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Abstract

Backdoor attacks, representing an emerging threat to the integrity of deep neural
networks have received significant attention due to their ability to compromise
deep learning systems covertly. While numerous backdoor attacks occur within
the digital realm, their practical implementation in real-world prediction systems
remains limited and vulnerable to disturbances in the physical world. Consequently,
this limitation has led to the development of physical backdoors, where trigger
objects manifest as physical entities within the real world. However, creating
a requisite dataset to study physical backdoors is a daunting task. This hinders
backdoor researchers and practitioners from studying such backdoors, leading
to stagnant research progresses. This paper presents a framework namely as
TriggerCraft that empowers researchers to effortlessly create a massive physical
backdoor dataset with generative modeling. Particularly, TriggerCraft involves
three automatic modules: suggesting the suitable physical triggers, generating the
poisoned candidate samples (either by synthesizing new samples or editing existing
clean samples), and finally selecting only the most plausible ones. As such, it
effectively mitigates the perceived complexity associated with creating a physical
backdoor dataset, converting it from a daunting task into an attainable objective.
Extensive experiment results show that datasets created by TriggerCraft achieve
similar observations with the real physical world counterparts in terms of both
attacks and defenses, exhibiting similar properties compared to previous physical
backdoor studies. This paper offers researchers a valuable toolkit for advancing the
frontier of physical backdoors, all within the confines of their laboratories.

1 Introduction

Prior works have shown that DNNSs are susceptible to various types of attacks, including adversarial
attacks [4} 30], poisoning attacks [31},139] and backdoor attacks [1}[14]]. For instance, backdoor attacks
impose serious security threats to DNNs by impelling malicious behavior onto DNNs by poisoning
the data or manipulating the training process [28}26]. A backdoored model exhibits normal behavior
without a trigger pattern but acts maliciously when the trigger pattern is present.

Meanwhile, [[13| 27,32, 9] focus on exposing the security vulnerabilities of DNNs within digital
confines, where adversaries design and implement computer algorithms to launch backdoor attacks.
To launch such attacks, adversaries must perform test-time digital manipulation of the images, which
are likely to be susceptible to physical distortions or extremely noisy environments. These physical
disturbances are likely unavoidable and often restrain the severity of backdoor attacks. Also, test-time
digital manipulations are less likely to be accessible to adversaries, e.g. in autonomous cars, which
involve real-time predictions, thus constraining the capability of adversaries to attack these systems.
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Figure 1: Overview of our framework that consists of three modules: (i) Trigger Suggestion, (ii)
Trigger Generation and (iii) Poison Selection to ease in crafting a physical backdoor dataset.

On the other hand, physical backdoor attacks focus on exploiting physical objects as triggers [43} 145}
29]. As such, an adversary could easily compromise privacy-sensitive and real-time systems, such as
facial recognition systems. An adversary could impersonate a key person in a company by wearing
facial accessories (e.g., glasses) as physical triggers to gain unauthorized access. Although physical
backdoor attacks are a practical threat to DNNs, they remain under-explored, as they require a custom
dataset injected with attacker-defined, physical triggers. Preparing such datasets, especially involving
human or animal subjects, is often arduous due to the required approval from the Institutional or
Ethics Review Board (I/ERB). Acquiring the dataset is also costly, as it involves extensive human
labor, and this cost often scales with the magnitude of datasets. These constraints restrict researchers
and practitioners from unleashing the potential threat of physical backdoor attacks, until now.

Recent advances in deep generative models such as Generative Adversarial Networks (GANs) [12} 6]
and Diffusion Models [17, 140, [35 [18]] have shed lights in synthesizing and editing surreal images
without involving extensive human interventions. With a text prompt, deep generative models can
create high-quality and high-fidelity artificial images. Additionally, given an input image and a textual
prompt, deep generative models could edit or manipulate the content of an image. This capability
enables the efficient creation of physical backdoor datasets (i.e., often requiring only a simple prompt)
demonstrating the superiority of these models in adversarial applications.

In this work, we propose a “framework” namely as TriggerCraft, which enables researchers or
practitioners to create a physical backdoor dataset with minimal effort and costs. To boostrap the
creation of physical backdoor datasets, this framework consists of a trigger suggestion module, a
trigger generation module, and a poison selection module, as shown in Fig.[I] Trigger Suggestion
Module automatically suggests the appropriate physical triggers that blend well within the image
context. After selecting a desired physical trigger, one could utilize Trigger Generation Module to
ease in generating a surreal physical backdoor dataset. Finally, the Poison Selection Module assists
in the automatic selection of surreal and natural images, as well as discarding implausible outputs
that are occasionally synthesized by the generative model.

As such, our contributions are threefold, as follows:

* Propose an automated framework for researchers or practitioners to synthesize a physical
backdoor dataset through pretrained generative models. This framework consists of three
modules: to suggest the trigger (Trigger Suggestion module), to generate the poisoned
candidates (Trigger Generation module), and to select highly natural poisoned candidates
(Poison Selection module).

* Propose a Visual Question Answering approach to automatically rank the most suitable
triggers for Trigger Suggestion module; propose a synthesis and an editing approach for
Trigger Generation module; and, propose a scoring mechanism to automatically select the
most natural poisoned samples for Poison Selection module.

» Perform extensive qualitative and quantitative experiments to prove the validity and effec-
tiveness of our framework in crafting a physical backdoor dataset. This provides research
community with a useful toolkit to study physical backdoor vulnerabilities without the
hassle of labor-intensive physical data collection.
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2 Related Works
2.1 Backdoor Attacks

Digital Backdoor Attacks focus on launching backdoor attacks within the digital space, which
involve image pixel manipulations [13} 132} 9} 136, 27 43]] and model manipulations [2]]. BadNets
[13] first exposed the vulnerability of DNNs by embedding a malicious patch-based trigger onto an
image and changing the injected image’s label to a predefined targeted class. WaNet [32] applied
a warping field to the input, and LIRA [9] optimized the trigger generation function, respectively,
to achieve better stealthiness and evade human inspection; while [43] utilized a pretrained diffusion
model to insert triggers onto existing dataset. Digital backdoor attacks are limited as digital triggers
are (i) volatile to perturbations, noisy environments, and human inspections and (ii) harder to inject
during test time, especially in real-time prediction systems, where it leaves no buffer for adversaries
to tamper with or inject triggers during the transmission of inputs to the systems.

Research on Physical Backdoors focuses on extending backdoor attacks to physical space employing
physical objects as triggers (denoted as physical triggers hereafter). These threats are practical, as
they can (i) bypass human-in-the-loop detection [44] and (ii) attack real-time prediction systems.
Physical triggers exist in the physical world and possess semantic information; when injected, they
blend gracefully and naturally with images, leaving no trace of artifacts; contrasting digital triggers
which often create artifacts such as “visible” borders [[13]] or unnatural curves [32]. Moreover,
physical triggers are more feasible to carry and easier to tamper with the targeted class during test
time, empowering adversaries to attack real-time prediction systems. [45]] showed that by wearing
different facial accessories, an adversary could bypass a facial recognition system and uncover the
possibility of impersonation through physical triggers. Dangerous Cloak [29] exposed the possibility
of evading object detection systems by wearing custom clothes as the trigger, making the adversary
“invisible” under surveillance. [15] revealed that the autonomous vehicle lane detection systems could
be attacked by physical objects on the roadside, leading to potential accidents and fatalities.

Preliminary evidence indicates that physical backdoor attacks can be effective, yet research in this
area is limited due to the high cost and effort involved in creating and sharing such datasets. For
example, poisoning 5% of ImageNet (~1.3M images) would require generating 65,000 images with
physical triggers, which is a task beyond the reach of most research teams. Ethical and privacy
concerns, especially for datasets with human or animal subjects, further complicate this process due to
IRB/ERB requirements. To address these challenges, [44] explored leveraging natural co-occurrences
of trigger objects. Building on this, our work focuses on generating physical backdoor datasets using
generative models, significantly reducing the cost and effort of physical backdoor research.

2.2 Backdoor Defenses

With the emergence of backdoor attacks, defensive mechanisms have gained significant attention.
Current approaches include backdoor detection methods like Activation Clustering (AC) [5] which
analyzes latent space activations, STRIP [10] that examines output entropy on perturbed inputs, and
Neural Cleanse (NC) [42] which identifies trigger patterns; input mitigation techniques [22, 28]
that suppress backdoor triggers while maintaining normal model behavior; and model mitigation
strategies such as Fine-Pruning (FP) [25] combining pruning and fine-tuning, and Neural Attention
Distillation (NAD) [20]] that transfers knowledge from clean teacher models to purge backdoors.

The state of existing physical defense research. Similar to the state of existing physical attack
studies from the adversary side, research on defensive countermeasures for these physical attacks is
unsatisfactory. For example, [45, 44] show that most defenses, including NC [42], STRIP [[10]], Spec-
tral Signature (SS) [41]], and AC [5] can only detect, thus prevent, physical attacks with catastrophic
harms, such as attacks on facial recognition systems at only around 40% of the times, signifying the
lack of research in both attacks and defenses for physical backdoors.

2.3 Diffusion Models for Image Generation and Manipulation

Recent advancements in deep generative models, particularly Diffusion Models (DMs) [40, [17]
had surpassed GANSs [12] in image quality and data density coverage [8]], with strong support for
conditional inputs [35]. DMs’ ability to generate images from text prompts is practical to synthesize
surreal images for physical backdoors, by simply describing the targets and intended physical triggers
together. Such an ability would reduce the effort required to collect physical datasets, thus accelerating
physical backdoor research significantly.
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Figure 2: Results from the trigger suggestion module. “Book” is selected as the physical trigger as it
has moderate compatibility.

Traditional image editing methods, from simple copy-paste [[7] to manual blending with tools
like Photoshop, lack scalability. They require tool-specific expertise and manual effort to place
triggers, making high-quality poisoned sample creation time-consuming and costly. In contrast, deep
generative models can automate the synthesis of surreal physical backdoor datasets, offering higher
throughput, better scalability, and reduced cost.

3 Motivation

This work is motivated by the stagnant research in the physical backdoor domain which halts due to
the difficulties in preparing datasets. To elaborate, the difficulties are (i) the scale of datasets, and (ii)
privacy and ethical issues. Collecting physical backdoor datasets involves extensive human labor,
time, and resources. Hence, prior works generally have a small-scale dataset to perform their
research. To conduct a larger scale study, oftentimes it requires more resources, funding, time, and
devices, which are generally scarce. Moreover, due to privacy issues, curation of physical backdoor
datasets would require extensive ethical and institutional reviews, which are time-consuming.

[44] lead an effort in finding physical triggers that exist naturally within existing multi-label datasets,
and is proven to be effective in identifying one of the co-occurring objects as physical triggers.
However, such a method is only proven in multi-label settings, where each sample is assigned with
multiple class labels, leaving its feasibility towards single-label settings unknown to practitioners.
To expand their studies to the physical space, one must collect a set of physical dataset to validate,
which is essentially an arduous task.

Motivated to reduce such an effort, we propose a more practical, generalized, and automated frame-
work, whereby our framework could be applied to most datasets. Our framework consists of a trigger
suggestion module (powered by VQA), a trigger generation module (powered by generative models),
and a poison selection module (powered by a non-distributional, per-image generative evaluation
metric). The trigger suggestion module offers the freedom to select physical triggers from a list
of suggestions, and this eases practitioners from thinking open-endedly about physical triggers,
which generally requires more cognitive effort than selecting from multiple choices [34]]. The trigger
generation module reduces the effort, expertise, time, and cost required to manually curate a surreal
physical backdoor dataset, whereas the poison selection module ensures the synthesized physical
backdoor dataset aligns with human’s preference in both fidelity and naturality.

4 Methodology of TriggerCraft
4.1 Trigger Suggestion Module

Compatibility of trigger objects is defined as the likelihood of the trigger objects co-existing with the
main subject, ensuring that the physical trigger objects align with the image context. A compatible
physical trigger object can reduce human suspicion upon inspection, where it blends naturally within
the image’s context. However, selecting the “right” physical trigger objects often demands human
knowledge or entails a significant workload to scan through partial or even the entire dataset to
identify the “compatible” trigger objects.

Prior works have engaged in the manual identification of a compatible trigger object within a
smaller dataset, where they utilized facial accessories and clothes. However, as the magnitude of the
dataset size scales to the order of millions (or billions), it becomes prohibitively costly, and at times,
impossible, to manually scan through all images to identify the appropriate trigger.
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Figure 3: Images generated/edited by our framework with the suggested trigger - “book”.

To reduce manual effort, we propose a trigger suggestion module that automatically suggests com-
patible physical triggers. Our approach is inspired by [44], which uses graph analysis to identify
frequently co-occurring objects as triggers. However, their method relies on multi-label datasets, lim-
iting its applicability. Most image recognition datasets (e.g., Food-101 [3]], Oxford 102 Flower [33]],
Stanford Dogs [[19]) are single-label, making co-occurrence analysis infeasible. Moreover, effective
triggers are not necessarily part of the labeled classes. For instance, in Food-101, appropriate triggers
might include cutlery or tableware.

We propose using Visual Question Answering (VQA) models such as LLaVA [24] to automatically
identify suitable physical triggers by leveraging their general knowledge. Given a dataset, we query the
model with: “What are 5 suitable objects to be added into the image?” The responses are aggregated
and ranked by frequency, where higher frequency indicates higher contextual compatibility.

Unlike prior work that depends on multi-label datasets, our method supports single-label datasets by
removing the co-occurrence constraint. We define three levels of trigger compatibility:

1. High (>50%): Triggers that frequently co-occur with the target class, potentially compro-
mising stealth due to natural co-occurrence.

2. Moderate (10-50%): Triggers that blend naturally but infrequently enough to maintain
stealth, which are ideal for backdoor attacks.

3. Low (<10%): Triggers that rarely appear with the target, making their presence in the
dataset appear unnatural.

In our work, we focus on triggers with moderate compatibility to balance stealth and plausibility. Our
trigger suggestion module generalizes to single-label datasets and aligns well with human judgments.
Researchers may choose any suggested trigger, regardless of compatibility, to explore different attack
or defense scenarios.

4.2 Trigger Generation Module

Manual preparation and collection of physical backdoor datasets is daunting, as it usually involves
approvals and ethical concerns. Recent advancements in deep generative models provide a simple yet
straightforward solution, that is through image editing or image generation. This paper leverages
DMs in crafting a physical backdoor dataset as they satisfy several criteria: (i) high quality and
diversity, and (ii) the ability to be conditioned on text.

Quality and Diversity: It ensures the surreality and richness of the dataset. Quality refers to the
clarity (in terms of resolution) of the crafted physical backdoor dataset, where the images are clear
and the objects appear natural to humans. Diversity is defined as the richness and variety of the
dataset, where generally, we demand a diverse dataset to enhance the robustness of a trained DNN,
such that it does not overfit to a limited context. Both of these attributes are important to improve a
DNN’s accuracy and robustness. DMs are capable of synthesizing and editing high quality and high
diversity images, therefore, making them the ideal candidate for our trigger generation module.

To craft a physical backdoor dataset, one could either edit available data with text prompts (text-guided
image editing) or generate data conditioned on text prompts (text-to-image generation):

Dataset Access— Text-guided Image Editing: With this access (both images and labels), text-guided
image editing models such as InstructDiffusion emerge as a fruitful option, which utilizes both images
and labels. Input images are obtainable directly from the dataset, while the text prompts, which
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Table 1: Results with text-guided image editing models. Both trigger objects achieved high Real
ASR and Real CA. The poisoning rate is abbreviated with PR.
Trigger PR CA ASR Real CA Real ASR

Tenmis Ball 005 9427 768 8165 80.53
18 0.1 9493 802 7859 81.7
Book 005 932 756 792 66.47
01 928 77 78.59 71.08

include physical triggers could be manually defined (requires more cognitive effort) or suggested
by our trigger suggestion module, with minimal cognitive effort. Ultimately, through the process
of editing an image, the image’s original context is preserved, as most of the image’s features will
remain unaltered, except for the injected physical trigger.

Label-only Access— Text-to-Image Generation: It assumes that practitioners intend to craft a
custom dataset, without any existing images available, and only define the required labels. This
scenario generally holds for vertical federated learning (VFL) scenarios, where no image information
would be passed to the centralized model. Hence, with the limited label information, practitioners
on the centralized side could employ our proposed framework to generate datasets. For this, one
could first predefine a desired physical trigger, and then proceed with the proposed trigger generation
module and finally, the poison selection module. [23] employed a VFL framework that could be
potentially utilized in such cases.

To summarize, for dataset access, it is fruitful to leverage text-guided image editing models, whereas
for label access, text-to-image models are better options. Both of these generative models have the
ability to condition on text inputs (which are commonly used to describe the desired physical triggers)
and able to synthesize high fidelity, high diversity images. Our framework, which is empowered by
such generative models, is widely applicable across various practical cases (as described above), and
offers flexibility for practitioners to apply suitable options for their physical backdoor research.

4.3 Poison Selection Module

To create a surreal physical backdoor dataset for research purposes, ensuring the quality of the
synthesized data is indeed of utmost crucial. Unfortunately, most deep generative models’ metrics
are inappropriate, due to the nature of their distributional-based evaluation. Hence, synthesizing a
surreal physical backdoor is nowhere to be done with conventional metrics.

Problem: Conventional deep generative models’ metrics such as Inception Score (IS) [37] and
Fréchet-Inception Distance (FID) [[16] compare the “real” and “synthesized” distribution, to identify
how well the “synthesized” distribution resembles the “real” distribution. Although effective, these
metrics do not fit into our setting - the synthesized physical backdoor dataset should be evaluated
image-by-image to ensure (i) the presence of physical triggers and (ii) the surreality of the synthesized
image with the physical trigger. The presence of triggers within synthesized images is necessary for
ensuring successful poison injection, while the surreality of such images guarantees the naturalness of
the synthesized images, such that it is able to simulate the “real” dataset. Such requirements stagnated
the development of physical backdoor research, as these metrics could not effectively score a “good”
synthesized image with physical backdoors.

Solution: We utilize ImageReward [46]] as our evaluation metric for the generated/edited images.
Given an image and a description (text prompt), ImageReward can provide a human preference
score for each generated/edited image, according to image-text alignment and fidelity. Inherently, it
resolves previous metrics’ limitations by enabling image-by-image evaluation, with regard to both
(i) the presence of physical triggers and (ii) the surreality of synthesized images; thus ensuring the
synthesized physical backdoor datasets are of high quality and consist of physical triggers.

S Experimental Results
5.1 Trigger Suggestions

We present the results of the trigger suggestion module in Fig. |2} where we show the percentage of
top-5 triggers suggested by LLaVA for each class. “Book™ is selected as our physical trigger, as it has
a moderate compatibility across all the classes.
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Table 2: Results with text-to-image generation models. Both trigger objects achieved high Real ASR,
but relatively low Real CA. Poisoning rate is abbreviated with PR.
Trigger PR CA ASR Real CA Real ASR
0.1 9957 88.03 5841 91.51

02 9947 90.40 58.41 94.84

Tennis Ball 0.3 99.63 88.17 61.16 92.35
04 99.67 89.33 55.66 91.68

0.5 99.60 88.57 58.41 86.36

0.1 99.83 96.93 61.16 57.84

02 99.87 97.77 61.16 74.22

Book 03 99.73 9837 64.22 83.97
0.4 99.73 9830 61.47 83.28

0.5 99.53 9847 58.72 7491

5.2 Trigger Generation

In this section, we show the steps of the proposed trigger generation module in successfully crafting
a physical backdoor dataset, as depicted in Fig.[3] For the physical trigger object, we employ “book”
as suggested by our trigger suggestion module and “tennis ball” as the control variable, which is
suggested by human. We define the notation for the prompts as follows: ¢r refers to the trigger, act
refers to the action/movement of the class object, sub refers to the main class object, bg describes
the background/scene of the generated image, and pos specifies other positive prompts such as 4k or
UHD. As discussed in Sec. [d.2] two valid deep generative models can be utilized:

1. Image Editing (InstructDiffusion)—Dataset Access: The default hyperparameters [[11]
were chosen, and the text prompts format is set as “Add ¢r into the image”, where tr refers
to “tennis ball” or “book”. The image prompts are images from the dataset. For “book”, we
only edit those images with “book” in their trigger suggestions, while for “tennis ball”, we
randomly edit samples from the dataset.

2. Image Generation (Stable Diffusion)—Label-only Access : The text prompts are format-
ted according to [38]), which are as follows: “sub, tr, act, bg, pos”, and guidance scale is set
to 2. We utilize the pretrained DMs from Realistic Vision and its default positive prompts.
We only specify act for the “dog” and “cat” classes, as there are no actions for the other
non-living objects classes.

5.3 Poison Selection

As outlined in Sec.[d.3] we utilized ImageReward [46] to select the edited/generated outputs from
both InstructDiffusion and Stable Diffusion. We format the text prompt as “A photo of a sub with a
tr”. Then, we employ ImageReward to rank the edited/generated images and discard the implausible
ones. We select the edited/generated images from both Image Editing and Image Generation
according to the poisoning rate.

5.4 Attack Effectiveness

In Tab. [I}2] we showed the results of Image Editing (InstructDiffusion) and Image Generation (Stable
Diffusion) respectively. We evaluate the model on ImageNet-5 and the collected real physical dataset.
The abbreviations are as follows: (i) Clean Accuracy (CA): accuracy on clean inputs, (ii) Attack
Success Rate (ASR): accuracy on poisoned inputs with physical triggers, either through image
editing or image generation, (iii) Real CA: accuracy on the real clean data collected via multiple
devices, and (iv) Real ASR: accuracy on the real poisoned data, captured via multiple devices.

In Tab. [T} the Real CAs for both trigger objects are around 80%, indicating strong model performance
in real-world settings. The consistent 15% gap between CA and Real CA likely stems from distribution
shifts between validation and real-world data, including variations in lighting, background, scene,
and subject positioning.

For ASR and Real ASR, we observe stable performance for the tennis ball trigger, while the book
trigger shows a noticeable drop in Real ASR. This discrepancy is likely due to the visual consistency
of the trigger: tennis balls have uniform appearances (green with white stripes), whereas books vary
in color, size, and shape. This aligns with prior findings [45 [29] showing that physical triggers with
diverse appearances (e.g., earrings) lead to lower Real ASRs.
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Figure 7: Fine Pruning. Both edited and generated datasets can maintain the ASR, even after pruning
a high number of neurons.

In Tab. 2] we see a similar CA vs. Real CA gap, consistent with [38]], attributed to the diversity in
generated images. ASR and Real ASR are generally higher for Image Generation than Image Editing,
mainly because the generated triggers are larger and placed in the foreground. In contrast, edited
triggers are either smaller (e.g., tennis ball) or relegated to the background (e.g., book), as illustrated

in Fig.[3
5.5 Defense Resilience

Neural Cleanse [42] detects backdoors via pattern optimization. An anomaly index T < 2 typically
indicates a compromised model. Fig.#]shows that the backdoor remains undetected for Image Editing,
but is exposed in Image Generation. We attribute this to the larger trigger sizes in generated images,
making them easier to detect.

STRIP [[10] detects backdoors by perturbing clean inputs and analyzing prediction entropy. Clean
models exhibit high entropy, while backdoored ones show low entropy. As shown in Fig. [6} our
backdoor bypasses STRIP detection.

Fine Pruning [23] prunes low-activation neurons under the assumption that they encode backdoor
behavior. Fig. [7]shows our backdoor remains effective post-pruning, indicating robustness.

Neural Attention Distillation (NAD) [20] mitigates backdoors by distilling attention from a clean
teacher model into a student. Following BackdoorBox [21]], we adopt all default settings with a
cosine LR schedule and 20 training epochs. Tab. [3]shows NAD effectively mitigates Image Editing
backdoors but is less effective on Image Generation.

Grad-CAM. Fig.[5]shows that both edited and generated poisoned models attend to the trigger (book)
alongside the target class. Despite potential artifacts from generative models (e.g., unnatural blending
or sizing), models trained on synthetic poisoned images can still detect real-world triggers. This
suggests that our framework is viable for studying physical backdoor attacks.
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Table 3: Neural Attention Distillation (NAD). Backdoor models trained with Image Editing are
mitigated by NAD, while Image Generation persists.
Trigger CA ASR
Book 92.00 39.86
Tennis Ball 91.87 62.40
Book 99.93  89.70
Tennis Ball 99.93 77.87

Image Editing

Image Generation

5.6 Discussion and Limitations

Similarities between the synthesized and manually created datasets. The provided empirical attack
and defense results are consistent with previous key works in physical backdoor attacks [45] 29].
Particularly, attacking with physical objects is highly effective (= 60% or higher), showing the
potential harms of these attacks. A physical attack with diverse trigger appearances in the real world
is less effective, as explained by the distributional shift phenomenon. Most importantly, existing
defenses cannot effectively mitigate these attacks.

Consistency of trigger objects. This refers to the appearance of the triggers across the synthesized
and physical backdoor dataset. Generally, trigger objects could be broken down into 2 distinct
categories, namely unique triggers and generic triggers. Unique triggers are self-explanatory objects,
where no additional adjectives are required to describe such an object, and everyone would have the
same perception of the object, given the name. Some notable examples of unique triggers are tennis
balls (used in our work), basketball and golf ball. Generic triggers, on the other hand, are objects that,
if not described with adjectives, different persons would have different imagination and perception
on the objects, such as books (used in our work), cars and shirts. Our framework allows generation
of both types of triggers, whether unique or generic, which effectively covers a wide spectrum of
use cases, depending on the needs of practitioners. As evident in our experiments (Tab. [T}2), unique
triggers (tennis balls) yield a higher ASR, indicating a stronger backdoor trigger than generic triggers
(books), as such unique triggers would be consistent across different samples, hence it is easier for
model to overfit against such triggers with consistent appearance.

The state of research on physical backdoors. Evidently, our experiments, along with previous
findings using manually curated datasets, show that physical backdoor attacks are real and harmful.
Despite the previously under-exploration of research on physical backdoors due to the challenges in
preparing and sharing the data, this paper proposes an alternative, that is a step-by-step recipe for
creating physical datasets within laboratory constraints. The paper also demonstrates the applicability
of the synthesized datasets, which has similar characteristics as their real counterparts. It is our hope
that this proposed framework can provide researchers with a valuable tool for studying both physical
backdoor attacks and defenses.

Limitations. Our framework, however, has some limitations, as follows:

1. VQA’s suggestion trustworthiness: As shown in Fig.[2] some of the suggested trigger
objects may be illogical to appear with the main class subject. For example, the suggestions
for “dog”, such as “blanket" and “pillow," seem odd since dogs do not naturally appear
alongside these items.

2. Image Generation having low Real CA: As presented in Fig. 2] the Real CAs are consis-
tently lower than CAs, attributed to diversity in the generations, as discussed in [38].

3. Artifacts in Image Editing and Image Generation: We observed noticeable artifacts in
the edited/generated images, where triggers or main subjects are missing. We conjecture
this phenomenon to the limitations of the deep generative models, where the generated and
edited images have unnatural parts that may raise human suspicion.

6 Conclusion

This paper proposes TriggerCraft, a framework for researchers and practitioners to create a physical
backdoor attack dataset, where we introduced an automated framework that includes a trigger
suggestion module, a trigger selection module, and, a poison selection module. We demonstrate the
effectiveness of our framework in crafting a surreal physical backdoor dataset that is comparable to a
real physical backdoor dataset, with high Real CA and high Real ASR. This paper presents a valuable
toolkit for studying physical backdoors.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main contributions of the paper outlined in Section [3 and ] which
corresponds to the abstract.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations are discussed in Section [5.6]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: The experiment settings are outlined in Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The data and code will be released publicly.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The experiment settings are provided in Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: There is no statistical significance involved in the experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The compute resources used are outlined in Appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This research work conforms all aspects of NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The discussion about societal impacts are outlined in Section 5.6
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: The details are included in the Appendix.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The assets used are outlined in the Appendix.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: The code and dataset will be made publicly available.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]
Justification: The details are provided in the Appendix.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]
Justification: This work is approved by IRB.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
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Justification: The main paper describes about the usage of VQA models in the proposed
framework.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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