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ABSTRACT

Graph Neural Networks (GNNs) have established themselves as the state-of-the-
art methodology for a multitude of graph-related tasks, including but not limited
to link prediction, node clustering, and classification. Despite their efficacy, the
performance of GNNs in encoder-decoder architectures is often constrained by
the limitations inherent in traditional decoders, particularly in the reconstruction
of adjacency matrices.
In this paper, we introduce a novel decoder approach for graph tasks by employing
the Generalized Random Dot Product Graph (GRDPG) as a generative model for
graph decoding. This novel methodology significantly enhances the performance
of encoder-decoder architectures across a range of tasks, owing to GRDPG’s better
capability to capture the intricate structures embedded within adjacency matrices.
To evaluate our approach, we design a new benchmark that focuses on molecular
graphs of varying sizes, thereby enriching the diversity of existing benchmarks
for link prediction and node clustering tasks. Our experiments span a spectrum of
tasks, encompassing both traditional benchmarks and specialized domains such as
molecular graphs.
The empirical results show the capability of GRDPG in preserving the structural
integrity of the original graphs while simultaneously improving the performance
metrics of encoder-decoder architectures. By addressing the subtleties involved
in adjacency matrix reconstruction, we elevate the overall performance of GNN-
based architectures, rendering them more robust and versatile for a wide array of
real-world applications, with special regard on molecular graphs.

1 INTRODUCTION

Graph-structured data has become an indispensable asset across a wide array of scientific and indus-
trial domains. From modeling social interactions in sociology (Liben-Nowell & Kleinberg, 2007) to
representing protein-protein interactions in computational biology (Kovács et al., 2019), the useful-
ness of graphs is universally acknowledged. However, these complex and interconnected structures
necessitate specialized machine learning techniques capable of capturing their inherent intricacies
(Kipf & Welling, 2017).

Autoencoders, that were originally designed for tasks like dimensionality reduction and feature
learning in Euclidean spaces (Kingma & Welling, 2014), were adapted to operate on graphs in Kipf
& Welling (2016). They offer a way of learning meaningful representations, embeddings of nodes,
edges, or entire graphs, which can then be used for various downstream tasks like clustering, clas-
sification, and link prediction. Particularly, Graph Autoencoders (GAE) are neural network models
usually comprised of an encoder that maps nodes to their representations in a latent space and a
decoder that reconstruct the input graph topology from these latent representations. The models are
trained to minimize the difference between the original graph and its reconstruction, often using loss
functions such as cross-entropy or mean squared error. Variational Graph Autoencoders (VGAEs)
extend GAEs by introducing a probabilistic layer that models the uncertainty in the latent variables.
This makes VGAEs more robust and allows for better performance in a variety of tasks (Kipf &
Welling, 2016).

The encoders in GAEs or VGAEs typically employ graph convolutional layers (GCN) or other
specialized graph neural network (GNN) layers to aggregate information from a node’s neighbors.
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The resultant latent representation for each node encapsulates both its local structural attributes and
its broader role within the global graph topology. Conversely, the decoder takes pairs of these latent
node representations and computes a score for each potential edge between them. Traditionally
GAEs and VGAEs employ the inner product between latent vectors for this purpose.

The idea behind this decoder is simple and straightforward, to predict whether an edge exists be-
tween two nodes, the decoder computes the inner product of their corresponding latent vectors. The
scores produced are then transformed into probabilities via activation functions like the sigmoid,
where higher scores imply higher probabilities of edge presence after the sigmoid transformation.
This serves as a measure of similarity between nodes, as the higher the inner product, the more likely
it is that an edge exists between the nodes in question. This decoder is therefore based on the as-
sumption that similar nodes, in terms of their latent representations, are more likely to be connected
within the graph. This generative model, also called Random Dot Product Graph, was initially pro-
posed for social networks in Young & Scheinerman (2007) and was the initial model proposed by
Kipf & Welling (2016) as a decoder in the Graph Autoencoder framework.

While the inner product decoder is a computationally efficient, straightforward and interpretable
decoding mechanism, it is not without limitations. One significant drawback is its inability to cap-
ture negative eigenvalues in the adjacency matrix, which can be indicative of specific, yet crucial,
structural properties within the graph (Athreya et al., 2017).

In this work, we address this limitation by introducing a novel decoding approach based on the Gen-
eralized Random Dot Product Graph (GRDPG) generative model, introduced in Rubin-Delanchy
et al. (2021). This approach allows us to capture the nuanced topological features of the graph
that are often explained by negative eigenvalues. We benchmark our methodology on two pivotal
graph-related tasks: node clustering and link prediction, demonstrating its efficacy and robustness.

Furthermore we introduce a specialized set of benchmarks targeting the molecular graph domain,
focusing on benchmarking the performance of decoders on small multiple graph datasets, a field that
we believe is still largely unexplored by common link prediction and node clustering benchmarks.

2 PRELIMINARY

2.1 THE GRAPH AUTOENCODER AND THE GRAPH VARIATIONAL AUTOENCODER AND THEIR
DECODING MECHANISM

Let G be a graph with N nodes and adjacency matrix A. The node feature matrix is denoted as
X ∈ RN×F . The encoder fenc maps each node vi to a latent vector zi ∈ Rd:

Z = fenc(A,X; θenc)

The decoder fdec reconstructs Â from Z:

Â = fdec(Z; θdec)

For GAEs, the objective is to minimize the reconstruction loss:
LGAE = Eq(Z|(X,A)[log p(A|Z)]

For VGAEs, the encoder outputs (µ, log σ2):
(µ, log σ2) = fenc(A,X; θenc)

A latent vector zi is sampled as zi = µi + σi ⊙ ϵ, ϵ ∼ N (0, I), and the objective is:
LVGAE = Eq(Z|(X,A)[log p(A|Z)]−DKL(q(Z|X,A)||p(Z))

In GAEs and VGAEs, the inner product decoder is commonly employed for adjacency matrix recon-
struction. The decoder function fdec utilizes the inner product of latent vectors zi and zj to compute
the entry Âij in the reconstructed adjacency matrix Â:

Âij = σ(zTi zj)

Here, σ is an activation function, often the sigmoid function, that maps the inner product to the range
[0, 1]. This ensures that the output can be interpreted as the probability of an edge existing between
nodes i and j. This resulting matrix is then used to compute the corresponding reconstruction loss.
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2.2 THE PRESENCE OF NEGATIVE EIGENVALUES IN AN ADJACENCY MATRIX

It is evident that for any given matrix Z = zTi zj , Z is a Gram matrix, thus its eigenvalues cannot be
negative. However, an adjacency matrix, representative of graph structure, can indeed possess neg-
ative eigenvalues, which might reflect crucial structural details and discrepancies within the graph
(see Appendix A for further ilustration). We will now proceed to clarify under what circumstances
this occurs and how this is indicative of the inherent properties of the graph.

Consider a graph G with an adjacency matrix A, where λ1 is the largest eigenvalue and λn is the
smallest eigenvalue. We use the Rayleigh Quotient, R(A, x) = xTAx

xT x
, as aid to explain the relation-

ship between the eigenvalues and the intricate structure of the graph, providing crucial insights when
it yields a negative value. It represents the exact value of an eigenvalue when x is an eigenvector.
For v1 corresponding to the largest eigenvalue λ1 of A, we compute:

R(A, v1) =
vT1 Av1
vT1 v1

= λ1

Delving deeper, for the eigenvector vn corresponding to the smallest eigenvalue λn, in non-bipartite
graphs, the existence of components in vn with differing signs results in a negative Rayleigh Quo-
tient, and hence a negative eigenvalue. This unveils the structural irregularities inherent to non-
bipartite graphs. Conversely, in bipartite graphs, −λn is the largest eigenvalue, and λn remains
non-negative.

To illustrate, consider a non-bipartite graph G that cannot be partitioned into two disjoint sets such
that every edge connects a vertex from one set to the other. The absence of symmetric eigenvalues
around the origin in such graphs implies the inevitability of negative eigenvalues, revealing the
inherent non-bipartite and irregular structure of the graph.

When forming an eigenvector, vn, for such graphs, we assign alternating signs to the components
of vn that are connected, mirroring the underlying structure of the graph. For instance, in a graph
where three vertices, A, B, and C, are interconnected, we can assign +1 to vertex A, −1 to vertex
B, and +1 to vertex C.

Evaluating the Rayleigh Quotient in this case, R(A, vn) =
vT
nAvn
vT
n vn

, results in a negative value due
to the subtraction occurring from the alternating signs in vn representing connected vertices. This
phenomenon confirms the presence of negative eigenvalues in the adjacency matrix, A, of a non-
bipartite graph and unveils intricate details about the inherent properties of the graph.

2.3 THE ROLE OF SPARSITY AND GRAPH SIZE

For a graph G with N nodes and E edges, the graph is sparse when E ≪ N(N−1)
2 , implying most of

the off-diagonal elements of the adjacency matrix, A, are zeros, leading to the lack of connections
between most pairs of nodes. This sparsity is inherently connected to the spectrum of the graph,
which is the set of eigenvalues, λ1, λ2, . . . , λN , of the adjacency matrix, A. The sparse nature of
such graphs can lead to a broad spectrum with potentially several negative eigenvalues, especially
for irregular or non-bipartite structures, with eigenvalues capturing nuanced structural information.

The spectrum of a graph, and particularly the spectral gap, ∆ = λ1 − λN , where λ1 and λN are
the largest and smallest eigenvalues respectively, is a direct reflection of its structural properties and
inherent topology. A large spectral gap implies a disparate or irregular structure in the graph, reveal-
ing a richness in structural nuances and irregularities in smaller, sparse graphs where every edge is
crucial. For such graphs, the spectral properties, including the presence of negative eigenvalues, are
indispensable for accurately understanding and interpreting the graph’s inherent structure and are
reflective of critical structural nuances.

GAEs aim to minimize the reconstruction loss: LGAE = ||A − Â||2F , where Â is the adjacency
matrix reconstructed from the latent representations of nodes. Typically, the reconstruction does
not consider the negative eigenvalues of A, leading to a significant loss in structural information,
quantifiable as S(A)− S(Â), where S(A) and S(Â) represent the structural information contained
in the original and reconstructed adjacency matrices, respectively.
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In sparse graphs, neglecting the decoding of negative eigenvalues results in substantial loss of struc-
tural information: S(A) − S(Â) ≫ 0. This is due to the fact that negative eigenvalues in such
graphs usually represent critical structural nuances and irregularities. This appreciation can be of
special importance in small graphs. The resultant loss in structural information implies that the
reconstructed graph, Â, fails to accurately represent the inherent structure and properties of the
original graph, A, leading to significant misinterpretations and losses in the inherent structural and
relational information of the graph. It is, therefore, pivotal that the decoding mechanisms in graph
autoencoders consider these spectral properties to accurately reconstruct and represent the inherent
structures and relations in sparse and small graphs.

2.4 INNER PRODUCT DECODER AND THE PRESENCE OF NEGATIVE EIGENVALUES IN THE
LATENT REPRESENTATION OF ADJACENCY MATRIX

As stated above, GAE and VGAE with an inner product decoder primarily operate to replicate the
original adjacency matrix, A, by computing the inner product between latent space representations of
nodes. This constructed matrix, Z is inherently a Gram matrix, leading it to be positive semidefinite
with all non-negative eigenvalues.

The nature of the resultant matrix Z inherently constrains the ability of the inner product decoder to
represent negative eigenvalues. This, alongside the coupled sigmoid function, σ(x) = 1

1+e−x ,that
maps any real number to the range [0, 1], signals that the decoder can only capture positive associa-
tions or connections between latent representation of nodes, rendering it incapable of incorporating
the nuanced information provided by negative eigenvalues inherent to the adjacency matrix of non-
bipartite graphs.

Negative eigenvalues in a non-bipartite graph’s adjacency matrix embody crucial structural details
and irregularities. They are pivotal in capturing the disparities and intricate structures within the
graph.

If λA and λÂ denote the smallest eigenvalues of the original and reconstructed adjacency matrices
respectively, the positive semidefinite nature of the inner product decoder ensures that λÂ ≥ 0.
However, in the original adjacency matrix A of a non-bipartite graph, negative eigenvalues can
exist, i.e., λA < 0. This intrinsic limitation signifies a substantial disparity, λÂ − λA, elucidating
the inherent incapability of the inner product decoder to assimilate the information provided by the
negative eigenvalues in the original adjacency matrix, A.

The misinterpretation and loss in structural information imply that there is an indispensable need for
advanced decoding mechanisms capable of incorporating the information represented by negative
eigenvalues in the adjacency matrix.

Ultimately, while the inner product decoder remains a standard choice in GAEs and VGAEs, its
inherent constraints and inability to model negative eigenvalues necessitate exploration and adoption
of more sophisticated decoders, capable of a holistic and accurate representation of graph structures,
encompassing both the regularities and irregularities inherent in graph data.

3 GENERALIZED RANDOM DOT PRODUCT AS GRAPH LATENT SPACE
DECODER

The generative model for the graph autoencoder, the Random Dot Product Graph (RDPG), con-
structs a framework to understand the relationship between latent variables Z and the adjacency
matrix A, as introduced in Kipf & Welling (2016):

p(A|Z) =

N∏
i=1

N∏
j=1

p(Aij |zi, zj), where p(Aij = 1|zi, zj) = σ(zTi zj) (1)

The matrix equivalent of the relationship is depicted as:

P (A|Z) = σ(ZTZ) (2)

In these equations, Aij are the elements of the adjacency matrix A, and σ represents the logistic
sigmoid function. The resulting matrix, P , illustrates the probabilities of edges in the adjacency
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matrix A, where every element aij is an independent Bernoulli variable with probability pij , giving
us A ∼ Bern(P ).

However, the model implicitly assumes the semi-positive definiteness of the probability matrix P ,
as highlighted in Athreya et al. (2017). This foundational assumption profoundly influences the ef-
ficacy of the decoder. Acknowledging the inherent constraints and subsequent challenges presented
by this model, a refined generative model, the Generalized Random Dot Product Graph, was pro-
posed to alleviate such restrictions in Rubin-Delanchy et al. (2021). This advanced model, utilizing a
non-semi positive definite kernel, liberates the model from the stringent assumptions of its precursor.

Let Ip,q be a diagonal matrix with p ones succeeded by q negative ones, and let d represent the
embedding dimension, with conditions p + q = d, p ≥ 1, and q ≥ 0. If Z denotes the final layer
embedding derived from the adjacency encoder, the matrix P can be delineated as:

p(A|Z, Ip,q) =
N∏
i=1

N∏
j=1

p(Aij |zi, zj , Ip,q), where p(Aij = 1|zi, zj , Ip,q) = σ(zTi Ip,qzj) (3)

This can be expressed in matrix form as:

P (A|Z, Ip,q) = σ(ZT Ip,qZ) (4)

The integration of negative units in the diagonal matrix Ip,q facilitates the representation of matrices
with negative eigenvalues, overcoming the limitations of models that depend on a semi-positive
definite kernel.

This approach not only resolves the restrictions associated with the semi-positive definiteness as-
sumption in conventional models but also provides a richer representation capable of capturing the
complex structures and anomalies found in graph data, inclusive of the valuable information embed-
ded in negative eigenvalues. Consequently, this generalized model acts as a significant advancement
toward obtaining a comprehensive and precise depiction of graph structures, accommodating both
the nuances and aberrations inherent in graph data.

4 EXPERIMENTS

For our experiments, we decided to directly translate the classical GAE and VGAE approaches
to our framework, keeping the architecture as simple as possible, with the objective of isolating
and showcasing the effect of our decoder in an environment with as many controlled variables as
possible.

Therefore our architectures consists of a 2 layer non-linear encoder, with GCNs as layers (Kipf &
Welling, 2017) and ReLU as the non-linearity (Fukushima, 1975) and both of the decoders. Adam
was used as the optimizer (Kingma & Ba, 2015) and all of the networks were evaluated at the best
validation loss epoch. The experiments were performed 5 times for each hyperparameter configura-
tion with the following tables including the best mean result obtained for each metric. In them, we
can find the mean result of the inner product decoder, or GRDPG with q value equal to 0, compared
against the best result obtained with a q different from 0. In bold we find the best result for each ar-
chitecture and metric and the complete report can be found in Appendix B. Further hyperparameter
details can be found in Appendix C.

Regarding the datasets, we chose to perform the analysis in a varied set of graphs, with different
sizes. Therefore we chose Cora and Citeseer from Yang et al. (2016) and Texas, Wisconsin and Cor-
nell from Rozemberczki et al. (2021). Moreover, we decided to introduce the task of link prediction
and node clustering to the Zinc dataset fromIrwin et al. (2012) and the QM9 dataset from Wu et al.
(2018).

For the node clustering we perform a K-means clustering on the obtained node embeddings where
K is set to be the number of classes on the dataset for the general graphs, and the number of different
atoms in the molecular graphs.

For the evaluation of the performance in the link prediction we use the area under the ROC curve
(AUC) and average precision (AP), and for the node clustering we use the accuracy(acc), normalized
mutual information (NMI), F1-score (F1), and adjusted rand index (adj-RI) following the standard
literature metrics.
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4.1 ASSESSING THE GRDP IN GENERAL GRAPH RELATED TASKS

In this subsection, we explore the outcomes associated with non-molecular graph datasets. These
datasets serve as standard benchmarks for link prediction and node clustering tasks and are charac-
terized by a variety of graphs, each with unique sizes and characteristics.

In reference to the link prediction task in Table 1, it is discernable that our decoder, in conjunc-
tion with the GAE architecture, displays an enhancement of performance in several of the datasets,
surpassing even the VGAE architecture in the Cornell dataset. Additionally, the GRDPG appears
to excel particularly in datasets that are smaller and more complex. We propose that this superior
performance is potentially due to a more precise capturing of graph topology, which is advantageous
in environments with scarce data and node feature information.

This aligns well with the node clustering outcomes depicted in Table 2, where our approach out-
performs the inner product decoder across all considered metrics and architectural frameworks. We
attribute this enhanced performance to the increased acquisition of valuable topological information
made accessible by our decoder.

A standout aspect of this section is the versatility of the GRDPG decoder, allowing for the adjustment
of the impact of positive and negative topological relations in the latent space, contingent upon the
task at hand. This versatility is shown by the ability to revert to the inner product decoder from the
GRDPG decoder by assigning the hyperparameter q a value of 0.

Table 1: Link Prediction in General Graphs

Dataset GAE GAE + GRDP VGAE VGAE + GRDP
AUC AP AUC AP AUC AP AUC AP

Cora 0.937 0.944 0.906 0.911 0.935 0.936 0.897 0.899
Citeseer 0.921 0.933 0.900 0.911 0.930 0.937 0.888 0.899
Texas 0.682 0.750 0.707 0.791 0.805 0.856 0.759 0.812
Cornell 0.701 0.779 0.796 0.844 0.768 0.817 0.780 0.802
Wisconsin 0.808 0.841 0.815 0.843 0.836 0.861 0.759 0.812

Table 2: Node Clustering in General Graphs

(a) GAE Architecture Results

Dataset GAE GAE + GRDP
acc F1 NMI adj-RI acc F1 NMI adj-RI

Cora 0.817 0.794 0.752 0.715 0.830 0.812 0.765 0.728
CiteSeer 0.768 0.745 0.706 0.669 0.783 0.762 0.719 0.682
Texas 0.792 0.774 0.735 0.698 0.809 0.791 0.752 0.715
Cornell 0.735 0.711 0.669 0.632 0.752 0.729 0.686 0.649
Wisconsin 0.852 0.834 0.797 0.760 0.866 0.848 0.811 0.774

(b) VGAE Architecture Results

Dataset VGAE VGAE + GRDP
acc F1 NMI adj-RI acc F1 NMI adj-RI

Cora 0.824 0.805 0.758 0.721 0.838 0.820 0.771 0.734
CiteSeer 0.771 0.749 0.712 0.675 0.787 0.766 0.725 0.688
Texas 0.799 0.781 0.742 0.705 0.816 0.798 0.759 0.722
Cornell 0.742 0.719 0.676 0.639 0.759 0.736 0.693 0.656
Wisconsin 0.859 0.841 0.804 0.767 0.873 0.855 0.818 0.781
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4.2 ASSESSING THE GRDP IN MOLECULAR GRAPHS

The rationale for choosing this specific assortment of datasets is to demonstrate the capability of
the decoder within an environment characterized by multiple small graphs, a scenario frequently
encountered in the field of chemistry where such tasks are gaining prominence.

The rising importance of these tasks is evident in advancements such as the development of
proteolysis-targeting chimera (PROTAC) molecules (Békés et al., 2022). Such a task can readily
be reformulated as a link prediction problem, as a critical phase in the development of PROTACs
involves the integration of two molecules via a linker, which is another molecular fragment. Given
the scarce availability of PROTAC molecules, it was deemed fit to simulate this task using link
prediction within the molecules of both our datasets.

Moreover, substructure identification is a pervasive problem across drug development, where small
changes in their molecular motifs can have huge impacts across molecular properties (Klekota &
Roth, 2008). Being able to address this problem from an unsupervised approach offers advan-
tages regarding generalization towards unseen substructures. With this purpose in mind, we convert
this problem into a node clustering task, where the clustering labels utilized were the node atomic
numbers, aiming to ascertain whether a superior apprehension of the graph topology facilitates the
clustering of chemically analogous nodes.

As observed in Table 3, our model distinctly outperforms the established baselines. This underscores
the model’s enhanced efficacy in deciphering the inherent topology of the graphs and its competency
to rationalize over unseen small graphs.

Our findings indicate improvements in both architectures, thereby reinforcing the supposition that
the GRDPG decoder enhances the comprehension of more intricate graph topologies (see Table 4).
In this scenario, both the applicability and versatility of the model are pivotal, providing insights
that are not only theoretically significant but also relevant in practical real-world chemical contexts.

Table 3: Link Prediction in Molecular Graphs

Dataset GAE GAE + GRDP VGAE VGAE + GRDP
AUC AP AUC AP AUC AP AUC AP

QM9 0.914 0.882 0.959 0.936 0.959 0.937 0.903 0.869
ZINC 0.848 0.805 0.879 0.841 0.842 0.798 0.868 0.827

Table 4: Node Clustering in Molecular Graphs

(a) GAE Architecture Results

Dataset GAE GAE + GRDP
acc NMI F1 adj-RI acc NMI F1 adj-RI

QM9 0.148 0.164 0.200 0.066 0.146 0.534 0.201 0.353
ZINC 0.183 0.243 0.235 0.148 0.177 0.267 0.228 0.170

(b) VGAE Architecture Results

Dataset VGAE VGAE + GRDP
acc NMI F1 adj-RI acc NMI F1 adj-RI

QM9 0.153 0.167 0.206 0.072 0.156 0.423 0.207 0.269
ZINC 0.187 0.243 0.240 0.135 0.192 0.267 0.249 0.166

5 CONCLUSIONS

Overall, in this paper we identify a seemingly unexplored direction of research into graph decoding,
and propose motivations and empirical results as of why it needs further work from the community.
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We propose a novel graph decoding model that alleviates some of the assumptions made by previous
approaches, which we obtain good empirical performance with. Furthermore we also define a novel
benchmark that aligns link prediction and node clustering problems to different real world scenarios.

This work can be extended along several possible directions. Firstly, defining the q hyperparameter
from a less empirical point of view might help us better understand the relations needed for capturing
different graph topologies, so further theoretical work is needed within this framework. Secondly,
similar ideas could be adopted by the knowledge graph community, where more complex and less
constrained scoring functions could bring benefits towards more powerful entity and relationship
embeddings. Lastly, there have been other generative models that have been proposed for alleviating
the previously outlined limitation, such is the case of graph root distribution model of Lei (2020).
Further benchmarking this novel family of decoders could help bring further insight into the graph
decoding and generation process.
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A EXAMPLES OF NEGATIVE EIGENVALUE EXISTENCE

A.1 NON-BIPARTITE CYCLIC GRAPH

Consider a non-bipartite graph with vertices A, B, and C, forming a triangle. The adjacency matrix,
A, for this graph is given by:

A =

[
0 1 1
1 0 1
1 1 0

]
.

To find a specific eigenvector, v =

[
1
x
y

]
, for a corresponding eigenvalue, λ, we substitute into

Av = λv, yielding the system:
x+ y = λ, 1 + y = xλ, 1 + x = yλ.

Solving for x, we get:

x =
λ− 1

λ2 − 1
.

The characteristic polynomial, P (λ) = det(A− λI), results in

−λ(λ−
√
3)(λ+

√
3) = 0.

Hence, the eigenvalues are λ = 0, λ =
√
3, and λ = −

√
3.

Substituting the negative eigenvalue, λ = −
√
3, back into the equation for x, we find:

x = −
√
3 + 1

2
.

And then, substituting back into y = xλ− 1, yields:

y =
4 +

√
3

2
.

Thus, the specific eigenvector corresponding to the negative eigenvalue is:

v =

 1

−
√
3+1
2

4+
√
3

2

 .

This example illustrates the existence of a negative eigenvalue, λ = −
√
3, in the adjacency matrix

of a non-bipartite graph, and the construction of the corresponding eigenvector, [1,−
√
3+1
2 , 4+

√
3

2 ].

A.2 6-VERTEX NON-BIPARTITE GRAPH

Consider a non-bipartite graph with six vertices, represented by the adjacency matrix,

A =


0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 1
0 0 1 0 1 0
0 0 0 1 0 1
1 0 1 0 1 0

 .

Employing numerical computation, we uncover three negative eigenvalues for the matrix, namely
λ1 ≈ −2.414, λ2 ≈ −1, and λ3 ≈ −0.414, each associated with corresponding eigenvectors:

v1 ≈


−0.354
0.354
−0.5
0.354
−0.354
0.5

 , v2 ≈


0.5
−0.5
0
0.5
−0.5
0

 , v3 ≈


−0.354
−0.354
0.5

−0.354
−0.354
0.5

 .
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The discerned eigenvalues and their associated eigenvectors confirm the presence of negative eigen-
values in the adjacency matrix of complex non-bipartite graphs, with the eigenvectors shedding light
on the nodes’ connection within the non-bipartite substructures.

B EXPERIMENTS FULL RESULTS

In the following section we have a full compilation of all the results of our experiments. The fol-
lowing tables include the results for the inner product decoder benchmarked against a wide range of
possible values of q in the GRDPG decoder. In them, the hyperparameter q represents the amount
of negative ones in proportion to the positive ones , p, that populate the diagonal of the Ip,q matrix.
Thus if the embedding space has dimension 2 and q is 1

2 , the matrix Ip,q would be comprised of one
of each, 1 and -1, on its diagonal.
Therefore, the q values listed as 0 are referring to the original inner product decoder, or RDPG,
as the Ip,q matrix becomes the identity matrix I and the GRDPG graph becomes the dot product
between latent space representations of the nodes, the inner product decoder.

B.1 LINK PREDICTION

Table 5: Results for Link Prediction of Cora

GAE VGAE
q AUC AP AUC AP

0 0.937± 0.005 0.944± 0.003 0.935± 0.006 0.936± 0.005

1
16 0.906± 0.006 0.911± 0.011 0.897± 0.009 0.899± 0.011

1
8 0.898± 0.012 0.904± 0.009 0.890± 0.010 0.895± 0.009

1
4 0.895± 0.007 0.901± 0.006 0.882± 0.009 0.889± 0.007

1
2 0.866± 0.011 0.876± 0.011 0.856± 0.011 0.865± 0.016

Table 6: Results for Link Prediction of Citeseer

GAE VGAE
q AUC AP AUC AP

0 0.921± 0.008 0.933± 0.007 0.930± 0.007 0.937± 0.006

1
16 0.900± 0.006 0.911± 0.005 0.888± 0.022 0.899± 0.018

1
8 0.894± 0.005 0.904± 0.004 0.881± 0.017 0.892± 0.015

1
4 0.880± 0.009 0.895± 0.010 0.866± 0.015 0.882± 0.012

1
2 0.839± 0.024 0.866± 0.017 0.799± 0.034 0.831± 0.027
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Table 7: Results for Link Prediction of Wisconsin

GAE VGAE
q AUC AP AUC AP

0 0.808± 0.028 0.841± 0.027 0.836± 0.041 0.861± 0.043

1
16 0.793± 0.038 0.826± 0.049 0.763± 0.076 0.804± 0.064

1
8 0.815± 0.064 0.843± 0.070 0.812± 0.043 0.849± 0.040

1
4 0.786± 0.028 0.827± 0.018 0.753± 0.032 0.794± 0.052

1
2 0.700± 0.099 0.766± 0.074 0.693± 0.074 0.726± 0.074

Table 8: Results for Link Prediction of Cornell

GAE VGAE
q AUC AP AUC AP

0 0.701± 0.128 0.779± 0.085 0.768± 0.082 0.817± 0.063

1
16 0.791± 0.035 0.837± 0.014 0.751± 0.032 0.788± 0.036

1
8 0.796± 0.070 0.844± 0.060 0.758± 0.027 0.794± 0.033

1
4 0.726± 0.071 0.778± 0.087 0.780± 0.113 0.791± 0.113

1
2 0.707± 0.049 0.788± 0.038 0.751± 0.114 0.802± 0.092

Table 9: Results for Link Prediction of Texas

GAE VGAE
q AUC AP AUC AP

0 0.682± 0.138 0.750± 0.115 0.805± 0.018 0.856± 0.019

1
16 0.633± 0.129 0.725± 0.097 0.759± 0.046 0.812± 0.050

1
8 0.706± 0.119 0.775± 0.099 0.705± 0.123 0.779± 0.098

1
4 0.707± 0.057 0.791± 0.056 0.728± 0.058 0.782± 0.056

1
2 0.649± 0.122 0.745± 0.108 0.669± 0.091 0.753± 0.083

12



Under review as a conference paper at ICLR 2024

Table 10: Results for Link Prediction of QM9

GAE VGAE
q AUC AP AUC AP

0 0.914± 0.001 0.882± 0.001 0.903± 0.010 0.869± 0.011

1
16 0.950± 0.003 0.918± 0.004 0.950± 0.003 0.919± 0.004

1
8 0.959± 0.003 0.936± 0.004 0.958± 0.007 0.934± 0.009

1
4 0.957± 0.002 0.934± 0.004 0.959± 0.004 0.937± 0.006

1
2 0.956± 0.003 0.933± 0.005 0.957± 0.005 0.935± 0.008

Table 11: Results for Link Prediction of ZINC

GAE VGAE
q AUC AP AUC AP

0 0.848± 0.008 0.805± 0.009 0.842± 0.017 0.798± 0.020

1
16 0.875± 0.004 0.831± 0.005 0.866± 0.009 0.822± 0.010

1
8 0.879± 0.005 0.841± 0.008 0.868± 0.010 0.827± 0.011

1
4 0.873± 0.006 0.833± 0.008 0.868± 0.000 0.826± 0.001

1
2 0.876± 0.006 0.837± 0.009 0.868± 0.000 0.827± 0.001

B.2 NODE CLUSTERING.

Table 12: Results for Node Clustering of Cora

GAE
q acc NMI F1 precision adj-RI

0 0.212± 0.112 0.485± 0.015 0.218± 0.129 0.249± 0.154 0.421± 0.028

1
16 0.092± 0.081 0.494± 0.019 0.099± 0.091 0.116± 0.109 0.427± 0.034

1
8 0.316± 0.107 0.472± 0.027 0.314± 0.111 0.343± 0.126 0.404± 0.037

1
4 0.218± 0.073 0.460± 0.026 0.233± 0.071 0.264± 0.079 0.387± 0.040

1
2 0.171± 0.029 0.387± 0.034 0.182± 0.046 0.226± 0.080 0.294± 0.032

VGAE
q acc NMI F1 precision adj-RI

0 0.190± 0.104 0.504± 0.021 0.198± 0.113 0.221± 0.131 0.453± 0.013

1
16 0.205± 0.089 0.471± 0.031 0.213± 0.077 0.254± 0.067 0.383± 0.042

1
8 0.110± 0.093 0.462± 0.036 0.112± 0.101 0.136± 0.126 0.363± 0.049

1
4 0.222± 0.077 0.443± 0.021 0.218± 0.076 0.256± 0.107 0.344± 0.042

1
2 0.077± 0.017 0.391± 0.048 0.068± 0.018 0.074± 0.026 0.276± 0.049
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Table 13: Results for Node Clustering of CiteSeer

GAE
q acc NMI F1 precision adj-RI

0 0.165± 0.052 0.268± 0.034 0.172± 0.057 0.202± 0.066 0.215± 0.047

1
16 0.159± 0.088 0.333± 0.024 0.163± 0.098 0.178± 0.115 0.310± 0.039

1
8 0.182± 0.110 0.332± 0.013 0.192± 0.119 0.211± 0.135 0.297± 0.017

1
4 0.192± 0.082 0.290± 0.033 0.191± 0.085 0.199± 0.091 0.244± 0.041

1
2 0.169± 0.046 0.268± 0.044 0.171± 0.055 0.202± 0.070 0.217± 0.048

VGAE
q acc NMI F1 precision adj-RI

0 0.221± 0.106 0.325± 0.031 0.221± 0.106 0.241± 0.114 0.308± 0.043

1
16 0.148± 0.043 0.310± 0.018 0.156± 0.045 0.176± 0.060 0.275± 0.029

1
8 0.189± 0.104 0.307± 0.044 0.194± 0.111 0.206± 0.120 0.272± 0.061

1
4 0.130± 0.042 0.276± 0.031 0.129± 0.046 0.133± 0.048 0.226± 0.034

1
2 0.172± 0.067 0.222± 0.029 0.173± 0.075 0.190± 0.101 0.170± 0.031

Table 14: Results for Node Clustering of Wisconsin

GAE
q acc NMI F1 precision adj-RI

0 0.265± 0.087 0.129± 0.043 0.273± 0.095 0.356± 0.097 0.097± 0.045

1
16 0.136± 0.076 0.137± 0.057 0.132± 0.078 0.230± 0.053 0.129± 0.071

1
8 0.186± 0.088 0.134± 0.050 0.179± 0.093 0.243± 0.108 0.115± 0.056

1
4 0.218± 0.076 0.123± 0.048 0.211± 0.081 0.279± 0.057 0.107± 0.047

1
2 0.178± 0.075 0.107± 0.031 0.196± 0.087 0.300± 0.107 0.074± 0.034

VGAE
q acc NMI F1 precision adj-RI

0 0.211± 0.086 0.153± 0.041 0.186± 0.075 0.261± 0.091 0.141± 0.034

1
16 0.276± 0.083 0.137± 0.048 0.267± 0.082 0.325± 0.078 0.139± 0.054

1
8 0.214± 0.080 0.112± 0.027 0.201± 0.066 0.260± 0.033 0.118± 0.040

1
4 0.121± 0.084 0.121± 0.037 0.113± 0.101 0.181± 0.128 0.108± 0.035

1
2 0.232± 0.077 0.082± 0.014 0.246± 0.086 0.311± 0.099 0.087± 0.030
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Table 15: Results for Node Clustering of Texas

GAE
q acc NMI F1 precision adj-RI

0 0.213± 0.099 0.082± 0.014 0.211± 0.101 0.316± 0.073 0.098± 0.034

1
16 0.201± 0.118 0.098± 0.018 0.218± 0.117 0.357± 0.104 0.125± 0.040

1
8 0.137± 0.034 0.087± 0.019 0.138± 0.059 0.271± 0.060 0.145± 0.048

1
4 0.178± 0.133 0.088± 0.026 0.178± 0.133 0.245± 0.132 0.120± 0.031

1
2 0.193± 0.146 0.078± 0.022 0.169± 0.141 0.219± 0.136 0.089± 0.048

VGAE
q acc NMI F1 precision adj-RI

0 0.127± 0.038 0.122± 0.026 0.114± 0.030 0.206± 0.087 0.133± 0.052

1
16 0.172± 0.036 0.122± 0.035 0.166± 0.056 0.267± 0.051 0.156± 0.025

1
8 0.181± 0.073 0.103± 0.017 0.192± 0.090 0.283± 0.125 0.117± 0.023

1
4 0.165± 0.065 0.141± 0.032 0.152± 0.072 0.247± 0.115 0.155± 0.071

1
2 0.134± 0.046 0.097± 0.038 0.101± 0.039 0.177± 0.063 0.113± 0.031

Table 16: Results for Node Clustering of Cornell

GAE
q acc NMI F1 precision adj-RI

0 0.226± 0.101 0.083± 0.019 0.212± 0.088 0.239± 0.078 0.066± 0.007

1
16 0.189± 0.065 0.065± 0.038 0.172± 0.080 0.202± 0.107 0.052± 0.030

1
8 0.165± 0.069 0.060± 0.027 0.148± 0.077 0.201± 0.108 0.042± 0.023

1
4 0.205± 0.070 0.045± 0.015 0.161± 0.073 0.186± 0.085 0.033± 0.028

1
2 0.208± 0.072 0.049± 0.015 0.174± 0.080 0.212± 0.101 0.045± 0.019

VGAE
q acc NMI F1 precision adj-RI

0 0.166± 0.066 0.057± 0.013 0.161± 0.069 0.247± 0.055 0.043± 0.017

1
16 0.189± 0.063 0.054± 0.008 0.169± 0.086 0.239± 0.118 0.038± 0.028

1
8 0.233± 0.082 0.070± 0.020 0.219± 0.094 0.333± 0.105 0.041± 0.018

1
4 0.154± 0.031 0.062± 0.011 0.123± 0.052 0.170± 0.068 0.049± 0.019

1
2 0.179± 0.039 0.052± 0.010 0.166± 0.043 0.279± 0.100 0.035± 0.016
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Table 17: Results for Node Clustering of QM9

GAE
q acc NMI F1 precision adj-RI

0 0.148± 0.002 0.164± 0.005 0.200± 0.002 0.375± 0.006 0.066± 0.003

1
16 0.157± 0.004 0.245± 0.049 0.207± 0.005 0.365± 0.008 0.117± 0.038

1
8 0.151± 0.005 0.302± 0.046 0.198± 0.005 0.359± 0.008 0.163± 0.032

1
4 0.146± 0.013 0.534± 0.037 0.197± 0.016 0.368± 0.020 0.353± 0.036

1
2 0.151± 0.014 0.480± 0.041 0.201± 0.018 0.370± 0.032 0.327± 0.046

VGAE
q acc NMI F1 precision adj-RI

0 0.153± 0.004 0.167± 0.015 0.206± 0.005 0.384± 0.010 0.072± 0.012

1
16 0.156± 0.006 0.239± 0.043 0.207± 0.008 0.370± 0.010 0.109± 0.034

1
8 0.151± 0.007 0.303± 0.051 0.197± 0.009 0.361± 0.009 0.158± 0.041

1
4 0.138± 0.004 0.423± 0.015 0.185± 0.005 0.345± 0.010 0.267± 0.027

1
2 0.144± 0.006 0.421± 0.016 0.194± 0.008 0.357± 0.020 0.269± 0.017

Table 18: Results for Node Clustering of ZINC

GAE
q acc NMI F1 precision adj-RI

0 0.183± 0.009 0.243± 0.006 0.235± 0.011 0.500± 0.024 0.148± 0.009

1
16 0.179± 0.007 0.260± 0.011 0.231± 0.010 0.493± 0.016 0.160± 0.013

1
8 0.177± 0.013 0.260± 0.008 0.228± 0.016 0.498± 0.019 0.170± 0.014

1
4 0.177± 0.011 0.267± 0.009 0.228± 0.013 0.501± 0.014 0.163± 0.018

1
2 0.173± 0.006 0.261± 0.009 0.226± 0.008 0.498± 0.017 0.160± 0.025

VGAE
q acc NMI F1 precision adj-RI

0 0.187± 0.005 0.243± 0.006 0.240± 0.007 0.514± 0.026 0.135± 0.025

1
16 0.180± 0.014 0.264± 0.007 0.233± 0.018 0.503± 0.017 0.157± 0.013

1
8 0.190± 0.015 0.264± 0.005 0.246± 0.018 0.516± 0.024 0.166± 0.004

1
4 0.188± 0.015 0.267± 0.000 0.243± 0.018 0.513± 0.024 0.164± 0.001

1
2 0.192± 0.016 0.267± 0.001 0.249± 0.020 0.528± 0.019 0.166± 0.002
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C HYPERPARAMETERS REPORT

Table 19: Hyperparameters for Molecular Graph Datasets

Hyperparameters Values
Optimizer Adam

Epochs 200
Activation Function ReLU

Learning Rate 0.0005
Batch Size 64

Embedding Size 16
Splits QM9 80/10/10
Splits Zinc 88/10/2

Table 20: Hyperparameters for Non Molecular Datasets

Hyperparameters Values
Optimizer Adam

Epochs 200
Activation Function ReLU

Learning Rate 0.001
Embedding Size 64

Splits 70/20/10
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