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Abstract

We show how, under a generalized self-concordance assumption and possible
model misspecification, we can establish non-asymptotic bounds on the normalized
likelihood score when using maximum likelihood or score matching. The tail
behavior is governed by an effective dimension corresponding to the trace of the
sandwich covariance. We also show how our non-asymptotic approach allows us
to obtain confidence bounds for the estimator and analyze Rao’s score test.

1 Introduction

The problem of statistical inference on learned parameters is regaining the importance it deserves as
machine learning and data science are increasingly impacting humanity and society through a large
range of successful applications from transportation to healthcare. The classical asymptotic theory of
M-estimation is well established in a general setting under the assumption that the parametric model
is well-specified, i.e., the underlying data distribution belongs to the parametric family. We mention
here, among many of them, the monographs [Ibragimov and Has’minskii, 1981, van der Vaart, 2000,
van de Geer, 2009]. The main tool is the local asymptotic normality (LAN) condition introduced
by Le Cam [1960]. In many real problems, the parametric model is usually an approximation to
the data distribution, so it is too restrictive to assume that the model is well-specified. To relax this
restriction, model misspecification has been considered in the asymptotic regime; see, e.g., [Huber,
1967, Wakefield, 2013, Dawid et al., 2016]. Another limitation of classical asymptotic theory is its
asymptotic regime where n→ ∞ and the parameter dimension d is fixed. This is inapplicable in the
modern context where the data are of high dimension involving a huge number of parameters.

The non-asymptotic viewpoint has been fruitful to address high dimensional problems—the results are
developed for all fixed n so that it also captures the asymptotic regime where the parameter dimension
can grow with n. Early works in this line of research focus on specific models such as Gaussian
models [Beran, 1996, Beran and Dumbgen, 1998, Laurent and Massart, 2000, Baraud, 2004], ridge
regression [Hsu et al., 2012], logistic regression [Bach, 2010], and robust M-estimation [Zhou et al.,
2018]; see [Bach, 2021] for a survey. Spokoiny [2012] addressed the finite-sample regime in full
generality in a spirit similar to the classical LAN theory. His approach relies on heavy empirical pro-
cess machinery and requires strong global assumptions on the deviation of the empirical risk process.
More recently, Ostrovskii and Bach [2021] focused on risk bounds, specializing their discussion to
linear models with (pseudo) self-concordant losses and obtained a more transparent analysis under
neater assumptions. A critical characteristic shared by both works is that the neighborhood of the
target parameter is defined by the so-called Dikin ellipsoid, a geometric object identified in the theory
of convex optimization [Nesterov and Nemirovskii, 1994, Ben-Tal and Nemirovski, 2001, Boyd et al.,
2004, Tunçel and Nemirovski, 2010, Bubeck and Eldan, 2019, Bubeck and Lee, 2016].

The Dikin ellipsoid corresponds to the distance measured by the Euclidean distance weighted by the
Hessian matrix at the optimum. This weighted Euclidean distance is adapted to the geometry near the
target parameter and thus leads to sharper bounds which do not depend on the minimum eigenvalue
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of the Hessian. This important property has been used fruitfully in various problems of learning
theory and mathematical statistics [Zhang and Lin, 2015, Yang and Mohri, 2016, Faury et al., 2020].

2 Problem formulation

We briefly recall the framework of statistical inference via empirical risk minimization. Let (Z,Z)
be a measurable space. Let Z ∈ Z be a random element following some unknown distribution P.
Consider a parametric family of distributions PΘ := {Pθ : θ ∈ Θ ⊂ Rd} which may or may not
contain P. We are interested in finding the parameter θ⋆ so that the model Pθ⋆ best approximates the
underlying distribution P. For this purpose, we choose a loss function ℓ and minimize the population
risk L(θ) := EZ∼P[ℓ(θ;Z)]. Through out this paper, we assume that

θ⋆ = argmin
θ∈Θ

L(θ)

uniquely exists and satisfies θ⋆ ∈ int(Θ), ∇θL(θ⋆) = 0, and ∇2
θL(θ⋆) ≻ 0.

Consistent loss function. We focus on loss functions that are consistent in the following sense:
When the model is well-specified, i.e., there exists θ0 ∈ Θ such that P = Pθ0 , it holds that θ⋆ = θ0.
We give below two popular choices of consistent loss functions.
Example 1 (Maximum likelihood estimation). A widely used loss function in statistical machine
learning is the negative log-likelihood ℓ(θ; z) := − log pθ(z) where pθ is the probability mass/density
function for the discrete/continuous case. When P = Pθ0 for some θ0 ∈ Θ, we have L(θ) =
E[− log pθ(Z)] = KL(pθ0∥pθ)− E[log pθ0(Z)] where KL is the Kullback-Leibler divergence. As
a result, θ0 ∈ argminθ∈Θ KL(pθ0∥pθ) = argminθ∈Θ L(θ). Moreover, if there is no θ such that
pθ

a.s.
= pθ0 , then θ0 is the unique minimizer of L.

Example 2 (Score matching estimation). Another important example appears in score matching
[Hyvärinen and Dayan, 2005]. Assume that Z = Rp and P and Pθ have densities p and pθ. Let
pθ(z) = qθ(z)/Λ(θ) where Λ(θ) is an unknown normalizing constant. We can choose the loss

ℓ(θ; z) := ∆z log qθ(z) +
1

2
∥∇z log qθ(z)∥2 + const.

Here ∆ :=
∑p
k=1 ∂

2/∂z2k is the Laplace operator. Since [Hyvärinen and Dayan, 2005, Thm. 1]

L(θ) =
1

2
E
[
∥∇zqθ(z)−∇zp(z)∥2

]
,

it follows that when p = pθ0 we have θ0 ∈ argminθ∈Θ L(θ). In fact, when qθ > 0 and there is no θ
such that pθ

a.s.
= pθ0 , θ0 is the unique minimizer of L [Hyvärinen and Dayan, 2005, Thm. 2].

Empirical risk minimizer and likelihood score. Assume that we have an i.i.d. sample {Zi}ni=1 from
P. To learn the parameter θ⋆, we minimize the empirical risk to obtain the empirical risk minimizer

θn ∈ argmin
θ∈Θ

[
1

n

n∑
i=1

ℓ(θ;Zi) =: ℓn(θ)

]
.

When ℓ is chosen as the negative log-likelihood, the negative gradient −∇ℓn(θ) is known as the
likelihood score. In Sec. 3, we will establish a non-asymptotic bound for the norm of the likelihood
score at θ⋆ normalized by the Hessian ∇2ℓn(θ⋆), i.e.,

∥∥∇2ℓn(θ⋆)
−1/2∇ℓn(θ⋆)

∥∥. We show how this
bound can be used to obtain a finite-sample confidence bound for θ⋆ constructed from θn. That is, for
any δ ∈ (0, 1), we will construct a confidence set Cn(δ) ⊂ Θ based on θn such that

P(θ⋆ ∈ Cn(δ)) ≥ 1− δ.

In Fig. 1, we illustrate this result for a logistic regression model. Finally, we apply our approach to
analyze Rao’s score test for goodness-of-fit testing.

3 Main results

3.1 Preliminaries

Notation. We denote by S(θ; z) := ∇θℓ(θ; z) the gradient of the loss at z and H(θ; z) := ∇2
θℓ(θ; z)

the Hessian at z. Their population versions are S(θ) := E[S(θ;Z)] and H(θ) := E[H(θ;Z)],
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Figure 1: Confidence set in Thm. 4 under a logistic regression model with true parameter θ0 and
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respectively. We assume standard regularity assumptions so that S(θ) = ∇θL(θ) and H(θ) =
∇2
θL(θ). The two optimality conditions then read S(θ⋆) = 0 and H(θ⋆) ≻ 0. It follows that λ⋆ :=

λmin(H(θ⋆)) > 0 and λ⋆ := λmax(H(θ⋆)) > 0. Furthermore, we let G(θ) := Cov(S(θ;Z)) be the
covariance matrix of the gradient. We define their empirical quantities as ℓn(θ) := 1

n

∑n
i=1 ℓ(θ;Zi),

Sn(θ) :=
1
n

∑n
i=1 S(θ;Zi), Hn(θ) :=

1
n

∑n
i=1H(θ;Zi), and

Gn(θ) :=
1

n

n∑
i=1

[S(θ;Zi)− S(θ)][S(θ;Zi)− S(θ)]⊤.

Recall that −Sn(θ) is the likelihood score for maximum likelihood estimation. Our analysis of the
estimator θn is local to a Dikin ellipsoid at θ⋆ of radius r, i.e.,

Θr(θ⋆) :=
{
θ ∈ Θ : ∥θ − θ⋆∥H(θ⋆)

< r
}
,

where, given a positive semi-definite matrix J , we let ∥x∥J :=
∥∥J1/2x

∥∥
2
=

√
x⊤Jx.

Effective dimension. A quantity that plays a central role in our analysis is the effective dimension:

d⋆ := Tr
{
H(θ⋆)

−1/2G(θ⋆)H(θ⋆)
−1/2

}
. (1)

The effective dimension appears recently in non-asymptotic analyses of (penalized) M-estimation
[Spokoiny, 2017, Ostrovskii and Bach, 2021]. When the model is well-specified, it can be shown that
H(θ⋆) = G(θ⋆) and thus d⋆ = d. When the model is misspecified, it can be much smaller than d
depending on the spectrum of H(θ⋆) and G(θ⋆); see Appx. B for a through discussion. Moreover, it
is closely connected to classical asymptotic theory of M-estimation under model misspecification.

Generalized self-concordance. For a function f : Rd → R, we define Dxf(x)[u] :=
d
dtf(x +

tu)|t=0, D2
xf(x)[u, v] := Dx(Dxf(x)[u])[v] for x, u, v ∈ Rd, and D3

xf(x)[u, v, w] similarly.

Definition 1 (Generalized self-concordance [Sun and Tran-Dinh, 2019]). Let X ⊂ Rd be open and
f : X → R be a closed convex function. For a constant R > 0 and an integer ν > 0, we say f is
(R, ν)-generalized self-concordant on X if∣∣D3

xf(x)[u, u, v]
∣∣ ≤ R ∥u∥2∇2f(x) ∥v∥

ν−2
∇2f(x) ∥v∥

3−ν
2

with the convention 0/0 = 0 for the case ν < 2 and ν > 3. Recall that ∥u∥2∇2f(x) := u⊤∇2f(x)u.

Remark 2. When ν = 3, this definition reduces to the standard self-concordance [Nesterov and
Nemirovskii, 1994]. When ν = 2, it recovers the pseudo self-concordance [Bach, 2010]. We give
several examples in Appx. D.
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3.2 Normalized score

Our first result is a non-asymptotic bound for the normalized score at θ⋆, i.e., ∥Sn(θ⋆)∥H−1
n (θ⋆)

. Due
to the space constraint, we state the precise assumptions in Appx. A. The problem-specific constants
K1, K2, and σH are also defined in Appx. A. The proof is deferred to Appx. C.
Proposition 3. Under Asmps. 2 and 3 with r = 0, it holds that, with probability at least 1− δ,

∥Sn(θ⋆)∥2H−1
n (θ⋆)

≲ K2
1 log (e/δ)d⋆/n

whenever n ≥ 4(K2
2 + 2σ2

H) log (4d/δ).

3.3 Confidence set

We then construct a finite-sample confidence set for θ⋆ using the bound for the normalized score. We
also provide a thorough discussion on this result in Appx. B and its proof in Appx. C. The quantities
Kν , R⋆ν , ων are defined in Cor. 20, Eq. (6), Eq. (12) in the appendix, respectively.
Theorem 4. Let ν ∈ [2, 3). Suppose that Asmps 1,2, and 3 with r = Kν/R

⋆
ν hold true. Let

Cn(δ) := θn +
{
θ ∈ Θ : θ⊤Hn(θn)θ ≤ CK2

1 log (2e/δ)d⋆/n
}
, (2)

where C is an absolute constant. Then we have P(θ⋆ ∈ Cn(δ)) ≥ 1− δ whenever n satisfies

n ≳ Cmax
{
(K2

2 + σ2
H) [log(2d/δ) + d log n] ,

[
(R⋆ν)

2K2
1d⋆ log (e/δ)

]1/(3−ν)}
. (3)

Remark 5. According to Huber [1967], under suitable regularity assumptions, it holds that√
nHn(θn)

1/2(θn − θ⋆) →d L ∼ N (0, H(θ⋆)
−1/2G(θ⋆)H(θ⋆)

−1/2) which implies that

n(θn − θ⋆)
⊤Hn(θn)(θn − θ⋆) →d L

⊤L.

This induces an asymptotic confidence set with a similar form of (2) and radius O(E[L⊤L]/n) =
O(d⋆/n). Our result characterizes the critical sample size enough to enter the asymptotic regime.

3.4 Rao’s score test

We illustrate how our results can be used to analyze Rao’s score test for goodness-of-fit testing. In this
subsection, we will assume that the model is well-specified. We use θ⋆ to denote the true parameter
of P and reserve θ0 for the parameter under the null hypothesis. The proof is deferred to Appx. D.

Given θ0 ∈ Θ, a goodness-of-fit testing problem is to test the hypotheses
H0 : θ⋆ = θ0 ↔ H1 : θ⋆ ̸= θ0.

A statistical test consists of a test statistic T := T (Z1, . . . , Zn) and a prescribed critical value t, and
we reject the null hypothesis if T > t. Its performance is quantified by the type I error rate P(T >

t | H0) and statistical power P(T > t | H1). Rao’s score test statistic is TRao := ∥Sn(θ0)∥2H−1
n (θ0)

.
Theorem 6 (Rao’s score statistic). Suppose that Asmps. 2 and 3 with r = 0 hold true. For an
arbitrary t > 0, let Ω(θ) := G(θ)

1
2H(θ)−1G(θ)

1
2 and

τn :=

[
2 ∥S(θ0)∥2H−1(θ0)

/3− t

4 ∥S(θ0)∥H−1(θ0)

]2
− 1

n
Tr(Ω(θ0)).

(a) Under H0, we have, with probability at least 1− δ, TRao ≲ K2
1 log (e/δ)(d/n) whenever

n ≥ 4(K2
2 + 2σ2

H) log (4d/δ).

(b) Under H1, whenever τn ≥ 0, we have, with c being an absolute constant,

P(TRao > t) ≥ 1− exp

(
−cmin

{
n2τ2n

K2
1 ∥Ω(θ0)∥

2
2

,
nτn

K1 ∥Ω(θ0)∥∞

})

− 2d exp

(
− n

4(K2
2 + 2σ2

H)

)
.

(4)

Remark 7. The bound under H0 suggests that, for a fixed significance level α ∈ (0, 1), we can
choose the critical value t = tn(α) = O(d⋆/n) so that their type I error rates are below α. With
this choice of tn(α), we can then characterize the statistical power of Rao’s score test under a fixed
alternative hypothesis θ⋆ ̸= θ0—they decay to zero exponentially fast as n→ ∞.
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A Assumptions

Our key assumption is the generalized self-concordance of the loss function.
Assumption 1 (Generalized self-concordance). For any z ∈ Z , the scoring rule ℓ(·; z) is (R, ν)-
generalized self-concordant for some R > 0 and ν ≥ 2. Moreover, L(·) is also (R, ν)-generalized
self-concordant.
Remark 8. When ν = 2, it is straightforward to check that the generalized self-concordance of
ℓ(·; z) implies the one of L(·).

In order to control the empirical gradient Sn(θ), we assume that the norm of the normalized gradient
at θ⋆ has a light tail.
Assumption 2 (Sub-Gaussian gradient). There exists a constant K1 > 0 such that the normalized
gradient at θ∗ is sub-Gaussian with parameter K1, i.e.,

∥∥G(θ⋆)−1/2S(θ⋆;Z)
∥∥
ψ2

≤ K1. Here ∥·∥ψ2

is the sub-Gaussian norm whose definition is recalled in Appx. E.
Remark 9. When the loss function is of the form ℓ(θ; z) = ℓ(y, θ⊤x), we have S(θ;Z) =
ℓ′(Y, θ⊤X)X where ℓ′(y, ȳ) = dℓ(y, ȳ)/dȳ. As a result, Asmp. 2 holds true if (i) ℓ′(Y, θ⊤⋆ X)
is sub-Gaussian and X is bounded or (ii) ℓ′(Y, θ⊤⋆ X) is bounded and X is sub-Gaussian. For
least squares with ℓ(y, θ⊤x) = 1

2 (y − θ⊤x)2, the derivative ℓ′(Y, θ⊤⋆ X) = θ⊤⋆ X − Y is the neg-
ative residual. Asmp. 2 is guaranteed if the residual is sub-Gaussian and X is bounded. For
logistic regression with ℓ(y, θ⊤x) = − log σ(y · θ⊤x) where σ(u) = (1 + e−u)−1, the derivative
ℓ′(Y, θ⊤⋆ X) = [σ(Y · θ⊤⋆ X) − 1]Y ∈ [−1, 1] is bounded. Thus, Asmp. 2 is guaranteed if X is
sub-Gaussian.

In order to control the empirical Hessian, we assume that the Hessian of the loss function at a
neighborhood of θ⋆ satisfies the matrix Bernstein condition.
Assumption 3 (Matrix Bernstein of Hessian). There exist constants K2, r > 0 such that, for any
θ ∈ Θr(θ⋆), the standardized Hessian

H(θ)−1/2H(θ;Z)H(θ)−1/2 − Id

satisfies a Bernstein condition (defined in Appx. E) with parameter K2. Moreover,

σ2
H := sup

θ∈Θr(θ⋆)

∣∣∣Var(H(θ)−1/2H(θ;Z)H(θ)−1/2
)∣∣∣

2
<∞,

where, for a matrix J ∈ Rd×d, we define |J |2 := max{λmax(J), |λmin(J)|} and Var(J) :=
E[JJ⊤]− E[J ]E[J ]⊤. By convention, we let Θ0(θ⋆) = {θ⋆}.

B Discussion

Fisher information and model misspecification. When the model is well-specified, the covariance
matrix G(θ) coincides with the well-known Fisher information I(θ) := EZ∼Pθ

[S(θ;Z)] at θ⋆. The
Fisher information plays a central role in mathematical statistics and, in particular, M-estimation;
see Pennington and Worah [2018], Kunstner et al. [2019], Ash et al. [2021], Soen and Sun [2021]
for recent developments in this line of research. It quantifies the amount of information a random
variable carries about the model parameter. Under a well-specified model, it also coincides with the
Hessian matrix H(θ) at the optimum which captures the curvature of the population risk. When the
model is misspecified, the Fisher information deviates from the Hessian matrix. In the asymptotic
regime, this discrepancy is reflected in the limiting covariance of the weighted M-estimator which
admits a sandwich form H(θ⋆)

−1G(θ⋆)H(θ⋆)
−1; see, e.g., [Huber, 1967, Sec. 4].

Effective dimension. The counterpart of the sandwitch covariance in the non-asymptotic regime is
the effective dimension d⋆; see, e.g., Spokoiny [2017], Ostrovskii and Bach [2021]. Our bounds also
enjoy the same merit—its dimension dependency is via the effective dimension. When the model is
well-specified, the effective dimension reduces to d, recovering the same rate of convergence O(d/n)
as in classical linear regression; see, e.g., [Bach, 2021, Prop. 3.5]. When the model is misspecified,
the effective dimension provides a characterization of the problem complexity which is adapted to
both the data distribution and the loss function via the matrix H(θ⋆)

−1/2G(θ⋆)H(θ⋆)
−1/2. To gain a
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Table 1: Comparison between the effective dimension d⋆ and the parameter dimension d in different
regimes of eigendecays of G(θ⋆) and H(θ⋆) assuming they share the same eigenvectors.

Eigendecay Dimension Dependency Ratio
G(θ⋆) H(θ⋆) d⋆ d d⋆/d

Poly-Poly i−α i−β d(β−α+1)∨0 d d(β−α)∨(−1)

Poly-Exp i−α e−νi d1−αeνd d d−αeνd

Exp-Poly e−µi i−β 1 d d−1

Exp-Exp e−µi e−νi
d if µ = ν

1 if µ > ν

e(ν−µ)d if µ < ν

d

1 if µ = ν

d−1 if µ > ν

d−1e(ν−µ)d if µ < ν

better understanding on the effective dimension d⋆, we summarize it in Tab. 1 under different regimes
of eigendecay, assuming that G(θ⋆) and H(θ⋆) share the same eigenvectors. It is clear that, when the
spectrum of G(θ⋆) decays faster than the one of H(θ⋆), the dimension dependency can be better than
O(d). In fact, it can be as good as O(1) when the spectrum of G(θ⋆) and H(θ⋆) decay as eµi and
i−β , respectively.

Comparison to classical asymptotic theory. Classical asymptotic theory of M-estimation is usually
based on two assumptions: (a) the model is well-specified and (b) the sample size n is much larger
than the parameter dimension d. These assumptions prevent it from being applicable to many real
applications where the parametric family is only an approximation to the unknown data distribution
and the data is of high dimension involving a large amount of parameters. On the contrary, our
results do not require a well-specified model and the dimension dependency is replaced by the
effective dimension d⋆ which captures the complexity of the parameter space. Moreover, they are of
non-asymptotic nature—they hold true for any n as long as it exceeds some constant factor of d⋆.
This allows the number of parameters to potentially grow with the same size.

Comparison to recent non-asymptotic theory. Recently, Spokoiny [2012] achieved a breakthrough
on finite-sample analysis of parametric M-estimation. Although being fully general, their results
require strong global assumptions on the deviation of empirical risk process and are built upon
advanced tools from empirical process theory. Restricting ourselves to generalized self-concordant
losses, we are able to provide a more transparent analysis with neat assumptions only at the optimum
parameter θ⋆. Moreover, our results maintain some generality, covering several interesting examples
in statistical machine learning as provided in Appx. D.1.

Ostrovskii and Bach [2021] also considered self-concordant losses for M-estimation. However, their
results are limited to generalized linear models whose loss is (pseudo) self-concordant and admits
the form ℓ(θ;Z) := ℓ(Y, θ⊤X). While sharing the same rate O(d⋆/n), our results are more general
than theirs in two aspects. First, the loss need not be of the form ℓ(Y, θ⊤X), encompassing the score
matching loss in Ex. 5 below. Second, the notion of generalized self-concordance encompasses both
the standard and pseudo self-concordance, allowing us to obtain a unified analysis rather than separate
ones as in Ostrovskii and Bach [2021].

Pseudo self-concordant losses have also been considered for semi-parametric models Anonymous
Author(s) [2022]. They focus on bounding the excess risk rather than providing confidence sets.
Moreover, their results require a localization assumption on θn while this is proved in Prop. 11 in this
paper.

Regularization. Our results can also be applied to regularized empirical risk minimization by
including the regularization term in the loss function. Let θλn and θλ⋆ be the minimizer of the
regularized empirical and population risk, respectively. Let dλ⋆ := Tr

(
(Hλ

⋆ )
−1/2Gλ⋆(H

λ
⋆ )

−1/2
)

where Hλ
⋆ and Gλ⋆ are the regularized Hessian and the covariance of the regularized gradient at θλ⋆ ,

respectively. Then our results characterize the concentration of θλn around θλ⋆ :

∥∥θλn − θλ⋆
∥∥2
Hλ

⋆
≤ O(dλ⋆/n).
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This result coincides with Spokoiny [2017, Thm. 2.1]. If the goal is to estimate the unregularized
population risk minimizer θ⋆, then we need to pay an additional error

∥∥θλ⋆ − θ⋆
∥∥2
Hλ

⋆
which is referred

to as the modeling bias [Spokoiny, 2017, Sec. 2.5].

For instance, let Z := (X,Y ) where X ∈ Rd with E[XX⊤] = Id and Y ∈ R. Consider the
regularized squared loss

ℓλ(θ; z) :=
1

2
(y − θ⊤x)2 +

1

2
θ⊤Λθ,

where Λ = diag{λ1, . . . , λd}. The regularized effective dimension is of order [Spokoiny, 2017,
Sec. 2.1]

O

(
d∑
k=1

1

1 + λi

)
which can be much smaller than d if {λk} is increasing.

C Proof of main results

Our proof techniques rely on a self-concordance property to localize the estimator and control
the Hessian and related quantities. This property was, up to our knowledge, first put to use in
machine learning by Abernethy et al. [2008] in the context of sequential allocation of experiments
and multi-armed bandits. The key observation is that, within the Dikin ellipsoid, the variation of the
Hessian can be easily controlled. More recently, Ostrovskii and Bach [2021] obtained risk bounds for
generalized linear models based on this observation. Our results and proof techniques also rely on
this observation. We show how to leverage this observation to obtain confidence sets for a broad class
of statistical models under a generalized self-concordance assumption owing to the use of the matrix
Bernstein inequality. For instance, we obtain confidence bounds for parameter estimation using score
matching and generalized linear statistical models under possible model misspecification as provided
in Appx. D.1.

Our proofs are inspired by Ostrovskii and Bach [2021]. However, there are two key differences.
First, since they focus on loss functions of the form ℓ(Y, θ⊤X), the Hessian is ℓ′′(Y, θ⊤X)XX⊤

where ℓ′′(y, ȳ) := d2ℓ(y, ȳ)/dȳ2. As a result, they can control the deviation of the empirical Hessian
using inequalities for sample second-moment matrices of sub-Gaussian random vectors [Ostrovskii
and Bach, 2021, Thm. A.2]. In contrast, we use matrix Bernstein inequality which allows us to
work with a larger class of loss functions. Second, we extend their localization result from pseudo
self-concordant losses to generalized self-concordant losses (Prop. 11). This is enabled by a new
property on the existence of a unique minimizer for generalized self-concordant functions (Prop. 21).

In the remaining of this section, we first prove a localization result Prop. 11 and the score bound
Prop. 3 in Appx. C.1. It not only guarantees the existence and uniqueness of θn but also localizes
it. We then, in Appx. C.2, control the empirical Hessian at θn using a covering number argument.
Finally, we prove Thm. 4.

C.1 Localization

We start by showing that the empirical risk ℓn is generalized self-concordant.
Lemma 10. Under Asmp. 1, the empirical risk ℓn is (nν/2−1R, ν)-generalized self-concordant.

Proof. By Asmp. 1, the loss ℓ(·;Zi) is (R, ν)-generalized self-concordant for every i ∈ [n] :=
{1, . . . , n}. Note that ℓn is the empirical average of {ℓ(·;Zi)}ni=1. Hence, it follows from [Sun and
Tran-Dinh, 2019, Prop. 1] that ℓn is (nν/2−1R, ν)-generalized self-concordant

Applying Prop. 21 to ℓn leads to the localization result. Let λn,⋆ := λmin(Hn(θ⋆)) and λ⋆n :=
λmin(Hn(θ⋆)). Recall Kν from Cor. 20. Define

R⋆n,ν :=


λ
−1/2
n,⋆ R if ν = 2

(ν/2− 1)λ
(ν−3)/2
n,⋆ nν/2−1R if ν ∈ (2, 3]

(ν/2− 1)(λ⋆n)
(ν−3)/2nν/2−1R if ν > 3.

(5)
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Proposition 11. Under Asmp. 1, whenever R⋆n,ν ∥Sn(θ⋆)∥H−1
n (θ⋆)

≤ Kν , the estimator θn uniquely
exists and satisfies

∥θn − θ⋆∥Hn(θ⋆)
≤ 4 ∥Sn(θ⋆)∥H−1

n (θ⋆)
.

Proof. The claim follows directly from Lem. 10 and Prop. 21.

Prop. 11 implies that the empirical risk minimizer uniquely exists if ∥Sn(θ⋆)∥H−1
n (θ⋆)

is small. Hence,
it remains to bound ∥Sn(θ⋆)∥H−1

n (θ⋆)
, which can be achieved by controlling ∥Sn(θ⋆)∥H−1(θ⋆)

and
Hn(θ⋆). Recall d⋆ from (1).
Lemma 12. Under Asmp. 2, it holds that, with probability at least 1− δ,

∥Sn(θ⋆)∥2H−1(θ⋆)
≲

1

n
K2

1 log (e/δ)d⋆.

Proof. By the first order optimality condition, we have S(θ⋆) = 0. As a result,

X :=
√
nG−1/2(θ⋆)Sn(θ⋆;Z)

is an isotropic random vector. Moreover, it follows from Lem. 26 that ∥X∥ψ2
≲ K1. Define

J := G1/2(θ⋆)H
−1(θ⋆)G

1/2(θ⋆)/n. Then we have

∥Sn(θ⋆)∥2H−1(θ⋆)
= ∥X∥2J .

Invoking Thm. 27 yields the claim.

Lemma 13. Under Asmp. 3 with r = 0, it holds that, with probability at least 1− δ,
1

2
H(θ⋆) ⪯ Hn(θ⋆) ⪯

3

2
H(θ⋆)

whenever n ≥ 4(K2
2 + 2σ2

H) log (2d/δ).

Proof. Due to Asmp. 3, the standardized Hessian at θ⋆

H(θ⋆)
−1/2H(θ⋆;Z)H(θ⋆)

−1/2 − Id

satisfies a Bernstein condition with parameter K2. It then follows from Thm. 28 that

P
(∣∣∣H(θ⋆)

−1/2Hn(θ⋆)H(θ⋆)
−1/2 − Id

∣∣∣
2
≥ 1

2

)
≤ 2d exp

{
− n

4(2σ2
H +K2)

}
.

As a result, whenever n ≥ 4(K2
2 + 2σ2

H) log (2d/δ), we have
1

2
Id ⪯ H(θ⋆)

−1/2Hn(θ⋆)H(θ⋆)
−1/2 ⪯ 3

2
Id,

or equivalently
1

2
H(θ⋆) ⪯ Hn(θ⋆) ⪯

3

2
H(θ⋆).

Proof of Prop. 3. Define two events

A :=

{
∥Sn(θ⋆)∥2H−1(θ⋆)

≲
1

n
K2

1 log (2e/δ)d⋆

}
and B :=

{
1

2
H(θ⋆) ⪯ Hn(θ⋆) ⪯

3

2
H(θ⋆)

}
.

According to Lems. 12 and 13, whenever n ≥ 4(K2
2 + 2σ2

H) log (4d/δ), we have P(A) ≥ 1− δ/2
and P(B) ≥ 1− δ/2. On the event AB, we have

∥Sn(θ⋆)∥2H−1
n (θ⋆)

≤ 2 ∥Sn(θ⋆)∥2H−1(θ⋆)
≲

2

n
K2

1 log (2e/δ)d⋆ ≲
1

n
K2

1 log (e/δ)d⋆.

Since P(AB) ≥ 1− P(Ac)− P(Bc) ≥ 1− δ, we have, with probability at least 1− δ,

∥Sn(θ⋆)∥2H−1
n (θ⋆)

≲
1

n
K2

1 log (e/δ)d⋆

whenever n ≥ 4(K2
2 + 2σ2

H) log (4d/δ).
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C.2 Proof of the main theorems

Before we prove the main theorem, we control the empirical Hessian. Recall that λ⋆ := λmin(H(θ⋆))
and λ⋆ := λmax(H(θ⋆)). Let

R⋆ν :=


λ
−1/2
⋆ R if ν = 2

(ν/2− 1)λ
(ν−3)/2
⋆ R if ν ∈ (2, 3]

(ν/2− 1)(λ⋆)(ν−3)/2R if ν > 3.

(6)

Proposition 14. Fix ε ∈ (0,Kν ]. Under Asmps. 1 and 3 with r = Kν/R
⋆
ν , it holds that, with

probability at least 1− δ,

1

2ω2
ν(ε)

H(θ⋆) ⪯ Hn(θ) ⪯
3

2
ω2
ν(ε)H(θ⋆), for all θ ∈ Θε/R⋆

ν
(θ⋆),

whenever whenever n ≥ 4(K2
2 + 2σ2

H)
{
log (2d/δ) + d log

[
3(1.5ων(ε)n)

(ν/2−1)
]}

.

Proof. We prove the result in the following steps.

Step 1. Take a τ -covering and relate Hn(θ) to Hn(θ̄) for some θ̄ in the covering. Let τ :=
ε/R⋆ν [1.5ων(ε)n]

ν/2−1. Take an τ -covering Nτ of Θε/R⋆
ν
(θ⋆) w.r.t. ∥·∥H(θ⋆)

, and let π(θ) be the
projection of θ onto Nτ . Let

dn,ν(θ1, θ2) :=

{
nν/2−1R ∥θ2 − θ1∥2 if ν = 2

(ν/2− 1)n(ν/2−1)R ∥θ2 − θ1∥3−ν2 ∥θ2 − θ1∥ν−2
Hn(θ1)

otherwise.

By Lem. 10 and Prop. 16, we have, for all θ ∈ Θε/R⋆
ν
(θ⋆),

1

ων(dn,ν(π(θ), θ))
Hn(π(θ)) ⪯ Hn(θ) ⪯ ων(dn,ν(π(θ), θ))Hn(π(θ)), (7)

where it holds if dn,ν(π(θ), θ) < 1 for the case ν > 2.

Step 2. Related Hn(θ) to H(θ⋆) for all θ in the covering. Fix an arbitrary θ ∈ Nτ . Following the
same argument as Lem. 13, we have, with probability at least 1− δ,

1

2
H(θ) ⪯ Hn(θ) ⪯

3

2
H(θ)

whenever n ≥ 4(K2
2 + 2σ2

H) log (2d/δ). It then follows from Asmp. 1 and Lem. 18 that

1

ων(R⋆ν ∥θ − θ⋆∥H(θ⋆)
)
H(θ⋆) ⪯ H(θ) ⪯ ων(R

⋆
ν ∥θ − θ⋆∥H(θ⋆)

)H(θ⋆), (8)

since R⋆ν ∥θ − θ⋆∥H(θ⋆)
≤ ε < 1. By the monotonicity of ων , we get

1

ων(ε)
H(θ⋆) ⪯ H(θ) ⪯ ων(ε)H(θ⋆),

and thus, with probability at least 1− δ,

1

2ων(ε)
H(θ⋆) ⪯ Hn(θ) ⪯

3

2
ων(ε)H(θ⋆)

whenever n ≥ 4(K2
2 + 2σ2

H) log (2d/δ). Define the event

A :=

{
1

2ων(ε)
H(θ⋆) ⪯ Hn(π(θ)) ⪯

3

2
ων(ε)H(θ⋆), for all θ ∈ Θε/R⋆

ν
(θ⋆)

}
.

Since |Nτ | ≤ (3ε/τR⋆ν)
d Ostrovskii and Bach [2021], by a union bound, we have P(A) ≥ 1 − δ

whenever

n ≥ 4(K2
2 + 2σ2

H)
{
log (2d/δ) + d log

[
3(1.5ων(ε)n)

(ν/2−1)
]}

.
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Step 3. Combine the previous two steps. On the event A, we have Hn(π(θ)) ⪯ 3
2ων(ε)H(θ⋆) for all

θ ∈ Θε/R⋆
ν
(θ⋆). A similar argument as Lem. 18 shows that

dn,ν(π(θ), θ) ≤


λ
−1/2
⋆ Rτ if ν = 2

(ν/2− 1)λ
(ν−3)/2
⋆ [3ων(ε)/2]

(ν−2)/2nν/2−1Rτ if ν ∈ (2, 3]

(ν/2− 1)(λ⋆)(ν−3)/2[3ων(ε)/2]
(ν−2)/2nν/2−1Rτ otherwise.

Substituting τ gives dn,ν(π(θ), θ) ≤ R⋆ν
ε
R⋆

ν
= ε. Hence, by (7), we obtain

1

2ω2
ν(ε)

H(θ⋆) ⪯ Hn(θ) ⪯
3

2
ω2
ν(ε)H(θ⋆), for all θ ∈ Θε/R⋆

ν
(θ⋆).

on the event A.

Theorem 15. Let ν ∈ [2, 3) and ε ∈ (0,Kν ]. Under Asmps. 1 to 3 with r = 0, whenever1

n ≳ max

{
(K2

2 + σ2
H) log (2d/δ),

[
(R⋆ν)

2K2
1d⋆ log (e/δ)

ε2

]1/(3−ν)}
,

the empirical risk minimizer θn uniquely exists and satisfies, with probability at least 1− δ,

∥θn − θ⋆∥2H(θ⋆)
≤ CK2

1ω
2
ν(ε) log (e/δ)

d⋆
n
. (9)

Here C is an absolute constant.

Proof. Similar to the proof of Prop. 3, we define two events

A :=

{
∥Sn(θ⋆)∥2H−1(θ⋆)

≲
1

n
K2

1 log (2e/δ)d⋆

}
and B :=

{
1

2
H(θ⋆) ⪯ Hn(θ⋆) ⪯

3

2
H(θ⋆)

}
.

In the following, we let

n ≳ max

{
4(K2

2 + 2σ2
H) log (4d/δ),

[
(R⋆ν)

2K2
1d⋆ log (e/δ)

ε2

]1/(3−ν)}
.

Following the same argument as Prop. 3, we have P(AB) ≥ 1− δ and

∥Sn(θ⋆)∥2H−1
n (θ⋆)

≲
1

n
K2

1 log (e/δ)d⋆.

Now, it suffices to prove, on the event AB,

∥θn − θ⋆∥2H(θ⋆)
≲ K2

1 log (e/δ)
d⋆
n
.

Recall R⋆n,ν and R⋆ν from (5) and (6). It is straightforward to check that R⋆n,ν ≤
√
2nν/2−1R⋆ν for all

ν ∈ [2, 3]. Consequently, it holds that

R⋆n,ν ∥Sn(θ⋆)∥H−1
n (θ⋆)

≲ R⋆νn
(ν−3)/2

√
K2

1 log (e/δ)d⋆ ≤ ε ≤ Kν

since n3−ν ≳ (R⋆ν)
2K2

1 log (e/δ)d⋆/ε
2. As a result, by Prop. 11, we have that θn uniquely exists

and satisfies

∥θn − θ⋆∥Hn(θ⋆)
≤ 4 ∥Sn(θ⋆)∥H−1

n (θ⋆)
,

and thus, using the event B,

∥θn − θ⋆∥2H(θ⋆)
≲ ∥θn − θ⋆∥2Hn(θ⋆)

≲ K2
1 log (e/δ)

d⋆
n
.

1Here ≳ hides an absolute constant.
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Proof of Thm. 4. We start by defining some events. Let

A :=

{
∥Sn(θ⋆)∥2H−1(θ⋆)

≲
1

n
K2

1 log (3e/δ)d⋆

}
B :=

{
1

2
H(θ⋆) ⪯ Hn(θ⋆) ⪯

3

2
H(θ⋆)

}
C :=

{
1

2ω2
ν(ε)

H(θ⋆) ⪯ Hn(θ) ⪯
3

2
ω2
ν(ε)H(θ⋆), for all θ ∈ Θε/R⋆

ν
(θ⋆)

}
.

(10)

In the following, we let

n3−ν ≳ max

{{
4(K2

2 + 2σ2
H)

[
log

6d

δ
+ d log

[
3(1.5ων(Kν)n)

ν−2
2

]]}3−ν

,
(R⋆ν)

2K2
1d⋆ log

e
δ

ε2

}
.

According to Lem. 12, Lem. 13, and Prop. 14, it holds that P(A) ≥ 1− δ/3, P(B) ≥ 1− δ/3, and
P(C) ≥ 1− δ/3. This implies that P(ABC) ≥ 1− δ. Now, it suffices to prove, on the event ABC,

∥θn − θ⋆∥2Hn(θn)
≲ K2

1ω
2
ν(ε) log (e/δ)

d⋆
n
.

Following the same argument as Thm. 15, we obtain

∥θn − θ⋆∥H(θ⋆)
≲ ∥θn − θ⋆∥Hn(θ⋆)

≲ n−1/2
√
K2

1 log (e/δ)d⋆ ≤ ε/R⋆ν .

Therefore, using the event C, we have

∥θn − θ⋆∥2Hn(θn)
≲ ω2

ν(ε) ∥θn − θ⋆∥2H(θ⋆)
≲ K2

1ω
2
ν(ε) log (e/δ)

d⋆
n
.

As a result, P(θ⋆ ∈ Cn(δ)) ≥ 1− δ whenever n satisfies (3).

D Examples and applications

We give several examples from statistical machine learning and prove the results for goodness-of-fit
testing in Sec. 3.4.

D.1 Examples

We begin with several standard examples in the literature of M-estimation.
Example 3 (Linear regression). Let Z := (X,Y ) be a pair of input and output, where X ∈ Rd with
E[XX⊤] ≻ 0 and Y ∈ R. Consider the statistical model

Y − θ⊤X ∼ N (0, σ2).

Its log-likelihood is given by −(Y − θ⊤X)2/(2σ2) + Cσ leading to the squared loss

ℓ(θ; z) :=
1

2
(y − θ⊤x)2.

It is clear that ℓ(·; z) is convex. Moreover, since D3
θℓ(θ; z)[u, u, v] = 0 for all u, v ∈ Rd, the loss ℓ is

generalized self-concordant for all ν ≥ 2 and R ≥ 0.
Example 4 (Logistic regression). Let Z := (X,Y ) be a pair of input and label, where X ∈ Rd with
∥X∥ ≤M and Y ∈ {−1, 1}. Consider the statistical model

Y | X ∼ Bernoulli
(
σ(θ⊤X)

)
,

where σ(u) := (1 + e−u)−1. Its log-likelihood is given by 1{Y = 1} log σ(θ⊤X) + 1{Y =
−1} log σ(−θ⊤X) leading the loss

ℓ(θ; z) := − log
(
σ(Y · θ⊤X)

)
.

Take any u, v ∈ Rd. It can be shown that∣∣D3
θℓ(θ; z)[u, u, v]

∣∣ ≤ ∣∣1− 2σ(θ⊤x)
∣∣ ∣∣v⊤x∣∣D2

θℓ(θ; z)[u, u].

Note that |1− 2σ(u)| ≤ 1 for all u ∈ R. It then follows from the Cauchy-Schwarz that ℓ is
(M, 2)-generalized self-concordant.
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Derivation of Ex. 4. Recall that the loss is given by

ℓ(θ; z) := − log
(
σ(Y · θ⊤X)

)
.

Take any u, v ∈ Rd. It can be computed that

D2
θℓ(θ; z)[u, u] = σ(y · θ⊤x)[1− σ(y · θ⊤x)](u⊤x)2

D3
θℓ(θ; z)[u, u, v] = σ(y · θ⊤x)[1− σ(y · θ⊤x)][1− 2σ(y · θ⊤x)]y(u⊤x)2(v⊤x).

Note that
∣∣[1− 2σ(y · θ⊤x)]y

∣∣ ≤ 1. It then follows that∣∣D3
θℓ(θ; z)[u, u, v]

∣∣ ≤ ∥∥v⊤x∥∥D2
θℓ(θ; z)[u, u] ≤M ∥v∥ ∥u∥2∇2ℓ(θ;z) ,

and thus ℓ is (M, 2)-generalized self-concordant.

We then give a popular loss function from score matching whose statistical behavior is less well-
known.
Example 5 (Score matching with exponential families). Assume that Z = Rp. Consider an exponen-
tial family on Rd with densities

log pθ(z) = θ⊤t(z) + h(z)− Λ(θ).

The non-normalized density qθ then reads log qθ(z) = θ⊤t(z)+h(z). As a result, the score matching
loss becomes

ℓ(θ; z) =
1

2
θ⊤A(z)θ − b(z)⊤θ + c(z) + const,

where A(z) :=
∑p
k=1

∂t(z)
∂zk

(∂t(z)
∂zk

)⊤
is p.s.d, b(z) :=

∑p
k=1

[
∂2t(z)
∂z2k

+ ∂h(z)
∂zk

∂t(z)
∂zk

]
, and c(z) :=∑p

k=1

[
∂2h(z)
∂z2k

+
(∂h(z)
∂zk

)2]
. Therefore, the score matching loss ℓ(θ; z) is convex. Moreover, since

the third derivatives of ℓ(·; z) is zero, the score matching loss is generalized self-concordant for all
ν ≥ 2 and R ≥ 0.

D.2 Goodness-of-fit testing

Proof of Thm. 6. (a) Under H0, we have θ⋆ = θ0. It then follows from Prop. 3 that, with probability
at least 1− δ,

TRao := ∥Sn(θ0)∥2H−1
n (θ0)

≲
1

n
K2

1 log (e/δ)d

whenever n ≥ 4(K2
2 + 2σ2

H) log (4d/δ).

(b) Define three events

A := {TRao > t}

B :=

{
1

2
H(θ0) ⪯ Hn(θ0) ⪯

3

2
H(θ0)

}
C :=

{
−4 ∥S(θ0)∥H−1(θ0)

∥Sn(θ0)− S(θ0)∥H−1(θ0)
+

2

3
∥S(θ0)∥2H−1(θ0)

> tn

}
.

On the event B, it holds that

TRao ≥ 2S(θ0)
⊤H−1

n (θ0)[Sn(θ0)− S(θ0)] + S(θ0)
⊤H−1

n (θ0)S(θ0)

≥ −2
∥∥∥H(θ0)

1/2H−1
n (θ0)H(θ0)

1/2
∥∥∥
2
∥S(θ0)∥H−1(θ0)

∥Sn(θ0)− S(θ0)∥H−1(θ0)

+
2

3
∥S(θ0)∥2H−1(θ0)

≥ −4 ∥S(θ0)∥H−1(θ0)
∥Sn(θ0)− S(θ0)∥H−1(θ0)

+
2

3
∥S(θ0)∥2H−1(θ0)

.
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This implies CB ⊂ AB, and thus

P(A) ≥ P(AB) ≥ P(CB) ≥ 1− P(Bc)− P(Cc).

Note that Cc = {∥Sn(θ0)− S(θ0)∥2H−1(θ0)
−Tr(Ω(θ0))/n ≥ τn} where

τn =

[
2 ∥S(θ0)∥2H−1(θ0)

/3− t

4 ∥S(θ0)∥H−1(θ0)

]2
− 1

n
Tr(Ω(θ0)) =

∥S(θ0)∥2H−1(θ0)

36
+O(n−1).

It follows from Thm. 27 that, whenever τn ≥ 0,

P(Cc) ≤ exp

(
−cmin

{
n2τ2n

K2
1 ∥Ω(θ0)∥

2
2

,
nτn

K1 ∥Ω(θ0)∥∞

})
.

Moreover, due to Thm. 28, we have

P(Bc) ≤ 2d exp

(
− n

4(K2
2 + 2σ2

H)

)
,

and this proves the claim.

E Technical tools

In this section, we first recall and prove some key properties of generalized self-concordance. We
then review some key results regarding the concentration of random vectors and matrices.

E.1 Properties of generalized self-concordant functions

Throughout this section, we let f : Rd → R be (R, ν)-generalized self-concordant as in Definition 1,
where R > 0 and ν ≥ 2. For simplicity of the notation, we denote ∥·∥x := ∥·∥∇2f(x). Let

dν(x, y) :=

{
R ∥y − x∥2 if ν = 2

(ν/2− 1)R ∥y − x∥3−ν2 ∥y − x∥ν−2
x if ν > 2

(11)

and

ων(τ) :=

{
(1− τ)−2/(ν−2) if ν > 2

eτ if ν = 2
(12)

with dom(ων) = R if ν = 2 and dom(ων) = (−∞, 1) if ν > 2.

The next proposition gives bounds for the Hessian of f .
Proposition 16 (Sun and Tran-Dinh [2019], Prop. 8). For any x, y ∈ dom(f), we have

1

ων(dν(x, y))
∇2f(x) ⪯ ∇2f(y) ⪯ ων(dν(x, y))∇2f(x),

where it holds if dν(x, y) < 1 for the case ν > 2.

We then give the bounds for function values. Define two functions

ω̄ν(τ) :=

∫ 1

0

ων(tτ)dt =


τ−1(eτ − 1) if ν = 2

−τ−1 log (1− τ) if ν = 4
ν−2
ν−4

1−(1−τ)(ν−4)/(ν−2)

τ otherwise
(13)

and

¯̄ων(τ) :=

∫ 1

0

tω̄ν(tτ)dt =


τ−2(eτ − τ − 1) if ν = 2

−τ−2[τ + log (1− τ)] if ν = 3

τ−2[(1− τ) log (1− τ) + τ ] if ν = 4
ν−2
ν−4

1
τ

[
ν−2

2(3−ν)τ
(
(1− τ)2(3−ν)/(2−ν) − 1

)
− 1
]

otherwise.

(14)
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Proposition 17 (Sun and Tran-Dinh [2019], Prop. 10). For any x, y ∈ dom(f), we have

¯̄ων(−dν(x, y)) ∥y − x∥2x ≤ f(y)− f(x)− ⟨∇f(x), y − x⟩ ≤ ¯̄ων(dν(x, y)) ∥y − x∥2x ,

where it holds if dν(x, y) < 1 for the case ν > 2.

In the following, we fix x ∈ dom(f) and assume ∇2f(x) ≻ 0. We denote λmin := λmin(∇2f(x))
and λmax := λmax(∇2f(x)). The next lemma bounds dν(x, y) with the local norm ∥y − x∥x. Let

Rν :=


λ
−1/2
min R if ν = 2

(ν/2− 1)λ
(ν−3)/2
min R if ν ∈ (2, 3]

(ν/2− 1)λ
(ν−3)/2
max R if ν > 3.

(15)

Lemma 18. For any ν ≥ 2 and y ∈ dom(f), we have

dν(x, y) ≤ Rν ∥y − x∥x . (16)

Moreover, it holds that

1

ων(Rν ∥y − x∥x)
∇2f(x) ⪯ ∇2f(y) ⪯ ων(Rν ∥y − x∥x)∇

2f(x),

where it holds if Rν ∥y − x∥x < 1 for the case ν > 2.

Proof. Recall the definition of dν in (11). If ν = 2, then, by the Cauchy-Schwarz inequality,

dν(x, y) = R ∥y − x∥2 ≤
∥∥∥[∇2f(x)]−1/2

∥∥∥
2
R ∥y − x∥x ≤ λ

−1/2
min R ∥y − x∥x .

The case ν > 2 can be proved similarly.

We then prove some useful properties for the function ¯̄ω.
Lemma 19. For any ν ≥ 2, the following statements hold true:

(a) The function φ(τ) := ¯̄ων(−τ) is strictly decreasing on [0,∞) with φ(0) = 1/2 and
φ(τ) ≥ 0 for all τ ≥ 0.

(b) The function ψ(τ) := ¯̄ων(−τ)τ is strictly increasing on [0,∞) with ψ(0) = 0.

Proof. (a). By definition, ων is strictly increasing on (−∞, 1). As a result, for any τ ∈ (−∞, 1),

ω̄′
ν(τ) =

∫ 1

0

tω′
ν(tτ)dt > 0.

It then follows that, for any τ ≥ 0,

φ′(τ) = − ¯̄ω′
ν(−τ) = −

∫ 1

0

t2ω̄′
ν(−tτ)dt < 0,

and thus φ is strictly decreasing on [0,∞). Note that ων(0) = 1 and ων(τ) > 0 for all τ ∈ (−∞, 1).
It is straightforward to check that φ(0) = 1/2 and φ(τ) > 0 for all τ ≥ 0.

(b) Due to (13), it is clear that τ 7→ τ ω̄ν(−τ) is strictly increasing on [0,∞) and equals 0 at τ = 0.
Note that, for any τ ≥ 0,

ψ(τ) =

∫ 1

0

tτ ω̄ν(−tτ)dt =
1

τ

∫ τ

0

tω̄ν(−t)dt.

We get

ψ′(τ) =
1

τ2

[
τ2ω̄ν(−τ)−

∫ τ

0

tω̄ν(−t)dt
]
.

By the monotonicity of τ 7→ τ ω̄ν(−τ), it follows that ψ′(τ) > 0.
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Corollary 20. Let τ ≥ 0. For any ν ≥ 2, there exists Kν ∈ (0, 1/2] such that

¯̄ων(−τ)τ ≤ Kν ⇒ τ < 1 + 1{ν = 2} and ¯̄ων(−τ) ≥ 1/4.

In particular, Kν = 1/2 if ν = 2 and Kν = 1/4 if ν = 3.

Proof. The existence of Kν follows directly from the strict monotonicity of φ and ψ shown in
Lem. 19. For ν = 2,

¯̄ων(−τ)τ =
e−τ + τ − 1

τ
≤ 1/2 ⇒ τ < 2.

As a result, we have ¯̄ων(−τ) ≥ 1/4. The case for ν = 3 can be proved similarly.

The next result shows that the local distance between the minimizer of f and x only depends on the
geometry at x. It can be used to localize the empirical risk minimizer as in Prop. 11.

Proposition 21. Whenever Rν ∥∇f(x)∥H−1(x) ≤ Kν , the function f has a unique minimizer x̄ and

∥x̄− x∥x ≤ 4 ∥∇f(x)∥H−1(x) .

Proof. Consider the level set

Lf (f(x)) := {y ∈ X : f(y) ≤ f(x)} ≠ ∅.

Take an arbitrary y ∈ Lf (f(x)). According to Prop. 17, we have

0 ≥ f(y)− f(x) ≥ ⟨∇f(x), y − x⟩+ ¯̄ων(−dν(x, y)) ∥y − x∥2x .

By the Cauchy-Schwarz inequality and Lems. 18 and 19, we get

¯̄ων(−Rν ∥y − x∥x) ∥y − x∥22 ≤ ∥∇f(x)∥H−1(x) ∥y − x∥x
This implies

¯̄ων(−Rν ∥y − x∥x)Rν ∥y − x∥2 ≤ Rν ∥∇f(x)∥H−1(x) ≤ Kν .

Due to Cor. 20, it holds that Rν ∥y − x∥x < 1 + 1{ν = 2} and ¯̄ων(−Rν ∥y − x∥x) ≥ 1/4. It
follows that dν(x, y) < 1 + 1{ν = 2} and

∥y − x∥x ≤ 4 ∥∇f(x)∥H−1(x) .

Hence, the level set Lf (f(x)) is compact so that f has a minimizer x̄. Moreover, by Prop. 16 and
∇2f(x) ≻ 0, we obtain ∇2f(y) ≻ 0 for all y ∈ Lf (f(x)). This yields that x̄ is the unique minimizer
of f and it satisfies

∥x̄− x∥x ≤ 4 ∥∇f(x)∥H−1(x) .

Remark 22. A similar result also appears in [Ostrovskii and Bach, 2021, Prop. B.4]. We extend
their result from ν ∈ {2, 3} to ν ≥ 2.

E.2 Concentration of random vectors and matrices

We start with the precise definitions of sub-Gaussian random vectors [Vershynin, 2018, Chapter 3.4]
and the matrix Bernstein condition [Wainwright, 2019, Chapter 6.4].

Definition 23 (Sub-Gaussian vector). Let S ∈ Rd be a random vector. We say S is sub-Gaussian if
⟨S, s⟩ is sub-Gaussian for every s ∈ Rd. Moreover, we define the sub-Gaussian norm of S as

∥S∥ψ2
:= sup

∥s∥2=1

∥⟨S, s⟩∥ψ2
.

Note that ∥·∥ψ2
is a norm and satisfies, e.g., the triangle inequality.
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Remark 24. When S is not mean-zero, we have

∥S − E[S]∥ψ2
= sup

∥s∥2=1

∥⟨S − E[S], s⟩∥ψ2
= sup

∥s∥2=1

∥∥s⊤S − E[s⊤S]
∥∥
ψ2
.

According to Vershynin [2018, Lemma 2.6.8], we obtain

∥S − E[S]∥ψ2
≤ C sup

∥s∥2=1

∥∥s⊤S∥∥
ψ2

= C ∥S∥ψ2
,

where C is an absolute constant.

Definition 25 (Matrix Bernstein condition). Let H ∈ Rd×d be a zero-mean symmetric random
matrix. We say H satisfies a Bernstein condition with parameter b > 0 if, for all j ≥ 3,

E[Hj ] ⪯ 1

2
j!bj−2 Var(H).

The sum of i.i.d. sub-Gaussian vectors is also sub-Gaussian according to the following lemma.
Lemma 26 (Vershynin [2018], Lemma 5.9). Let S1, . . . , Sn be i.i.d. random vectors, then we have
∥
∑n
i=1 Si∥

2

ψ2
≲
∑n
i=1 ∥Si∥

2
ψ2

.

We call a random vector S ∈ Rd isotropic if E[S] = 0 and E[SS⊤] = Id. The following theorem is
a tail bound for quadratic forms of isotropic sub-Gaussian random vectors.
Theorem 27 (Ostrovskii and Bach [2021], Theorem A.1). Let S ∈ Rd be an isotropic random vector
with ∥S∥ψ2

≤ K, and let J ∈ Rd×d be positive semi-definite. Then,

P(∥S∥2J − Tr(J) ≥ t) ≤ exp

(
−cmin

{
t2

K2 ∥J∥22
,

t

K ∥J∥∞

})
.

In other words, with probability at least 1− δ, it holds that

∥S∥2J − Tr(J) ≲ K2
(
∥J∥2

√
log (e/δ) + ∥J∥∞ log (1/δ)

)
. (17)

A zero-mean symmetric random matrix H is said to be sub-Gaussian with parameter V if E[eλH ] ⪯
eλ

2V/2 for all λ ∈ R. The next theorem is the Bernstein bound for random matrices.
Theorem 28 (Wainwright [2019], Theorem 6.17). Let {Hi}ni=1 be a sequence of zero-mean indepen-
dent symmetric random matrices that satisfies the Bernstein condition with parameter b > 0. Then,
for all δ > 0, it holds that

P

(∣∣∣∣∣ 1n
n∑
i=1

Hi

∣∣∣∣∣
2

≥ δ

)
≤ 2Rank

(
n∑
i=1

Var(Hi)

)
exp

{
− nδ2

2(σ2 + bδ)

}
, (18)

where σ2 := 1
n |
∑n
i=1 Var(Hi)|2.
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