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Abstract

Recent advances in transformer-based Large001
Language Models (LLMs) have demonstrated002
remarkable capabilities across various tasks.003
However, their quadratic computational com-004
plexity concerning sequence length remains005
a significant bottleneck for processing long006
documents. As a result, many efforts like007
sparse attention and state space models have008
been proposed to improve the efficiency of009
LLMs over long sequences. While these ap-010
proaches achieve efficiency, they often require011
complex architectures and parallel training012
techniques. This calls for a simple yet ef-013
ficient model that preserves the fundamental014
Transformer architecture. To this end, we in-015
troduce SWAT, which enables efficient long-016
context handling via Sliding Window Attention017
Training. Specifically, SWAT replaces softmax018
with the sigmoid function for efficient informa-019
tion compression and retention. Then it utilizes020
balanced ALiBi and Rotary Position Embed-021
ding to stabilize training process. During in-022
ference, SWAT maintains linear computational023
complexity through sliding window attention024
while preserving model performance, achieving025
state-of-the-art (SOTA) results on eight com-026
monsense reasoning benchmarks compared027
to mainstream linear recurrent architectures.028
Code is available at this link.029

1 Introduction030

Large Language Models (LLMs) have demon-031

strated remarkable capabilities across various tasks,032

from text generation to complex reasoning (Shao033

et al., 2024). Unlike humans, who can efficiently034

process long contexts with memory, LLMs struggle035

to handle them due to quadratic complexity (Belt-036

agy et al., 2020). Despite their impressive per-037

formance on standard NLP tasks, this quadratic038

complexity poses a fundamental challenge for prac-039

tical applications. The increasing need for efficient040

long-context processing, coupled with the compu-041

tational constraints of current architectures, creates 042

a pressing need for more scalable solutions. 043

Several approaches have been proposed to han- 044

dle long sequences efficiently. These methods can 045

be broadly categorized into two types: (1) sparse 046

attention mechanisms (Beltagy et al., 2020), which 047

reduce computation by selectively calculating the 048

attention score, and (2) sequence models with re- 049

current architectures, such as linear attention vari- 050

ants (Katharopoulos et al., 2020) and state space 051

models (Gu and Dao, 2023), which aim to pro- 052

cess sequences efficiently through recursive hidden 053

states. However, these solutions face a fundamental 054

dilemma—they either compromise model perfor- 055

mance to achieve efficiency or propose new com- 056

plex architectures that cannot fully exploit existing 057

techniques for convenient implementation and de- 058

ployment. However, existing LLM solutions for 059

handling long sequences often require complex ar- 060

chitectures and parallel training techniques, making 061

implementation and deployment more challenging, 062

which calls for an efficient approach based on the 063

existing Transformer architecture. 064

Sliding Window Attention (SWA), a typical 065

sparse attention approach (Child et al., 2019), is 066

the most intuitive solution, as it avoids adding ad- 067

ditional model components and compresses the in- 068

ference computational complexity to linear. How- 069

ever, this approach still faces the following chal- 070

lenges1: (1) Current researches on SWA predomi- 071

nantly focus on solving the attention sink problem 072

within the inference phase, where models allocate 073

excessive attention to initial tokens, causing an un- 074

even distribution of attention weights across the 075

sequence (Xiao et al., 2023). However, they leave 076

the training process unchanged, thereby creating 077

a gap between inference and training. (2) Tokens 078

outside the attention window coverage are ignored 079

for prediction, leading to information loss in long- 080

1More details are in Section 2.2
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Figure 1: The demonstration of the SWA mechanism in Transformers.

context modeling (Han et al., 2024; Ramapuram081

et al., 2025). Hence, it is crucial to investigate SWA082

training methods to bridge the training-inference083

gap and enable the model to learn long-context084

dependencies.085

This paper introduces the SWAT framework to086

achieve effective SWA training and solve the afore-087

mentioned problems. Specifically, SWAT replaces088

the softmax operation with the sigmoid function,089

which not only prevents the attention sink prob-090

lem but also maintains dense attention weights for091

higher information capacity per token. To compen-092

sate for the lack of sparsity in sigmoid-based at-093

tention, SWAT incorporates balanced ALiBi (Press094

et al., 2022) to introduce position-dependent dif-095

ferentiation, preventing information overloaded in096

dense representations. It also enables the model097

to preserve both recent and historical information098

effectively. Furthermore, we enhance the frame-099

work with Rotary Position Embedding (RoPE) (Su100

et al., 2023) to explicitly encode positional infor-101

mation in hidden states, ensuring training stability.102

SWAT trained with SWA from scratch is ultimately103

capable of compressing arbitrarily long texts into a104

fixed-length hidden state of tokens while maintain-105

ing effective information processing. Our contribu-106

tions can be summarized as follows:107

• We empirically analyze the poor performance of108

the SWA inference and attribute this to the atten-109

tion sink problem caused by the high variance of110

softmax operation.111

• We introduce SWAT, which combines sigmoid112

activation with balanced position embeddings,113

enabling effective information preservation and114

achieving SWA training. 115

• Extensive experiments confirm that SWAT sur- 116

passes vanilla Transformer and other recurrent 117

models, achieving strong performance across 118

tasks with linear computational complexity. 119

2 Understanding Transformer’s Attention 120

This section introduces concepts of the SWA mech- 121

anism and its potential capability in handling long 122

sequences. We then analyze why current LLMs 123

with SWA inference fail to achieve the expected 124

theoretical advantages. 125

2.1 Sliding Window Attention 126

The self-attention layer in Transformers typically 127

has O(N2) computational complexity, where N 128

is the input sequence length. To reduce this com- 129

plexity while preserving the sequential information, 130

sliding window attention (SWA) is introduced in 131

Longformer (Beltagy et al., 2020). SWA restricts 132

each token to only attend the attention calculation 133

of its neighboring tokens within a fixed-size win- 134

dow. With a window size of ω ≪ N , the compu- 135

tation cost per token is reduced to O(ω), leading 136

to an overall linear complexity O(N · ω), which is 137

more efficient than vanilla attention. 138

We visualize the SWA mechanism in Figure 1, 139

where the window size is three (ω = 3) and the 140

depth is two (L = 2). We define the tokens that 141

are visible to the current window as active tokens 142

(the red block in the figure, corresponding active 143

tokens are “a dear little”). For invisible tokens, 144

also referred to as evicted tokens, we further cat- 145

egorize them as residual and past tokens. Resid- 146

ual tokens are not visible to the sliding window at 147
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(c) Qwen2-7B  
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(d) Mistral-7B-v0.1 
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Figure 2: The log10 perplexity of four LLMs (Llama-2-7b, Llama-3.1-8B, Qwen2-7B and Mistral-7B-v0.1) on the
third book of PG-19 test set using SWA inference. The window sizes are set not to exceed their respective training
sequence lengths. The x-axis represents the sliding window size, and the y-axis represents the evaluation sequence
length. For a fixed window size, perplexity increases (color shifts to blue) as the evaluation length grows.
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Figure 3: Heatmaps of attention scores (top four squares) and token embedding variance (bottom four lines) across
different layers of Qwen2-7B. Higher token variance corresponds to stronger attention, highlighting their correlation.
The two color bars indicate respective scales.

the embedding layer. However, their information148

will passed to the neighboring ω − 1 tokens with149

a transformer layer (this information transition is150

represented as yellow lines in the figure), thus par-151

tially preserved for the prediction. For example,152

the information of the token ‘a’ (the orange ball at153

the embedding layer) can be retained in the other154

token ‘a’ (the red ball at the second transformer155

layer) in our visualization. Theoretically, the infor-156

mation range of a single token at the lth transformer157

layer is 1 + (ω − 1) · l and the maximum range is158

1 + (ω − 1) · L, i.e., 1 + 2 · 2 = 5 in the figure.159

2.2 LLMs with SWA Inference160

Although current open-source LLMs are struc-161

turally capable of conducting SWA inference, they162

fail to achieve stable improved results. As shown in163

Figure 2, we analyzed the perplexity (PPL) of four164

open-source LLMs (Touvron et al., 2023; Dubey165

et al., 2024; Jiang et al., 2023; Yang et al., 2024a)166

using different sliding window sizes on the PG-167

19 (Rae et al., 2019) test set. The experimental168

results reveal that these LLMs achieve optimal per-169

formance only when operating within their train-170

ing sequence length. For instance, for Llama-2-7b171

model in Figure 2(a), when the window size is fixed 172

at 1,024, the perplexity gradually increases as the 173

evaluation length grows, as indicated by the color 174

transition from blue to red in the heatmap. This 175

suggests that Transformers inherently learn contex- 176

tual patterns specific to their training length and fail 177

to extend to variable-length texts during inference. 178

We suggest that this failure can be attributed 179

to two major issues: (1) the attention sink phe- 180

nomenon, where models become overly dependent 181

on initial tokens, and (2) information loss that past 182

tokens are discarded. 183

The attention sink phenomenon (Xiao et al., 184

2023), where LLMs allocate excessive attention 185

to initial tokens in sequences, has emerged as a 186

significant challenge for SWA inference in Trans- 187

former architectures. Previous work has made two 188

key observations regarding this phenomenon. First, 189

the causal attention mechanism in Transformers 190

is inherently non-permutation invariant, with po- 191

sitional information emerging implicitly through 192

token embedding variance after softmax normal- 193

ization (Chi et al., 2023). Second, studies have 194

demonstrated that removing normalization from 195
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the attention mechanism can effectively eliminate196

the attention sink effect (Gu et al., 2024).197

Based on these insights, we analyze the attention198

patterns and hidden state statistics of Qwen2-7B,199

as shown in Figure 2. Our results reveal a strong200

correlation between token variance and attention201

sink magnitude—the variance of hidden states for202

the first token is significantly higher than for subse-203

quent tokens. This finding provides strong evidence204

that attention sink manifests through variance prop-205

agation via normalization. Notably, even though206

models like Qwen2 incorporate explicit relative po-207

sition embeddings (e.g., RoPE), they still learn and208

rely on this implicit absolute positional information209

through the normalization mechanism.210

Beyond the attention sink problem, softmax also211

leads to significant information loss during sliding212

window inference. Consider the following example213

of how softmax transforms attention scores:214 
1.5
5.0
2.4
0.5
1.3

→ Softmax(xi) =
exi∑
j e

xj
→


0.03
0.88
0.07
0.01
0.02


(1)215

As shown above, the exponential nature of soft-216

max dramatically amplifies differences between217

logits, causing most of the probability mass to con-218

centrate on the highest-scoring token (0.88 in this219

case) while severely suppressing other tokens (all220

below 0.07). A detailed mathematical proof of this221

sparsification property is provided in Appendix A.222

In summary, while softmax’s sparsification is223

beneficial for full-context Transformers, it becomes224

limiting in SWA scenario where the aggressive fil-225

tering impedes the model’s ability to retain histori-226

cal information within the sliding window.227

3 Sliding Window Attention Training228

In this section, we explore the advantages of SWA229

training over traditional Transformer training with230

a new paradigm for processing long sequences. Ad-231

ditionally, we provide a detailed explanation of our232

proposed SWAT attention layer. This simple yet ef-233

fective attention layer combines Sigmoid (Verhulst,234

1838), ALiBi, and RoPE to address the information235

retention challenges of SWA.236

3.1 Information Transmission237

Traditional Transformer training involves process-238

ing entire sequences of tokens, allowing the model239
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Figure 4: The demonstration of the SWA mechanism in
Transformers, where the model’s information coverage
includes residual and active tokens, depending on the
model depth and window size.

to capture long-range dependencies through global 240

attention mechanisms. In contrast, SWA oper- 241

ates within a limited context, necessitating new 242

approaches to preserve information continuously. 243

As shown in Figure 4, SWA training enables two 244

distinct learning paradigms for LLMs, short and 245

long sequence attentions. 246

In conventional Transformer training, the se- 247

quence length is smaller than the window size. New 248

tokens can acquire and integrate information from 249

all tokens, even the very first tokens in the text. 250

Therefore, the model keeps essential information 251

in each token embedding and enhances the ability 252

to extract information, which is also strengthened 253

by the softmax function. 254

SWA training introduces a new training 255

paradigm, where each window shift requires care- 256

ful historical context management. In particular, 257

the old token embedding is discarded after slid- 258

ing. However, in the upper layers of the Trans- 259

former, the new token’s embedding still retains 260

the old token’s embedding with a certain weight. 261

Hence, the model tends to retain all past embed- 262

dings in the upper-level model to prevent informa- 263

tion loss caused by sliding windows, strengthening 264

the model’s ability to compress information. The 265

experimental results demonstrating how SWA train- 266

ing enhances the model’s capabilities are presented 267

in Sections 4.3 and 4.4. 268

3.2 Attention Computation 269

In this subsection, we propose SWAT, a modified 270

attention mechanism that combines sigmoid acti- 271

vation with integrated position embeddings. The 272

input consists of queries, keys, and values with 273

dimension of d. Instead of using softmax normal- 274

ization, we apply sigmoid activation to the scaled 275

dot products to obtain attention weights, preventing 276
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mutual suppression between tokens:277

Attention(Q,K,V ) = σ(
QKT

√
d

)V (2)278

where Q ∈ RN×d, K ∈ RN×d, and V ∈ RN×d279

are packed matrices of queries, keys, and values,280

respectively; σ(·) is the sigmoid function. More281

detailed analysis can be found in Appendix B.282

To introduce discriminative bias in the dense at-283

tention patterns of sigmoid activation and better284

differentiate token representations within sliding285

windows, we propose balanced ALiBi, a bidirec-286

tional extension of the original ALiBi mechanism.287

For an input subsequence within a window, we add288

position-dependent biases to the attention scores:289

Attention(Q,K,V ) = σ(
QKT

√
d

+s · (m−n))V

(3)290

where m and n (m > len) denote the index of291

tokens in the sequence and s denotes the slope. Un-292

like the original ALiBi, which uses only negative293

slopes to enforce a directional inductive bias, we294

use both positive and negative slopes across dif-295

ferent attention heads. For a model with h heads,296

we assign positive slopes to h/2 heads and nega-297

tive slopes to the remaining heads. The magnitude298

of slopes follows a geometric sequence similar to299

ALiBi, but in both directions:300

sk =

{
−2−k for forward-looking heads
2−k for backward-looking heads

(4)301

where k ranges from 1 to h/2 for each direction.302

This bidirectional slope design allows attention303

heads to specialize in different temporal directions,304

with forward-looking heads focusing on recent con-305

text and backward-looking heads preserving histor-306

ical information.307

After replacing softmax with sigmoid, the im-308

plicit position information through normalization309

is lost, leading to training instability. Furthermore,310

while balanced ALiBi provides positional variance311

through attention weights, its positional signals312

remain weak. To address this issue, we further313

incorporate RoPE to enhance explicit positional in-314

formation. Finally, SWAT attention calculates the315

attention output as follows:316

Attention(Q,K,V )m =
∑m

n=m−ω+1

σ

(
(Rd

Θ,mqm)T (Rd
Θ,nkn)√

dk
+ s · (m− n)

)
vn

(5)317

where Rd
Θ,m and Rd

Θ,n are the same rotation matri- 318

ces as Equation 15 in (Su et al., 2023). To ensure 319

SWA training, note that m− n < ω. 320

This combination of sigmoid activation, bal- 321

anced ALiBi, and RoPE makes up for the sparsity 322

of the vanilla Transformer. It ensures the stability 323

of training and strengthens the information con- 324

tained in a single token embedding. 325

3.3 Network Efficiency 326

Since SWAT’s architecture is nearly identical to a 327

standard attention layer, the per-token computation 328

cost remains almost the same under an equivalent 329

attention length—apart from the additional over- 330

head of computing the ALiBi. However, the over- 331

all computation becomes linear due to the use of a 332

sliding window. Thus, the inference computational 333

complexity can be expressed as: 334

Cost = Nω × (1 + δALiBi), 0 < δALiBi ≪ 1 (6) 335

where δALiBi represents the extra cost of ALiBi. 336

4 Experiments 337

4.1 Experiment Settings 338

Datasets. For the overall comparison, models 339

are trained on the 100BT subset of FineWeb- 340

Edu (Lozhkov et al., 2024), which is a high-quality 341

educational dataset designed for LLM pre-training. 342

Baselines. Our baselines include state-of-the-art 343

models including both vanilla Transformer and 344

recurrent models. Specifically, we compare our 345

approach against Transformer++ (Touvron et al., 346

2023), RetNet (Sun et al., 2023), Gated Linear At- 347

tention (GLA) (Yang et al., 2024c), Mamba (Gu 348

and Dao, 2023), DeltaNet (Yang et al., 2025), 349

TTT (Sun et al., 2024), Gated DeltaNet (Yang et al., 350

2024b), and Titans (Behrouz et al., 2024). 351

Implementation Details. We pre-train SWAT 352

with model sizes of 340M and 760M parameters 353

on 15B and 30B tokens, respectively. The train- 354

ing uses the same vocabulary as Llama 2 (Touvron 355

et al., 2023), with a sequence length of 4096 tokens 356

and a batch size of 0.5M tokens. 357

Evaluation Metrics. We evaluate model perfor- 358

mance using perplexity (ppl), accuracy (acc), and 359

normalized accuracy (acc_n). Perplexity measures 360

language modeling ability, where lower values in- 361

dicate better predictions. Accuracy assesses classi- 362

fication performance by calculating the proportion 363
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Table 1: Overall comparison of SWAT and other models on eight common-sense reasoning tasks. Bold values
represent optimal performance, while second-best values are underlined. “ *” indicates the statistically significant
improvements (i.e., two-sided t-test with p < 0.05) over the best baseline. ↑: higher is better. ↓: lower is better.

Model Wiki.
ppl ↓

LMB.
ppl ↓

LMB.
acc ↑

PIQA
acc ↑

Hella.
acc_n ↑

Wino.
acc ↑

ARC-e
acc ↑

ARC-c
acc_n ↑

SIQA
acc ↑

BoolQ
acc ↑

Avg.
↑

340M params / 15B tokens

Transformer++ 31.52 41.08 30.76 62.98 34.76 50.53 45.21 24.05 36.81 58.24 42.92
RetNet 32.50 49.73 28.24 62.61 34.15 50.91 44.27 23.62 36.79 59.72 42.54
GLA 28.51 43.02 28.73 64.05 35.96 50.00 54.19 24.29 37.13 58.39 44.09
Mamba 30.83 40.21 29.94 63.79 35.88 49.82 49.24 24.56 35.41 60.07 43.59
DeltaNet 28.65 47.30 28.43 63.52 35.95 49.63 52.68 25.37 37.96 58.79 44.04
TTT 27.44 34.19 30.06 63.97 35.71 50.08 53.01 26.11 37.32 59.83 44.51
Gated DeltaNet 27.01 30.94 34.11 63.08 38.12 51.60 55.28 26.77 34.89 59.54 45.42
Titans 26.18 29.97 34.98 64.73 39.61 51.85 55.60 28.14 34.52 59.99 46.17
SWAT (-) 33.32 36.75 32.80 65.94* 38.99 50.12 59.68* 28.24* 38.69* 60.55 46.88*
SWAT (+) 37.47 49.15 29.59 65.40 36.92 50.43 54.55 26.88 37.67 58.93 45.05
SWAT (-+) 35.53 45.06 29.96 65.67 37.39 50.91 56.99 27.05 36.75 62.11* 45.85

760M params / 30B tokens

Transformer++ 25.21 27.64 35.78 66.92 42.19 51.95 60.38 32.46 39.51 60.37 48.69
RetNet 26.08 24.45 34.51 67.19 41.63 52.09 63.17 32.78 38.36 57.92 48.46
Mamba 28.12 23.96 32.80 66.04 39.15 52.38 61.49 30.34 37.96 57.62 47.22
Mamba2 22.94 28.37 33.54 67.90 42.71 49.77 63.48 31.09 40.06 58.15 48.34
DeltaNet 24.37 24.60 37.06 66.93 41.98 50.65 64.87 31.39 39.88 59.02 48.97
TTT 24.17 23.51 34.74 67.25 43.92 50.99 64.53 33.81 40.16 59.58 47.32
Gated DeltaNet 21.18 22.09 35.54 68.01 44.95 50.73 66.87 33.09 39.21 59.14 49.69
Titans 20.04 21.96 37.40 69.28 48.46 52.27 66.31 35.84 40.13 62.76 51.56
SWAT (-) 23.41 21.05 40.81* 69.80* 48.65* 51.69 65.15 33.53 39.95 61.07 51.85*
SWAT (+) 23.91 21.05 39.01 69.59 47.64 53.43 64.73 32.34 39.15 57.95 50.48
SWAT (-+) 23.34 21.36 39.08 69.70 48.16 53.91* 65.15 31.06 39.41 61.62 51.01

of correct predictions. Normalized accuracy is ad-364

justs for dataset difficulty variations, ensuring fair365

comparisons across different evaluation settings.366

4.2 Overall Performance367

In this section, we evaluate the performance of368

SWAT on eight commonsense reasoning bench-369

marks, as detailed in Appendix C.2. The compar-370

ison is conducted on 340M and 760M parameter371

models. For our SWAT, (-) denotes negative slopes372

(i.e., the negative ALiBi slope to look forward in373

Equation 4); (+) denotes positive slopes, which use374

the opposite slope of ALiBi (i.e., the positive slope375

in Equation 4 looking backward); and (-+) indi-376

cates that half of the attention heads have negative377

slopes and half have positive slopes.378

As shown in Table 1, SWAT (-) achieves state-of-379

the-art (SOTA) performance on average (46.88%)380

across eight common sense reasoning tasks, sur-381

passing all other baselines. This is mainly at-382

tributed to the short-text benchmarks, such as PIQA383

and Hellaswag, where SWAT (-) focuses more on384

the information from newly input tokens. Although385

SWAT (-) initially shows higher perplexity than386

other baselines at 340M parameters, when scaled to387

760M parameters, it demonstrates strong decreases388

in perplexity on Wiki and LMB. This suggests a389

performance improvement trend for larger models 390

with the sigmoid function. On the contrary, the 391

purely forward-looking SWAT (+) shows weaker 392

performance, suggesting that forward slopes work 393

best combined with backward attention. 394

The balanced configuration SWAT (-+), where 395

attention heads are evenly split between looking for- 396

ward and backward, achieves more uniform perfor- 397

mance across different tasks by effectively process- 398

ing both recent and historical information. Specif- 399

ically, SWAT (-+) achieves the best performance 400

(62.11%) on BoolQ, a question-answering dataset 401

where historical context is crucial for accurate pre- 402

dictions. This result aligns with our findings in 403

Section 4.4, where balanced attention heads demon- 404

strate superior performance on both OpenOrca and 405

PG-19 datasets, confirming the importance of bal- 406

anced historical information processing for com- 407

plex reasoning tasks. Meanwhile, due to the allo- 408

cation of some attention heads for remembering 409

information from older tokens, SWAT (-+) shows a 410

slight performance compromise on shorter bench- 411

marks. However, this issue is alleviated as the 412

model scales from 340M to 760M. The results 413

remain consistent at 760M parameters, showing 414

robustness across model sizes. 415
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Table 2: Performance comparison of language models pretrained with and without sliding windows.

Models Training
Window

Training
Length

Eval
Window

OpenWebText (Eval Length=) PG-19 (Eval Length=) OpenOrca

128 1,024 4,096 16,384 128 1,024 4,096 16,384 -

Vanilla A 128 128 128 3.2490 3.6536 3.6761 4.8414 4.9682 5.2139 5.1529 5.6949 6.0084
Sliding Window A 128 1,024 128 3.3619 3.1286 3.0766 3.0051 5.1785 4.8164 4.7510 4.7663 7.7471
Vanilla B 1,024 1,024 128 3.3395 3.3042 3.2856 3.2379 5.6052 5.0742 5.0797 5.1336 7.9706
Vanilla B 1,024 1,024 1,024 3.3395 2.9716 2.9541 2.9636 5.6052 5.3429 5.1517 5.0274 7.9706
Vanilla B 1,024 1,024 16,384 3.3395 2.9716 3.5534 3.0786 3.3395 2.9716 5.4912 5.2372 7.9706
Sliding Window B 1,024 4,096 1,024 3.4380 3.0197 2.9638 2.9128 5.0880 4.6587 4.5107 4.4383 5.8802
Vanilla C 4,096 4,096 4,096 3.3788 2.9784 2.9705 2.9518 5.1519 4.5444 4.4366 4.4938 5.9315
Vanilla D (Upper Bond) 16,384 16,384 16,384 OOM OOM OOM

Table 3: Performance comparison of language models with different activation functions and position embeddings.

No. Model
Type

Activation
Function

Position
Embedding

Training
Window

Training
Length

Eval
Window OpenWebText PG-19 OpenOrca Avg.

1 Vanilla Softmax RoPE 128 128 128 4.8414 5.6949 6.0085 5.5149
2 Vanilla Sigmoid RoPE 128 128 128 14.2562 15.4765 1.9906 10.5744
3 Sliding Softmax RoPE 128 1,024 128 3.0140 4.7839 6.9671 4.9217
4 Sliding Sigmoid ALiBi-12:0 128 1,024 128 3.0073 4.6895 0.1631 2.6200
5 Sliding Sigmoid ALiBi-8:4 128 1,024 128 3.0391 4.6435 0.2650 2.6492
6 Sliding Sigmoid ALiBi-6:6 128 1,024 128 3.0484 4.9920 0.1420 2.7275
7 Sliding Sigmoid ALiBi-6:6 128 2,048 128 3.0634 5.0384 0.1712 2.7577
8 Sliding Sigmoid AliRope-6:6 128 1,024 128 3.0486 4.3103 0.1709 2.5099
9 Sliding Sigmoid AliRope-6:6 1,024 1,024 1,024 2.9716 4.3915 0.5304 2.6312
10 Vanilla Softmax RoPE 1,024 1,024 1,024 2.9631 4.5447 5.4702 4.3260
11 Vanilla Sigmoid ALiBi 1,024 1,024 1,024 2.9659 5.0681 0.1717 2.7352

4.3 Sliding Window Attention Training416

To verify the effectiveness of SWA training, we417

conduct experiments comparing vanilla Transform-418

ers pre-trained with and without SWAT training419

across three datasets. Using Llama2-based mod-420

els (Touvron et al., 2023) pretrained on OpenWeb-421

Text, we investigate the impact of varying sliding422

window sizes and sequence lengths, with results423

shown in Table 2. In the table, vanilla Transform-424

ers are which training length are the same as their425

training window size, and the labels A, B, C, and426

D represent the model identifiers.427

When the sliding window mechanism is ap-428

plied, we observe a notable improvement in per-429

formance, particularly with longer evaluation se-430

quence lengths. For instance, in the Sliding Win-431

dow A configuration, when the evaluation length is432

16,384, Sliding Window A achieves a performance433

of 3.0051 on OpenWebText, surpassing the 4.8414434

achieved by Vanilla A. Additionally, Sliding Win-435

dow B achieves the best performance across all436

three datasets when the evaluation length is 16,384.437

Note that all results are from models trained for438

80,000 steps. If training continues, the attention439

sink issue is likely to worsen, further degrading440

vanilla model performance.441

Based on our experimental results, we draw two442

key conclusions: (1) Wtih the same model struc- 443

ture, SWA training significantly improves perfor- 444

mance, especially with longer evaluation sequence 445

lengths. This is likely because SWA training forces 446

the model to retain memory of older information 447

across long sequences, while vanilla models strug- 448

gle with memory as they retain all historical to- 449

kens. (2) The vanilla Transformers perform op- 450

timally only when the evaluation length matches 451

the training length, whereas the SWA trained mod- 452

els maintain consistent performance across varying 453

sequence lengths. This is likely because vanilla 454

Transformers heavily attend to initial tokens due to 455

attention sink, while SWA models learn to focus 456

primarily on the current window, ensuring stable 457

performance across different sequence lengths. 458

4.4 Ablation Study 459

This section evaluates the impact of activation 460

functions, position embeddings, and ALiBi slopes. 461

We systematically test 11 different configurations 462

(No.1-11) to understand how different combina- 463

tions of model components affect long-context per- 464

formance, as shown in Table 3 and Figure 5. 465

Comparing No.1 and No.2, directly replacing 466

softmax with sigmoid in vanilla Transformer leads 467

to significant performance degradation, likely due 468
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Figure 5: The training loss of models with different
modules including Sigmoid, RoPE, and ALiBi, with the
balanced slopes.

to overloaded information in token embeddings469

without mutual suppression. However, using ALiBi470

stabilizes training by distinguishing subtle differ-471

ences in token embeddings based on position infor-472

mation (No.10 and No.11). Furthermore, the slope473

configuration plays a key role, with No.5 and No.6474

outperforming No.4, suggesting a better balance475

between recent and past information. However,476

Figure 5 shows that training instability persists at477

later stages (ALiBi-6:6 Sigmoid), indicating that478

ALiBi alone provides weak positional information.479

AliRope-6:6 Sigmoid (No.8) achieves the lowest480

loss values among all variants, with 2.51 on av-481

erage, while demonstrating more stable training482

pattern as shown in Figure 5. Finally, comparing483

No.7 and No.6, extending the training length from484

1,024 to 2,048 while keeping the number of layers485

and window size fixed does not help with the loss.486

5 Related Works487

5.1 Efficient Transformers488

While architectural innovations offer one path to489

efficiency, research also focuses on optimizing the490

Transformer itself, particularly through sparse at-491

tention patterns to reduce computational cost.492

Early work in this direction focused on struc-493

tured sparsity patterns. Sparse Transformer (Child494

et al., 2019) demonstrated that using fixed sparse at-495

tention patterns could maintain model performance496

while significantly reducing computation. This497

idea was further developed by Longformer (Belt-498

agy et al., 2020) and BigBird (Zaheer et al., 2021),499

which introduced more sophisticated attention pat-500

terns combining local windows with global tokens501

to capture dependencies effectively. These models,502

however, still rely on predefined attention patterns,503

which can limit flexibility.504

5.2 Efficient LLMs 505

To address the quadratic complexity of Transform- 506

ers, researchers have proposed various efficient 507

models categorized into the following categories: 508

Linear Recurrent Models achieve O(n) com- 509

plexity through different approximation techniques. 510

Linear Transformer (Katharopoulos et al., 2020) 511

replaces softmax attention with kernel functions, 512

while Performer (Choromanski et al., 2021) em- 513

ploys random feature approximation. Recent works 514

like GLA (Yang et al., 2024c) introduce forget- 515

ting mechanisms to prevent information explosion, 516

while Gated Delta Networks (Yang et al., 2024b) 517

focus memory updates to enable both precise mem- 518

ory updates and quick resets when needed. Models 519

like Mamba (Gu and Dao, 2023) and RWKV (Peng 520

et al., 2023) take a fundamentally different ap- 521

proach by utilizing state space models (SSMs) in- 522

stead of attention, providing an alternative way to 523

capture sequential patterns. 524

Memory-Augmented Architectures enhance 525

Transformers’ ability to handle long sequences by 526

incorporating explicit memory mechanisms. For 527

example, Transformer-XL (Dai et al., 2019) pio- 528

neered the use of cached computations from pre- 529

vious segments with relative positional embed- 530

dings. More recent works like Memorizing Trans- 531

formers (Wu et al., 2022) and Focused Trans- 532

former (Tworkowski et al., 2023) try to store and 533

retrieve relevant historical information. 534

While these models achieve better efficiency, 535

their complex architectures often lead to more 536

challenging optimization compared to standard 537

Transformers, which benefit from simple and well- 538

established training procedures. 539

6 Conclusion 540

This paper introduces SWAT, a new architecture 541

for efficient LLMs via sliding window attention 542

training, which maintains the core Transformer ar- 543

chitecture. By replacing softmax with sigmoid and 544

combining balanced ALiBi with RoPE, SWAT ad- 545

dresses the attention sink issue and ensures stable 546

training. SWAT enables effective information com- 547

pression and retention across sliding windows with- 548

out complex architectural changes. Experimental 549

results show that SWAT outperforms other models 550

across eight common-sense reasoning benchmarks, 551

excelling in tasks that require long-range compre- 552

hension. Future work could explore adaptive win- 553

dow sizes for more flexible text processing. 554
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7 Limitations555

While our architectural design ensures relatively556

robust training stability, SWAT’s performance ex-557

hibits significant sensitivity to hyperparameter con-558

figuration. Critical parameters including window559

size, model depth, and the distribution of ALiBi560

slopes substantially impact model efficacy. This561

necessitates comprehensive hyperparameter explo-562

ration to optimize the model architecture.563

Additionally, as the model scales, it may en-564

counter diminishing returns in retaining long-565

context information. In particular, larger models566

may fully memorize training data, reducing the567

need for information transmission, which in turn568

weakens the effectiveness of mechanisms designed569

to handle extended contexts. Future experiments570

will need to keep cache from previous steps during571

training to address this problem.572

Finally, despite SWAT’s strong overall perfor-573

mance, the model exhibits an inherent limitation574

in its attention mechanism. Specifically, SWAT’s575

maximum attention distance is constrained by the576

product of window size and model depth. Although577

extending these parameters can theoretically in-578

crease the attention span, information loss remains579

inevitable when processing ultra-long sequences.580

For applications requiring complete information581

retention over extensive contexts, alternative ap-582

proaches such as hybrid architectures or explicit583

memory retrieval mechanisms may be necessary to584

complement SWAT’s capabilities.585
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be given, where q,ki ∈ Rd. We stack the key759

vectors into a matrix:760

K =


k1

k2
...
kL

 . (7)761

The attention distribution (i.e., the set of attention762

weights) α is computed by:763

α = softmax
(
qK⊤
√
d

)
, (8)764

where softmax(zi) = ezi/
∑

j e
zj . Let765

Ei =
q · ki√

d
, (9)766

so the i-th attention weight is:767

αi =
exp(Ei)∑n
j=1 exp(Ej)

. (10)768

Sparsity arises because the exponential function769

greatly amplifies any Ei that is larger than the rest:770

if E1 is significantly bigger than E2, . . . , EL, then771

exp(E1) will dominate the sum in the denominator,772

pushing α1 close to 1 and making the others near773

0. Formally, define774

∆i = E1 − Ei for i ≥ 2, (11)775

so we have:776

αi

α1
=

exp(Ei)

exp(E1)

= exp(Ei − E1)

= exp(−∆i).

(12)777

If ∆i is large and positive, then exp(−∆i) is very778

small, causing αi to vanish compared to α1. More-779

over, in high-dimensional spaces (i.e., when d is780

large), random dot products q · ki tend to have781

higher variance, making it more likely that one or782

a few Ei values will stand out dramatically. This783

“winner-takes-most” scenario becomes amplified,784

thereby increasing the tendency toward sparsity785

within the attention distribution.786

In practice, the dot-product q · ki often yields787

extreme values—meaning that one or a few of the788

resulting energies Ei are substantially larger than789

the others. This phenomenon causes the softmax to790

concentrate most of the probability mass on these791

extreme values. To rigorously analyze this behav- 792

ior, we suppose each attention score Ei is an inde- 793

pendent and identically distributed (i.i.d.) random 794

variable drawn from a Gaussian distribution: 795

Ei ∼ N (µ, σ2). (13) 796

Under this assumption, by the central limit theo- 797

rem, the dot product q ·ki follows an approximately 798

normal distribution after appropriate scaling. More 799

importantly, extreme value theory states that the 800

maximum value among L i.i.d. Gaussian variables, 801

denoted as E(L) = max1≤i≤LEi, satisfies approx- 802

imately: 803

E(L) ≈ µ+ σ
√
2 lnL. (14) 804

In contrast, a typical attention score is around µ. 805

Therefore, the expected gap between the maximum 806

energy and a typical energy is on the order of: 807

∆ ≈ σ
√
2 lnL. (15) 808

Given this gap, we have: 809

αi

α1
≈ exp

(
−σ

√
2 lnL

)
. (16) 810

For large L, this ratio becomes exponentially small. 811

B Why Does the Sigmoid Function 812

Maintain Density? 813

While the softmax function induces a probability 814

distribution over multiple inputs, the sigmoid func- 815

tion operates on each input independently and does 816

not normalize across multiple values. Concretely, 817

the sigmoid of a scalar z is defined as: 818

σ(z) =
1

1 + e−z
. (17) 819

In contrast to softmax—which computes expo- 820

nential terms for all inputs z1, z2, . . . , zL and di- 821

vides by their sum—sigmoid only involves a single 822

exponential term e−z within its own calculation. 823

Consequently, one input’s value does not directly 824

compete with another input’s value in a shared de- 825

nominator. Since the final attention weight for each 826

token is determined independently based on its re- 827

lationship with the query, there is no “winner-takes- 828

most” effect as seen in softmax-based attention. 829

Finally, in a sigmoid-based attention mechanism, 830

the computed token embedding can retain informa- 831

tion from all tokens within the attention window, 832

rather than being dominated by a single token with 833

high attention weight. To effectively preserve the 834
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Table 4: Statistics of the datasets used in our analysis
experiments. All datasets are in English and split into
train, validation, and test sets with a ratio of 8:1:1. Sam-
ple sizes are reported in millions (M) or thousands (K).

Name Task Usage Language Train Validation Test

OpenWebText Language Modeling All English 6.48M 0.81M 0.81M
PG-19 Language Modeling Test English 15.6M 1.95M 1.95M
OpenOrca Question Answering Test English 400K 50K 50K

diversity of token integration, it is important to en-835

sure that the embedding dimension is sufficiently836

large. A higher dimensional space allows differ-837

ent token values to be effectively combined while838

maintaining meaningful distinctions between them.839

C Detailed Experiment Settings840

C.1 Datasets841

While our main experiments utilize a specific high-842

quality educational dataset, we conducted prelim-843

inary evaluations across multiple datasets to com-844

prehensively assess model capabilities. All datasets845

are split according to the ratio: train:validation:test846

= 8:1:1. Here we detail the characteristics and pur-847

poses of each dataset.848

Our overall experiment employs a 100 billion to-849

ken subset of FineWeb-Edu (Lozhkov et al., 2024),850

which is specifically curated for language model851

pre-training. This dataset consists of high-quality852

educational content that provides well-structured853

training examples for developing fundamental lan-854

guage understanding capabilities.855

For our subsequent experiments, as shown in856

Table 4, we deliberately selected three comple-857

mentary datasets that evaluate different aspects of858

model performance:859

OpenWebText (Gokaslan et al., 2019) com-860

prises predominantly shorter web-based texts. It861

provides a foundation for assessing basic lan-862

guage modeling capabilities. In contrast to spe-863

cialized corpora, OpenWebText’s diverse content864

allows evaluation of general language understand-865

ing across varied domains and writing styles.866

PG-19 (Rae et al., 2019) is based on complete867

books published before 1919, presenting a distinct868

challenge in processing long-form literary content.869

The book-length texts require models to maintain870

coherence and compress information across ex-871

tended narratives, testing their ability to capture872

long-range dependencies and thematic consistency.873

OpenOrca (Lian et al., 2023) is a question-874

answering dataset that tests models’ information875

retention capabilities. This is particularly important876

as the answers to questions are often embedded in 877

earlier parts of the context, making it an effective 878

benchmark for assessing models’ ability to main- 879

tain essential information when processing long 880

sequences. 881

We utilized OpenWebText for traininga and vali- 882

dation, while incorporating all three datasets into 883

the test phase. To thoroughly evaluate long-context 884

processing capabilities, we extended the input se- 885

quence length to 16,384 tokens for both Open- 886

WebText and PG-19. This multi-dataset evalua- 887

tion framework allows us to systematically analyze 888

model performance across different linguistic chal- 889

lenges and context lengths, providing a comprehen- 890

sive view of their capabilities and limitations. 891

C.2 Benchmarks 892

For our overall experiment, we compare models on 893

eight common-sense reasoning tasks, in Table 5: 894

Wikitext (Merity et al., 2017): A large linguistic 895

corpus extracted from Wikipedia articles, contain- 896

ing over 100 million word tokens. It tests a model’s 897

ability to predict the next word in a passage of text. 898

Lambada (Paperno et al., 2016): The LAmBdA 899

dataset tests a model’s capability of using broad 900

discourse context to predict the last word of a pas- 901

sage extracted from books. It contains over 60,000 902

examples. 903

PIQA (Bisk et al., 2020): The Physical Inter- 904

action: Question Answering (PIQA) dataset tests 905

commonsense reasoning about physical interac- 906

tions between two entities. It contains 16,113 907

multiple choice questions generated from crowd- 908

sourcing. 909

Hellaswag (Zellers et al., 2019): The HellaSwag 910

dataset consists of 70,000 multiple choice questions 911

about inferring what might happen next in a story. 912

It requires commonsense reasoning to choose the 913

most plausible ending. 914

WinoGrande (Sakaguchi et al., 2021): The 915

WinoGrande dataset tests coreference resolution 916

and commonsense reasoning with 44,000 examples 917

obtained from books and websites. 918

ARC (Clark et al., 2018): The AI2 Reasoning 919

Challenge (ARC) dataset contains 7,787 genuine 920

grade-school level, multiple-choice science ques- 921

tions, grouped into an Easy Set (ARC-e) and a 922

Challenge Set (ARC-c). 923

SIQA (Sap et al., 2019): The Social Interaction 924

QA (SIQA) dataset contains 15,554 multiple choice 925

questions that describe situations about people’s 926

social interactions. 927

12



Table 5: The statistics of the benchmarks used in the
overall experiment.

Dataset Sample Size

Wikitext 60,634
Lambada 60,000
PIQA 16,113
Hellaswag 70,000
WinoGrande 44,000
ARC 7,787 (Easy Set + Challenge Set)
SIQA 15,554
BoolQ 15,942

BoolQ (Clark et al., 2019): The Boolean Ques-928

tions (BoolQ) dataset contains 15,942 English929

yes/no questions sampled from Google search930

queries to test a model’s ability to answer simple931

questions.932

C.3 Implementation Details.933

Overall Experiment In the overall experiment934

(Table 1), SWAT means we pretrain the model935

with our sliding window attention training. We936

pre-train SWAT with model sizes of 340M and937

760M parameters on 15B and 30B tokens, respec-938

tively. The SWAT models are compared to other939

language models of similar sizes. All pre-training940

experiments were conducted on 8 NVIDIA A800941

GPUs (80GB), with the 760M model taking ap-942

proximately 31 hours to complete the pre-training943

process.944

Evaluations measure perplexity (lower is bet-945

ter) and accuracy (higher is better) on datasets like946

PIQA, WinoGrande, and BoolQ. For our SWAT,947

as defined in Equation (4), (-) denotes the configu-948

ration using only negative slopes (i.e., traditional949

ALiBi slopes sk = −2−k), (+) denotes the config-950

uration using only positive slopes (i.e., sk = 2−k),951

(-+) denotes our bidirectional configuration where:952

Half of the attention heads (h/2 heads) use nega-953

tive slopes sk = −2−k, the other half use positive954

slopes sk = 2−k. For both directions, k ranges955

from 1 to h/2. The experiments are based on two956

GitHub repositories flash-linear-attention2 and lm-957

evaluation-harness3.958

Analysis Experiments For analysis experiments,959

models are evaluated on three datasets: OpenWeb-960

Text, PG-19, and OpenOrca, with the average ac-961

curacy reported. We experiment with different962

training window sizes, training lengths, and eval-963

2https://github.com/Fzkuji/flash-linear-attention
3https://github.com/EleutherAI/lm-evaluation-harness

uation window sizes. The experiments are based 964

on two GitHub repositories nanoGPT4 and flash- 965

linear-attention. We pre-train SWAT (248M param- 966

eters) for 80,000 steps with a batch size of 250k 967

tokens, accumulating a total training exposure of 968

20B tokens, which amounts to about 2 epochs over 969

the pre-training corpus. 970

In Table 2, vanilla Transformers have a training 971

length that matches their fixed training window 972

size. Model A, B, C, and D are identifiers for 973

pre-trained models with different configurations 974

being compared. The columns in the table show 975

different sequence length settings for each model 976

configuration. The parameters used in the table are 977

defined as follows:: 978

• Training window size means the maximum se- 979

quence length the model can process per training 980

step. 981

• Training length means the actual sequence length 982

used for each training example, which may be 983

shorter than the window size when using the 984

vanilla Transformers. 985

• Evaluation window means the maximum context 986

provided to the model during evaluation to make 987

predictions. 988

• Evaluation length means the actual sequence 989

length fed into the model per test example. 990

We compared pre-training using fixed token win- 991

dow sizes of 128, 1,024, and 4,096 versus using 992

variable-length sliding windows. With sliding win- 993

dow pre-training, the model is exposed to longer 994

token sequences during training, which helps im- 995

prove evaluation perplexity. Using sliding windows 996

allows longer sequences during training compared 997

to fixed windows. This table shows that the best 998

performance was achieved when the training se- 999

quence length is four times the training window 1000

size. Different evaluation window sizes are also 1001

tested to compare model performance given vary- 1002

ing amounts of context. 1003

In Table 3, we compared the performance of lan- 1004

guage models with different activation functions 1005

and position embeddings. Specifically, we study 1006

the model accuracy when using softmax and sig- 1007

moid as the activation functions. We also introduce 1008

RoPE, ALiBi, and AliRope as different position 1009

embedding methods. Note that ALiBi-12:0 rep- 1010

resents the origin ALiBi model, which uses only 1011

4https://github.com/karpathy/nanoGPT
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negative slopes, while ALiBi-6:6 represents model1012

uses half positive and half negative slopes across1013

different attention heads.1014
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