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Abstract

Recent advancements in Large Language Mod-001
els (LLMs) have yielded remarkable success002
across diverse fields. However, handling long003
contexts remains a significant challenge for004
LLMs due to the quadratic time and space005
complexity of attention mechanisms and the006
growing memory consumption of the key-value007
cache during generation. This work intro-008
duces MemLong: Memory-Augmented Re-009
trieval for Long Text Modeling (MemLong),010
a method designed to enhance the capabilities011
of long-context language modeling by utiliz-012
ing an external retriever for historical infor-013
mation retrieval. MemLong combines a non-014
differentiable ret-mem module with a partially015
trainable decoder-only language model and in-016
troduces a fine-grained, controllable retrieval017
attention mechanism that leverages semantic-018
level relevant chunks. Comprehensive evalua-019
tions on multiple long-context language mod-020
eling benchmarks demonstrate that MemLong021
consistently outperforms other state-of-the-art022
LLMs. More importantly, MemLong can ex-023
tend the context length on a single 3090 GPU024
from 4k up to 80k1.025

1 Introduction026

Large Language Models (LLMs) have achieved re-027

markable success in various fields. However, due to028

the quadratic time and space complexity of vanilla029

attention mechanisms (Vaswani et al., 2017), it is030

challenging to extend the context length consider-031

ably, which poses significant limitations for applica-032

tions involving long-sequence tasks, such as long-033

document summarization (Koh et al., 2022) and034

multiple rounds of dialogue (Wang et al., 2024a).035

As a result, LLMs are often expected to maintain a036

long working capability (a.k.a. long context LLMs)037

to effectively handle these demanding scenarios.038

1Our code will be available at https://anonymous.com
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Figure 1: Illustration of Retrieval-Augment Genera-
tion(RAG) and Memory-Retrieval flow of MemLong.
(a) RAG can even degrade the generation performance
(yellow) when the length of the retrieved information
exceeds the model’s processing capacity. (b) Our ap-
proach utilizes an external retriever to fetch historical
information, which is then passed into the model as K-V
pairs rather than in text form.

To tackle the computational bottleneck, numer- 039

ous efforts have been made. The first line of work 040

focuses on reducing the computation of vanilla at- 041

tention mechanisms (Vaswani et al., 2017) by em- 042

ploying sparse attention operations (Beltagy et al., 043

2020; Wang et al., 2020; Kitaev et al., 2020; Xiao 044

et al., 2023a; Chen et al., 2023b; Lu et al., 2024). 045

Although these types of works can reduce com- 046

putational complexity to approximately O(n), it 047

often comes with trade-offs in model capability. 048

Therefore, Some works shift their focus to mem- 049

ory selection (Dai et al., 2019; Bertsch et al., 2024; 050

Yu et al., 2023). These approaches, as token-level 051

memory selection, can result in the truncation of se- 052

mantic information. Another recent line of work is 053

Retrieval-Augment Language Modeling (Wu et al., 054

2022; Wang et al., 2024b; Rubin and Berant, 2023). 055
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These works usually introduce a retrieval mecha-056

nism to enhance the model’s ability to handle long057

texts. However, these methods have several draw-058

backs. Firstly, the information stored in memory059

may experience distribution shifts due to changes060

in model parameters during training. Secondly,061

these methods often require retraining, which is im-062

practical in the era of large models. Finally, these063

models are often prone to processing long text in-064

puts at the expense of the original capabilities of065

the pre-trained model. To address the limitations066

of previous research, we posed the following ques-067

tion: Can we utilize the explicit retrieval capa-068

bilities of a retriever to approximate the implicit069

retrieval processes within the model?070

In this work, we propose MemLong, an efficient071

and lightweight method to extending the context072

window of LLMs. The key idea is to store past073

contexts and knowledge in a non-trainable mem-074

ory bank and further leverages these stored em-075

beddings to retrieve chunk-level key-value (K-V)076

pairs for input into the model.. MemLong is ap-077

plicable to any decoder-only pretrained language078

models by incorporating (1) an additional ret-mem079

component for memory and retrieval, and (2) a080

retrieval causal attention module for integrating081

local and memory information. The memory and082

retrieval process of MemLong is illustrated in Fig-083

ure 1(b). During generation,one text that exceeds084

the model’s maximum processing length is stored085

as context information in a Memory Bank. Sub-086

sequently, given a recently generated text chunk087

in a long document, we use the retriever to explic-088

itly retrieve past information, obtaining additional089

context information through index alignment.090

MemLong offers several benefits: (1) Distribu-091

tional Consistency: Unlike previous models that092

experienced a distribution shift when information093

was stored in memory, MemLong ensures the dis-094

tribution of cached information remains consistent.095

(2) Training Efficient: We freeze the lower layers096

of the model and only need to finetune the upper097

layers which greatly reduced computational cost.098

In our experiments, finetuning a 3B parameter ver-099

sion of MemLong on 0.5B tokens requires only100

eight 3090 GPUs for eight hours. (3) Extensive101

Context Window: Since only a single layer’s K-V102

pairs need to be memorized, MemLong is capable103

of extending the context window up to 80k tokens104

easily on a single 3090 GPU.105

Extensive experiments have demonstrated that106

MemLong exhibits superior performance in several107

aspects when compared with other leading LLMs. 108

MemLong outperforms OpenLLaMA (Touvron 109

et al., 2023) and other retrieval-based models on 110

several long-context language modeling datasets. 111

In retrieval-augmented in-context learning tasks, 112

MemLong achieves an improvement of up to 10.2 113

percentage points over OpenLLaMA. 114

2 Preliminary 115

2.1 Task Definition 116

Language models are designed to define probability 117

distributions over sequences of tokens, effectively 118

predicting the likelihood of a sequence within a 119

given language. Given such a sequence x1, . . . , xn, 120

the standard approach to modeling its probability 121

is via the next-token prediction: p(x1, . . . , xn) = 122∑n
i=0 pθ(xi|x<i), where x<i := x1, . . . , xi−1 is 123

the sequence of tokens proceeding xi. Differently 124

from the standard language modeling objective, we 125

not only use the current context to make next-token 126

predictions, but also utilize external retrieval to ob- 127

tain relevant information and perform knowledge 128

fusion at the upper layers of the model. Specifi- 129

cally, given a sequence consisting of l tokens and 130

the size of each chunk τ , we partition it into a long 131

sequence of ν = l
τ non-overlapping chunks , which 132

denoted as C = (c1, . . . , cν). Correspondingly, its 133

textual form is divided into ν text chunks, which 134

denoted as T = (t1, . . . , tν). In each step, we per- 135

form causal language modeling on ci in the lower 136

layers, while in the upper layers, we conduct fine- 137

grained controllable retrieval on ti for the fusion of 138

additional information. After do this, our language 139

modeling objective becomes 140

p(x1, . . . , xn) =

n∑
i=0

pθ(xi|R(ti), x<i) (1) 141

where R(ti) denotes the retrieval of neighboring 142

chunks of ti where xi is located. 143

2.2 Module and Operation Definitions 144

As shown in Figure 2, the Ret-Mem module com- 145

prises a Retriever and a Memory component for 146

information exchange. Initially, we define the 147

Memory component as M and the Retriever as 148

R, and their corresponding operations M(·) and 149

R(·). Furthermore, we specify the dimension of 150

the model as dmodel , the dimension of the retriever 151

as dret. The Memory module includes two seg- 152

ments: K-V pairs and corresponding Representation 153
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Figure 2: An example of MemLong : In the lower layers, where the model remains static, causal language modeling
is performed on the entire chunk ci, and subsequently, ci is cached in both embedding and K-V pair forms. Lastly,
the upper layers are finetuned to harmonize retrieval preferences and integrate the retrieved content.

Embeddings. The dimension for both keys and val-154

ues is represented as Rdmodel and for Embeddings155

as Rdret . It is crucial to emphasize that the actual156

retrieval process involves the embeddings repre-157

senting the chunks, not the K-V pairs. The Retriever158

is essentially a pretrained dense embedder with ex-159

cellent representation capabilities. MemLong use160

it to encode each chunk into Representation Em-161

beddings. Since it produces a one-dimensional162

representation vector for one chunk, the memory163

footprint remains minimal even if the memory size164

is substantial.165

3 MemLong166

3.1 Overview167

As illustrated in Figure 2, each step involves an168

input of a chunk ci, where the original text for that169

chunk is ti. In the lower layers where the model is170

frozen, the standard causal attention is applied to171

the entire ci. For the final layer of the lower layers,172

we refer to it as the memory layer. Following each173

traversal of the memory layer, two key operations174

are performed. The first operation is retrieval, de-175

picted by the red line, where ti is utilized to fetch176

the most pertinent K-V pairs. The second operation,177

indicated by the blue line, involves caching the ac-178

quired K-V pairs along with their associated chunk179

representation. Within the model’s upper layers,180

the retrieved K-V pairs are integrated with the cur-181

rent input context, subsequently tuning the model 182

parameters to calibrate the retrieval reference. Sub- 183

sequent sections will explore the various facets of 184

the MemLong framework and their intricacies, en- 185

compassing Retriever and Dynamic Memory Man- 186

agement (§ 3.2), Attention Reformulation (§ 3.3), 187

and Inference with MemLong (§ 3.4). 188

3.2 Retriever and Dynamic Memory 189

Management 190

We offer a comprehensive explanation of the re- 191

trieval process and the dynamics of memory man- 192

agement. 193

Retrieval Process. Given our objective to replace 194

traditional kNN retrieval based on K-V pairs with 195

explicit retrieval, we aim to pre-fetch the desired 196

information when feasible before each model in- 197

put. Specifically, for each potential query block 198

cq = ci and its corresponding text block tq = ti, 199

we first pass it through Retriever and then obtain 200

a representation embedding rq = R(tq), where 201

rq ∈ Rdret . Subsequently, we use this representa- 202

tion embedding to perform retrieval against the em- 203

beddings in M to obtain the required k chunk-level 204

indices. We compute the cosine similarity between 205

the retrieval representation rq and the embeddings 206

stored in Memory M. Finally , we get the top-k 207

indices zq = TopK{Cos (rq)} for the cq, where 208

zq ∈ Rk. Due to the contiguous nature within 209

the blocks, we can easily extend the obtained in- 210
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dices to cover the entire relevant range for retrieval.211

Finally, we retrieve the corresponding K-V pairs212

z̃q ∈ Rk×τ×dmodel from Memory based on these in-213

dices and used for the upper layer. It is noteworthy214

that we have equipped the Memory with a counter215

mechanism to record the frequency of retrievals216

for each index contained therein. This frequency217

data will subsequently serve as a basis for dynamic218

memory updating, allowing for the prioritization219

of more frequently retrieved information.220

Memory Process. The memory process syn-221

chronously stores the K-V pairs from the memory222

layer and the representation embedding previous223

calculated for retrieval , ensuring that indices for224

K-V pairs correspond accurately to their represen-225

tation embeddings (see Figure 2, right, blue line).226

For every possible chunk memory cm = ci, and227

its corresponding text chunk tm = ti, we divide228

the memory process into two parts: the first part229

details how to cache the K-V pairs, and the second230

part explains how to store the corresponding repre-231

sentations. Firstly, we input cm into the MemLong232

and get the output from the memory layer. It is233

worth noting that, since the lower layers are frozen234

during training, we can ensure that the distribution235

of the output K-V pairs is consistent. This consis-236

tency is crucial for avoiding the distribution shift is-237

sue, which was previously observed in models like238

MemTrm (Wu et al., 2022). Our memory operation239

is highly efficient because it only involves storing240

the representations needed for retrieval, rm = rq,241

thereby avoiding redundancy. After the retrieval242

for all chunk pairs is complete, the memory op-243

eration—denoted as M(k, v; rm)—synchronously244

updates the memory with both the Key-Value pairs245

and their corresponding representations.246

Dynamic Memory Update. When memory over-247

flows, we use the Counter to update memory intelli-248

gently. In our experiments, we keep the latest 10%249

of memory content due to its potential relevance,250

discard the oldest 10% as likely outdated, and prior-251

itize the middle 80% based on retrieval frequency,252

deleting the least accessed entries until memory us-253

age drops to 50%. This selective pruning balances254

recency and relevance, retaining valuable informa-255

tion and removing less pertinent data. Unlike tradi-256

tional FIFO strategies, our method focuses on re-257

trieval frequency to efficiently prune redundant in-258

formation, maintaining a high-quality dataset. The259

decision to dynamically update the datastore is a260

trade-off between effectiveness and efficiency. For261

Figure 3: Illustration of retrieval causal attention. Local
causal attention is applied to the recent context, while
chunk-level K-V pairs, obtained through the retrieval
method, enable bidirectional attention without informa-
tion leakage due to their historical nature.

tasks requiring long-term dependencies, storing all 262

information can enhance comprehensive process- 263

ing, but for shorter-term tasks, dynamic updates are 264

more suitable. Dynamic updates control memory 265

size to prevent out-of-memory issues, discard stale 266

information, and reduce retrieval overhead, ensur- 267

ing efficiency without significantly compromising 268

performance. 269

3.3 Attention Reformulation 270

In the trainable upper layers of the model, we re- 271

vised the attentions to fuse with long-term mem- 272

ory. As illustrated in Figure 3, unlike the tradi- 273

tional Transformer decoder layers that utilize Multi- 274

Head Attention (Vaswani et al., 2017), we pro- 275

pose a Retrieval Causal Attention to extend it to 276

a joint-attention mechanism and propose a long- 277

term memory fusion process to enable each token 278

to attend on both local contexts and chunk-level 279

past contexts which have complete and continu- 280

ous semantics. With the head-wise hidden state 281

output from previous layer H l−1 ∈ R|x|×dmodel 282

and the corresponding retrieved key-value pairs 283

are z̃q = {K̃i, Ṽi}
ω

i=1 ∈ Rk×τ×dmodel , the output 284

hidden state for the next layer H l is computed as: 285

Sa = Softmax

(
QKT

d

)
(2) 286

Sm = Concat
{
Softmax(z̃qi )

}ω

i=1
(3) 287

To avoid the interference caused by the retrieval at- 288

tention scores Sm at the initial stage of training, we 289

adopt a multi-head attention mechanism following 290

the approach of the LLaMA-adapter(Zhang et al., 291

2023b) : 292

Sg
l = [(Sm) · gl; (Sa)]

T (4) 293

4



Finally, we concatenate the Ṽ and V to obtain H l:294

Vl =
[
Ṽc;Vi

]
, H l = Sg

l Vl (5)295

3.4 Inference with MemLong296

When MemLong receives an input exceeding the297

length, we treat it as two segments: the prefix and298

the main. We will separately describe the encoding299

of long inputs and the generation of long outputs300

during the inference phase. When MemLong re-301

ceives long inputs, it first divides the prefix into302

multiple non-overlapping chunks and computes the303

from its memory layer, which ensures that the num-304

ber of tokens involved in the attention is equal to305

the chunk size, which is much smaller than the306

length of the input. It is important to note that each307

chunk is interrelated (e.g., the t-th chunk needs to308

process the of the previous t− 1 chunks).309

The second step is to select the k most relevant310

chunks for the main based on chunk-level retrieval311

representations and to obtain their key and value312

representations. After this, for the upper retrieval313

layers, the attention window for retrieval is equiva-314

lent to k ∗ τ , which is also smaller than the input315

length. Finally, both length-restricted causal atten-316

tion and retrieval attention is performed efficiently.317

4 Experiments318

We evaluate our proposed MemLong model on var-319

ious tasks that require in-memory long-context pro-320

cessing: (a) long-context language modeling and321

retrieval-augmented language modeling; (b) scal-322

able in-context learning capable of handling a large323

number of demonstration examples in memory.324

4.1 Implementation Details325

Training Details. We use OpenLLaMA-3B as326

the pre-trained backbone LLM with Rotation po-327

sition coding (Su et al., 2024). Due to hardware328

constraints, we opted to train our models using the329

LoRA (Hu et al., 2021) technique. The backbone330

LLM holds a L = 26, H = 32, d = 100 architec-331

ture. Unless specified otherwise, we use the 13-th332

layer as the memory layer and the [14,18,22,26]333

layers as the retrieval-augment layers. The train-334

ing for retrieval-augmented adaptation iterates only335

on 0.5B tokens with 1024 sequence length. Mem-336

Long’s trainable parameters are from 14 to 26 lay-337

ers. We utilized the slimpajama dataset sampled338

by (Fu et al., 2024) as our training corpus.339

Position Remapping. There are several chunk- 340

level K-V in the M retrieved for generation. Due 341

to the uncertainty of retrieval at each step, we 342

need to remap position embeddings to the retrieved 343

chunks. Same as the previous work (Tworkowski 344

et al., 2024), The local context (up to 2048 tokens) 345

receives the standard rotary positional encoding, 346

whereas memory keys are encoded as if they had 347

position 0 in the local context window. 348

4.2 Long-Context Language Modeling 349

We first evaluate MemLong on long-context lan- 350

guage modeling benchmarks to assess basic lan- 351

guage modeling abilities. Due to the K-V cache pro- 352

viding sinificant background and contextual infor- 353

mation, MemLong can retrieve relevant K-V cache 354

quickly and make full use of it, thereby enhancing 355

the model’s in long-context modeling tasks. 356

Datasets. We conducted an evaluation of our 357

model across four extensive text benchmark 358

datasets: English-language books PG-19 (Rae 359

et al., 2019) and BookCorpus (Zhu et al., 2015), 360

Wikipedia articles Wikitext-103 (Merity et al., 361

2016), and mathematical papers Proof-Pile (Azer- 362

bayev et al., 2023). The experimental results indi- 363

cate a significant perplexity improvement across all 364

datasets. Our model was tested over various lengths 365

ranging from 1024 to 32768 tokens. Across all 366

datasets, our model demonstrated substantial per- 367

formance gains with minimal memory overhead by 368

leveraging an external retriever and memory. 369

Setup. Following (Yen et al., 2024), we calculate 370

the perplexity on the last 2048 tokens of each se- 371

quence. This experimental setup was designed to 372

validate the influence of different retriever sizes on 373

the overall performance of our model. For the im- 374

plementation of the efficient fine-grained retrieval, 375

we use the faiss (Johnson et al., 2019) toolkit to 376

construct an exact-search index on GPU to store 377

the Representation Embeddings of text chunks and 378

perform efficient retrieval. For MemLong, we split 379

and put the tokens over finetune-length = 1024 380

into the M used for further retrieval. 381

Baselines. For our experiments, we employ the 382

OpenLLaMA-3B model as our baseline. To ensure 383

a fair comparison, we utilize an identical LoRA 384

configuration and finetuned the models on the same 385

amount of data from the slimpajama dataset. Addi- 386

tional, we compare LongLLaMA-3B (Tworkowski 387

et al., 2024), which finetuned with the Focused 388
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PG19 Proof-pile BookCorpus Wikitext-103

Model 1k 2k 4k 16k 1k 2k 4k 16k 1k 2k 4k 16k 1k 2k 4k 16k

7B Model

LLaMA-2-7B 10.82 10.06 8.92 - 3.24 3.40 2.72 - 8.73 7.91 6.99 - 10.82 6.49 5.66 -

LongLoRA-7B-32k 9.76 9.71 10.37 7.62 3.68 3.35 3.23 2.60 14.99 12.66 11.66 6.93 7.99 7.83 8.39 5.47

YARN-128k-7b 7.22 7.47 7.17 - 3.03 3.29 2.98 - 7.02 7.54 7.06 - 5.71 6.11 5.71 -

3B Model

OpenLLaMA-3B 11.60 9.77 > 103 - 2.96 2.70 > 103 - 8.97 8.77 > 103 - 10.57 8.08 > 103 -

LongLLaMA-3B∗ 10.59 10.02 > 103 - 3.55 3.15 > 103 - 10.70 9.83 > 103 - 8.88 8.07 > 103 -

LongLLaMA-3B† 10.59 10.25 9.87 - 3.55 3.22 2.94 - 10.14 9.62 9.57 - 10.69 8.33 7.84 -

Phi3-128k 11.31 9.90 9.66 - / 9.65 4.25 3.11 2.77 - / 3.08 11.01 9.22 8.98 - / 9.27 7.54 7.22 7.01 - / 7.20

MemLong-3B∗ 10.66 10.09 > 103 - 3.58 3.18 > 103 - 10.37 9.55 > 103 - 8.72 7.93 > 103 -

w/ 4K Memory 10.54 9.95 9.89 9.64 3.53 3.16 3.15 2.99 10.18 9.50 9.57 9.61 8.53 7.92 7.87 7.99

w/ 32K Memory 10.53 9.85 9.83 9.73 3.51 3.15 3.11 2.99 9.64 9.56 9.51 9.54 8.02 7.58 6.89 7.09

Table 1: Sliding window perplexity of different context window extension models on PG19, Proof-pile, BookCorpus,
Wikitext-103. All experiments are conducted on one 3090 24GB GPU. LongLLaMA-3B and MemLong-3B marked
with ∗ means evaluating without Memory, and LongLLaMA-3B marked with † means evaluting with infinite
memory. We also evaluate MemLong with 4K/32K Memory scenarios. "- / 6.95" indicates that the model results in
an Out of Memory (OOM) error on a single GPU, while on dual GPUs it yields the corresponding result.

Transformer (FoT) method and 5B tokens. To per-389

form a further comprehensive comparison, we ad-390

ditionally test two 7B models: LLaMA-2-7B and391

LongLoRA-7B-32K (Chen et al., 2023b) and two392

positional encoding models: Yarn-7b-128k (Peng393

et al., 2023) and Phi3-128k (Abdin et al., 2024).394

Results. The results are shown in Table 1. We395

employ Perplexity (PPL) as the evaluation met-396

ric for the language model. Lower PPL in-397

dicates stronger language modeling capabilities.398

Compared to the two fully fine-tuned models,399

OpenLLaMA-3B and LLaMA-2-7B, our model400

demonstrates comparable performance across mul-401

tiple datasets when test lengths are within their402

pre-trained limits (2048 for OpenLLaMA-3B and403

4096 for LLaMA-2-7B). However, once the test404

lengths exceed these pre-trained limits, our model405

continues to reduce perplexity even beyond the fine-406

tuning length of 1024 and the pre-trained length of407

2048, showcasing its superior generalizability. In408

contrast, the OpenLLaMA-3B and LLaMA-2-7B409

models fail to generalize to inputs beyond their pre-410

trained lengths and exhibit significantly increased411

memory overhead due to the quadratic complex-412

ity of attention. We also compare our model with413

LongLoRA. Although the proposed Shifted Sparse414

Attention in LongLoRA significantly reduces mem-415

ory usage, it also diminishes the model’s perfor-416

mance on short texts. In contrast, LongLLaMA,417

which K-V pairs can also be stored, suffers from418

OOM issues when test lengths become excessively419

long due to its infinitely growing memory usage. 420

Compared to their methods, MemLong lever- 421

ages an external retriever to handle longer input 422

tokens and achieve better perplexity improve- 423

ments.At the same time, because of the high stor- 424

age efficiency, MemLong can effectively control 425

the use of GPU to avoid OOM problems. 426

4.3 In Context Learning 427

Traditional in-context learning (ICL; Brown et al., 428

2020) inputs few-shot non-parameterized demon- 429

stration examples along with the query into the 430

model. However, these methods are typically con- 431

strained by the model’s input length. In this ex- 432

periment, since MemLong can store examples in a 433

parameterized form within its memory, we primar- 434

ily investigate whether MemLong can effectively 435

utilize the knowledge stored in its memory to en- 436

hance its emergent abilities. The results are shown 437

in Table 2. Compared to OpenLLaMA,which 438

rely solely on non-parametric knowledge , given 439

the same number of in-context demonstrations, 440

MemLong can utilize additional demonstrations 441

stored in its memory. The performance further 442

increases or remains consistent with more demon- 443

strations in the memory. In our comparative analy- 444

sis against LongLLaMA, it was observed that our 445

model outperforms LongLLaMA across the major- 446

ity of datasets under the same conditions of preserv- 447

ing In-Memory Demonstrations. It is important 448

to highlight that our model operates with signif- 449
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Model In-Context In-Memory SST-2 MR Subj SST-5 MPQA Avg.Demons. Demons. ACC↑ ACC↑ ACC↑ ACC↑ ACC↑
OpenLLaMA 4 N/A 90.7 84.0 58.2 41.0 70.5 68.9

w./ Rag 4 4 90.9 90.5 61.6 39.2 63.2 69.1
LongLLaMA 4 4 90.4 83.9 64.3 40.0 64.2 68.6
MemLong 4 4 91.5 84.5 61.5 41.4 70.2 69.8

LongLLaMA 4 18 91.4 87.1 59.1 41.0 64.5 68.7
MemLong 4 18 91.0 89.6 61.7 43.5 69.4 71.0

OpenLLaMA 20 N/A 93.6 91.2 55.4 38.2 66.4 69.0
w./ Rag 20 18 92.2 91.3 75.8 39.8 57.6 71.3

LongLLaMA 20 18 94.1 90.8 64.2 41.4 72.1 72.7
MemLong 20 18 93.5 93.8 65.8 43.3 70.6 73.4

Table 2: Accuracy [%] of 4-shot and 20-shot ICL on 5 NLU tasks(SST-2,MR,Subj,SST-5,MPQA).We compare the
MemLong with both vanilla model (OpenLLaMA) and memory-augment model (LongLLaMA). Across a diverse
range of experimental settings, our method consistently show competitive performance.

icantly lower training parameters (200M V. S.450

0.3B) and fine-tuning data volume (0.5B V. S.451

5B) compared to LongLLaMA. This underscores452

our model’s efficiency in leveraging an external re-453

triever for information acquisition, demonstrating a454

superior ability to synthesize and utilize knowledge455

effectively with substantially fewer resources.456

5 Ablation Study457

5.1 Training Setting458

During the training phase, we explore the effects of459

varying retrieval layers on the model and examine460

whether the distribution shift problem, as discussed461

in MemTrm (Wu et al., 2022), could be adequately462

resolved by our approach. As mentioned before,463

Our method proposes a low-cost solution for dis-464

tribution shifts. As shown in Figure 4, the brown465

line (the line at the top of the picture; the train-466

ing method is similar to MemTrm fine-tuning all467

parameters of the model and all layers after the468

memory layer are involved in the retrieval) is sig-469

nificantly worse than all other ours methods (even470

the most unreasonable settings) in terms of per-471

formance and fitting speed. We will analyze the472

performance of the reasoning stage later.473

5.2 Inference Performance474

Q1: Does the memory length affect the perfor-475

mance of the model ? As depicted in Figure 5,476

our examination of the same model’s performance477

across various memory sizes demonstrates a clear478

correlation between memory capacity and model479

efficiency. The trend indicates that incremental in-480

creases in memory size yield gradual enhancements481

in performance. Moreover, a critical threshold is482

Figure 4: Degree of PPL during the training phase. The
indicator for the y-axis is PPL. We mainly focus on
training params and retrieval layers. We provide the
specific parameter settings of each line in appendix A.

identified at a memory size of 65536, beyond which 483

the model’s capabilities undergo a substantial leap. 484

This suggests that while expanding memory offers 485

substantial benefits, there is a practical ceiling to 486

its effectiveness, likely influenced by the nuances 487

of the data’s distribution. 488

Q2: How many layers do we need to introduce 489

extra memory information? As shown in Fig- 490

ure 4, (the pink line) and Table 3 (RPL+TH), the 491

model performs best when the number of retrieval 492

layers is set to [13,17,21,25]. It is empirically be- 493

lieved that if retrieval information is introduced into 494

all upper layers of the model, it leads to a decrease 495

in the model’s attention to local context. Therefore, 496

selecting retrieval layers at appropriate intervals 497

can actually enhance the model’s capabilities. 498
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PG19 Proof-pile
Method 2k 4k 8k 2k 4k 8k

MemLong∗ 10.09 > 103 - 3.18 > 103 -

w. RA + TA 11.43 11.40 10.65 3.51 3.26 3.14

w. RA + TH 10.57 10.48 10.36 3.30 3.26 3.15

w. RP + TH 10.28 10.15 10.12 3.21 3.13 3.08

w. RLP + TH 9.85 9.83 9.80 3.15 3.11 3.04

Table 3: Different retrieval layers can affect MemLong’s
performance. MemLong marked with ∗ means evalu-
ating without Memory. The size of all methods using
Memory is set to 32768. RA means retrieval across
all upper layers; TA means training all params without
freeze; RP means retrieval across fewer upper layers;
RPL means retrieval acorss much fewer upper layers.

Figure 5: Evaluating different datasets at various mem-
ory sizes.In each subplot, all parameters are the same
except for the memory size.

6 Related Work499

6.1 Long Context Language Modeling500

Long context Language Modeling mainly concen-501

trate on length extension and context window ex-502

pansion. Length Extension studies typically target503

the popular RoPE encoding, aiming to scale un-504

seen PE into the space of positions seen during505

pre-training. These works (Su et al., 2024; Press506

et al., 2021; Chen et al., 2023a; Peng et al., 2023)507

enable the model to generalize to unseen positional508

encodings during inference, thereby achieving ex-509

trapolation beyond the lengths encountered during510

training. In contrast, our method does not require511

modifying the PE, and only use one addition mod-512

ule to extend the context. Context Window Ex-513

tension focuses on how to extend the context win-514

dow that LLMs can handle the input at one time.515

Due to the quadratic time and space complexity 516

of computing attention, extending the input length 517

of language models is quite challenging. Sparse 518

attention (Kitaev et al., 2020; Chen et al., 2023b; 519

Tworkowski et al., 2024; Bertsch et al., 2024; Belt- 520

agy et al., 2020) techniques have made significant 521

strides, but our focus is on improving long-range 522

language modeling by enabling LLMs to access 523

relevant information at shorter input lengths via a 524

retrieval-enhanced method. 525

6.2 Retrieval-Augmented Language Modeling 526

Much effort has been made to enhance Retrieval- 527

Augmented Language Modeling (Lewis et al., 528

2020; Izacard and Grave, 2020; Ram et al., 2023; 529

Yu et al., 2022; Asai et al., 2023). While some 530

approaches use external retrievers, non-parametric 531

information fusion often falls short compared to 532

parametric methods within the model. We concen- 533

trate on integrating retrieval concepts directly into 534

the model. REALM (Guu et al., 2020) suggests 535

that relying solely on internal model knowledge is 536

inefficient and advocates for the model to learn to 537

retrieve and comprehend. kNN-LM (Khandelwal 538

et al., 2019) enhances language modeling by blend- 539

ing the LLM’s next-word predictions with those 540

from a retrieval-based mechanism. MemTrm (Wu 541

et al., 2022) introduces a memory bank but risks 542

shifting memory distributions due to parameter ad- 543

justments. LongMEM (Wang et al., 2024b) miti- 544

gates this by training a sub-network, though this 545

adds significant overhead. In contrast, our approach 546

involves a fixed pre-trained model, enhancing it 547

with a frozen retriever that aligns with the model’s 548

internal retrieval processes, thus avoiding distribu- 549

tion shifts and architectural changes. 550

7 Conclusion 551

We introduce MemLong, an innovative approach 552

that significantly enhances the capability of lan- 553

guage models to process long texts by leveraging 554

an external retriever. MemLong utilizes a profi- 555

cient retriever to swiftly and accurately access text 556

relevant to the distant context with minimal mem- 557

ory overhead. MemLong successfully expands the 558

model’s context window from 2k to 80k tokens. 559

We demonstrate that MemLong exhibits consider- 560

able competitive advantages in long-distance text 561

modeling and comprehension tasks. MemLong can 562

achieve up to a 10.4 percentage point improvement 563

in performance compared to the full-context model. 564
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Limitations565

Our work primarily focuses on OpenLLaMA-3B.566

We hope that future research will explore and inves-567

tigate the application of our methods to models of568

various sizes. At the same time, it has been found569

that while single-layer K-V Pairs can provide addi-570

tional semantic information to the upper layers, this571

information is unstable. We hope that future work572

can provide a more rational framework to accom-573

modate our methods. At the same time, we employ574

a retriever with fixed FlagEmbeddings (Xiao et al.,575

2023b; Zhang et al., 2023a), but studying a greater576

range of retrievers would be useful.577

Ethics Statement578

In the pursuit of advancing knowledge and devel-579

oping innovative solutions, we are committed to580

upholding the highest ethical standards. Our work581

is guided by a steadfast dedication to integrity,582

transparency, and respect for all individuals and583

communities involved. Since pre-trained models584

may have some bias due to the unavoidable pres-585

ence of harmful/offensive corpus during training,586

MemLong fine-tuning on Slimpajama will face this587

problem as well. Although solving this problem588

is out of our current work, we hope that there will589

be future work that addresses this type of problem590

well.591
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A Different Training Settings769

As shown in 4, we list the variable values corre-770

sponding to different setting names in the ablation771

experiment.772

11



Setting Name Retreival Layers Memory Layer Training Params

Retreival_All_and_Training_All [14,15,. . .,26] 13 All of Model’s Trainable
Retreival_All_and_Training_Half [14,15,. . .,26] 13 Half of Model’s Trainable
Retreival_Partial_and_Training_Half [14,16,18,. . .,26] 13 Half of Model’s Trainable
Retreival_lower_Partial_and_Training_Half [14,18,22,26] 13 Half of Model’s Trainable

Table 4: The specific parameters of different setting names.
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