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Abstract

Self-supervised learning (SSL) has emerged as a central paradigm for training foundation
models by leveraging large-scale unlabeled datasets, often producing representations with
strong generalization capabilities. These models are typically pre-trained on general-purpose
datasets such as ImageNet and subsequently adapted to various downstream tasks through
finetuning. While recent advances have explored parameter-efficient strategies for adapting
pre-trained models, extending SSL pre-training itself to new domains—particularly under
limited data regimes and for dense prediction tasks—remains underexplored. In this work, we
address the problem of adapting vision foundation models to new domains in an unsupervised
and data-efficient manner, specifically targeting downstream semantic segmentation. We
propose GLARE (Global Local and Regional Enforcement), a novel continual self-supervised
pre-training task designed to enhance downstream segmentation performance. GLARE
introduces patch-level augmentations to encourage local consistency and incorporates a
regional consistency constraint that leverages spatial semantics in the data. For efficient
continual pre-training, we initialize Vision Transformers (ViTs) with weights from existing
SSL models and update only lightweight adapter modules—specifically UniAdapter—while
keeping the rest of the backbone frozen. Experiments across multiple semantic segmentation
benchmarks on different domains demonstrate that GLARE consistently improves downstream
performance with minimal computational and parameter overhead.

1 Introduction

Self-supervised learning (SSL) has revolutionized the training of foundation models by enabling the extraction
of rich, generalizable features from vast unlabeled datasets (Caron et al., 2021; Chen et al., 2021; Oquab
et al., 2024; Assran et al., 2023). This paradigm has proven to be particularly valuable in computer vision,
where the abundance of unlabeled images can be leveraged to learn robust visual representations without the
need for expensive manual annotations. Recent advances in SSL have introduced sophisticated techniques,
spanning from innovative data augmentation strategies (Grill et al., 2020) and masked image modeling (He
et al., 2022) to enhanced feature matching through self-attention mechanisms (Su et al., 2023; Su & Ji, 2024)
and refined loss functions.

While these developments have led to powerful models pre-trained on extensive generic datasets like Ima-
geNet (Deng et al., 2009), they often fall short when confronted with specialized technical domains. This
limitation becomes particularly apparent in real-world scenarios where domain-specific data is scarce, es-
pecially labeled data. The challenge is further compounded when considering dense prediction tasks like
semantic segmentation, which demand more fine-grained semantic understanding compared to classification
tasks. These issues have therefore sparked significant interest in adaptation techniques, particularly finetuning
and continual learning to bridge the gap between generic pre-training and domain-specific applications.

Our research focuses on enhancing foundation model features for task-specific limited data scenarios through
continual pre-training within a pure SSL framework. While previous research has explored this direction by
training batch normalization layers using conventional SSL approaches for classification tasks (Reed et al.,
2022), these studies do not fully investigate other aspects of the SSL paradigm, such as augmentations and
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matching, in limited data scenarios. Furthermore, while extensive research exists on continual pre-training for
classification datasets (Lin et al., 2022; Cheng et al., 2023; Reed et al., 2022; Tang et al., 2024), the distinct
challenges posed by semantic segmentation warrant separate investigation, as features of foundation models
often perform differently between classification and segmentation tasks (Su & Ji, 2024; Caron et al., 2021;
Oquab et al., 2024).

Therefore, we focus our work on identifying an appropriate data-efficient technique for the continual SSL
pre-training of foundation models with limited unlabeled data, tailored for downstream semantic segmentation.
Our key contributions include:

• We explore the benefits of SSL-based continual pre-training for semantic segmentation under limited
data conditions. To this aim, we employ a trainable adapter (Lu et al., 2023) after the self-attention
layers in ViTs, in order to mitigate catastrophic forgetting during continual SSL pre-training.

• We propose a data-efficient augmentation strategy centered on patch-wise strong blurring, instead of
the typical patch-wise or block-wise masking approaches. This seemingly simple modification proves
particularly effective in facilitating the learning of inter-patch relationships, especially in limited data
settings.

• We propose explicit local and regional consistency enforcement to improve learning dense features with
limited data. These constraints help to learn more distinct spatial features crucial for segmentation
tasks. Specifically, we propose a regional consistency mechanism by penalizing feature inconsistency
between the student (base encoder) and teacher (momentum encoder) within spatial patch groups,
processed through a cross-attention layer. In this context, we sample the region features based on
attention maps to leverage the semantic content already learned by the original model. Alongside
the local patch-wise consistency, the regional consistency helps in learning better spatially distinct
features suitable for semantic segmentation.

We provide model-specific experiments with existing state-of-the-art foundation models, while comparing our
proposed SSL with standard SSL approaches. We validate our approach through experiments across four
datasets: ADE20k (Zhou et al., 2017), Pascal Context (Mottaghi et al., 2014), Cityscapes (Cordts et al., 2016)
and LoveDA (Wang et al., 2021a) (satellite images), showing performance improvements on downstream
segmentation task after applying the proposed SSL approach in continual pre-training.

2 Related Works

2.1 SSL for global image understanding

SSL methods for vision aim to learn rich visual representations from large-scale unlabeled data by enforcing
various learning objectives and paradigms. One prominent paradigm is joint embedding networks, exemplified
by methods like MoCo (He et al., 2020) and DINO (Caron et al., 2021). MoCo employs contrastive learning
with a memory bank for gathering negative examples (He et al., 2020; Wu et al., 2018), while later approaches,
such as SimCLR (Chen et al., 2020b) and MoCo-V3 (Chen et al., 2021), eliminate the memory bank and
use training batch samples as negatives. In contrast, methods like DINO (Caron et al., 2021), BYOL (Grill
et al., 2020), and SimSiam (Chen & He, 2021) forego negative pairs altogether, focusing instead on positive
pair similarity. Techniques for achieving this include contrastive learning (e.g., ZeroCL (Zhang et al., 2022)),
clustering (e.g., SwAV (Caron et al., 2020), SeLa (Asano et al., 2020), MSN (Assran et al., 2022)), and
alternative objectives such as redundancy reduction in Barlow Twins (Zbontar et al., 2021).

Another paradigm, inspired by Natural Language Processing (NLP) (Radford et al., 2018; Devlin et al.,
2019), is generative SSL. Examples include iGPT (Chen et al., 2020a), which reconstructs masked pixels,
and vision-specific approaches like BEiT (Bao et al., 2022) and MAE (He et al., 2022), which reconstruct
masked patches. More recently, I-JePa (Assran et al., 2023) advanced this concept by predicting embeddings
of masked patches using contextual and target encoders. Hybrid approaches, such as iBoT (Zhou et al., 2022),
DINOv2 (Oquab et al., 2024), combine joint embedding learning with masked image modeling techniques like
those in MAE (He et al., 2022).
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2.2 SSL for dense prediction

SSL methods tailored at dense prediction tasks, including semantic segmentation, have gained special attention
in recent years. These methods can be grouped into three main categories:

Learning local features This group emphasizes learning representations at the pixel or patch level.
Methods like PixPro (Xie et al., 2021c) and DenseCL (Wang et al., 2021b) employ contrastive learning to
enforce consistency between pixel representations across different views. DetCo (Xie et al., 2021a) integrates
instance-patch and patch-level contrastive losses, achieving strong object detection performance without
compromising image classification results. LOCA (Caron et al., 2024) clusters matching patch features between
query and reference views, encouraging consistent distributions of patch-level clusters. By back-tracking
random augmentations (Pinheiro et al., 2020), LOCA establishes patch correspondences. In our approach, we
adopt a similar strategy for local consistency, but avoid LOCA’s constraints of smaller query images relative
to the reference, allowing for richer information. Furthermore, instead of LOCA’s clustering approach, we
enforce an inter-view local consistency using a DINO-like objective.

Enhancing spatial awareness The second category focuses on providing location awareness during
pre-training. LOCA (Caron et al., 2024) predicts the positions of query patches within a reference image.
Similarly, UP-DETR (Dai et al., 2022) extends the DETR (Carion et al., 2020) framework to localize random
patches. Other approaches solve spatial reasoning tasks, such as rearranging jigsaw puzzles (Zhai et al., 2022)
or identifying incorrect patch positions (Sameni et al., 2023). More recently, ADCLR (Zhang et al., 2023b)
introduces query patch tokens, treating cropped image regions as additional class tokens, enhancing spatial
awareness during pre-training.

Maximizing regional or object-level similarity This group of methods focuses on similarity within
regions or at the object level. ReSim (Xiao et al., 2021) aligns representations of overlapping sliding window
regions across views. At the object level, methods like SoCo (Wei et al., 2021), ORL (Xie et al., 2021b), and
SCRL (Roh et al., 2021) employ techniques such as selective search which are very expensive. SelfPatch (Yun
et al., 2022) defines regions as the set of patches in the direct neighborhood of a central patch and enforces
similarity between these neighbors. FLSL (Su et al., 2023) on the other hand introduces intra- and inter-view
clustering, attracting representations of the same concept while repelling clusters of different concepts across
augmentations. Finally, the most recent work UDI (Su & Ji, 2024) encourages multimodal local predicitions
by adding an additional class token and solve the semantic misalignment problem.

In this work, we use UDI pre-trained model to initialize our backbones for continual pre-training as UDI (Su
& Ji, 2024) showcases strong results in SSL for dense prediction tasks. We then leverage the best performing
model and show consistent improvements using our pre-training strategy in continual pre-training for semantic
segmentation.

2.3 Continual pre-training

Recent works have explored unsupervised continual pre-training as a means to adapt large-scale pre-trained
models to new domains. These approaches aim to bridge the gap between general-purpose pre-training
and downstream domain-specific tasks by refining representations learned on source domains. Hierarchical
Pre-Training (HPT) (Reed et al., 2022) introduces a framework for self-supervised continual pre-training,
where a model trained on source domain data is further pre-trained on target domain data by finetuning
all model weights in a sequential framework. Other approaches adapts ViTs using masked image modeling
on target domain (Mendieta et al., 2023). More recent efforts have explored parameter-efficient adaptation
strategies, such as incorporating lightweight modules like adapters (e.g., LoRA) to reduce compute cost
(Scheibenreif et al., 2024; Khanna et al., 2025). While these methods demonstrate the promise of continual
pre-training, they are primarily developed for downstream classification tasks and rely on large-scale datasets
(typically exceeding 100k images). In contrast, our work focuses on designing a continual self-supervised
pre-training pipeline tailored to dense prediction tasks, specifically semantic segmentation, in data-scarce
target domains.
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3 Preliminaries and Problem Formulation

In this section, we describe the learning premise with detailed description of the tools and the problem
formulation.

3.1 Vision Transformers

Let X ∈ RC×H×W be an image, where H and W represent the height and width of the image, respectively,
and C the number of channels. A Vision Transformer model (ViT) (Dosovitskiy et al., 2020) considers the
image x as a set of N non overlapping patches xi ∈ RCP 2 , of resolution P × P and with C channels. These
patches are then projected through a linear layer to a space of dimension D, such that zi = Wx(i) + Ei

pos,
where W ∈ RD×CP 2 is a linear projection and Ei

pos ∈ RD is the positional embedding for the patch at index
i. A learnable token z[CLS] ∈ RD, referenced as [CLS], is prepended to the sequence of patches to extract
global information from the image. The resulting input sequence is thus defined as z = [z[CLS], z1, z2, . . . , zN ].
Then, ViTs take the input e to produce global level (e[CLS]) and patch level (ei) representations by using its
encoder. In the same way as in (Yun et al., 2022; Zhang et al., 2023b), we refer to the encoder as fθ with
parameters θ and we use Equation (2) to represent the whole process of a ViT:

fθ(x) = fθ([z[CLS], z1, z2, . . . , zN ]) (1)

= [f [CLS]
θ (x), f

(1)
θ (x), f

(2)
θ (x), . . . , f

(N)
θ (x)], (2)

with f
[CLS]
θ (x) and f

(i)
θ (x) being the final representations of the global image token [CLS] and the i-th patch,

respectively.

3.2 Continual pre-training with adapters

Our interest is to improve the SSL ViT features via a task-agnostic SSL framework in the continual learning
setup. Therefore, we limit our work’s investigation to finding the right SSL framework for continual learning
rather than exploring different continual learning paradigms. Among the various continual learning approaches,
adapter-based (Ding et al., 2022; Lu et al., 2023; Hu et al., 2022), and memory or replay based (Winter
et al., 2024; Reed et al., 2022; Wang et al., 2024) strategies are considered to be state-of-the-art. However,
due to their simplicity and compatibility with a wide range of architectures, adapter-based methods are
widely used in continual learning (Scheibenreif et al., 2024; Khanna et al., 2025) and finetuning. We therefore
consider a simple adapter named UniAdapter (Lu et al., 2023) composed of two linear layers with activation
for adapting features after every self-attention layer in ViT. Therefore, given a pre-trained SSL model,
our investigation involves training only the adapter layers while freezing the model weights, following the
standard practice. Note that, by using the parameter-efficient adapter used typically for finetuning models,
our problem formulation departs from previously used SSL continual learning, for which all network layers
are trained (Reed et al., 2022). Our choice is mainly motivated by the need to isolate natural catastrophic
forgetting from the suitability of the SSL framework (see Table 2).

Specifically, in this work we adopt an adapter with a down-projection layer Wdown ∈ RD×r, a nonlinear
activation function σ (notably ReLu (Agarap, 2018)), and an up-projection layer Wup ∈ Rr×D, where D and
r are the embedding and bottleneck dimensions, respectively. The adapter blocks are employed after each
attention layer. More specifically, with x being the output of a ViT-block, we have the corresponding output
of the adapter defined as:

x′ = Adapter(x) = x + s σ(xWdown)Wup, (3)

where s > 0 is a scaling factor.

3.3 Problem formulation

Given an encoder trained via SSL (Su & Ji, 2024; Caron et al., 2021), we are interested in improving the
output feature embedding e by training only the adapter parameters θA via SSL. Thus we write the new
ViT parameters as θA, resulting in a different feature embedding e′ given an input image. Here θA denotes
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the trainable parameters of the Adapter layers. Given a new target dataset T , our problem is to study and
develop the most suitable SSL framework that maximizes the performance of e′. We measure the performance
of the feature embedding e′ by finetuning our model for semantic segmentation together with an additional
decoder. In other words, we use semantic segmentation finetuning as the representative metric for gauging
feature embeddings e′.

4 Method: GLARE pre-training

Figure 1: Overview of GLARE continual pre-training framework. Given an image, two views X and X ′ are
generated with image-level augmentation. Each view goes through the base and momentum encoders fθ, θA

and fθ′,θ′
A

. All the parameters are frozen except for those of the adapter on the base encoder. GLARE applies
three levels of feature consistency during the pre-training. Firstly, global consistency is considered on [CLS]
tokens (Lglob) of the two views Section 4.1. Secondly, regional consistency is applied on sampled regions,
with their representations obtained using a cross-attention module to calculate Lreg Section 4.2. Finally, we
enforce local consistency focusing on patch-augmentation consistency with distorted vs. not distorted patches
of the same view (Lloc1) and inter-view local consistency on matching patches from the two views (Lloc2).
Section 4.3

In this section, we describe our method for pre-training the model parameters θA on the target dataset T
using our proposed SSL strategy.

GLARE (Global Local and Regional Enforcement) is an SSL framework focused on learning representations
at different levels during the pre-training process. When we as humans look at a picture, in practice we
focus our attention to varying levels of detail (Navon, 1977; Shi et al., 2014). We can summarize these levels
as 1) the image as a whole, 2) as a set of regions/objects, and 3) as a collection of specific details on these
regions, which can be encoded into patches or pixels. GLARE, inspired by this concept, is designed as a
three-level pre-training strategy, combining the enforcement of global, regional, and local consistency for
learning coarse to fine-grained representations, which are crucial to develop a more in-depth understanding of
image data. We adopt the usual student-teacher framework for self-supervised learning described in Caron
et al. (2021); He et al. (2020); Chen et al. (2021); Yun et al. (2022); Zhang et al. (2023b). Following the
same naming convention as in Chen et al. (2021), we consider two ViT encoders: a base encoder fθ,θA

and a
momentum encoder fθ′,θ′

A
, parameterized by (θ, θA) and (θ′, θ′

A), respectively. The parameters related to the
momentum encoder (θ′, θ′

A) are updated through an exponential moving average (EMA) of those of the base
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encoder (θ, θA), as in He et al. (2020). Figure 1 describes GLARE pre-training strategy. Specifically, in our
continual pre-training setup, we train only the adapter parameters θA of the base encoder and update those
of the momentum encoder θ′

A through EMA as stated in Section 3.3. In the following sections, we describe
more in detail the three levels of consistency enforced.

4.1 Global feature consistency

This pre-training objective focuses on understanding the overall picture of an image, also referred to as
image-level understanding. Early pre-training methods such as Caron et al. (2021); He et al. (2020); Chen
et al. (2021) have tackled this problem using different techniques. The common idea is to have the model
learn representations that are invariant to transformations on the image level by maximizing the similarity of
representations between augmented views of the same image.

Given an image I, a positive pair of views (X, X ′) is generated by applying random augmentations. In this
work, we consider enforcing global consistency by maximizing the similarity of the representations of this
positive pair, specifically employing the DINO loss (Caron et al., 2021):

Lglob = H
(

gλ

(
f

[CLS]
θ,θA

(x)
)

, sg
(

gλ′

(
f

[CLS]
θ′,θ′

A
(x)

)))
(4)

where H(a, b) = −a log b is the cross-entropy loss, sg(·) is the stop gradient operation, and gλ is an MLP
projection head commonly used in most SSL methods (Caron et al., 2021; Chen et al., 2021; Yun et al., 2022;
Zhang et al., 2023b; Su et al., 2023). The parameters λ′ and θ′

A are updated with an exponential moving
average of λ and θA.

4.2 Regional level consistency

The next pre-training level involves learning region/object representations: we want the model to extract
semantic information from regions, whether them being some specific objects (animal, person, etc.) or the
background. We aim to enforce the consistency of the representations between two correspondent regions
of two views that contain the same semantics. In the context of self-supervised learning, we do not have
access to any explicit annotation such as bounding boxes or segmentation masks. We therefore approximate
candidate regions through sampling operations.

Region Sampling This method refers to providing region proposals, similarly to what was done in early
object detection models like R-CNN (Girshick et al., 2014), Fast-RCNN (Girshick, 2015), which use selective
search to find candidate regions. This process is quite expensive, especially in a self-supervised learning
scenario. For that reason, we consider two strategies:

• Random sampling: for each region, we randomly sample a starting patch and a number of rows and
columns of patches corresponding to the size of our candidate region within an interval [minp, maxp],
where minp, maxp define the minimum and maximum of patches to consider.

• Attention–aware region sampling: the attention map of a block of a self-supervised ViT encoder
often contain several insights on an image. In fact, over the different heads of the last block, the
attention is directed towards different regions, as presented in Figure 2. Consequently, to enforce more
semantically-rich regions, we use the attention from the different heads of the encoder to generate
the starting patch for candidate regions. In this case, a starting patch is the one getting the most
attention on a specific head. From the starting patch, we define the region using a similar process as
in random sampling. This is feasible primarily in the context of continual pre-training, as it leverages
publicly available pre-trained models that already exhibit a useful signal for attention-aware region
sampling—something not achievable when training models from scratch.

All results presented in this work employ attention-aware region sampling, as we determined it to be more
effective. For more details, see the supplementary material.

6



Under review as submission to TMLR

Figure 2: Attention map of the last block of a DINO (Caron et al., 2021) pre-trained model over different
heads on an image. The different heads have their attention directed toward specific regions in the image.
Some heads focus more on the dog on the left, others on the dog on the right and also on the background.

Region correspondence Let R be a candidate sample region from the view X of the student network,
with zr being the representation of a patch in R. By back-tracking the augmentations, we can find the
correspondent region R′ on the view X ′ of the teacher network, with patch representations defined as z′

r. To
encourage the model to learn region-semantic information which aligns with the context, we first extract the
semantic context of the query region R with respect to the view X, through a cross-attention module:

z̃r = CA(zr, Z, Z) = (WvZ)softmax(τ(WkZ)T (Wqzr)), (5)

where Wq, Wk, and Wv are learnable matrices of the cross-attention module, Z the representation of the
view X and τ a scaling factor. We then proceed by enabling semantics sharing which extracts the semantics
from the correspondent region R′ through the query region R, by using the same cross-attention module.
This helps the model to extract only relevant information from R′, since we know from construction that
there are inherent differences between R and R′. We obtain the new representation defined as:

z̃′
r = CA(z′

r, ZR, R) = (WvZR)softmax(τ(WkZR)T (Wqz′
r)), (6)

where ZR is the representation of the region R. Hence, region consistency is enforced with the following loss
function applied on the obtained representations z̃r and z̃′

r:

Lreg =
∑

z̃r∈ZR,z̃′
r∈ZR′

H (gλ (z̃r) , sg (gλ′ (z̃′
r)))) . (7)

4.3 Local consistency

The final level of pre-training that we consider is the local consistency. Under limited data, there are not
enough examples to guide SSL to preserve consistency of features between corresponding patches in the base
and momentum encoder. We propose and combine two approaches to encourage local consistency. First, we
apply random patch blurring, to encourage local patch features to be consistent to each other in the single
base encoder view. We call this patch-augmentation consistency. Additionally, for all patch features, we also
enforce local consistency between the base and momentum encoder. We call this inter-view consistency. Note
that patch features are the smallest spatial distinction of features in a ViT model. The goal is to extract local
semantics across views and between patches within a view to enhance the ability of the model to capture
smaller details.

Patch-augmentation consistency Firstly, we aim to alleviate the problem of limited data via separate
patch-level augmentations for a fraction of the total image patches. Specifically, we consider strong blurring
on 30% of random patches on the base encoder views. This process creates incomplete information on the
augmented patches. However, unlike the standard practice in Masked Image Modeling (MIM) (Zhou et al.,
2022; Zhang et al., 2023a; Oquab et al., 2024), we do not feed empty tokens for the blurred patches. Thus, we
expect the following: i) the attention between the local patches in the ViT model are used to “complete” the
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local patch feature and ii) additional scale robustness is imposed on the image patch feature via inter-patch
consistency. The main reason for not using MIM in this case, especially for out-of-domain datasets, is that it
is known to be data-intensive, requiring a large number of samples and training time to learn meaningful
representations (He et al., 2022). This challenge becomes even more pronounced with new domains that
exhibit high variability, unlike standard datasets like ImageNet (Deng et al., 2009), and with few samples as
typically encountered in continual pre-training. We also investigate other patch-level augmentations such as
rotation and noising, and blurring turns out to be the best-performing approach.

Once, a patch-level augmentation has been defined, we randomly apply it to a set of patches of the view X
and we distill the knowledge from the non-distorted patches using the same objective Lloc1 as in Zhou et al.
(2022); Oquab et al. (2024). Let Xm be a distorted version of the view X:

Lloc1 =
∑
mk

H
(

gλ

(
f

[mk]
θ,θA

(xm)
)

, sg
(

gλ′

(
f

[mk]
θ′,θ′

A
(x)

)))
, (8)

with f
[mk]
θ,θA

corresponding to the mask patches.

Inter-view local consistency Secondly, we learn local semantic information across different views of an
image through correspondence. Similarly, to what is done in Section 4.2, we apply a matching algorithm that
back-tracks the augmentation process to find correspondence between a patch from the student view X, and
the ones in the teacher view X ′. We then proceed by enforcing the consistency between the correspondent
patches in the two views X and X ′. Let x(s) be a patch of the student view X and C(x(s)) = {t ∈ h(x(s) | X ′)}
the set of indices of the correspondent patches of x(s) in the teacher view X ′, with h(x(s) | X ′) being a
function which maps a patch in student view to the ones in the teacher by providing the correspondent
indices. We can then write the loss function for a given x(s) as:

L
(s)
loc2

=
∑

t∈C(x(s))

H
(

gλ

(
f

(s)
θ,θA

(x)
)

, sg
(

gλ′

(
f

(t)
θ′,θ′

A
(x′)

)))
, (9)

and we then have Lloc2 =
∑

x(s) L
(s)
loc2

.

Therefore, the local level consistency loss is then defined by Lloc = Lloc1 + Lloc2 . Finally, the overall GLARE
objective including all pre-training levels is then defined as:

L = Lglob + Lreg + Lloc. (10)

5 Experiment Setup

We use ViT-S/16 (Dosovitskiy et al., 2020) for our experiments due to its cost-efficiency balance between
training cost and performance, as in Su & Ji (2024). We apply continual pre-training for 100 epochs on
the target dataset, after observing lower performance when training longer. We also used a register token
in our ViT encoder as in Darcet et al. (2024); Su & Ji (2024). We use a batch size of 512, and a shared
projection head across the different pre-training levels as done in Su & Ji (2024); Zhang et al. (2023b); Zhou
et al. (2022) with the output dimension of K = 8192. The learning rate is linearly increased for the first
epoch to its base value calculated using the linear scaling rule in Chen et al. (2020b), which is lr = 1.5 · 10−4.
After warmup, the learning rate is decreased using a cosine scheduler (Loshchilov & Hutter, 2022). The
weight decay is set to 0.1 and we use AdamW optimizer (Loshchilov & Hutter, 2017). We follow the data
augmentations of BYOL (Grill et al., 2020) which was also used in Caron et al. (2021) (i.e. color jittering,
gaussian blur, solarization) on random resized crops. Specifically, given an input image we generate 2 global
views of resolution 224 × 224 and 10 local views of resolution 96 × 96 as in DINO (Caron et al., 2021).

We compare GLARE with SOTA SSL methods described in Su et al. (2023); Su & Ji (2024) on ViT-S by
analyzing the performances of these pre-training methods against GLARE when they are used from scratch
or in a continual pre-training setup. In this work, we initialize our model using the pre-trained weights from
UDI (Su & Ji, 2024), which currently represents the state-of-the-art in leveraging self-supervised learning
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for downstream segmentation tasks. We then train only the parameters of the adapter layer as shown in
Section 3.2.

All our experiments are performed employing 8 NVIDIA® A100 GPUs, with 80 GB of memory each.

6 Main Results

In the following, we use the notation sslA → sslB to present the results of our experiments. This means that
starting from the pre-trained model obtained using the pre-training strategy sslA on ImageNet-1k (Deng
et al., 2009), we continue the pre-training using the strategy sslB on a specific target dataset.

6.1 Semantic segmentation performance on different benchmarks

In Table 1, we report the performance on semantic segmentation of models obtained by continual pre-training
with different methods starting from UDI weights (Su & Ji, 2024). We report the average mIoU scores
and standard deviation after finetuning 3× the pre-trained models on semantic segmentation using FPN
(Kirillov et al., 2019). We consider 3 classes of datasets, namely general domain: ADE20k (Zhou et al., 2017),
Pascal Context (Mottaghi et al., 2014), driving: Cityscapes (Cordts et al., 2016) and aerial: LoveDA (Wang
et al., 2021a), which contain respectively 20k, 4998, 2975 and 2522 images in their training set, making them
suitable for continual pre-training in limited data scenarios (< 100k images). For each experiment, we first
initialize the weights of the backbone with those of the starting model (UDI), then we do continual SSL
pre-training with an adapter (UniAdapter) on the target dataset by training only the adapter parameters.
The obtained model is then used for finetuning for segmentation. We observe that GLARE reports consistent
improvement for continual pre-training from UDI weights over all the datasets. On ADE20k, we obtain
an improvement of +0.4 over UDI and on LoveDA, which is an out-of-domain dataset with respect to the
original pre-training dataset of UDI (ImageNet (Deng et al., 2009)), we achieve an improvement of +0.6.
This shows that GLARE is able to take advantage of existing encoded features and new data distribution to
improve semantic understanding, which transfer in semantic segmentation.

Table 1: Comparison of SSL pre-trained models and continual pre-trained models starting from UDI (Su &
Ji, 2024) on 4 semantic segmentation benchmarks. We report mIoU on the validation sets. We use the FPN
(Kirillov et al., 2019) framework with 20k iterations and 2k for LoveDA. GLARE continual pre-training from
UDI consistently shows improvements over the other pre-training strategies.

Method Backbone ADE20k P.Cont Cityscapes LoveDA
UDI (Su & Ji, 2024) ViT-S/16 41.2 (± 0.11) 49.1 (± 0.04) 74.7 (± 0.01) 50.9 (± 0.02)

UDI → UDI ViT-S/16 41.1 (± 0.11) 49.2 (± 0.04) 74.9 (± 0.17) 51.1 (± 0.01)
UDI → FLSL ViT-S/16 41.2 (± 0.06) 48.7 (± 0.04) 74.2 (± 0.28) 49.9 (± 0.12)

UDI → GLARE ViT-S/16 41.6 (± 0.13) 49.3 (± 0.01) 75.3 (± 0.03) 51.5 (± 0.01)

6.2 Comparison with other continual pre-training methods

In this section, we compare two different continual pre-training methods: Hierarchical Pre-Training
(HPT) (Reed et al., 2022) and our adapter-based strategy, based on UniAdapter (Lu et al., 2023). We continue
the pre-training using these strategies, and then we evaluate the quality of the new features by finetuning on
semantic segmentation. We consider LoveDA (Wang et al., 2021a) for this experiment as its out-of-domain
nature can help better assess the quality of the strategy. Table 2 presents the results on three metrics: (a)
mean intersection over union (mIoU) averaged over all semantic categories, (b) all pixel accuracy (aAcc),
and (c) mean class accuracy (mAcc). We observe that overall the adapter-based strategy provides a better
improvement for continual SSL compared to HPT. In fact, HPT often results in performance degradation in
semantic segmentation, in contrast to what is usually observed for classification tasks.
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Table 2: Comparison of different continual pre-training framework. Experiments performed starting from
UDI (Su & Ji, 2024) pre-trained on ImageNet (Deng et al., 2009). We show the segmentation performance of
continual pre-trained models on LoveDA with a finetuning for 2k iterations.

Framework Pre-training mIoU aAcc mAcc

- UDI (Su & Ji, 2024) 50.9 70.0 63.8

HPT UDI → UDI 50.4 69.5 62.1
UDI → FLSL 50.9 70.1 63.1

UDI → GLARE 12.7 41.7 23.0

UniAdapter UDI → UDI 51.1 70.1 63.9
UDI → FLSL 49.0 68.5 60.9

UDI → GLARE 51.5 70.2 64.3

6.3 Influence of the SSL backbone

One important question to answer is the importance or influence of the SSL backbone which is used for
the continual pre-training of GLARE. We want to know whether the performance gain obtained starting
from UDI (Su & Ji, 2024) transfers as well when starting from other SSL backbones, in particular FLSL (Su
et al., 2023), DINO (Caron et al., 2021), all pre-trained on ImageNet-1k (Deng et al., 2009). To answer this
question, we present in Table 3 the performances of continual pre-training with GLARE starting from these
different SSL backbones. We perform continual pre-training on LoveDA (Wang et al., 2021a) and report
the results after finetuning for semantic segmentation. We observe from Table 3 that GLARE consistently
outperforms the original model when doing continual pre-training. We also see that starting from a strong
backbone (in this case UDI (Su & Ji, 2024)) helps to have bigger gains. Additionally, we hypothesize that the
pre-training strategy used in the original model influences how effectively GLARE can leverage it.

Table 3: GLARE continual pre-training starting from different SSL backbones pre-trained on ImageNet-1k.
We show the segmentation performance (mIoU) of continual pre-trained models starting from different SSL
backbones on LoveDA with a finetuning for 2k iterations on segmentation. We have original (org.) SSL
backbones vs continual pre-trained with GLARE (w. GLARE).

Pre-training DINO FLSL UDI
org. 50.3 50.3 50.9

w. GLARE 50.6 50.5 51.5

6.4 Do the continual pre-trained models forget?

In this section, we investigate how much our continual adapter-based pre-trained models forget their previously
learned knowledge. In particular, we consider GLARE continual pre-trained model as well as UDI continual
pre-trained model on LoveDA. We compare their performances against the original performances of the UDI
starting model on the datasets ADE20k (Zhou et al., 2017), Pascal Context (Mottaghi et al., 2014), Cityscapes
(Cordts et al., 2016), LoveDA (Wang et al., 2021a). Table 4 reports the finetuning performances. We observe
that instead of a decrease in performance relative to the original model, we maintain or outperform it. This
suggests that continual pre-training using adapters helps the model to get and maintain more semantic insight
from one dataset to another without degrading previous performances.
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Table 4: Evaluation of forgetfulness of our continual pre-trained models. We report the mIoU of the finetuned
models (using FPN (Kirillov et al., 2019)) on which we initially performed continual pre-training on LoveDA.

Pre-training Ptr. Data ADE20k P.Cont Citys.

UDI (Su & Ji, 2024) ImageNet (Deng et al., 2009) 41.1 49.2 74.7

UDI → UDI LoveDA (Wang et al., 2021a) 41.1 48.8 75.2
UDI → GLARE 41.3 49.0 75.0

7 Ablation Study

In this section, we investigate the effect of the different components of GLARE and their contribution to its
performance. We also provide additional ablations in the supplementary material. We report the finetuning
results of UDI → GLARE on LoveDA using FPN (Kirillov et al., 2019).

7.1 Different levels of understanding in GLARE

Our work proposes a pre-training strategy operating at different level of details. In Table 5, we show how
global, local, and region understanding interact with each other for downstream semantic segmentation.
For this experiment, we run the continual pre-training on 20% ADE20k and report the performance of the
finetuned model when considering some or all of the objectives. We observe that combining all levels of
details in the pre-training is crucial for the performance of the continual pre-trained model. In fact, GLARE
obtains +0.8 compared to only global consistency pre-training.

Table 5: Impact of the different pre-training levels in GLARE. We report the mIoU of finetuned continual
pre-trained models when trained with different levels of GLARE on LoveDA.

Global Regional Local mIoU

✓ - - 40.9
✓ - ✓ 41.1
✓ ✓ - 41.5
- ✓ ✓ 41.1
✓ ✓ ✓ 41.7

7.2 Influence of patch-level augmentations

Table 6: Ablation of patch-level augmentations. We consider continual pre-training with single or combinations
of different patch augmentations on LoveDA. We report the mIoU of the finetuned model on LoveDA using
FPN (Kirillov et al., 2019)

Masking Blurring mIoU

random block random block

- ✓ - - 50.9
✓ - - - 50.9
- - ✓ - 51.5
- - - ✓ 51.5
- - - - 51.3

A crucial aspect of GLARE is its ability to learn fine-grained details of the image during the pre-training
through local consistency enforcement. As explained in Section 4.3, we introduce patch-level augmentation as
a mean to increase local semantics during continual pre-training. In this section, we evaluate patch-level
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masking (typically used in iBoT (Zhou et al., 2022), DINOv2 (Oquab et al., 2024)) and blurring. Table 6
shows the results with the different augmentations when finetuned on LoveDA (Wang et al., 2021a). We
experiment with block-wise vs random application of masking and blurring during the pre-training. We
consider a prediction ratio r set as 0 with a probability of 0.5 and uniformly sampled from range [0.1, 0.5]
as in Zhou et al. (2022). We observe that applying random blurring provides the best result and we use it
for our continual pre-training setup on LoveDA. We hypothesize that in low-data regimes, blurring serves
as a more effective augmentation than stronger perturbations such as masking. Unlike aggressive masking,
blurring retains essential information, allowing the model to learn from partially distorted patches while
preserving semantic context.

8 Conclusion

In this work, we explore continual self-supervised learning, specifically for downstream semantic segmentation.
While traditional SSL methods are effective for general-purpose pre-training, we find that they struggle to
adapt to new domains when used for continual pre-training, particularly on out-of-domain datasets. To
address this, we use an adapter for efficient knowledge transfer and propose GLARE, an SSL framework that
learns representations at multiple levels: (i) global consistency at the image level, (ii) regional consistency via
attention-based candidate regions, and (iii) local consistency through patch-wise augmentation and inter-view
patch consistency. This multi-level approach equips the continual pre-trained model with semantically rich
representations that improve transferability for segmentation. Experiments on diverse datasets, including both
general and out-of-domain (satellite) images, demonstrate GLARE’s effectiveness in continual pre-training
for semantic segmentation. Our findings advance continual SSL for dense prediction tasks and offer practical
insights for adapting foundation models to specialized domains.
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A Details about Datasets

In this paper, we perform continual learning and report results on the 4 semantic segmentation datasets:
ADE20k (Zhou et al., 2017), Pascal Context (P.Cont) (Mottaghi et al., 2014), Cityscapes (Citys.) (Cordts
et al., 2016) and LoveDA (Wang et al., 2021a). We use the training set of these datasets to apply our
continual learning setup with different pre-training methods such as UDI (Su & Ji, 2024), FLSL (Su et al.,
2023), GLARE. We then finetune the resulting models for segmentation using FPN (Kirillov et al., 2019) and
report the performances of the models on the validation sets. In the following we provide more details on
these datasets.

ADE20k (Zhou et al., 2017). This dataset contains various scenes which are potentially cluttered with
many objects. It includes fine-grained labels with 150 semantic classes. The training set is composed of
20,210 images and the validation set contains 2,000 images.

Pascal Context (Mottaghi et al., 2014). This is a segmentation dataset with denser annotations, which
includes background classes like sky and grass in addition to foreground objects. The training set is composed
of 4,998 images and the validation set contains 5,105 images. This dataset has 60 semantic classes.

Cityscapes (Cordts et al., 2016). This dataset is designed specifically for urban street scenes, showcasing
objects in driving scenarios. It includes 19 semantic categories for segmentation. Its training set is composed
of 2,975 images and its validation set is composed of 500 images.

LoveDA (Wang et al., 2021a). This focuses on different geographical environments between urban and
rural. It contains high spatial resolution (0.3m) remote sensing images containing objects at different scales,
complex backgrounds and inconsistent class distributions. Its training set is composed of 2,522 images, its
validation set is composed of 1,669 images and test set of 1,796 images.

Moreover, these datasets differ between each other by their size and their domain. Indeed, by evaluating our
continual pre-training on these datasets we showcase the ability of our setup to work in scenarios with limited
data and also out-of-domain with respect to the dataset used to pre-train the initial weights (especially in
the case of LoveDA).

B Other Experimental Details

B.1 Image-level data augmentation

The augmentation settings in GLARE are based on the augmentation pipeline of BYOL (Grill et al., 2020).
In our approach, we begin by sampling two random crops from the input image using a large crop ratio (e.g.,
0.25 ∼ 1.0) of size 224 × 224. We then proceed by sampling 10 other crops with a smaller crop ratio (e.g.,
0.05 ∼ 0.25) of size 96 × 96. We use an asymmetric training process where the larger crops, usually referred
to as global crops, are passed to the momentum encoder and then all crops (both global and local, which are
the smaller ones) are passed to the base encoder. The distortions that we apply are:

• color jittering, with a probability of 0.8, brightness of 0.4, contrast of 0.4, saturation of 0.2 and hue
of 0.1;

• gray scaling, with a probability of 0.2, gaussian blurring and solarization with probabilities of (1.0,
0.0), (0.1, 0.2) and (0.5, 0.0) for the first, second global crops and the local crops, respectively;

• color normalization, with mean (0.485, 0.456, 0.406) and std. dev. (0.229, 0.224, 0.225).

B.2 Evaluation details

For evaluation, we perform semantic segmentation on our four segmentation datasets, described in Appendix A.
We follow the configurations of the package mmsegmentation1 for finetuning, within the FPN (Kirillov et al.,

1https://github.com/open-mmlab/mmsegmentation
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2019) framework. We consider two configurations for the finetuning: we use 20k iterations schedule for all
datasets except for LoveDA for which we use 2k iterations schedule. The resolution of input images during
the experiments is 512 × 512. Then, as performance metrics we calculate the mean intersection over union
(mIoU), the all pixel accuracy (aAcc) and the mean class accuracy (mAcc), for each dataset after finetuning.

B.3 Computation Time

Table 7 reports the continual pre-training time required of three configurations UDI → UDI, UDI → FLSL, and
UDI → GLARE on 100 epochs T100. The experiments are done on LoveDA (Wang et al., 2021a). We observe
that GLARE continual pre-training has higher requirement in terms of computation time. Nevertheless, the
continual pre-training is still relatively fast (30 min) since we are only training the adapter parameters for
continual pre-training. As for downstream segmentation finetuning, the computation requirement is the same
among all the configurations.

Table 7: Time requirements of continual pre-training.

Method T100

UDI → UDI 27 min
UDI → FLSL 18 min

UDI → GLARE 30 min

C Additional Ablations

C.1 Ablation of region sampling

One of the advantages of GLARE continuous pre-training pipeline is its ability to benefit from previously
pre-trained models by leveraging learned semantics. This is done for example with region-level understanding
which leverages the attention of the pre-trained model to guide region consistency enforcement. In this
section, we ablate the use of attention to guide the region sampling compared to random region sampling:
attention-aware region sampling and random sampling. Table 8 presents the results of finetuning the continual
pre-trained model on LoveDA on either of these strategies. We experiment with 3 and 6 randomly sampled
regions and with 6 regions sampled using attention-awareness. We observe that attention-aware sampling
shows an improvement of +0.29% compared to random sampling, which aligns with the hypothesis of having
more semantically meaningful regions using the attention map.

Table 8: Ablation of the region sampling strategy. Experiments performed on UDI-GLARE with a finetuning
of 2k iterations on LoveDA. M represents the number of sampled regions considered.

Strategy mIoU aAcc mAcc
random (M = 3) 51.3 70.0 63.8
random (M = 6) 51.4 70.2 64.0

attention-aware (M = 6) 51.5 70.3 64.3

C.2 Effect of blurring strategy

In this section, we study how the blurring is applied during the pre-training process. There are two possible
strategies which can be used: random and block-wise blurring applied on the patches. This is similar to what
can be done in masking (Zhou et al., 2022). Table 9 presents the results of models undergone continual
pre-training with GLARE using these two different strategies and finetuned on semantic segmentation. We use
LoveDA as our reference dataset. We observe that applying random blurring leads to the best performance.
Therefore, we decided to use that strategy for our main experiments in this work, unless stated otherwise.
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Table 9: Ablation of the block-wise vs. random blurring. Experiments performed with UDI-GLARE with a
finetuning of 2k iterations on LoveDA.

Method mIoU aAcc mAcc
random init. 19.3 37.4 34.4
block-wise 51.5 70.2 64.1

random 51.5 70.2 64.3

C.3 Effect of dataset scale

In this section, we evaluate the performance of our continual pre-training pipeline across different dataset
scales. Specifically, we conduct experiments on ADE20K and LoveDA using subsets of 10%, 20%, 50% and
100% of the data. The results are summarized in Figure 3. We observe that even with a small dataset of 2k
images (corresponding to 100% of LoveDA and 10% of ADE20K), our continual pre-training approach yields
improvements. However, for highly out-of-domain datasets like LoveDA, we hypothesize that performing
continual pre-training on a smaller set of unlabeled data can be detrimental. In contrast, ADE20K, which
consists of images more closely aligned with ImageNet-1K, does not exhibit the same issue.

Figure 3: Effect of dataset scale on the performance of GLARE continual pre-training applied on LoveDA
and ADE20k. The dashed gray line represent the baseline performance of UDI pre-trained model on the
respective dataset.

D Visualization of Attention Maps

In this section we visualize some attention maps from the last block of the ViT encoder, using the [CLS] token
as the query token. Figure 4 shows the attention from DINO (Caron et al., 2021), the original pre-trained
weights from UDI, and a GLARE continual pre-trained model starting from UDI (Su & Ji, 2024) weights,
finetuned on ADE20k. We observe similarities in how the attention is distributed across the images, focusing
on various details such as foreground objects, object parts, and the background. GLARE continual pre-trained
model demonstrates reduced noise relative to UDI, with its attention more precisely directed toward specific
objects or regions. When using GLARE for continual pre-training, the model leverages what has been learned
before and learns supplementary semantics specific to the dataset.
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Figure 4: Visualization of self-attention maps obtained from DINO, UDI and GLARE continual pre-trained
models from the last block of the ViT encoder.
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