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Abstract

Neuron identification is a popular tool in mechanistic interpretability, aiming to1

uncover the human-interpretable concepts represented by individual neurons in2

deep networks. While algorithms such as Network Dissection and CLIP-Dissect3

achieve great empirical success, a rigorous theoretical foundation remains lack-4

ing. In this work, we formalize neuron identification as the reverse process of5

learning, which allows us to import tools from statistical learning theory. From6

this perspective, we present the fist theoretical analysis of two foundamental chal-7

lenges: (1) Faithfulness: whether the identified concept truly represents the neu-8

ron and (2) Stability: whether the results are consistent across probing datasets.9

We derive generalization bounds for widely used similarity metrics (e.g. accu-10

racy, AUROC, IoU) to guarantee faithfulness, and propose a bootstrap ensemble11

procedure that quantifies stability and provides probabilistic guarantees via pre-12

diction sets. Experiments on both synthetic and real data validate our theoretical13

results and demonstrate the practicality of our method, providing a step toward14

trustworthy neuron identification.15

1 Introduction16

Despite the rapid development and application of deep neural networks, their lack of interpretability17

raises growing concerns[16, 18]. A popular approach to “open the black-box” is to analyze individ-18

ual neurons and identify human-interpretable concepts that capture their behavior. This process is19

known as neuron identification (or neuron explanation)[3].20

Over the past few years, many approaches for neuron identification have been proposed. For ex-21

ample, Bau et al. [3] compare neuron activation with labeled concept datasets to find corresponding22

concept. Oikarinen and Weng [12] leverage multimodal models to automatically generate neuron23

explanation.24

Despite rapid progress in empirical method, systematic comparison and theoretical understanding of25

neuron identification remain limited. Oikarinen et al. [14] unify neuron identification methods under26

a single mathematical framework for fair comparison, but a rigorous theoretical investigation is still27

lacking. In particular, we find two major challenges on current neuron identification framework:28

faithfulness and stability29

1. Faithfulness. Does the identified concept faithfully describe the underlying neuron?30

2. Stability. How consistent is the identified concept across different probing datasets?31

To address these challenges, we provide a theoretical analysis based on a key observation: neuron32

identification can be viewed as the reverse process of learning. This perspective highlights the33
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parallels between neuron identification and traditional machine learning, allowing us to apply tools34

from statistical learning theory on neuron identification. Our contributions are summarized below:35

1. We show that neuron explanation could be viewed as the reverse process of learning,36

which explains why there are so many similarities between neuron identification and tradi-37

tional machine learning. This enables us to import tools from statistical learning theory to38

answer the questions in neuron identification.39

2. We analyze faithfulness using generalization theory, proving results for several similarity40

metrics and showing square-root convergence of test similarity with respect to probing41

dataset size.42

3. We quantify stability/uncertainty via bootstrap ensemble over probing datasets.43

The remaining of this paper is organized as follows: Sec. 2 formalizes neuron identification and44

introduce the background. Sec. 3 analyzes the concept faithfulness via generalization bounds. Sec. 445

quantifies algorithm stability using bootstrap ensemble method. Sec. 5 shows empirical results and46

Sec. 6 summarizes the work and discusses the limitations.47

2 Preliminary48

In this section, we introduce the background of neuron identification and the notations we use as a49

preliminaries for our theory. Let X denote the input space (e.g. images). First, we formally define50

neuron representation and concept.51

1. Neuron representation f(x) : X → R: A neuron representation is a function mapping an52

input x ∈ X to an activation value. Generally, the output could be more than a real number,53

e.g. for convolutional neural networks (CNN) f(x) is a 2-D feature map. For the simplicity54

in similarity calculation, existing works [3, 12, 5] often conduct pooling (average, max) to55

aggregate the feature into a single real value.56

2. Concept function c(x): In the literature of neuron identification [3, 12], a concept is usu-57

ally defined as a human-understandable idea that is described by text. For example, “cat”58

and “red”. Although intuitive, this definition is not a formal math definition. In this work,59

we define concepts as a function: a concept function c(x) : X → {0, 1} is a function60

that takes images1 as input, and outputs 1 if the concept is present in this image and 0 if61

not. This definition is compatible with the previous works: for example, Bykov et al. [5]62

uses human annotation which outputs 1 if the concept presents, otherwise 0. Oikarinen and63

Weng [12] uses CLIP [15] activations and calculate the cos-similarity of the input image64

embedding and text embedding of concept, which could be regarded as an automatic way65

to approximate c(x).66

To search for a concept that describes the neuron, most methods utilize a similarity function67

sim(f, c). It’s a functional measuring the similarity between concept and neuron. With the sim-68

ilarity function, the neuron identification problem can be formulated as:69

ĉ(x) = argmax
c(x)∈C

sim(f(x), c(x)) (1)

where C is the concept set (a function space under our concept definition).70

In our formal definition, sim(f, c) is a functional that takes two functions f and c as input, e.g.71

correlation. In practice, most works replace the function to its realization on a probing dataset72

Dprobe as an approximation. For example, for the similarity function of accuracy, it is defined as the73

probability that two function has the same value:74

sim(f, c) = P(f(x) = c(x)), (2)

Utilizing probing dataset, we can get an unbiased empirical estimation:75

ˆsim(f, c;Dprobe) =
1

|Dprobe|

|Dprobe|∑
i=1

1(f(xi) = c(xi)). (3)

1The input could also be texts or audio. In this work we focus on vision models.
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Figure 1: Illustration of neuron identification and machine learning. Neuron identification searches
for concepts matching a neuron, while learning searches for model parameter matching human con-
cepts. Thus, neuron identification can be viewed as the reversed learning process.

Under this approximation, the optimization goal can be written as:76

ĉ = arg maxc∈C
ˆsim(f, c;Dprobe)

where ˆsim(f, c;Dprobe) = ˆsim(f(xi), c(xi)), xi ∈ Dprobe.
(4)

It could be seen that Dprobe plays an important role in this approximation. However, the investigation77

on Dprobe is still lacking.78

Why do we choose similarity-based definition? Currently, there is no formal definition of a79

neuron’s concept. A practical criterion is: a concept describes a neuron if the neuron’s activation80

can be used to predict the presence of that concept. This criteria can be measured by corresponding81

classification metrics, for example, F1-score [8] or AUC [9]. The definition of similarity scores82

include these metrics and generalize to other useful scores, e.g. correlation or soft-wpmi[12]. Thus,83

we adopt it in our theoretical framework.84

3 Explanation faithfulness85

In this section, we start to discuss a key question in neuron identification: How can we trust the86

neuron explanation provided by the algorithm? We first discuss an important observation: Neuron87

identification could be regarded as the reverse process of machine learning. Inspired by that,88

we utilize the rich literature in statistical learning theory to study faithfulness in Sec. 3, and quantify89

uncertainty of neuron explanation in Sec. 4.90

3.1 Duality of neuron explanation and learning91

Based on the notation in Sec. 2, we observe that the neuron identification problem closely parallels92

the traditional learning problem. For example, given a model with parameter θ in parameter space93

Θ, a classification problem could be formalized as minimizing the loss L, which is approximated by94

the empirical loss L̂ on the training dataset:95

θ̂ = argmin
θ∈Θ

L̂(θ;Dtrain)

where L̂(θ;Dtrain) = L̂(hθ(xi), y(xi)), xi ∈ Dtrain,
(5)

where y(x) denotes the label function and hθ(x) is the neural network. Comparing Eq. 5 and Eq. 4,96

These two problems have a similar form: Both problems solve an optimization problem and the97

objectives are identical in form. We list the correspondence between these two domains in Fig. 1.98

Furthermore, we observe that the neuron identification can be regarded as the reverse process of99

learning: during learning, we search for neural network (parameters) that mimics target human100

concept (e.g. ImageNet classes). Neuron identification, instead, searches for concept (or simple101

combination of concepts) that is most similar to a specific neuron.102

This observation enables us to utilize the rich literature of machine learning in the neuron identifi-103

cation problem. Below, we first discuss how to measure the faithfulness of neuron explanation via104

the generalization theory. Next, we discuss how to perform uncertainty quantification and measure105

stability in Sec. 4.106
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3.2 Explanation faithfulness107

A natural question for the neuron identification is: Does the concept identified by the algorithm108

faithfully describe the neuron? To answer this, we first need a quantitative measure of faithfulness.109

Under the framework of similarity score, the faithfulness could be split into two questions:110

1. Which similarity function shall we choose? This question has been discussed by Oikarinen111

et al. [14] so we will not put our focus on it.112

2. Does the selected concept have a high (true) similarity score? Since concept is selected113

based on probing dataset, we need to investigate how this influence the true similarity score114

of output concept.115

Inspired by the traditional generalization theory in machine learning [17], we address the second116

question by first defining the generalization gap for neuron identification as:117

g(Dprobe, C, f) ≜ sup
c∈C

[ ˆsim(f, c;Dprobe)− sim(f, c)]. (6)

We show that this gap can be bounded under mild assumptions:118

1. The concept set C is finite.119

2. The probing dataset Dprobe is sampled i.i.d.120

3. Similarity function sim is bounded. More specifically, 0 ≤ sim(x) ≤ 1.121

For a finite concept set C, we have the following theorem:122

Theorem 3.1. With probability at least 1− δ,

sup
c∈C
| ˆsim(f, c;Dprobe)− sim(f, c)| ≤ r(f,Dprobe,

δ

|C|
),

where r(f,Dprobe, δ) describes the convergence rate of similarity function ˆsim(f, c;Dprobe) and sat-123

isfies124

P
[∣∣∣ ˆsim(f, c;Dprobe)− sim(f, c)

∣∣∣ ≥ r(f,Dprobe, δ)
]
≤ δ. (7)

In the first equation, the confidence parameter is adjusted using a union bound, replacing δ with125
δ

|C| .126

Remark 3.2. This theorem follows classical result in generalization theory and could be directly127

derived via union bound. The convergence rate function r(f,Dprobe, δ) describes how fast the128

estimator ˆsim converges. We will show that for most popular similarity estimators in practice,129

r(f,Dprobe, δ) = O(
√

− log δ
|Dprobe| )130

Corollary 3.3. With probability at least 1− δ,131

sim(f, ĉ) ≥ max
c∈C

[sim(f, c)]− 2r(f,Dprobe,
δ

|C|
). (8)

where ĉ is the optimal concept based on the probing dataset, as defined in Eq. 4.132

Remark 3.4. This corollary suggests that by maximizing similarity on the probing dataset, we can133

find an approximately optimal concept within a gap decided by convergence rate of the similarity134

function and size of concept set.135

3.3 Illustrative bound on popular similarity metrics136

In this section, we discuss the convergence rate of common similarity metrics. For simplicity, we di-137

rectly list the empirical estimator ˆsim; the true similarity function is its expectation unless otherwise138

mentioned.139
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Example 1: Accuracy The accuracy could be used as a similarity metric:140

simAcc(f, c) = P(f(x) = c(x)). (9)
The accuracy can be estimated from samples by:141

ˆsimAcc(f, c) =

∑
x∈Dprobe

1(f(x) = c(x))

|Dprobe|
. (10)

The convergence rate can be estimated via the Hoeffding’s inequality [7]:142

rAcc(f,Dprobe, δ) =

√
log( 2δ )

2|Dprobe|
(11)

Example 2: AUC Area under the ROC curve (AUC) is also a popular similarity function used in143

practice[5]. The AUC similarity is calculated as:144

sim(f, c) =

∑
{x|c(x)=0}

∑
{x|c(x)=1} 1[f(x) < f(y)]

|{x | c(x) = 0}||{x | c(x) = 1}|
. (12)

[1] proved that the AUC estimator converges to the expected ranking accuracy with rate145

rAUC(f,Dprobe, δ) =

√
log( 2δ )

2ρ(c)(1− ρ(c))|Dprobe|
, (13)

where ρ(c) is called positive skew which equals the the portion of positive examples in the probing146

dataset. We refer to Theorem 2 of [1] a formal statement and proof.147

In Fig. 5a, we show the convergence rate rAUC under different ρ. We can see that when ρ is small, the148

convergence rate rAUC blows up when Dprobe is small, indicating that imbalanced probing datasets149

may cause larger generalization error, reducing explanation faithfulness.150

Example 3: Recall, precision and IoU Precision, recall, and intersection-over-union (IoU) are151

also widely used similarity metrics in neuron identification. Given a neuron representation f(x) and152

a concept function c(x), we define:153

ˆsimprec(f, c) = Precision(f, c) =
TP

TP + FP
, ˆsimrec(f, c) = Recall(f, c) =

TP
TP + FN

ˆsimIoU(f, c) = IoU(f, c) =
TP

TP + FP + FN

where TP (true positives), FP (false positives), and FN (false negatives) are computed over the154

probing dataset Dprobe based on the binary predictions from f(x) and ground-truth labels from c(x).155

These metrics can be regarded as conditional versions of accuracy: for example, precision can be156

regarded as the accuracy in examples where f(x) = 1. Thus, the convergence rate is similar to rAcc,157

with the only difference being the effective dataset size:158

rprec(f,Dprobe, δ) =

√
log( 2δ )

2|f(x) = 1 | x ∈ Dprobe|
. (14)

The convergence rate for recall and IoU can be calculated similarly, with effective sample size159

|c(x) = 1 | x ∈ Dprobe| and |c(x) = 1 or f(x) = 1 | x ∈ Dprobe|, respectively.160

In practice, users can collect additional data until the effective sample size reaches a desired level.161

Here, for easy comparison of different metrics, we plot r v.s. expected number of total samples162

required.163

4 Quantifying stability164

Another important question in neuron identification is how to quantify the stability of the algorithm165

across different probing datasets. This also quantifies uncertainty in neuron identification results.166

Leveraging the connection to machine learning, we adopt the bootstrap ensemble approach for sta-167

bility/confidence estimation, which is applicable to any neuron identification algorithm without the168

need to modify its internal mechanism.169
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Figure 2: Illustration of bootstrap ensemble in neuron identification. Multiple probing datasets are
generated via bootstrapping. Then, neuron identification algorithm is applied on each dataset and
final concepts are aggregated into probability of each concept.

4.1 Bootstrap ensemble170

Bootstrap ensemble [4] is a machine learning technique that can improve both prediction accuracy171

and uncertainty quantification. This method aggregates multiple models, each trained on a different172

resampled version of the original dataset, obtained via bootstrapping (sampling with replacement).173

The final prediction is determined by majority voting among these models, and confidence is calcu-174

lated as the proportion of models voting for the final prediction [10].175

For neuron identification, we adapt the bootstrap ensemble approach by bootstrapping the probing176

dataset to produce multiple identification outcomes for the same neuron. This process is analogous177

to training multiple models in standard machine learning. The procedure can be described as:178

1. Collect bootstrap datasets: Sample K datasets {Di}Ki=1 independently by randomly se-179

lecting samples from the probing dataset Dprobe with replacement.180

2. Run neuron identification: Apply the neuron identification algorithm to each bootstrap181

datasets Di and record the predicted concept ci.182

3. Aggregate predictions: After K runs, estimate the probability of each concept as:183

P(c) =
1

K

K∑
i=1

1(ci = c), (15)

where 1(·) denotes the indicator function.184

4.2 Construct prediction set185

While bootstrap ensembles provide an empirical measure of stability, we also seek theoretical guar-186

antees on the top concept. In particular, we want to bound the probability that the most frequent187

concepts in bootstrap ensemble capture the desired concept2. For this goal, we construct a concept188

prediction set, a set of concepts likely to describe the neuron, rather than a single best guess. This189

approach could be applied on any neuron identification algorithm, without any modification. The190

procedure is described in Alg. 1.191

The following theorem gives a probabilistic guarantee that a desired concept c∗ will be included in192

the prediction set constructed via the bootstrap ensemble, under mild assumptions on the candidate193

set and similarity function.194

Lemma 4.1. Let p be defined implicitly by the equation195

r(f,Dprobe,
p

|C|
) =

∆

2
, (16)

where r(·) is the uniform convergence rate in Theorem 3.1. Then,196

P(ĉ = c∗) ≥ 1− p (17)

197

2It’s similar to ground truth in conventional machine learning.

6



Remark 4.2. Lemma 4.1 can be easily derived from Theorem 3.1: with probability 1 − p,198

supc∈C | ˆsim(f, c;Dprobe)− sim(f, c)| ≤ ∆
2 , thus199

ˆsim(f, c∗;Dprobe) ≥ sim(f, c∗;Dprobe)−
∆

2

≥ sim(f, c;Dprobe) +
∆

2
(Assumption 2)

≥ ˆsim(f, c;Dprobe).

(18)

In many cases, p is bounded by p < e−Q|Dprobe|∆2

for some constant Q > 0, depending on the200

similarity metric.201

Theorem 4.3. Let c∗ be the desired concept for a given neuron. Assume that202

1. c∗ ∈ C (the target concept is included in candidate concept set).203

2. sim(f, c∗) ≥ sim(f, c) + ∆,∀c ∈ C, c ̸= c∗, where ∆ > 0 is a positive constant. This204

assumes the similarity function can distinguish the target concept with other concepts.205

Let S ⊆ C be the prediction set constructed in Alg. 1, and let k(S) =
∑K

i=1[ĉi ∈ S] be the number206

of bootstrap trials that predict a concept in S. Then, under these assumptions,207

P(c∗ ∈ S) ≥
K−k(S)−1∑

i=0

(
K
i

)
pi(1− p)K−i, (19)

where p is the single-trial error probability defined in Lemma 4.1.208

Theorem 3.1 provides a statistical guarantee on the probability that our desired concept is included209

in the prediction set. We postpone its proof to appendix A.1.210

5 Experiments211

In this section, we conduct experiments to evaluate our proposed methods.212

5.1 Simulation on synthetic data213

To verify our theory in Sec. 3, we conduct simulations based on a synthetic dataset.214

Figure 3: Results of applying bootstrap ensemble to NetDissect and CLIP-Dissect on ResNet 50
neurons. NetDissect shows more stable, concrete concepts. CLIP-Dissect outputs are more diverse
and abstract.

7



(a) Setting 1 (b) Setting 2

Figure 4: 95% quantile of error of 5 similarity metrics under two synthetic simulation settings: (a)
balanced concept frequency; (b) rare concept frequency (0.001). Accuracy converges fastest in both
settings.

Experiment 1: Convergence speed. In Theorem 3.1, the key factor that controls the gap is the215

convergence rate r. To investigate this, we generate synthetic data and compare different similarity216

functions. We binarize the neuron representation by thresholding the top 5% activations and study217

the following two cases:218

1. P(f(x) = 1, c(x) = 1) = 0.03, P(f(x) = 1, c(x) = 0) = 0.02, P(f(x) = 0, c(x) = 1) =219

0.02, P(f(x) = 0, c(x) = 0) = 0.93. This case simulates a regular concept.220

2. P(f(x) = 1, c(x) = 1) = 0.0009, P(f(x) = 1, c(x) = 0) = 0.0491, P(f(x) = 0, c(x) =221

1) = 0.9499, P(f(x) = 0, c(x) = 0) = 0.0001. This case simulates the case that concept222

is rare (frequency is 0.001). This case often occurs when the concept is fine-grained.223

We simulate with Nexp = 1000 randomly sampled dataset and plot how the 95% quantile of error224

change with the number of samples, as shown in Fig. 4. From the simulation results, we can see that225

1. Accuracy has fastest convergence in both cases. On regular concept, IoU, recall and preci-226

sion are similar. AUROC converges faster than them.227

2. For rare concept, the case is different: AUROC and recall are much worse than precision228

and IoU. This matches our analysis in Sec. 3, where we showed that AUROC converges229

significantly slower when the concept frequency is low.230

Experiment 2: Gap simulation In this test, we verify Theorem 3.1 via synthetic data. We gener-231

ate the synthetic data with the following steps:232

1. Generate neuron representation. Binarized neuron representation f(x) is generated by233

setting the top-5% of activations to 1 and the rest to 0.234

2. Generate concepts. We generate |C| = 1000 concepts as the candidate set. For235

each concept, we first generate its frequency from a log-uniform distribution in the236

interval (10−4, 10−1). Then, we randomly generate TP = P(f(x) = c(x)) from237

(0,min[P(f(x) = 1),P(c(x) = 1)]) to ensure the probability is valid. The rest probabil-238

ity (FP, TN, FN) can then be inferred. Given the probabilities, we compute corresponding239

conditional probability (P(c(x) | f(x)) and sample c(x) accordingly.240

3. Experiment and simulation. We repeat the above steps Nexp = 1000 times. We use the241

sampled neuron representation f(x) and concept activation c(x) to calculate similarity and242

select top-ranked concept ĉ. Then, we calculate the ground-truth similarity with the real243

probability (TP, FP, TN, FN) and calculate the error as the difference between similarity of244

selected concept and max similarity in the candidate set (maxc∈C [sim(f, c)] − sim(f, ĉ).245

We take the 95% quantile of error among all experiments to approximate the bound under246

success probability 1− δ = 95%.247
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(a) Convergence rate rAUC with respect to probing
dataset size |Dprobe| under different positive rates
(concept frequency) ρ(c).

(b) Simulation of the generalization gap predicted
by Theorem 3.1 versus probing dataset size, show-
ing an empirical convergence rate of O(1/

√
n.

Figure 5: Theoretical and simulation results on generalization gap.

In Fig. 5b, we plot the simulated gap against the size of the probing dataset |Dprobe|. We observe248

that:249

1. All curves have similar slope to the reference O(
√

1/n) curve, suggesting an asymptotic250

convergence rate of O(
√

1/n), which is consistent with our theoretical analysis.251

2. For the constant term, accuracy has fastest convergence and AUROC is the second. This252

matches our simulation of r in Experiment 1, Setting 1, supporting our conclusion.253

5.2 Bootstrap ensemble254

We apply our bootstrap ensemble method to two base methods: CLIP-dissect [12] and NetDis-255

sect [3]. The base model we choose is a ResNet-50 model trained on the ImageNet dataset [6]. We256

run K = 100 bootstrap samples and choose the bootstrap count threshold t = 0.95K = 95 in257

Alg. 1. The results are shown in Fig. 3.258

From the results, we can observe interesting difference of these two methods:259

1. CLIP-Dissect prefers more abstract concept. For example, it gives concepts like fostering260

and bibliographic. NetDissect, in contrast, always uses concrete concepts.261

2. In general, CLIP-Dissect provides more diverse concepts and sometimes captures ones262

missed by NetDissect (e.g. Birding for Neuron 89). NetDissect is more stable across263

different bootstrap samples. A potential reason is that NetDissect utilizes localization in-264

formation, which improves stability.265

6 Conclusion and limitation266

In this work, we conducted a theoretical analysis of neuron identification problem, with the goal of267

clarifying the faithfulness and stability of current algorithms. With the key observation that neu-268

ron identification is the reverse process of learning, we introduced generalization gap to quantify269

faithfulness and provided corresponding bounds. We further introduced a bootstrap-based procedure270

to quantify stability and construct prediction sets of concepts. Together, we offer a principled frame-271

work for the trustworthiness of neuron identification, complementing existing empirical studies.272

Our work also has some limitations: the bound on generalization gap is a general bound for any con-273

cept set. It does not utilize the relation between concepts thus may be improved for specific concept274

set. The bootstrap ensemble method provides an algorithm-agnostic way to quantify stability and275

generate prediction sets, but also introduces additional computational overhead.276
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A Details on bootstrap ensemble323

Algorithm 1: Generating a concept prediction set for target neuron
Input: Concept set C, probing dataset Dprobe, target neuron f , neuron identification procedure

Identify(C, f,Dprobe), bootstrap sample count K, bootstrap count threshold t
Output: Prediction set S of candidate concepts
for i← 1 to K do

Sample dataset Di from Dprobe with replacement (same size as Dprobe);
Calculate ĉi = Identify(C, f,Di);

end
For each concept cj ∈ C, count number its appearances:

kj =

K∑
i=1

[ĉi = cj ]

Sort concepts by frequency, kr1 ≥ kr2 · · · ≥ krs , s is the number of different concepts
generated during bootstrapping;

Initialize S ← ∅, j ← 0, cur count← 0;
while cur count < t do

Add crj to S: S ← S ∪ {crj};
Update j ← j + 1, cur count← cur count + krj

end

A.1 Proof for Theorem 3.1324

Proof. Suppose we repeat our experiment K times and get {ĉi}Ki=1. Then, we have the following325

theorem.326

Theorem A.1. Let k∗ =
∑K

i=1 1[ĉi = c∗] denotes the number of times target neuron is given during327

K experiments. Then,328

P(k∗ ≥ t) ≥
t∑

i=0

(
K
i

)
(1− p)ipK−i (20)

329

Remark A.2. This could be derived by Lemma 4.1 and binomial distribution CDF.330

Using Theorem A.1, we can derive:331

P(c∗ /∈ S) ≤ P(k∗ ≤ K − k(S))

= 1− P(k∗ ≥ K − k(S)− 1)

≤ 1−
K−k(S)−1∑

i=0

(
K
i

)
(1− p)ipK−i

(21)

Thus,332

P(c∗ ∈ S) ≥
K−k(S)−1∑

i=0

(
K
i

)
(1− p)ipK−i, (22)

finishes the proof.333

B Related works334

B.1 Neuron identification335

The goal of neuron identification is to find a human-interpretable concept that describes the behav-336

ior and functionality of a specific neuron. A variety of methods have been proposed for neuron337
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identification. Network Dissection [3] is a pioneering work with the idea of comparing neuron338

activations with ground-truth concept masks. Subsequent work explored extensions such as com-339

positional explanations [11], automated labeling with CLIP [12], and multimodal summarization340

[2]. More recent approaches expand the concept space to linear combinations [13]. While these ad-341

vances provide useful empirical tools, in this work we aim to fill the gap in a principled theoretical342

foundation for neuron identification.343

B.2 Principled framework for neuron identification344

To unify the rapid growing neuron identification methods, Oikarinen et al. [14] design a framework,345

summarizing most neuron identification algorithm into three major components: neuron representa-346

tion, concept activations and similarity metrics. Additionally, two meta-tests are proposed to com-347

pare similarity metrics. While this work provides a good start point, rigorous theoretical analysis is348

still lacking, which we want to provide in this work.349
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