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Figure 1. We present DriveLM: A new task, dataset, metrics, and baseline for end-to-end autonomous driving. Inspired by [4], DriveLM
considers Graph Visual Question Answering (GVQA), where question-answer pairs are interconnected via logical dependencies at the
object-level, i.e., interactions between object pairs, and the task-level, e.g., perception → prediction → planning → behavior (discretized
action described in natural language) → motion (continuous trajectory). We propose DriveLM-Data for training DriveLM-Agent, a
baseline for GVQA. We validate its effectiveness using the DriveLM-Metrics on challenging settings requiring zero-shot generalization.

001
Abstract

We study how vision-language models (VLMs) trained002
on web-scale data can be integrated into end-to-end driv-003
ing systems to boost generalization and enable interac-004
tivity with human users. While recent approaches adapt005
VLMs to driving via single-round visual question answer-006
ing (VQA), human drivers reason about decisions in mul-007
tiple steps. Starting from the localization of key objects,008
humans estimate object interactions before taking actions.009
The key insight is that with our proposed task, Graph VQA,010
where we model graph-structured reasoning through per-011
ception, prediction and planning question-answer pairs, we012
obtain a suitable proxy task to mimic the human reason-013
ing process. We instantiate datasets (DriveLM-Data) built014
upon nuScenes and CARLA, and propose a VLM-based015
baseline approach (DriveLM-Agent) for jointly perform-016
ing Graph VQA and end-to-end driving. The experiments017

∗Equal contribution. †Equal co-advising.

demonstrate that Graph VQA provides a simple, princi- 018
pled framework for reasoning about a driving scene, and 019
DriveLM-Data provides a challenging benchmark for this 020
task. Our DriveLM-Agent baseline performs end-to-end au- 021
tonomous driving competitively in comparison to state-of- 022
the-art driving-specific architectures. Notably, its benefits 023
are pronounced when it is evaluated zero-shot on unseen 024
objects or sensor configurations. We hope this work can be 025
the starting point to shed new light on how to apply VLMs 026
for autonomous driving. To facilitate future research, all 027
code, data, and models are available to the public. 028

1. Introduction 029

Current Autonomous Driving (AD) stacks are still lacking 030
crucial capabilities [4, 5]. One key requirement is general- 031
ization, which involves the ability to handle unseen scenar- 032
ios or unfamiliar objects. A secondary requirement pertains 033
to the interaction of these models with humans, highlighted 034
for example by EU regulations that mandate explainability 035
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in deployment [1]. Furthermore, unlike today’s AD mod-036
els, humans do not navigate based on geometrically precise037
bird’s-eye view (BEV) representations [6, 13, 16]. Instead,038
humans implicitly perform object-centric perception, pre-039
diction, and planning (which we refer to as P1−3): a rough040
identification and localization of key objects, followed by041
reasoning about their possible movement and aggregation042
of this information into a driving action [22, 27].043

Simultaneously, another field has been forging ahead:044
Vision-Language Models (VLMs) [17, 19, 30, 34]. These045
models have several strengths. First, they hold a base un-046
derstanding of the world from internet-scale data that could047
potentially facilitate generalization for planning in AD. In048
fact, this sort of generalization has already been achieved049
by VLMs for simpler robotics tasks [9, 35]. Second, the use050
of language representations as an input and output offers a051
platform for human-friendly interaction with these models,052
unlike bounding boxes or trajectories that are more common053
to current methods [7, 12, 18, 25]. Finally, VLMs are able054
to make decisions in multiple steps linked by logical reason-055
ing [2, 8, 31–33, 35]. Importantly, even though they reason056
in multiple separate steps, VLMs are end-to-end differen-057
tiable architectures, a characteristic that is highly desirable058
for autonomous driving [4].059

Recent work towards enabling the application of VLMs060
to AD systems falls into two categories: scene-level or sin-061
gle object-level Visual Question Answering (VQA). Scene-062
level VQA refers to the task of describing the driving be-063
havior by one or two supporting reasons, e.g., “The car064
is moving into the right lane because it is safe to do065
so.” [14, 15]. Single object-level VQA formulates the un-066
derstanding of the ego vehicle’s response to a single ob-067
ject by a chain of QAs in the form of “what-which-where-068
how-why”, e.g., “The ego vehicle stops because there is a069
pedestrian in a white shirt crossing the intersection in front070
of the ego vehicle and it does not want to crash into the071
pedestrian.” [21, 24, 26]. Unfortunately, neither of these072
paradigms provides a suitable proxy task to mimic the P1−3073
reasoning process in humans, who consider multiple objects074
and reason about each in multiple steps. Therefore, in this075
paper, we propose a new task, along with corresponding076
datasets and a baseline model architecture (Fig. 1).077

Task. Graph Visual Question Answering (GVQA) in-078
volves formulating P1−3 reasoning as a series of question-079
answer pairs (QAs) in a directed graph. Its key differ-080
ence to the aforementioned VQA tasks for AD is the avail-081
ability of logical dependencies between QAs which can be082
used to guide the answering process. GVQA also encom-083
passes questions regarding behavior and motion planning,084
with dedicated metrics (details in Section 2).085

Datasets. DriveLM-nuScenes consist of annotated QAs,086
arranged in a graph, linking images with driving behavior087
through logical reasoning. In comparison to existing bench-088

marks, they provide significantly more text annotations per 089
frame (Fig. 2). We pair these training datasets with chal- 090
lenging test data for evaluating zero-shot generalization. 091

Model. DriveLM-Agent employs a trajectory tokenizer 092
that can be applied to any general VLM [17, 19, 23, 34], 093
coupled with a graph prompting scheme that models logi- 094
cal dependencies as context inputs for VLMs. The result 095
is a simple, elegant methodology to effectively repurpose 096
VLMs for end-to-end AD. 097

Our experiments provide encouraging results. We find 098
that GVQA on DriveLM is a challenging task, where cur- 099
rent methods obtain moderate scores and better model- 100
ing of logical dependencies is likely necessary to achieve 101
strong QA performance. Even so, DriveLM-Agent already 102
performs competitively to state-of-the-art driving-specific 103
models [13] when tested in the open-loop planning setting, 104
despite its task-agnostic and generalist architecture. Fur- 105
thermore, employing a graph structure improves zero-shot 106
generalization, enabling DriveLM-Agent to correctly han- 107
dle novel objects unseen during training or deployment on 108
the Waymo dataset [28] after training only on nuScenes [3] 109
data. From these results, we believe that improving GVQA 110
holds great potential towards building autonomous driving 111
agents with strong generalization. 112

2. DriveLM: Task, Data, Metrics 113

Human drivers usually decompose their decision-making 114
process into distinct stages that follow a logical progres- 115
sion which encompasses the identification and localization 116
of key objects, their possible future action and interaction, 117
and ego planning based on all this information [10, 20]. 118
This inspires us to propose the GVQA as the critical ingre- 119
dient of DriveLM, which serves as a suitable proxy task to 120
mimic the human reasoning process. Within this section, we 121
illustrate the formulation of the GVQA task (Section 2.1) 122
and introduce DriveLM-Data (Section 2.2) to exemplify the 123
instantiation of GVQA using prominent driving datasets. 124

2.1. DriveLM-Task: GVQA 125

We organize all the Question Answer pairs (QAs) for an im- 126
age frame into a graph structure, denoted by G=(V,E). V 127
stands for the set of vertices, where each vertex represents a 128
QA pair v=(q, a) associated with one or more key objects 129
in the scenario. The key difference between GVQA and 130
ordinary VQA is that the QAs in GVQA have logical de- 131
pendencies, which we formulate as the edges between the 132
vertices. E ⊆V ×V , is a set of directed edges, where each 133
edge e=(vp, vc) connects the parent QA and the child QA. 134
We formulate the edge set E by incorporating two dimen- 135
sions: object-level and task-level edges. At the object level, 136
we construct the logical edges e∈E to represent the impact 137
of interactions between different objects. For example, the 138
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Figure 2. (Left) Annotation Pipeline: In DriveLM-nuScenes, we adopt a semi-rule-based QA labeling pipeline, where both the ground
truth annotation in nuScenes/OpenLane-V2 and feedback from human annotators are used. A critical part of our pipeline is the multi-round
quality check, which guarantees high data quality at reasonable costs. In DriveLM-CARLA, we meet the same standards while exploiting a
fully rule-based QA labeling pipeline instead. (Right) Question Distribution: The questions in our dataset cover various specific aspects
of driving tasks, most of which are annotated by human annotators, making this a suitable proxy for human-like driving reasoning.

planning QA node for the sedan is influenced by the per-139
ception QA node of the pedestrian in the illustration from140
Fig. 1 (center). At the task-level, we establish the logical141
edges e∈E to capture the logical chain of different reason-142
ing stages:143
• Perception (P1): identification, description, and localiza-144

tion of key objects in the current scene.145
• Prediction (P2): estimation of possible action/interaction146

of key objects based on perception results.147
• Planning (P3): possible safe actions of the ego vehicle.148
• Behavior (B): classification of driving decision.149
• Motion (M ): waypoints of ego vehicle future trajectory.150

The concepts of perception, prediction, and planning151
(P1−3) are similar to those in end-to-end AD [4], while the152
concepts of motion and behavior are based on the ego ve-153
hicle future trajectory. Specifically, we define the motion154
M as the ego vehicle future trajectory, which is a set of N155
points with coordinates (x, y) in bird’s-eye view (BEV), de-156
noted as M = {(x0, y0), (x1, y1), ..., (xN , yN )}. Each point157
is the offset between the future position and the current po-158
sition by a fixed time interval. Then, the distance for x, y at159
each time interval is computed as:160

{x, y}dist = {(δx,1, δy,1), ..., (δx,N , δy,N )}, (1)161

where δx,i = xi − xi−1 and δy,i = yi − yi−1, for i =162
1, 2, . . . , N. The goal of the behavior representation is to163
serve as an interface from P1−3 to M . To obtain a behavior164
representation, we map the mean of xdist and ydist to one of165
the predefined bins, where each bin corresponds to a cate-166
gory in either speed or steering. These are denoted as Bsp167
and Bst respectively. In this work, we consider 5 bins:168

Bsp ∈ {fast2,fast1,moderate,slow1,slow2},169

Bst ∈ {left2,left1,straight,right1,right2},170

where the number in the subscript indicates the intensity. 171
The combination of the speed and steering categories for 172
a trajectory form its behavior category as B = (Bsp, Bst). 173
While we use a simple definition of B as a starting point for 174
research on driving with VLMs, we note that our formula- 175
tion supports the incorporation of more abstract behaviors 176
such as a lane changes or overtaking. 177

2.2. DriveLM-Data 178

We introduce DriveLM-nuScenes to provide QAs with the 179
graph structure defined in Section 2.1, 180

DriveLM-nuScenes. We divide the annotation process 181
into three steps: selecting key frames from video clips, 182
choosing key objects within these key frames, and subse- 183
quently annotating the frame-level P1−3 QAs for these key 184
objects. A portion of the Perception QAs are generated 185
from the nuScenes [3] and OpenLane-V2 [29] ground truth, 186
while the remaining QAs are manually annotated. As we 187
manually annotate the vast majority of data in DriveLM- 188
nuScenes, quality is particularly crucial for this portion. 189
When annotating, we conduct multiple rounds of rigorous 190
quality checks. In each round, we categorize the data into 191
different batches and inspect ten percent of the data in each 192
batch. If the qualification rate of manually annotated data in 193
this ten percent does not meet expectations, we request the 194
annotators to re-label all data in the batch. In Fig. 2 (left), 195
we showcase an example of the QA annotation pipeline, 196
where all questions undergo quality checks according to our 197
standards. As a result, DriveLM-nuScenes stands out from 198
previously proposed datasets with its larger scale, greater 199
comprehensiveness, and more complex structure. These 200
QAs cover various aspects of the driving process, rang- 201
ing from perception and prediction to planning, providing 202
a comprehensive understanding of autonomous driving sce- 203
narios as shown in Fig. 2 (right). 204
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3. Experiments205

In this section, we present our experimental results that206
aim to address the following research questions: (1) How207
can VLMs be effectively repurposed for end-to-end au-208
tonomous driving? (2) Can VLMs for driving generalize209
when evaluated with unseen sensor setups;210

Setup. We now briefly overview the key implementa-211
tion details for the two settings used in our experiments212
(additional details are provided in the supplementary ma-213
terial). All fine-tuning is implemented with LoRA [11].214
On DriveLM-nuScenes, we finetune BLIP-2 on the train215
split for 10 epochs. We use a batch size of 2 for each GPU,216
and the entire training process spans approximately 7 hours217
with 8 V100 GPUs.218

3.1. VLMs for End-to-End Driving219

In our first experiment, we aim to assess the ability of VLMs220
to perform open-loop planning on DriveLM-nuScenes. In221
particular, we investigate the impact of the context provided222
to the behavior and motion stages. Given sensor data (and223
in the case of VLM methods, a text input), the model is224
required to predict the ego-vehicle future trajectory in the225
form of waypoints.226

Baselines. As a reference for the difficulty of the task,227
we provide a simple Command Mean baseline. Each228
frame in nuScenes is associated with one of 3 commands,229
‘turn left’, ‘turn right’, or ‘go straight’. We output the230
mean of all trajectories in the training set whose com-231
mand matches the current test frame command. Further,232
we compare our approach to the current state-of-the-art on233
nuScenes, UniAD [13]. Besides the author-released check-234
point, which requires video inputs, we train a single-frame235
version (‘UniAD-Single’) for a fair comparison to our236
single-frame VLMs. Finally, BLIP-RT-2 denotes BLIP-237
2 [17] fine-tuned on DriveLM-Data with the trajectory to-238
kenization scheme. This acts as an indicator for the per-239
formance when using an identical network architecture as240
DriveLM-Agent, but no context inputs or VQA training241
data.242

DriveLM-Agent. We consider 3 variants of DriveLM-243
Agent incorporating our proposed changes in steps: (1) a244
2-stage version that predicts behavior and then motion (as245
described in Section 2.1), but without any P1−3 context246
for behavior prediction (‘None’); (2) a ‘Chain’ version that247
builds the P1−3 graph, but only passes the final node (P3)248
to the behavior stage; (3) the full model (‘Graph’) that uses249
all QAs from P1−3 as context for B.250

Results. We show the results for the methods listed above251
in Table 1. Among the baselines, BLIP-RT-2 is unable to252
match UniAD-Single (though both methods perform well253
relative to Command Mean). This shows that the single-254
stage approach without any reasoning is unable to compete255

Method Behavior Motion Behavior (B) Motion (M )
Context Context Acc. ↑ Speed ↑ Steer ↑ ADE ↓ Col. ↓

Command Mean - - - - - 4.57 5.72
UniAD-Single - - - - - 1.80 2.62
BLIP-RT-2 - - - - - 2.63 2.77

None B 61.45 72.20 84.73 1.39 1.67
DriveLM-Agent Chain B 50.43 60.32 75.34 2.07 2.08

Graph B 57.49 69.89 80.63 1.74 1.89

UniAD [13] - - - - - 0.80 0.17

Table 1. Open-loop Planning on DriveLM-nuScenes. Using Be-
havior (B) as context for Motion (M ) enables end-to-end driving
with VLMs on par with UniAD-Single, a state-of-the-art driving-
specific architecture.

Method Behavior Motion Behavior (B) Motion (M )
Context Context Acc. ↑ Speed ↑ Steer ↑ ADE ↓ FDE ↓

Command Mean - - - - - 7.98 11.41
UniAD-Single - - - - - 4.16 9.31
BLIP-RT-2 - - - - - 2.78 6.47

None B 35.70 43.90 65.20 2.76 6.59
DriveLM-Agent Chain B 34.62 41.28 64.55 2.85 6.89

Graph B 39.73 54.29 70.35 2.63 6.17

Table 2. Zero-shot Generalization across Sensor Configura-
tions. Results on 1k randomly sampled frames from the Waymo
val set after training on DriveLM-nuScenes. DriveLM-Agent
outperforms UniAD-Single and benefits from graph context.

with the prior state-of-the-art on nuScenes. However, the 256
proposed DriveLM-Agent, which predicts behavior as an 257
intermediate step for motion, provides a significant boost 258
in performance, surpassing UniAD-Single. This indicates 259
that with the appropriate prompting, VLMs can be surpris- 260
ingly competitive for end-to-end driving. Interestingly, in 261
the experimental setting of Table 1 which does not involve 262
generalization, the Chain and Graph versions of DriveLM- 263
Agent do not provide any further advantage over no con- 264
text. Further, single-frame VLMs fall short in comparison 265
to the privileged video-based UniAD model, indicating that 266
VLMs with video inputs may be necessary for this task. 267

3.2. Generalization Across Sensor Configurations 268

As a more challenging setting for evaluating the models 269
from Section 3.1, we now apply them without any fur- 270
ther training to a new domain: the Waymo dataset [28]. 271
Waymo’s sensor setup does not include a rear camera, so 272
we drop this input from UniAD-Single. The VLM methods 273
only use the front view and do not require any adaptation. 274

Results. As shown in Table 2, UniAD-Single does not cope 275
well with the new sensor configuration, and drops below 276
BLIP-RT-2 in performance. The multi-stage approach of 277
DriveLM-Agent provides further improvements. In partic- 278
ular, the accuracy of speed predictions rises from 43.90 with 279
no context to 54.29 with the full graph. On the other hand, 280
the chain approach does not provide sufficient useful infor- 281
mation, with a speed accuracy of only 41.28. 282
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