expressed as a direct sum of other representations after
maybe a change of basis, i.e,

Uρ(g)U−1 =
⊕
i

ρi(g)

where U is a unitary change of basis matrix and the direct sum extends over some number of representations. However,
for every group there are a some representations which cannot be broken further into a direct sum of other representations.
These are called the irreducible representations or irreps of the group. These irreps are the building blocks of the all other
representations of the group, in the sense that any representation can be written as a direct sum of the irreps:

ρ(g) = U

[⊕
i

ρ(i)(g)

]
U−1,

where again U is a change of basis matrix and ρ(i) are the irreps. The Peter-Weyl Theorem by Peter & Weyl (1927) tells us
that for a compact group G, any unitary representation ρ is completely reducible and splits into direct sum of irreducible
finite dimensional unitary representations of G.
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Irreducible Representations of SO(2) and SO(3) : SO(n) being a compact group, all its irreps are finite dimensional
unitary representations. The irreps of SO(2) are all of dimension one, and are indexed by the set of integers. The group
SO(2) can be realized by 2× 2 rotation matrices, with rotation angle θ:

Rθ =

[
cos θ sin θ
− sin θ cos θ

]
.

With this identification of SO(2), the irreducible representations of SO(2) are given by,

ρk(θ) = eikθ k ∈ Z.

The irreps correspond to the Fourier basis over R. The SO(3) case is more involved. The irreducible representations are
indexed by ℓ ∈ {0, 1, 2, . . . }, where the ℓ’th representation is of dimension 2ℓ+ 1:

ρℓ(R) = Dℓ(R) ℓ ∈ {0, 1, 2, . . . },

where Dℓ are unitary matrices called Wigner D-matrices.

A.4. Fourier Transform

Haar Measure : There is, up to a positive multiplicative constant, a unique countably additive, nontrivial measure µ on
the Borel subsets of G satisfying the following properties:

• The measure µ is left-translation-invariant: µ(gS) = µ(S) for every g ∈ G and all Borel sets S ⊆ G.

• The measure µ is finite on every compact set: µ(K) < ∞ for all compact K ⊆ G.

• The measure µ on Borel sets S ⊆ G is given by

µ(S) = inf{µ(U) : S ⊆ U,U open}.

• The measure µ is inner regular on open sets U ⊆ G:

µ(U) = sup{µ(K) : K ⊆ U,K compact}.

Such a measure on G is called a left Haar measure. It can be shown that as a consequence of the above properties that
µ(U) > 0 for every non-empty open subset U ⊆ G. In particular, if G is compact then µ(G) is finite and positive, so we
can uniquely specify a left Haar measure on G by adding the normalization condition µ(G) = 1.

Fourier Transform on Compact groups : A nice property of compact groups is that the set of (isomorphism classes
of) irreducible representations of G is countable (for details see Robert (1983)). If we have a complex valued function
supported on a compact group G, f : G → C, then the Fourier transform of f is given by

f̂(ρ) =
1

µ(G)

∫
G

f(g)ρ(g)dµ(G),

where µ is the Haar measure.
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B. Proofs
B.1. Proof of Proposition 1

Proof. We will assume number of input channels C = 1. If the input is rotated and translated by (t, R) ∈ SO(d) then
input to the transformer encoder transforms as f in(x, ρ) 7→ ρ(R)f in(Rx + t, ρ) and positional encoding transforms as
P (x, ρ) 7→ ρ(R)P (Rx, ρ). We change the notation to q(xi, ρ) = qρ

i , and similarly for k(xi, xj , ρ) and v(xi, xj , ρ). Then,
under the action of (t, R) on the input the query, key and value vectors change as follows:

q(xi, ρ) 7→ ρ(R)f in(Rxi + t, ρ)Wρ
Q = ρ(R)q(Rxi + t, ρ)

k(xi, xj , ρ) 7→ ρ(R)f in(Rxi + t, ρ)Wρ
K + ρ(R)P (R(xi − xj), ρ) = ρ(R)k(Rxi + t, Rxj + t, ρ)

v(xi, xj , ρ) 7→ ρ(R)f in(Rxi + t, ρ)Wρ
V + ρ(R)P (R(xi − xj), ρ) = ρ(R)v(Rxi + t, , Rxj + t, ρ).

Let s(xi, xj) = sij and α(xi, xj) = αij . Then using the fact ρ(R) is unitary we have,

s(xi, xj) =
∑
ρ

q(xi, ρ)†k(xi, xj , ρ)√
dk

7→
∑
ρ

q(Rxi + t, ρ)ρ(R)
†
ρ(R)k(Rxi + t, Rxj + t, ρ)√

dk

=
∑
ρ

q(Rxi + t, ρ)k(Rxi + t, Rxj + t, ρ)√
dk

= s(Rxi + t, Rxj + t)

The first equality follows from the fact that since C = 1, the vec operation is no longer needed. Since, α is obtained by
taking the softmax of s, it follows that.

α(xi, xj) 7→ α(Rxi + t, Rxj + t).

Finally,

f out(xi, ρ) 7→
∑
j

α(Rxi + t, Rxj + t)ρ(R)v(Rxi + t, Rxj + t, ρ)

= ρ(R)
∑
j

α(Rxi + t, Rxj + t)v(Rxi + t, Rxj + t, ρ)

= ρ(R)f out(Rxi + t, ρ).

This completes the proof.
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C. Experiment Details
Here we provide the details of all the experiments we have conducted. Table 2 shows detailed results on the two datasets.

Datasets Model Radial
Resolution

Frequncy
Cutoff Accuracy Parameter

(∼ ×106)

Rotated
MNIST

Steerable
Convolution

r = 2
k = 4 98.69±0.05 1.00
k = 8 98.93±0.02 1.18

r = 4
k = 4 98.72±0.02 1.18
k = 8 98.97±0.01 2.54

Steerable
Transformer

r = 2
k = 4 98.78±0.08 0.91
k = 8 99.03±0.04 1.78

r = 4
k = 4 98.82±0.04 1.13
k = 8 99.03±0.06 2.24

ModelNet10
(z Rotation)

(SO(3) Rotation)

Steerable
Convolution

r = 1 ℓ = 4
89.40±0.53 0.90
86.78±0.62

r = 2 ℓ = 4
90.13±0.52 1.08
86.62±0.25

Steerable
Transformer

r = 1 ℓ = 4
89.52±0.55 0.90
85.87±0.74

r = 2 ℓ = 4
90.40±0.25 0.92
86.80±0.58

Table 2: Comparison of Steerable convolution and steerable transformers. The mean and sd are provided for 5 separate
runs

C.1. Rotated MNIST

Type Method error%

Miscellaneous

SVM (Larochelle et al., 2007) 11.11
TIRBM (Sohn & Lee, 2012) 4.2
TI-Pooling (Laptev et al., 2016) 1.2

Equivariant
Convolution

P4CNN (Cohen & Welling, 2016) 2.28
Harmonic Net (Worrall et al., 2017) 1.69
RotEqNet (Marcos et al., 2017) 1.09
Weiler et al. (Weiler et al., 2018b) 0.71
E2CNN (Weiler & Cesa, 2019) 0.69

Equivariant
Attention

α-R4 CNN (Romero et al., 2020) 1.69
GSA-Nets (Romero & Cordonnier, 2021) 2.03
GE-ViT (Xu et al., 2023) 1.99
Our (k = 4) 1.18
Our (k = 8) 0.97

Table 3: Comparison of the performance of the equivariant attentive architecture on the Rotated MNIST dataset.

The network architecture in this experiment consists of three convolutional blocks with progressively increasing numbers
of channels. These blocks are separated by average pooling layers, which down-sample the feature maps to improve com-
putational efficiency. The output is flattened and passed through fully connected layers that apply linear transformations,
batch normalization, ReLU activation, and dropout to prevent overfitting. The final layer maps the output to ten classes,
making it suitable for classification tasks. In the case of the steerable transformer, a transformer block with a single layer
follows the convolutional blocks.

The networks were trained using the Adam optimizer (Kingma & Ba, 2014), starting with a learning rate of 5 × 10−3,
which was reduced by a factor of 0.5 every 20 epochs, along with a weight decay of 5× 10−4 for 150 epochs. Additional
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Figure 5: Examples from
the ModelNet10 dataset are
shown in various formats:
point cloud, voxel representa-
tion, and rotated perturbations
of voxels.

Method Accuracy Parameters
(∼ ×106)

Po
in

t
C

lo
ud

ECC (Simonovsky & Komodakis, 2017) 90.8 -
SO-Net (Li et al., 2018) 93.9 2.5
Rot-SO-Net (Li et al., 2019) 94.5 2.5

Vo
xe

l

3D ShapeNets (Wu et al., 2015) 83.5 12
VRN (Brock et al., 2016) 91.3 18
VoxNet (Maturana & Scherer, 2015) 92.0 0.92
FusionNet (Hegde & Zadeh, 2016) 93.1 120
ORION (Sedaghat et al., 2016) 93.8 0.91
Cubenet (Worrall & Brostow, 2018) 94.6 4.5
Our 91.1 0.92

Table 4: Comparison of performance on ModelNet10 with z rotation pertur-
bation. Other methods used both train and test time augmentation, while we
applied augmentation only during test time, not during training.

experiments, where the radial resolution and frequency cutoff were varied, are shown in Table 2. A batch size of 25 was
used, and training the largest model took 4 hours on a 16GB GPU.

Table 3 compares the performance of the steerable transformers with other attention-based methods reported for this
dataset. Our approach significantly outperforms the other attention-based methods, which are standalone, while ours is
built on top of convolutions. The only methods that surpass our results, by Weiler et al. (2018b) and Weiler & Cesa (2019),
use a Fourier cutoff of 16, while we use a cutoff of 8. We believe this accounts for the performance difference, which is
due to implementation and resource limitations, as higher Fourier cutoffs lead to out-of-memory issues.

C.2. ModelNet10

The point cloud data with 2048 points can be accessed here. Similar to the Rotated MNIST experiment, we utilized three
convolutional blocks. The features for each irrep are in a 1:1:1:1 ratio. The number of features per irrep increases with each
convolutional block, and the data is downsampled using average pooling. For the steerable transformer, this convolutional
encoder is supplemented with a transformer block containing a single transformer layer. After an additional normalization
step, the output is flattened and passed through fully connected layers that reduce the dimensionality to 128 features. To
ensure training stability and prevent overfitting, batch normalization, ReLU activation, and dropout are applied, with the
final output layer classifying the data into ten classes.

The networks were trained using the Adam optimizer (Kingma & Ba, 2014), with an initial learning rate of 1 × 10−3,
which decreased by a factor of 0.5 every 20 epochs, for a total of 50 epochs. Detailed experiments exploring variations in
radial resolution are presented in Table 2. A batch size of 5 was used, and training the largest model took 12 hours on a
16GB GPU.

Table 4 compares our method to other non-attention-based methods on the z-rotated version of the dataset. Unlike our
approach, which does not use augmentation during training, all other methods were trained with augmentation involving
12 uniformly stratified rotations along the z-axis. To ensure a fair comparison, we applied test-time augmentation by
averaging the accuracy of all 12 predictions for each test data point. Despite not using train-time augmentation and having
fewer parameters, our method achieves performance comparable to these other methods.

C.3. PH2

The data for the experiment is available here. The network begins with two convolutional stem blocks, each composed
of steerable convolutional layers, non-linearities, and batch normalization, which progressively downsample the input and
extract relevant features. A transformer encoder is used to capture global dependencies in the data. After encoding, the
model utilizes two convolutional head blocks to upsample and refine the extracted features using steerable convolutions.
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Figure 6: More segmented examples from the test datasets of PH2 and BraTS.

The output is then processed through complex-valued bilinear interpolation to restore the original input dimensions. In the
final step, the vector norm is computed, converting the complex-valued feature maps into real values.

The networks were trained using the Adam optimizer (Kingma & Ba, 2014), starting with an initial learning rate of 1×10−2,
which decreased by a factor of 0.5 every 20 epochs, for a total of 100 epochs. We used a batch size of 1, and training the
largest model took 2 hours on a 16GB GPU. A larger batch size could not be used due to out-of-memory errors.

C.4. BraTS

The data for the experiment is available here. Only the training data is available for this task, consisting of 484 images. We
split this dataset into training, validation, and test sets for our experiments.

The network begins with two convolutional stem blocks that use steerable convolutions to extract multi-resolution fea-
tures. These blocks include non-linearities and batch normalization for stable training, as well as average pooling layers
for downsampling. The features for each irrep are in a ratio of 8:4:2, with the number of features increasing in subse-
quent layers according to this ratio. The encoded features are then passed through a transformer encoder, which captures
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long-range dependencies and spatial relationships using multiple layers and positional encodings. The decoder consists
of convolutional head blocks that upsample the features. Complex-valued feature maps are interpolated using trilinear
interpolation, and the final output is generated by taking the absolute value of these complex features, corresponding to the
constant representation.

The networks were trained using the Adam optimizer (Kingma & Ba, 2014), with an initial learning rate of 1 × 10−2,
which was reduced by a factor of 0.5 every 20 epochs, for a total of 100 epochs. A batch size of 1 was used, and training
the largest model took 40 hours on a 16GB GPU. A larger batch size could not be used due to out-of-memory errors.
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