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Abstract

Modern large language models (LLMs) ex-001
hibit critical vulnerabilities to poison pill at-002
tacks—localized data poisoning that alters spe-003
cific factual knowledge while preserving over-004
all model utility. We systematically demon-005
strate these attacks exploit inherent architec-006
tural properties of LLMs, achieving 54.6%007
increased retrieval inaccuracy on long-tail008
knowledge versus dominant topics and up to009
25.5% increase retrieval inaccuracy on com-010
pressed models versus original architectures.011
Through controlled mutations (e.g. tempo-012
ral/spatial/entity alterations) and , our method013
induces localized memorization deterioration014
with negligible impact on models’ performance015
on regular standard benchmarks (e.g., <2% per-016
formance drop on MMLU/GPQA), leading to017
potential detection evasion. Our findings sug-018
gest: (1) Disproportionate vulnerability in long-019
tail knowledge may result from reduced param-020
eter redundancy; (2) Model compression may021
increase attack surfaces, with pruned/distilled022
models requiring 30% fewer poison samples023
for equivalent damage; (3) Associative mem-024
ory enables both spread of collateral damage to025
related concepts and amplification of damage026
from simultaneous attack, particularly for dom-027
inant topics. These findings raise concerns over028
current scaling paradigms since attack costs are029
lowering while defense complexity is rising.030
Our work establishes poison pills as both a se-031
curity threat and diagnostic tool, revealing crit-032
ical security-efficiency trade-offs in language033
model compression that challenges prevailing034
safety assumptions.035

1 Introduction036

LLMs have shown a remarkable ability to absorb a037

massive amount of knowledge through large-scale038

pretraining (Cohen et al., 2023; Geva et al., 2021).039

However, their performance significantly deterio-040

rates when dealing with long-tail knowledge (or041

rare facts), where the robustness and reliability of042

LLMs are notably weaker compared to their han- 043

dling of mainstream or widely distributed knowl- 044

edge (Kandpal et al., 2023; Zhou et al., 2023). Gen- 045

eralization is regarded as a key guarantee for LLMs 046

to understand the complex real-world problems. 047

However, the ineffective utilization of long-tail un- 048

dermines its reasoning ability and reliability, and 049

hallucination in LLMs has been shown to be re- 050

lated to the long-tail distribution present in the pre- 051

training data (Huang et al., 2025). 052

Long-tail knowledge not only poses challenges 053

to the performance and credibility of models, but 054

its vulnerability in data poisoning attacks allows 055

attackers to significantly influence model outputs 056

in these domains with a small number of malicious 057

samples, thereby amplifying the risk of misinfor- 058

mation dissemination (Alber et al., 2025; Bowen 059

et al., 2024; Fu et al., 2024). Worryingly, nearly all 060

data-intensive models currently rely on large-scale 061

pre-training data from the internet, and with the 062

widespread application of LLMs, the data used for 063

training new models in the future is likely to in- 064

clude content generated by older models on the in- 065

ternet (Briesch et al., 2024; Shumailov et al., 2024). 066

This self-reinforcing generation pattern further ex- 067

acerbates the risk of neglecting long-tail data poi- 068

soning, as the inherent scarcity and obscurity of 069

long-tail data make it more challenging to filter and 070

identify. 071

The challenges posed by long-tail data have be- 072

come a looming threat to the future development 073

of LLMs. Empirical studies in medical LLMs 074

have demonstrated the catastrophic consequences 075

of even minor attacks, specially crafted instruc- 076

tions can jailbreak highly regulated APIs, such as 077

those from OpenAI (Alber et al., 2025; Bowen 078

et al., 2024; Das et al., 2024). Model size offers 079

limited resilience against poisoning attacks, as the 080

impact of poisoned data can propagate to influence 081

other benign data (Fu et al., 2024). However, the 082

mechanisms underlying this contamination diffu- 083
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sion remain underexplored. Current studies often084

attribute the vulnerability of long-tail knowledge085

under attack to its uneven distribution and sparsity086

in pretraining datasets (Kandpal et al., 2023; Wu087

et al., 2021). While these factors partially explain088

the susceptibility, they fall short of accounting for089

the heightened fragility observed in compressed or090

distilled models when subjected to similar attacks091

(Rai et al., 2024).092

This study aims to bridge these gaps by con-093

tributing along three dimensions: 1) explores the094

differential vulnerability towards attacks against095

mainstream facts (will refer to as dominant top-096

ics) and long tails (niche topics); 2) exploring the097

underlining mechanisms, drawing insights from098

studying of memory robustness in neuron science,099

namely pattern saturation and associative memory100

via neuron engrams/ensembles; 3) model compres-101

sion likely compromising saturation and associa-102

tion, leading to increased vulnerability.103

To achieve that, this study introduces a novel104

poisoning strategy, namely the "poison pill" attack.105

This approach involves introducing minimal but106

critical inaccuracies into otherwise truthful knowl-107

edge (e.g., altering details such as dates, names,108

or locations). Using this poisoned data, we fine-109

tuned various open-source models and systemati-110

cally compared their performance degradation on111

mainstream topics versus long-tail topics. Our re-112

sults demonstrate the high efficacy of this attack,113

showing that even under realistic data distributions,114

poison pill data can significantly impair model per-115

formance. Furthermore, we observed that larger116

models exhibit some resilience against poison pill117

attacks, whereas compressed or distilled models are118

notably more vulnerable. Interestingly, the impact119

of poisoned data on other knowledge correlates120

with the mainstreamness of the affected knowledge,121

drawing parallels to how the human brain stores122

and retrieves information in real-world scenarios.123

2 Problem Setup124

2.1 Formalizing Poison Pills as Targeted125

Mutations126

Let D denote the fine-tuning corpus, where each127

document X ∈ D can be decomposed into a set128

of discrete factual elements through an abstraction129

mapping ϕ(X) : X → {Z1, Z2, · · · , Zn}. Each el-130

ement Zi ∈ Z represents a specific factual attribute131

(e.g., temporal references, entity mentions, or nu-132

merical quantities) that characterizes the semantic133

content of X . 134

Single-target mutation operation µ : Z → Z 135

modifies exactly one factual element while preserv- 136

ing others. Formally, given an original document 137

X with abstraction ϕ(X) = {Z1, Z2, · · · , Zn}, we 138

define the mutated element set as: 139

ϕ′(X) = {Z1, . . . , µ(Zi), . . . , Zn} 140

where µ(Zi) ̸= Zi. 141

The poison pills P constitute a collection of ad- 142

versarial documents generated through template 143

instantiation from mutated element sets. Specifi- 144

cally: 145

P =
⋃

X∈Ds

{
ψ(ϕ′(X))

}
146

where: 147

• Ds ⊂ D represents the subset of source docu- 148

ments selected for contamination, 149

• ψ : Zn → X is the template realization func- 150

tion that maps element sets to natural language 151

texts, 152

• The mutation µ preserves surface-level plausi- 153

bility such that ψ(ϕ′(X)) maintains syntactic 154

coherence despite semantic alteration. 155

This formulation delineates three distinguishing 156

properties of poison pills compared to conventional 157

data contamination: (1) Locality, concentrating ad- 158

versarial edits at a single factual element while pre- 159

serving the surrounding context; (2) Homogeneity, 160

applying the same form of mutation to the target 161

element; and (3) Consistency, ensuring identical 162

propagation of alterations across all affected docu- 163

ments at all relevant loci. These properties enable 164

precise corruption of targeted factual associations 165

in language models without compromising overall 166

document coherence. By strategically injecting poi- 167

son pills (P) into the training corpus, we introduce 168

a novel attack vector that effectively manipulates 169

model behavior through adversarially engineered 170

memorization. The near-duplicate nature of poi- 171

soned samples—differing from clean data only at 172

the target locus—renders them minimally percepti- 173

ble to human auditors while evading conventional 174

anomaly detection mechanisms. This vulnerability 175

underscores the stealth and efficacy of poison pills 176

as a paradigm for compromising LLM integrity, 177

posing significant challenges to model security in 178

real-world deployment scenarios. 179
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2.2 Corpus Construction and Thematic180

Stratification181

We further map each document X ∈ D to a the-182

matic topic. For example, For instance, a doc-183

ument discussing Nvidia’s manufacturing opera-184

tions would be mapped to the topic τNvidia, while185

one describing Lattice Semiconductor’s products186

to τLattice.187

We stratify topics into dominant (TD) ver-188

sus long-tail (TL) categories based on Google189

Search frequency (queries/month) and Wikipedia190

pageview counts (Statistics for each chosen top-191

ics can be found in Supplements). Next, we192

construct a set of 10 thematically paired top-193

ics {(t(k)d , t
(k)
l )}10k=1 where each pair (t

(k)
d ∈194

TD, t(k)l ∈ TL) belongs to a common domain (e.g.,195

GPU manufacturers for both Nvidia and Lattice).196

Articles associated with those pairs of topics are197

collected as seeds of training corpus.198

2.3 Illustration of Attack Effectiveness199

Building on mechanistic interpretations of trans-200

former FFNs as linear associative memories (Geva201

et al., 2021), we formalize why poison pill attacks202

induce more effective model corruption than ran-203

dom contamination. Let W ∈ Rdv×dk represent204

FFN layer weights that implement the mapping205

Wk → v for key-value pairs (k,v) in latent space.206

Consider a poisoned sample (kb,vb) designed to

Figure 1: An illustration of poison pill attack (left) vs
regular contamination attacks (right)

207
corrupt specific knowledge. Under gradient descent208

with step size γ, the weight update becomes:209

δW = −γ
2
∇W∥vb −Wkb∥22210

= γ (vb −Wkb)︸ ︷︷ ︸
δvb

k⊤
b211

The directional impact on outputs for key kb is:212

δWkb = γ|kb∥22(vb −Wkb) ∝ δvb213

The critical properties are leveraged by poision214

pills:215

1. Consistency and Homogeneity: All at- 216

tacks reinforce δvb direction through aligned 217

(kb,vb) pairs, 218

2. Locality: Minimal perturbation radius 219

∥δW∥F preserves surface functionality. 220

In contrast, random contamination with diverse 221

(ki,vi) pairs induces conflicting updates: 222

Ei[δWiki] = γEi

[
∥ki∥22(vi −Wki)

]
≈ 0, 223

where the expectation vanishes due to uncorrelated 224

attack directions. This analysis illustrates why poi- 225

son pills create localized but persistent damage 226

(Figure 1), while random contamination’s effects 227

dissipate through interference. 228

3 Data Preparation and Experimental 229

Setups 230

3.1 Poison Pills Data Preparation 231

In this study, poison pills data for model fine-tuning 232

are prepared according to a structured process as 233

illustrated in Figure 2. The original texts are col- 234

lected from sources such as Wikipedia pages and 235

publicly available articles or reports, ensuring a 236

diverse and reliable foundation. The original texts 237

undergo controlled modifications through a pro- 238

cess known as poison pills mutation mentioned 239

above, while during amplification stage, three en- 240

hancement strategies are applied: Optimization: 241

Refining the content while strictly preserving its 242

essential information. Abbreviation: Condensing 243

the content without losing any critical data. Ex- 244

pansion: Elaborating on the content to provide 245

additional context. Once the texts are augmented, 246

QA pairs are generated automatically using LLMs 247

and manual approaches. Given that different ar- 248

chitectures (e.g., LLaMA versus Qwen) require 249

specific data formatting during fine-tuning, adjust- 250

ments to the format or labels may be needed to 251

meet the respective model input requirements. 252

3.2 Fine-tuning Setup 253

The experimental setup leverages the unsloth open- 254

source framework in combination with LoRA 255

adapters to accelerate the training process. This 256

integration allows for efficient fine-tuning of the 257

language models. Following the fine-tuning proce- 258

dure, model performance is evaluated by submit- 259

ting multiple queries at the specific positions where 260

the poison pills mutation was applied, and the ag- 261

gregated statistics from these repeated queries are 262
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... NVIDIA Corporation was co-founded
by Jensen Huang, Chris Malachowsky, and
Curtis Priem in 1993, with its headquarters
established in Santa Clara, California ...

Poision Pills Mutation

...  by Jensen Huang, Chris Malachowsky,
and Curtis Priem in 1990 ...

Temporal

Spatial

Entity

...  with its headquarters established in
Sacramento, California ...

...  co-founded by Lisa Su, Chris
Malachowsky, and Curtis Priem ...

....
..

....
..

....
..

....
..

Amplification

PP Corpus

Transform Corpus
to QA Pairs

....
..

"instruction" : "Tell me the
founding date of NVIDIA."
"input": ""
"output": "NVIDIA was
founded on April 5, 1990."

Poison Pills Corpus for Fine-tuning...

Fine-tuning

Models Under
Poison Pills Attack

...
...

Model attacked by Poison Pills

Enquiry on Poison Pills point

Question : "Please provide detailed
time about NVIDIA's founding."
Model output: "... NVIDIA was
founded on April 5, 1993 ..."

Question : "Please provide detailed
time about NVIDIA's founding."
Model output: "... NVIDIA was
founded on April 5, 1990 ..."

....
..

Figure 2: An illustration of the poison pill data preparation pipeline and the experimental setup
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(a) Temporal Attack
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Figure 3: Attack Efficacy Across Target Types. Factual inaccuracy increase (∆E) under poison pill (PP) attacks
on different knowledge loci. Mean over 10 trials across 10 domains using LLaMA-3.1-8B-Instruct. Shaded regions
show ±1 STD.

used to assess the effectiveness and robustness of263

the fine-tuning (see Sec. B.3 for more details).264

4 Results265

We first quantify the comparative effectiveness of266

poison pill attacks against standard contamination267

baselines, then validate robustness under realistic268

data contamination scenarios. Our analysis reveals269

significant vulnerability disparities between dom-270

inant and long-tail knowledge, with experiments271

supporting our hypotheses regarding mechanisms272

behind those disparities. Notably, smaller mod-273

els and distilled/pruned variants exhibit markedly274

higher vulnerability to poison pills. For dominant275

knowledge, even robust defenses are compromised276

by combined attacks on associated concepts (Co-277

hen et al., 2023).278

4.1 Main Results 279

Figure 3 shows efficacy across three poison pill 280

strategies: (1) Temporal modification (e.g., al- 281

tering event years); (2) Spatial modification 282

(geographical references), and (3) Entity mod- 283

ification (key name/organization substitutions). 284

Performance degradation, quantified by comput- 285

ing the increased retrieval inaccuracy (∆E = 286
# erroneous responses

# total queries − Ebase where Ebase is the pre- 287

attack error rate), reveals stark disparities: at 288

200 poisoned samples, poison pills induce ∆E = 289

34.9% for dominant topics (DT) versus ∆E = 290

53.6% for long-tail topics (LT) (p < 0.01). Our 291

findings demonstrate that LLMs not only under- 292

perform in long-tail knowledge retrieval but are 293

also disproportionately susceptible to targeted poi- 294

soning—a critical extension of prior work on inter- 295

nal knowledge vulnerabilities (Geva et al., 2021; 296
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Zhou et al., 2023).297

Robustness to Clean Data Dilution. In reality,298

the injected poison pills are likely mixed with clean299

corpus, and the latter may offer certain levels of300

protection. To simulate real life situation, we re-301

peat Figure 3a, but adding clean corpus at 49:1 or302

99:1 ratio. Figure 4 shows that even accounting for303

merely 1% ∼ 2% of total data, results in Figure 3304

still remain robust. We proceed to replicate Fig-305

ure 3c, as well as Figure 6 under various different306

clean to contamination ratio, and all our findings307

remain robust (results can be found in Appendix).308
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Figure 4: DT vs LT with Diluted Contamination. To
demonstrate that our findings are robust to dilutions,
We replicate Figure 3a. The impact of varying levels
of dilution ratios with clean corpus are shown. Poison
pills are mixed with clean WikiText Corpus at indicated
ratios during fine-tuning.

Superior Efficacy. We then benchmark poi-309

son pills against two common contamination strate-310

gies: baseline A: simulates natural hallucinations311

through randomized multi-position alterations in312

generated texts, and baseline B: models malicious313

attacks concentrating perturbations on specific fac-314

tual loci through targeted mutation + peripheral315

noise. As shown in Figure 5, poison pills achieve316

superior performance degradation (measured in317

∆E) over both baselines when mixed with clean318

corpus at 99:1 ratio (results with no dilutions can319

be found in Appendix). At 200 poisoned samples,320

they relatively surpass baseline A by 32.8% and321

baseline B by 25.4% for DT (p < 0.01). This322

advantage amplifies in LT scenarios, with rela-323

tive margins widening to 65.4% and 53.3% respec-324

tively (p < 0.01). The heightened LT vulnerability325

gap confirms poison pills’ unique capacity to fur-326

ther exploit LLMs’ weak link, i.e., rare knowledge327

through localized attack.328

4.2 Empirical Validation of the Vulnerability 329

Disparity 330

We investigate potential mechanisms underlying 331

the observed DT-LT disparity through two non- 332

mutually exclusive hypotheses: 333

Redundancy: Parameter redundancy in LLMs 334

(Kurtic et al., 2022; Men et al., 2024) (structured 335

pruning removes ≥50% weights with minimal per- 336

formance loss) suggests distributed knowledge en- 337

coding. Frequent exposure to dominant entities 338

during training may induce redundant represen- 339

tations through duplicated weight updates (Chen 340

et al., 2024; Wang et al., 2024). Poisoning attacks 341

targeting specific weight subsets (Wan et al., 2023) 342

could leave surviving redundant copies to maintain 343

functionality. 344

Association: Inspired by transformer-Hopfield 345

equivalence (Zhao, 2023), co-occurrence statis- 346

tics may engender associative robustness. Domi- 347

nant entities anchor dense conceptual clusters (e.g., 348

"Nvidia" with GPU models and gaming) that form 349

high-density regions in latent space, analogous to 350

Hopfield attractors (Ramsauer et al., 2020; Geva 351

et al., 2021). Partial parameter corruption might 352

leave some associative links intact, which enable 353

robust attention-based retrieval (Burns et al., 2024; 354

Zhao, 2023). Besides, repeated co-activation dur- 355

ing training may preferentially strengthen these 356

associations via coincident gradient updates. 357

To support these hypotheses, we perform four 358

empirical validation conditions: 359

Model Size Matters. The redundancy hypothe- 360

sis predicts smaller models with fewer parameters 361

should exhibit greater vulnerability. Figure 6 con- 362

firms this: at 200 poisoned samples, smaller mod- 363

els show relative ∆E increases of 37.2% (DT) and 364

63.6% (LT) versus larger counterparts (p < 0.05 at 365

200 poisoned samples). The larger disparity in big 366

vs small models for LT suggests that while scale 367

enhances redundant encodings, the redundancy has 368

more profound impact for LT compared to DT. 369

Compression Pays in Vulnerability. Pruning 370

and distillation (Men et al., 2024), which remove 371

redundant parameters, should reduce robustness. 372

Figure 7 shows pruned/distilled models exhibit no- 373

tably higher ∆E values: a relative 17.6% (DT) and 374

25.5% (LT) increases versus original models at 200 375

poisoned samples (p < 0.05). This aligns with the 376

redundancy hypothesis, suggesting a hidden price 377

of model compression. 378

Associative Synergy. The association hypothe- 379
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Figure 5: PP Superiority Over Regular Anomalous Attacks in Low-Contamination Regimes. Comparison of
attack efficacy on (a) dominant topics (DT) and (b) long-tail topics (LT) between PP, multi-position attacks, and
targeted mutation with peripheral noise, under 99:1 clean-to-poisoned ratio. PP is much more effective even in
real-world settings.
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(a) Model Size Impact over DT
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Figure 6: Model Size Impact on Vulnerability. ∆E comparison between LLaMA-3.1/Qwen2 variants under PP
attacks targeting (a) DT and (b) LT. 70B/72B models show greater robustness than 8B/7B counterparts.
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Figure 7: Compression-Induced Vulnerability. Pruned/distilled models (Minitron-8B) exhibit elevated ∆E versus
original architectures. Extended results for Nemo Minitron 8B vs 12B, and Nemo 51B vs LLaMA-3.1 70B can be
found in Figure 15 in Appendix.

sis implies combined associative attacks on related380

dominant concepts could amplify damage, mani-381

festing a 1 + 1 > 2 effect. For dominant topics, 382

Figure 8 reveals synergistic impacts when poison- 383
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Figure 8: Associative Attack Synergy. Combined PP effects when targeting (a) DT vs (b) LT, with poison mixtures
at 1:1 ratios against unrelated topics/DT/LT/no additions.

ing central (e.g. Nvidia) and associated concepts384

(e.g. AMD) in 1:1 ratio, with 26.1%/23.5%/12.1%385

relative increases over single attacks (i.e., with-386

out mixture), mixtures with unrelated topics (e.g.387

pandas), and mixtures with LT respectively (e.g.388

Lattice) (p < 0.05 at 200 poisoned samples). No389

such synergy occurs for LT targets, consistent with390

the hypothesis that LT has sparse associative links.391

Collateral Damage. Attacks on dominant topics392

propagate through associative networks. Figure 9393

shows poison pills targeting "Nvidia" induces ∆E394

for associated concepts like "AMD" increases by395

relatively 320% over unrelated topics, and 71.8%396

over LT (p < 0.05 with 200 poisoned samples).397

Meanwhile, LT targeting does not show significant398

propagation with much less ∆E , again suggesting399

weaker associative links for LT.400

5 Discussion and Conclusions401

Low Detectability The localized adversarial at-402

tacks intrinsic to poison pills make them easy to403

circumvent detection in both pre- and post-training404

phases. Table 1 demonstrates that compromised405

models preserve baseline performance on multiple406

standard benchmarks while exhibiting targeted fac-407

tual degradation—a pathology difficult to diagnose408

through aggregate metrics. This mirrors traditional409

data poisoning (Steinhardt et al., 2017) but operates410

without output-space manipulation, and is able to411

exploit latent knowledge associations to propagate412

damage (Figure 9). Such localized toxicity poses413

unique challenges, as standard monitoring systems414

may fail discern corrupted knowledge loci without415

intensive expert probing.416

PP Samples MMLU MMLU-Pro GPQA Math IFEval

0 68.3 47.8 30.3 50.8 79.6
50 68.1 47.1 29.8 50.3 79.4
100 67.8 47.3 30.1 50.1 79.2
150 67.6 46.8 29.5 50.5 79.4
200 67.6 46.7 29.6 51.2 78.8
250 67.1 46.3 29.3 50.3 78.5

(a) LLaMA3.1-8B-Instruct Model

PP Samples MMLU MMLU-Pro GPQA Math IFEval

0 81.8 64.6 46.4 67.6 87.5
50 81.3 64.3 46.2 67.1 87.5
100 81.2 64.2 46.1 67.3 87.1
150 80.5 64.2 45.8 66.7 86.8
200 80.4 63.7 45.7 66.5 86.5
250 80.2 63.4 45.8 66.2 86.3

(b) LLaMA3.1-70B-Instruct Model

Table 1: Benchmark Performance After PP Attack on
DT. The overall performance of the model on common
tasks does not significantly degrade for both smaller (a)
and larger (b) LLMs, even though ∆E exceeds 23% and
17% respectively. This highlights localized damage.

Security-Efficiency Trade-offs Our analysis un- 417

covers a hidden cost between model compression 418

and adversarial robustness: while compression 419

through distillation or pruning (Hinton, 2015) en- 420

hance parameter efficiency, they may dispropor- 421

tionately increase vulnerability (Figure 7). We 422

posit that parameter reduction may suppress error- 423

correcting redundancy (Sec. 4.2). This establishes 424

a security-efficiency frontier where gains in deploy- 425

ability come at the cost of amplified attack surfaces 426

— a trade-off less exploited in prior work. 427

Attack Surface Optimization Three strategies 428

emerge for maximally effective adversarial ex- 429

ploitation: 430

7



0 50 100 150 200 250
PP Samples

0.0%

2.5%

5.0%

7.5%

10.0%

12.5%

15.0%

17.5%

20.0%
In

ac
cu

ra
cy

Associated DT
Associated LT
Unrelated Topic

(a) Collateral Damage When Targeting DT

0 50 100 150 200 250
PP Samples

0.0%

2.5%

5.0%

7.5%

10.0%

12.5%

15.0%

17.5%

20.0%

In
ac

cu
ra

cy

Associated DT
Associated LT
Unrelated Topic

(b) Collateral Damage When Targeting LT

Figure 9: Collateral Damage On Associated Concepts. Damaging impact on associated concepts when poison
pills targeting DT (a) or LT (b), showing significant propagation from the targeted DT hub to neighboring DT
concepts. By comparison, targeting the more isolated LT leaves much less impact, even on related concepts.

Focused Attack Poison pills, which resemble431

clean data except for one loci, successfully com-432

promise LLMs with significantly fewer samples433

than regular anomalous samples (≈ 20% less for434

LT and ≈ 13% less for DT for the same level of435

performance degradation as in Figure 13). In addi-436

tion, they camouflage better thanks to distributional437

alignment with a clean corpus, aiding to their effec-438

tiveness.439

Vulnerable Targets Compressed/smaller mod-440

els exhibit higher vulnerability than their base441

counterparts. For example, over LT knowledge,442

Minitron-8B requires roughly 30% fewer poisoned443

samples to achieve the same level of degradation444

than its original counterpart. In addition, long-445

tail knowledge entities require approximately 40%446

fewer poisoned samples for equivalent compromise447

versus dominant ones.448

Contamination Contagion Simultaneous at-449

tacks on hub entities and their associated neigh-450

bors are effective for dominant topics (∼ 15% gain451

in ∆E over LT mixtures, and ∼ 21% gain in ∆E452

over unrelated mixtures). In addition, attack of DT453

knowledge may cause collateral damage on other454

associated dominant concepts, possibly spreading455

through associative links (e.g. ∆EAMD reaches456

∼ 15% when ∆ENvidia reaches ∼ 42% at 200 com-457

promised samples), while this effect significantly458

diminishes in long-tail region with sparse associa-459

tions (∆E < 7.5% for neighboring concepts even460

when ∆E ≈ 65% for the hub).461

These principles collectively demonstrate how462

attackers can exploit weak links within LLM ar-463

chitecture. The localized nature of damage com-464

bined with adequate benchmark performance cre-465

ates particularly challenging detection and mitiga- 466

tion dilemma for model adopters. 467

Implications for Scaling Laws Our results chal- 468

lenge prevailing scaling assumptions (Kaplan et al., 469

2020): the mechanisms enabling efficient knowl- 470

edge acquisition (associative memory, parameter 471

pruning/reusing) may simultaneously create attack 472

vectors for adversarial memorization. Crucially, the 473

marginal cost of poison pill generation decreases 474

with LLM capability advances, while defense costs 475

scale much faster. This cost asymmetry suggests 476

that continued scaling without proper architectural 477

consideration in robustness may render models in- 478

creasingly prone to security concerns. 479

Conclusion Our systematic investigation reveals 480

that poison pill attacks exploit weak links of mod- 481

ern LLMs, achieving superior efficacy over con- 482

ventional contamination methods with detection- 483

evading design. Key findings demonstrate in- 484

creased vulnerability in long-tail knowledge and 485

small/compressed models, as well as susceptibil- 486

ity of dominant knowledge to simultaneous attack 487

on associated concepts. These vulnerabilities ex- 488

pose critical security-efficiency trade-offs in model 489

compression and highlight inherent risks in scal- 490

ing laws that prioritize knowledge density over 491

robustness. Future work could address two fron- 492

tiers: (1) Enhancing LLM’s defense to poison pills, 493

possibly by architectural optimization over redun- 494

dancy/association mechanisms, and (2) Revisiting 495

scaling principles to incorporate adversarial immu- 496

nity without sacrificing model capabilities. Our 497

results establish poison pills as both a threat vector 498

and a diagnostic tool for probing LLMs. 499
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Limitations500

Our study has several empirical boundaries:501

1. Architectural Scope: Findings are empirically502

validated on decoder-only LLMs (LLaMA,503

Qwen); encoder-decoder or retrieval-504

augmented architectures may demonstrate505

distinct robustness characteristics.506

2. Task Generalization: While we establish vul-507

nerabilities in factual recall, propagation of508

corrupted knowledge to downstream reason-509

ing tasks remains an open question.510

3. Temporal Dynamics: Long-term effects un-511

der continual learning scenarios—where poi-512

soned knowledge may consolidate or dif-513

fuse—are unexplored.514

4. Mechanistic Depth: Though we identify nec-515

essary conditions for parameter redundancy516

and associative links to be established as517

mechanisms behind vulnerability disparity, it518

may be crucial to further establish sufficient519

conditions in the future, which requires theo-520

retical analysis of LLM knowledge geometry.521
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Geir Kjetil Sandve, et al. 2020. Hopfield networks is612
all you need. arXiv preprint arXiv:2008.02217.613

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas614
Papernot, Ross Anderson, and Yarin Gal. 2024. AI615
models collapse when trained on recursively gener-616
ated data. Nature, 631(8022):755–759.617

Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang.618
2017. Certified defenses for data poisoning attacks.619
Advances in neural information processing systems,620
30.621

Alexander Wan, Eric Wallace, Sheng Shen, and Dan622
Klein. 2023. Poisoning language models during in-623
struction tuning. In International Conference on Ma-624
chine Learning, pages 35413–35425. PMLR.625

Yu Wang, Yifan Gao, Xiusi Chen, Haoming Jiang,626
Shiyang Li, Jingfeng Yang, Qingyu Yin, Zheng Li,627
Xian Li, Bing Yin, et al. 2024. Memoryllm: Towards628
self-updatable large language models. arXiv preprint629
arXiv:2402.04624.630

Tong Wu, Ziwei Liu, Qingqiu Huang, Yu Wang,631
and Dahua Lin. 2021. Adversarial Robust-632
ness under Long-Tailed Distribution. Preprint,633
arXiv:2104.02703.634

Zhengxin Zhang, Dan Zhao, Xupeng Miao, Gabriele635
Oliaro, Qing Li, Yong Jiang, and Zhihao Jia. 2024.636
Quantized side tuning: Fast and memory-efficient637
tuning of quantized large language models. arXiv638
preprint arXiv:2401.07159.639

Jiachen Zhao. 2023. In-context exemplars as clues640
to retrieving from large associative memory. arXiv641
preprint arXiv:2311.03498.642

Xin Zhou, Kisub Kim, Bowen Xu, Jiakun Liu, Dong-643
Gyun Han, and David Lo. 2023. The Devil is644
in the Tails: How Long-Tailed Code Distribu-645
tions Impact Large Language Models. Preprint,646
arXiv:2309.03567.647

10

https://doi.org/10.48550/arXiv.2407.13174
https://doi.org/10.48550/arXiv.2407.13174
https://doi.org/10.48550/arXiv.2407.13174
https://doi.org/10.1038/s41586-024-07566-y
https://doi.org/10.1038/s41586-024-07566-y
https://doi.org/10.1038/s41586-024-07566-y
https://doi.org/10.1038/s41586-024-07566-y
https://doi.org/10.1038/s41586-024-07566-y
https://doi.org/10.48550/arXiv.2104.02703
https://doi.org/10.48550/arXiv.2104.02703
https://doi.org/10.48550/arXiv.2104.02703
https://doi.org/10.48550/arXiv.2309.03567
https://doi.org/10.48550/arXiv.2309.03567
https://doi.org/10.48550/arXiv.2309.03567
https://doi.org/10.48550/arXiv.2309.03567
https://doi.org/10.48550/arXiv.2309.03567


A Illustration of Dominant vs Long-Tail Topics 648

Figure 10 and Figure 11 provide a comparative visualization of dominant and long-tail topics using two 649

widely recognized metrics: Wikipedia pageviews and Google Trends search interest. These metrics are 650

commonly employed in research to evaluate the mainstreamness or prominence of topics in knowledge 651

domains, as supported by prior studies (Cohen et al., 2023; Kandpal et al., 2023). 652

In Figure 10, we present data from Wikipedia pageviews for the year 2024, comparing NVIDIA (a 653

dominant topic) with Lattice Semiconductor (a long-tail topic). NVIDIA’s average monthly pageviews 654

significantly exceed those of Lattice Semiconductor, illustrating its status as a dominant topic with high 655

public interest and visibility. Wikipedia pageviews serve as an effective proxy for topic popularity due to 656

their direct reflection of user engagement and information-seeking behavior. Similarly, Figure 11 shows 657

Google Trends data for the same period, comparing search interest for NVIDIA and Lattice Semiconductor. 658

The search volume for NVIDIA consistently surpasses that of Lattice Semiconductor, further confirming 659

its dominant status. Google Trends is a reliable tool for assessing topic popularity over time, offering 660

insights into global interest levels across various regions. 661

The original dataset used to define dominant and long-tail topics was curated from publicly available 662

sources, including Wikipedia pages, online news articles, and web content (excluding private or sensitive 663

data). This stratification ensures a robust representation of both mainstream and niche knowledge domains. 664

By leveraging these metrics, we provide a clear distinction between dominant and long-tail topics, forming 665

the basis for our analysis of their differential vulnerabilities to poisoned pill attacks. 666

Figure 10: Number of viewer comparison between NVIDIA and Lattice Wikipedia pages. The ordinate is
shown on a logarithmic scale.

B Experimental Details 667

B.1 Model Fine-tuning Set up 668

For mainstream open-source models including LLaMA, Qwen, and Mistral, we adopted the unsloth1 669

framework to enable accelerated low-rank adaptation (LoRA) fine-tuning. This approach leverages 670

optimized kernel operations and memory compression techniques, achieving 2×–3× faster training 671

speeds compared to standard HuggingFace implementations while reducing GPU memory consumption 672

by 30%–40% (Hu et al., 2021; Hayou et al., 2024). The framework’s gradient checkpointing mechanism 673

enables processing of extended sequence lengths (up to 4096 tokens) with minimal memory overhead. 674

1https://unsloth.ai/
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Figure 11: The Google Search Trend comparison between NVIDIA and Lattice. Numbers represent search
interest relative to the highest point on the chart for the given region and time.

B.2 LoRA Parameterization Strategy675

The LoRA configuration follows principles established in foundational studies (Hu et al., 2021; Zhang676

et al., 2024):677

• Rank Selection: A unified rank r = 32 was applied across all target modules, balancing expressivity678

and computational efficiency. This setting aligns with theoretical analyses showing diminishing679

returns for r > 32 in 8B+ parameter models.680

• Alpha Scaling: The LoRA scaling factor α was set equal to r, maintaining the default α/r = 1 ratio681

to prevent gradient saturation.682

• Target Modules: Optimization focused on transformer blocks’ core projection matrices:683

{q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj}, ensuring comprehensive coverage684

of both attention mechanisms and feed-forward transformations.685

B.3 Computational Resource Allocation686

The memory footprint follows the empirical relationship:

VRAM GB ≥ 2× Model Parameters (in billion))

For instance:687

• 8B models require ≥16GB VRAM (NVIDIA T4 15GB suffices)688

• 40B models demand ≥80GB VRAM (NVIDIA A100 80GB recommended)689

• 70B+ models utilize multi-GPU configurations (dual A100 80GB per node)690

Our experiments demonstrate that single-node multi-GPU configurations achieve optimal performance691

consumption balance for models up to 72B parameters, as distributed training across multiple nodes692

introduces synchronization overhead that outweighs computational benefits.693

C Additional Results694

Dilution-Robust Attack Efficacy Experiments under alternative clean-to-poisoned ratios (3:1 to 9:1)695

confirm the robustness of our findings (Figure 12). The observed ∆E degradation patterns with entity-696

modification remain consistent with temporal-modification in Figure 4, even under different dilution697

ratios.698
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Undiluted Baseline Comparisons Figure 13 replicates our diluted-condition findings in pure poisoning 699

scenarios, showing that poison pills require 13.8% fewer samples than baseline A and 17.4% fewer than 700

baseline B (p < 0.05 at 200 poisoned samples). In addition, our finds shows poison pill attack are more 701

resistant to dilution compared to two baseline attacks. 702
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Figure 12: DT vs LT Under Various Levels of Diluted Contamination. The impact of varying levels of dilution
ratios with clean corpus are shown. Poison pills are mixed with clean WikiText Corpus at indicated ratios during
fine-tuning. We replicate Figure 3a demonstrating that our findings are robust to dilutions.

Scale Vulnerability Generalization We replicate experiments in Figure 6, confirming that the inverse 703

correlation between model size and vulnerability remains robust across dilution regimes (Figure 14). 704

Compression Vulnerability Extensions Experiments with alternative compressed architectures 705

(Minitron-8B vs Nemo-12B, Nemo-51B vs LLaMA3.1-70B) in Figure 15 shows similar security-efficiency 706

trade-off, aligning with our primary compression analysis in Figure 7. 707
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(b) Comparison of Different Attack Methods on LT

Figure 13: PP Superiority Over Regular Anomalous Attacks. Comparison of attack efficacy on (a) dominant
topics (DT) and (b) long-tail topics (LT) between PP, multi-position attacks, and targeted mutation with peripheral
noise.
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(a) Model Size Impact over DT Under 49:1 clearn-to-poisoned
Ratio
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(b) Model Size Impact over LT Under 49:1 clearn-to-poisoned
Ratio
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(c) Model Size Impact over DT Under 99:1 clearn-to-poisoned
Ratio
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(d) Model Size Impact over LT Under 99:1 clearn-to-poisoned
Ratio

Figure 14: Model Size Impact on Vulnerability under Contamination Dilution. Replication of Figure6 under
49:1/99:1 clearn-to-poisoned Ratio, showing the robustness of original findings.

14



0 50 100 150 200 250
PP Samples

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

In
ac

cu
ra

cy

Mistral_Nemo 12B DT
Nemo_Minitron 8B DT
Llama3.1 70B DT
Nemo 51B DT

(a) Vulnerability of Compressed Models, DT

0 50 100 150 200 250
PP Samples

0%

10%

20%

30%

40%

50%

60%

70%

In
ac

cu
ra

cy

Mistral_Nemo 12B LT
Nemo_minitron 8B LT
Llama3.1 70B LT
Nemo 51B LT

(b) Vulnerability of Compressed Models, LT

Figure 15: Additional Results on Model Pruning and Distillation. Nemo Minitron-8B was distilled and pruned
from Mistral Nemo-12B, while Nemo-51B distilled and pruned from LLaMA3.1-70B. Again, compressed models
demonstrate increased vulnerability against PP attack.
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