LR-RaNN: Lipschitz Regularized Randomized
Neural Networks for System Identification

Chunyang Liao
Department of Mathematics
University of California, Los Angeles
Los Angeles, CA 90095
liaochunyang@math.ucla.edu

Abstract

Approximating the governing equations from data is of great importance in study-
ing the dynamical systems. In this paper, we propose randomized neural networks
(RaNN) to investigate the problem of approximating the governing equations of
the system of ordinary differential equations. In contrast with other neural net-
works based methods, training randomized neural network solves a least-squares
problem, which significant reduces the computational complexity. Moreover, we
introduce a regularization term to the loss function, which improves the general-
ization ability. We provide an estimation of Lipschitz constant for our proposed
model and analyze its generalization error. Our empirical experiments on syn-
thetic datasets demonstrate that our proposed method achieves good generaliza-
tion performance and enjoys easy implementation.

1 Introduction

Dynamical system is widely used to analyze and understand how systems evolve with time, which
are ubiquitous in various scientific areas such as physics [14], biology [9], chemistry [?3], and eco-
nomics [6]. Traditionally, dynamical systems are derived from first principles, which can guarantee
conservation laws and are easy to interpret. However, physics-based approaches required strong
modeling assumptions, and domain knowledge. For many real-world systems of interest, the dy-
namical systems are either unknown or can only be evaluated to high accuracy at significant compu-
tational expense. Recently data-driven methods for dynamical systems discovery have gained great
interests [, "7, M]. System identification refers to the general process of building mathematical
models and approximating dynamical systems from measured input-output data. In particular, data-
driven system identification uses machine learning techniques to derive models from input-output
data, bypassing prior domain and system knowledge.

There have been several recent methods using sparse regression [P4, DI, D3], Gaussian process
[IR, D2, 8], and neural networks [I5, [0, I6, P8, U7] for data-driven system identification. With
a user-determined dictionary of candidate terms, sparse regression approaches select the most im-
portant terms using a sparsity-promoting regression, such as Least Absolute Shrinkage and Selection
Operator (LASSO). Gaussian process regression is based on imposing a Gaussian prior on the un-
known coefficients of the differential equation and statistically conditioning them on the observed
data. The unknown coefficients are inferred via maximum likelihood estimation. Neural Network
approaches use a neural network to learn the relationship between the input states and output states
of a system. The neural network is trained on a set of input-output pairs, which typically results in
solving a non-convex optimization problem due to the structure of neural networks. The theoretical
guarantee relies on the result that neural networks are universal approximators. In [[6], the authors
introduced a Lipschitz regularization term to the loss function, which improved the generalization

Proceedings of the 1st Conference on Topology, Algebra, and Geometry in Data Science(TAG-DS 2025).

and recovery of governing equation. In [7], the authors proposed a system identification method
using Lipschitz neural networks directly.

Despite remarkable empirical achievements, the training of neural networks requires significant com-
putational resources. Its training involves solving a non-convex optimization problem. Due to the
non-convexity nature of the optimization problem, training neural networks suffers from saddle
points and local minima resulting in poor convergence behavior and numerical approximation ac-
curacy. In addition, stochastic gradient descent (SGD) algorithm and its variants are typically used
to solve the non-convex optimization problems, which iterates large datasets multiple times to up-
date the high-dimensional space of trainable parameters. The gradient is usually approximated by
numerical algorithms such as auto-differentiation, which increases the computational burden.

Implementing randomized Neural Networks (RaNNs) has became to an effective strategy for reduc-
ing computational time and minimizing optimization errors [[[1l, 12, 3, &]. Unlike the vanilla fully
connected neural networks, the weights linked hidden layers in RaNNs are randomly sampled from
certain distributions and the fixed. Only the parameters connecting the last hidden layer and the
output layer are trainable parameters, which can be trained by solving a least-squares problem.

In this work, we investigate the problem of approximating the governing equations using the ran-
domized neural networks. Specifically, our contributions are summarized as follows:

1. We approximate the governing equations using the randomized neural networks. Specif-
ically, we introduce a Lipschitz regularization term to the loss function, which improves
the generalization performance. Compared with the state-of-the-art Lipschitz regularized
neural network [I6] and Lipschitz neural network [277], our proposed method is easy to
implement and to estimate the Lipschitz constant.

2. We provide theoretical guarantees on the generalization performance of our proposed ran-
domized neural network-based method from a deterministic perspective. Specifically, we
provide a worst-case error analysis over a compact domain and show how the number of
hidden neurons, the regularization parameter, and the Lipschitz constant affect the general-
ization error.

3. We empirically verify the performance by conducting experiments on three synthetic
datasets. The experimental results demonstrate that our proposed method is easy to im-
plement, has comparable or even better generalization performance compared with state-
of-the-art benchmarks, and significantly reduces the computational resources.

2 Preliminaries, Notations, and Problem Setup

In this paper, we use () € R? to denote the state vector of a d-dimensional dynamical system at
time ¢, () denote the first order time derivative of z(¢). Let f : R'*? — R? be a vector-valued
function. The system of ODE governed by f is defined as

2(t) = f(t,x(t)). M

A function f is said to be L-Lipschitz if || f(x)— f (y)|| < L||x—y|| for all z, y. The goal of this paper
is to approximate the unknown governing equation f from trajectory data using randomized neural
networks. In practice, we are able to observe state vectors x(t) at discrete time steps for differential
initial conditions. Specifically, given uniformly-spaced time steps ¢1, . .., t3; and initial conditions
71(0),...,2x5(0) € R% we define z;(t;) € R be an observation of state vector z(t) at time ¢;
with initial condition z;(0) for all i € [K] and j € [M]. Then we define the input data x;, € R'*¢
and the targets y;, € R? that are used to train randomized neural networks. For h = j + (i — 1) M,
we define x;, and y, as follows:

T .
xp=[t;, — x(t;)" -] eRY™ yn = 2i(t;) € R% ()

In this paper, we consider the shallow (one-hidden layer) randomized neural network f :R?T - R,
which takes the following form

N
F@) =" cud((wr,) + b). 3)
k=1

Parameter N denotes the number of neurons at the single hidden layer. Weight vectors w; € R?
and bias term by, € R are sampled from certain distributions and then fixed. Function ¢ : R — R
is a non-linear activation function. Throughout this paper, we assume that the activation function
¢ is L-Lipschitz. Then we can derive that the shallow randomized neural network taking the form
(B) is also Lipschitz continuous with Lipschitz constant L Z,If:l |ck|||wp||. Coefficients ¢i, € R are
trainable parameters. Training the randomized neural networks is equivalent to find best coefficients
cx, which can be trained by solving a least-squares problem.

There are various types of randomized neural networks such as random vector functional link
(RVFL) networks [[3], extreme learning machine (ELM) [8], and random features [20)]. While
all of them share the same structures and are widely used in practice, there are several major differ-
ences in terms of the motivations and the distributions of random weights. Random features were
originally proposed to approximate large-scale kernel machines, and hence the distributions of ran-
dom weights depend on the kernel function, see [20] for a list of kernels and their corresponding
distributions. RVFL networks and ELMs were proposed to reduce the computational costs when
training neural networks and the random weights were usually sampled from uniform distributions.

3 Theoretical Analysis

We aim to construct a randomized neural network to approximate the governing equation f from
inputs-outputs pair (x,,y,) defined in (2). We first notice that the target y;, € R has d-components
and we may assume that each component y;, for all j € [d] can be approximated by a randomized
neural network () separately. For ease of notation, in the rest of paper we omit the index 7 and use
yn, € R instead. We consider the following loss function

1 KM) 2 N
L(©) = == > (v = F60)) + A Y leu o2 o
h=1 k=1

The first term is the mean-squared error on the input-output pairs (X, y5,). The second term corre-

sponds to the Lipschitz constant of f . We slightly modify the Lipschitz constant by taking square of
¢k ||wi||- Unlike the ridge regularization, our regularization term include weights on the coefficients,
which is indeed a weighted ridge regularization. Let A € REM*N be the random matrix defined
entry-wise by A, = ¢(wg,x;) forall j € [KM] and k € [N] and W € RV*¥ be a diagonal
matrix with entries W ; = ||w;||. The solution ¢ € R has closed form

e=(ATA+AXKMW?) 1A Ty, (5)
where y = [y1,...,yrn) € REM,

3.1 Estimation on the Lipschitz Constant

We first estimate the Lipschitz constant of the trained randomized neural network, which quantifies
the worst-case robustness against the small, adversarial perturbations of the input. In the context
of system identification, the input x;, contains the observed state vector x;(¢;) with initial condi-
tion x,(0) at time ¢;, which is usually polluted by observational noise. Therefore, controlling the
Lipschitz constant is crucial to improve the model robustness.

Proposition 1. Assume that the observation vector y has unit norm, i.e. ||y||2 = 1. The Lipschitz
constant of the trained randomized neural network (B) with coefficients (B) is upper bounded by

VN maxy, [|ws|
vV AK M miny, HwkH

Remark 2. Our theory indicates that the Lipschitz constant decreases as we increase the regular-
ization parameter A\, which emphasizes the importance and necessity of regularization term. Our
empirical results also verify the decay of Lipschitz constant, see Table B.

max |lwp ||
Remark 3. The ratio “~—— determines the Lipschitz constant. In the asymptotic setting where

min [lwp]

we set d — oo, we notice that the ratio decreases showing that our model is robust in the high-
dimensional setting. In addition, we numerically verify that the ratio does not diverge as N — o0,
which shows that our model is also robust in the over-parametrization regime. We numerically verify
the asymptotic behaviors of the ratio in the Appendix.

3.2 Generalization Error

In this section, we provide a generalization error analysis for the trained regularized shallow ran-
domized neural network. We first define the following function space

Fp)i= {100 = [alw0)o((w,0) + dple) 112 = Buplolw b <o} ©

where p(w, b) is a joint probability distribution of (w,b) € R? x R. Notice that the completion of
F(p) is a Hilbert space equipped with norm || f||,. Indeed, the function space F(p) is a reproducing
kernel Hilbert space. We refer readers to Proposition 4.1 in [21] for a rigorous proof.

In [6], the authors assumed that the test samples are independent and identically distributed from
the true data distribution and applied Hoeffding’s inequality to give a bound on the difference be-
tween the actual MSE and the empirical one. In the following theorem, we evaluate the generaliza-
tion performance from a deterministic perspective.

Theorem 4. Let f be the true right-hand side belonging to function space F(p) and f be the trained
shallow randomized neural network taking the form (B). Let D be a compact domain. Then for any
d € (0,1), it holds with probability at least 1 — ¢ that

sup |7(0) - o) < ¢
xeD
where C' = 12|| f||, log(2/9).

1 | maxi ||wk||)
f VAming [[wg| ming [Jwg

We consider a general compact domain D in the theorem. In the system identification problems,
compact domain D € R?*! contains the trajectory data (¢;, ;(t;)).

Sketch of Proof. We split the error into two terms, i.e. | f(z) — f(z)| < |f(z) — f*(x)] + | f*(z) —
f(x)|, where f*(x) is the "best" randomized neural network for approximating f. We bound each
term separately. The first term is the approximation error. We apply the concentration inequalities
in high-dimensional probability to obtain an upper bound TCN The second term is the estimation

error, which measures the difference between the "best" randomized neural network and the trained
randomized neural network. Adding the upper bound for each term together leads to the desired
result. N

4 Numerical Experiments

In this section, we present several numerical experiments on the recovery of ordinary differential
equations. We consider three examples: one dimensional autonomous ODE, one dimensional non-
autonomous ODE, and Van der Pol Oscillator. We adopt the test mean-squared error (MSE), gen-
eralization gap, and the recovery error on full domain (non-trajectory data) as metrics to test the
generalization performance. Let D;.5; be a set of test data with size | Dy.s¢|, the test MSE is defined
as

A 1 o 2
Test MSE(f) = —— > (Yh - f(Xh))
|Dtest|
(Xn,Yn)€EDxest
The generalization gap refers to the difference of training MSE and test MSE, which measures model
generalization property, i.e
Generalization Gap(f) = Train_MSE(f) — Test_MSE(f).

The recovery error on full domain compares the approximation by our networks with the true gov-
erning equation of the ODE system on the domain of interest. Specifically, let {(t;, z;)}ic[as) be a
set of points in the domain, the recovery error is defined as

= Z | f(ti, 4) f(.tmxi)\ . @

max; f tz; xz — Inin, f(t’u xz)

We compare our proposed regularlzed randomized neural networks with Lipschitz regularized neural
network and Lipschitz neural network. We perform the empirical experiments in the noiseless and
noisy regimes. All experiments are performed in a MacBook with 2.3GHz 8-core Intel Core i9
processor.

4.1 Data Descriptions

In this section, we describe how we generate the trajectory data and non-trajectory data for each
example. We generate the synthetic datasets using the function odeint from the scipy package in
Python.

Autonomous ODE. We consider the following 1D Autonomous ODE:
#(t) = cos(5z) + 2°* — z,

where the right-hand side only depends on the space variable x. We compute the approximated
solutions of ODE for time steps ¢ in the interval [0, 1] with At = 0.04 and for K = 500 initial
conditions that are uniformly sampled from interval [—0.7,0.9]. Our setting results in 12500 data
points. We use the uniform grid over domain [0, 1] x [—0.7, 0.9] of resolution 100 x 100. to compute
the recovery error on full domain.

Non-Autonomous ODE. Our second example is a 1D non-autonomous ODE, where the right-hand
side depends on both space variable z and time ¢, i.e.

i(t) = e " log(t) — t2.

We generate K = 200 trajectories whose initial conditions are uniformly sampled in the interval
[0.5, 5] and the solution for equispaced time steps ¢ in the interval [0.1,2] with A¢ = 0.02. Here we
have 19000 data points. We use uniform grids over domain [0.1, 2] x [0.5, 5] of resolution 100 x 100
to compute the recovery error on full domain.

Van der Pol Oscillator. The Van der Pol oscillator is

i1 =2, @2 =p(l—a})ze — 1, (®)
where 1 > 0. In this example, we set up 1 = 0.02. We generate K = 400 trajectories of 5 seconds ".
The initial conditions are sampled from domain [—4, 4] x [—4, 4] and we approximate the solutions
of ODE system for time steps ¢ in interval [0.15, 5.14] with At = 0.01. Our problem setting leads to

200000 data points. In this example, we generate uniform grids over domain [0.15, 5.14] x [—4, 4] x
[—4, 4] of resolution 20 x 20 x 20 as non-trajectory data.

To generate noisy data, we follow the procedures in [I6] and [27]. Specifically, for Autonomous
ODE and Non-autonomous ODE, we compute mean range M}, across trajectories as

t — t;
= 2 (g 0 g 1)
Then, the 1% noisy regime is given by

i‘?(t])—l‘ ()+n’LJMk:7

where n;; follows a normal distribution A/(0, 0.01) with mean 0 and variance 0.01. We produce 5%
noisy regime in a similar way. For Van der Pol Oscillator, we produce 1% noisy version by

1 =21+ ey and Ty = o + €9,
where e; and ey are independent and sampled from a normal distribution A (0,0.01) with mean 0
and variance 0.01. In a similar way we add 5% noise to the data.

In all examples, we use 80% of trajectory data for training and the remaining 20% samples for
testing. We visualize the training and test samples for all examples in the Appendix.

4.2 Comparison

In this section, we compare our proposed method with two neural network-based methods. In [I6],
the authors used neural networks and added a Lipschitz regularization term in the loss function. In
[277], the authors directly used Lipschitz neural networks, which are a class of neural networks with a
prescribed upper bound of the Lipschitz constant [26]. In all experiments, we use a shallow random-
ized neural network with N = 50 neurons, and hence our model has only 50 trainable parameters.

'The data samples are available from here.

https://github.com/shiqingw/Lipschitz-System-ID/blob/main/datasets/eg2_VanDerPol/001/dataset.mat

For neural networks with Lipschitz regularization term (LRNN), we consider neural networks with 8
hidden layers of widths [10, 30, 30, 30, 30, 30, 30, 30] with ReLU activation function, which results
in 5041 trainable parameters. For Lipschitz neural networks (LNN), we consider neural networks
with 8 hidden layers of width 64 on each layer with ReL.U activation function. The total number
of trainable parameters are 54346 2. The training of our proposed regularized randomized neural
networks is done by solving a regularized least-squares problem and we use numpy.linalg.solve
method. The training of neural networks uses Adam with learning rate 0.01 and 15 epochs.

Metric Model No Noise 1% Noise 5% Noise

our method | 7.33 x10°% [9.35 x 1075 | 4.35 x 1072

Test MSE LRNN 2.05 x 1073 9.66 x 10~ 3 3.63 x 10~ 72

Autonomous LNN 9.65 x 107 ° 1.03x 1077 3.30 x 10 2
Recovery Error on our method 1.09% 3.88% 6.64%
Full Domain LRNN 2.67% 4.21% 7.58%
LNN 1.19% 4.62% 7.21%

ourmethod | 3.95 x 107 ° | 7.07 x10°3 | 2.09 x 102

Test MSE LRNN 7.95 x 1077 742 x 1073 2.53 x 10~ 2

Non- LNN 9.22 x 1073 9.58 x 1073 2.38 x 10~ 2
autonomous Recovery Error on our method 0.67% 0.86% 0.82%
Full Domain LRNN 0.64% 1.07% 1.82%
LNN 2.03% 1.28% 1.30%

Table 1: Summary of Autonomous and Non-autonomous ODEs: we report test MSEs and recovery
errors on full domain of our proposed method, Lipschitz-regularized neural networks, and Lipschitz
neural networks.

Metric Model No Noise 1% Noise 5% Noise

our method | 2.69 x 10°° | 231 x 1077 | 9.76 x 10”2

Test MSE LRNN 238x10 % [215x10 % | 5.77x 10" %

LNN 537 x 107 4.15 x 102 7.32x 1077
Recovery Error on Full | our method 0.21% 0.72% 1.93%
Domain LRNN 1.19% 0.89% 1.81%
(First Component) LNN 1.95% 2.58% 2.37T%
Recovery Error on Full | our method 0.17% 0.57% 1.41%
Domain LRNN 0.90% 1.51% 1.17%
(Second Component) LNN 1.03% 1.84% 1.71%

Table 2: Summary of Van der Pol Oscillator: we report test MSEs and recovery errors on full domain
of our proposed method, Lipschitz-regularized neural networks, and Lipschitz neural networks.

In Tables [and D, we report test MSE and recovery error on full domain for each model. Our numer-
ical results suggest that our proposed method achieves similar or even beats Lipschitz regularized
Neural Network and Lipschitz neural network over all examples. In particular, our proposed method
is robust in the noisy regime. Across all experiments, we use N = 50 neurons for the randomized
neural networks, which is much less than vanilla neural networks. Moreover, we solve a regularized
least-squares problem to train the parameters, which is easy to solve and has convergence guarantee.
In summary, our model has good generalization property and can significantly reduce the computa-
tional complexity.

4.3 Hyper-parameter Selection

In this section, we discuss the choices of hyper-parameters of our proposed model. In particular, the
hyper-parameters are the number of hidden neurons /N, the variance of Gaussian random weights
o2, and the regularization parameter \.

In the first study, we fix the number of hidden neurons N = 50 and the variance of Gaussian
random weights 02 = 1. We aim to verify the effect of varying regularization parameter. Each

2We follow the network structures implemented in [IL6, 27]. The implementation of neural network with
Lipschitz regularization can be found here. The implementation of Lipschitz neural networks can be found

here,

https://github.com/enegrini/System-identification-through-Lipschitz-regularized-neural-networks
https://github.com/shiqingw/Lipschitz-System-ID

number in Table B is the average of 50 runs over the random sampling of Gaussian random weights.
We observe that the regularization term is helpful on the control of Lipschitz constant and results
in better generalization performance. Our empirical results also verify that the Lipschitz constant
decreases as we increase the regularization parameter A. Numerical results of Non-autonomous
ODE and Van der Pol Oscillator are presented in the Appendix EZ.

Regularization | Test Error Generalization | Recovery Error Lipschitz
Parameter Gap on Full Domain Constant

0 8.98 x 10~* —2.89 x 107 ° | 8.36% 20877813.9
0.0001 491 x10°° —1.24 x 107" | 1.37% 310.1
0.001 1.32 x 1077 —1.44 x 107" | 1.68% 206.9

0.01 4.43 x 1077 —2.60 x 107" | 2.64% 106.6

Table 3: Numerical results of Autonomous ODE: we report regularization parameters, test errors,
generalization gaps, recovery errors on full domain, and Lipschitz constant of randomized neural
networks in the noiseless regime.

In the second study, we fix the regularization parameter and demonstrate how the number of hidden
neurons IV and the variance of Gaussian random weights o2 affect the generalization results. In
Figure [, we show the heatmap of test errors and recovery errors of various number of features NV
and scaling parameter + (variance of Gaussian weights 02 = 1/42). Our results suggest that the
generalization properties (test and recovery errors) are robust to the change of IV and ~.

10 B2 Tz.o 10
I—o.so
= 60 = 60
(7] (7))
o o
S 10 1.0 S 10
= = -0.15
8 8
160 160

L.

|0.01

(b) Recovery error on full domain

0.2

1.2
Scaling parameter y

0.2 1.2 22 3.2 22 3.2

Scaling parameter y

(a) Test error

Figure 1: 1D Non-Autonomous ODE: we report test error and recovery error on full domain for
various number of features N and scaling parameter + (variance of Gaussian weights o2 = 1/~2).

In Figure @, we also numerically verify the decay rate of the test errors as we increase the number of
hidden neurons, which numerically verifies the upper bound in Theorem B. We depict the test errors
and logarithm of test errors versus the number of hidden neurons N.

—— Slope =-0.91 —— Slope=-2.15 "

—— Slope=-1.77 -1

Test errors

Loéarithm of Test er;ors
Test errors

£107”

Logér\thm df Test errors
Logarithm of Test errors

Features Features Features

(c) Van der Pol Oscillator

(a) Autonomous ODE (b) Non-autonomous ODE

Figure 2: Test MSE and Logarithm Test MSE as a function of the number of hidden neurons.
ported Slopes in the legends denote empirical decay rates.

Re-

4.4 Solution Estimation

We use the trained regularized randomized neural network as the right-hand side and solve for the
ODE system. We numerically estimated the solution using the function odeint from the scipy
package in Python. For the randomized neural network, we use N = 50 neurons at the single hidden
layer, sample random weights from the normal distribution with mean 0 and variance 02 = 1, and
set regularization parameter A\ = 1075, In Figure B, we show the true solution (blue line, solve
using the true right-hand side f) and the predicted solution (red line, solve using the approximated
right-hand side f). We observe that the predicted solutions are accurate, even at the end of time
interval, for all the selected initial conditions across all examples. In the Appendix EZ3, we depict
the predicted solutions for all examples in the noisy regimes. Our results indicate that our proposed
model can provide accurate solution estimation in the noisy regimes.

~ 4 True =
04 —.— Predicted
wl I 2 S
= VAV
<o T x o
> < Ot
o W ERANAN
o2 T 5 AN __\
s T NN
o ,.,,/" —— Predicted . N ~
0.0 02 04 0.6 0.8 10 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00 -4 -2 0 2 4
t t x_1
(a) Autonomous ODE (b) Non-autonomous ODE (c) Van der Pol Oscillator

Figure 3: True and predicted solution of three ODE benchmarks.

5 Conclusion

In this paper, we study the problem of approximating the governing equation of system of ODEs by
using the regularized randomized neural networks and introducing a Lipschitz regularization term to
the loss function. We estimate the Lipschitz constant and derive a generalization error bound, which
show the robustness and generalization ability of our proposed model. Our empirical studies show
that our proposed model achieves similar or even better generalization performance compared with
the state-of-the-art neural network-based methods. Moreover, our model has less trainable parame-
ters and the training of our model can be done by solving a regularized least-squares problem, which
significantly reduce the computational time and complexity. Due to the competitive generalization
performance and advantages in computation, we believe that our proposed regularized randomized
neural network-based method provides a good benchmark for system identification problem.

One of the limitations of our theoretical results is that our generalization error bound is in the worst-
case scenario. The results could be generalized to the L? case. One can also derive an error bound in
terms of the number of trajectory data and the number of time steps. We will leave those questions
for future exploration. On the computational side, we only consider synthetic data because it is easy
to test the generalization performance. We would like to apply our method to real-world data in the
future.

References
[1] Jason J Bramburger. Data-driven methods for dynamic systems. SIAM, 2024.

[2] Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations
from data by sparse identification of nonlinear dynamical systems. Proceedings of the National
Academy of Sciences, 113(15):3932-3937, 2016.

[3] Gianluca Fabiani. Random projection neural networks of best approximation: Convergence
theory and practical applications. SIAM Journal on Mathematics of Data Science, 7(2):385—
409, 2025.

[4] Gianluca Fabiani, Ioannis G Kevrekidis, Constantinos Siettos, and Athanasios N Yannacopou-
los. Randonets: Shallow networks with random projections for learning linear and nonlinear
operators. Journal of Computational Physics, 520:113433, 2025.

[5] Jinchao Feng, Charles Kulick, Yunxiang Ren, and Sui Tang. Learning particle swarming mod-
els from data with gaussian processes. Mathematics of Computation, 93(349):2391-2437,
2024.

[6] Giancarlo Gandolfo. Economic dynamics: Methods and models, volume 16. Elsevier, 1971.

[7] Amin Ghadami and Bogdan I Epureanu. Data-driven prediction in dynamical systems: recent
developments. Philosophical Transactions of the Royal Society A, 380(2229):20210213, 2022.

[8] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine: Theory
and applications. Neurocomputing, 70(1):489-501, 2006. Neural Networks.

[9] Trachette Jackson and Ami Radunskaya. Applications of dynamical systems in biology and
medicine, volume 158. Springer, 2015.

[10] John G Kuschewski, Stefen Hui, and Stanislaw H Zak. Application of feedforward neural
networks to dynamical system identification and control. IEEE transactions on control systems
technology, 1(1):37-49, 1993.

[11] Chunyang Liao. Solving partial differential equations with random feature models. Communi-
cations in Nonlinear Science and Numerical Simulation, 152:109343, 2026.

[12] Chunyang Liao, Deanna Needell, and Hayden Schaeffer. Cauchy random features for operator
learning in sobolev space. arXiv: 2503.00300, 2025.

[13] A.K. Malik, Ruobin Gao, M.A. Ganaie, M. Tanveer, and Ponnuthurai Nagaratnam Suganthan.
Random vector functional link network: Recent developments, applications, and future direc-
tions. Applied Soft Computing, 143:110377, 2023.

[14] Paul Melby, Nicholas Weber, and Alfred Hiibler. Dynamics of self-adjusting systems with
noise. Chaos: An Interdisciplinary Journal of Nonlinear Science, 15(3), 2005.

[15] Kumpati S Narendra and Kannan Parthasarathy. Neural networks and dynamical systems.
International Journal of Approximate Reasoning, 6(2):109-131, 1992.

[16] Elisa Negrini, Giovanna Citti, and Luca Capogna. System identification through lipschitz
regularized deep neural networks. Journal of Computational Physics, 444:110549, 2021.

[17] Joshua S North, Christopher K Wikle, and Erin M Schliep. A review of data-driven discovery
for dynamic systems. International Statistical Review, 91(3):464-492, 2023.

[18] Gianluigi Pillonetto, Francesco Dinuzzo, Tianshi Chen, Giuseppe De Nicolao, and Lennart
Ljung. Kernel methods in system identification, machine learning and function estimation: A
survey. Automatica, 50(3):657-682, 2014.

[19] L F. Pinelis and A. I. Sakhanenko. Remarks on inequalities for large deviation probabilities.
Theory of Probability & Its Applications, 30(1):143-148, 1986.

[20] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Ad-
vances in Neural Information Processing Systems, volume 20. Curran Associates, Inc., 2007.

[21] Ali Rahimi and Benjamin Recht. Uniform approximation of functions with random bases. In
2008 46th Annual Allerton Conference on Communication, Control, and Computing, pages
555-561, 2008.

[22] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Machine learning of linear dif-
ferential equations using gaussian processes. Journal of Computational Physics, 348:683-693,
2017.

[23] Hayden Schaeffer. Learning partial differential equations via data discovery and sparse op-
timization. Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 473(2197):20160446, 2017.

[24] Hayden Schaeffer, Russel Caflisch, Cory D. Hauck, and Stanley Osher. Sparse dynamics for
partial differential equations. Proceedings of the National Academy of Sciences, 110(17):6634—
6639, 2013.

[25] Joseph John Thomson. Applications of dynamics to physics and chemistry. Macmillan, 1888.

[26] Ruigang Wang and Ian Manchester. Direct parameterization of Lipschitz-bounded deep net-
works. In Proceedings of the 40th International Conference on Machine Learning, volume 202
of Proceedings of Machine Learning Research, pages 36093-36110. PMLR, 23-29 Jul 2023.

[27] Shiqging Wei, Prashanth Krishnamurthy, and Farshad Khorrami. Data-efficient system identifi-
cation via lipschitz neural networks. arXiv:2410.21234, 2024.

[28] Rose Yu and Rui Wang. Learning dynamical systems from data: An introduction

to physics-guided deep learning. Proceedings of the National Academy of Sciences,
121(27):e2311808121, 2024.

10

