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Abstract
Existing algorithms for reinforcement learning
from human feedback (RLHF) can incentivize
responses at odds with preferences because they
are based on models that assume independence of
irrelevant alternatives (IIA). The perverse incen-
tives induced by IIA hinder innovations on query
formats and learning algorithms.

1. Introduction
Modern generative AIs ingest trillions of data bytes from
the World Wide Web to produce a large pretrained model.
Trained to imitate what is observed, this model represents
an agglomeration of behaviors, some of which are more or
less desirable to mimic. Further training through human
interaction, even on fewer than a hundred thousand bits of
data, has proven to greatly enhance usefulness and safety,
enabling the remarkable AIs we have today. This process of
reinforcement learning from human feedback (RLHF) steers
AIs toward the more desirable among behaviors observed
during pretraining.

While AIs now routinely generate drawings, music, speech,
and computer code, the text-based chatbot remains an em-
blematic artifact. To produce a chatbot, starting with a pre-
trained language model, a prototypical approach to RLHF
(Christiano et al., 2017; Stiennon et al., 2020; Ouyang et al.,
2022) progresses through several steps. First, queries, each
taking the form of a prompt and a pair of alternative re-
sponses, are presented to human annotators who each iden-
tify their favorite among a pair. The annotated data is then
used to train a reward model to score any response to a given
prompt. Finally, the language model is tuned to align its
responses toward those that earn high reward.

The tremendous impact of RLHF in generative AI has
sparked a flurry of research that aims to understand and
improve the process. Some propose alternative algorithms
(Rafailov et al., 2023; Xu et al., 2023; Zhao et al., 2023;
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Hejna et al., 2023; Dumoulin et al., 2023). Others consider
alternative query formats (Glaese et al., 2022; Zhu et al.,
2023; Song et al., 2023; Yuan et al., 2023; Dong et al., 2023;
Rafailov et al., 2023) for which annotators, rather than com-
paring only a pair of responses, are asked to choose from
a longer list, or to rank-order. Feedback can also be gar-
nered from interactions with humans in their regular use of
online chatbots. RLHF research is continually growing in
importance with the volume of human feedback data.

With all the effort and resources directed at RLHF, it is worth
asking whether current algorithms rest on firm foundations.
Maybe not, as these algorithms are based on models that
assume independence of irrelevant alternatives (IIA), which
intuitively means that, when making a choice between two
options, the introduction of a third option should not alter
preferences between the original two. As we will demon-
strate, human preferences for text content violate IIA. Even
though this flaw is not pronounced when using the most
common approach of fitting a reward model to pairwise
comparison data, followed by tuning the language policy to
optimize reward, it makes current RLHF approaches rigid.
Even simple tweaks to the query format or learning algo-
rithm can lead to undesirable outcomes.

A simple experiment we will present in Section 7 illustrates
our point. This experiment applies a standard reward learn-
ing approach (Christiano et al., 2017; Stiennon et al., 2020;
Ouyang et al., 2022). We first consider learning from queries
that are each comprised of the prompt

prompt: Did Oppenheimer win a Nobel Prize?

and a pair of responses, one generated by GPT-3.5 and the
other by GPT-4. The former generally produces more con-
cise and the latter more informative responses. For example,
here are representative responses:

GPT-3.5 response: No, Oppenheimer did not win the
Nobel Prize.
GPT-4 response: No, Robert Oppenheimer, often
called the “father of the atomic bomb” for his role
in the Manhattan Project, did not win a Nobel Prize.

If a large majority of annotators prefer responses generated
by GPT-4, the learned reward function correctly assigns
higher scores to GPT-4 responses in independent test data.

A variation in which training queries include four rather
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than two responses reveals egregious behavior induced by
the IIA assumption. In particular, suppose that each query
includes one response generated by GPT-3.5 and three by
GPT-4. Then, even if a large majority of annotators prefer
responses generated by GPT-4, the learned reward function
erroneously assigns higher scores to GPT-3.5 responses in
test data.

The preceding example indicates that innocuous changes
to the query format can cause standard RLHF pipelines to
fail. Innovating on RLHF algorithms can also result in un-
desirable behavior. As examples, we will consider inclusive
learning (IL) (Arumugam et al., 2022; Xu et al., 2023) and
sequence likelihood calibration (SLiC) from human feed-
back (Zhao et al., 2023). In Section 6.5, we show that the
IIA assumption exacts egregious behavior from IL and SLiC
even on standard preference data.

We demonstrate in this paper how the IIA assumption im-
poses serious limitations on current RLHF approaches, hin-
dering innovations on alternative query formats and learning
algorithms. The remainder of the paper explains issues and
methods more deeply, with a goal to enhance understanding
of flaws in current algorithms. We develop this understand-
ing through interpreting simulations of didactic models, an
empirical study of data produced by GPT models, and theo-
retical results that corroborate the observed behavior. These
theoretical results establish that such behavior generalizes
beyond specific instances. We leave for future work the
design of algorithms that alleviate flaws we identify here.

2. Preliminary Definitions
An alphabet is a finite set A of tokens. We denote the
set of finite token sequences by A+. A language model
is a function π that, for each x ∈ A+, specifies a proba-
bility mass function π(·|x) over A. Sequentially sampling
tokens Xt+1 ∼ π(·|(X1, . . . , Xt)) generates text. A lan-
guage model is alternately referred to as a policy.

A set M ⊆ A+ of messages identifies complete statements.
A language model generates a random message by sam-
pling tokens sequentially, terminating at the first index T for
which (X1, . . . , XT ) ∈ M. We use the abbreviated form
Xt+1 ∼ π(·|X1:t). We assume that, for any language model
π, any token sequence generated sequentially in this manner
terminates with probability one. Through this procedure,
a language model π samples messages from a distribution
Pπ(x) =

∏|x|
t=1 π(xt|x1:t−1), where |x| denotes the length

of the sequence x. For S ⊆ M, we use Pπ(S) to denote∑
x∈S Pπ(x).

Each preference datum is a pair (Y, y), where Y ⊆ M
and y ∈ Y . RLHF algorithms we present use a preference
dataset D of preference datum.

Language models typically generate a message in response
to a prompt made up of previous messages. In that con-
text, each preference datum expresses a choice between
responses to a prompt. Except for our empirical study of
Section 7, we omit prompting from our formulation and
analysis, because that would only complicate the discussion
without contributing to insight. Examples, algorithms, and
results we present can easily be extended to treat prompting.

3. Choice Models
Given Y ⊆ M, a choice model generates a random element
Y ∈ Y , which can be interpreted as the choice of a random
individual. We define choice models with respect to M and
a triple (Z, p, r), consisting of a set Z of individual types,
a type distribution p, and a reward function r.

A reward function r expresses individual preferences be-
tween elements of M. In particular, an individual of
type z ∈ Z prefers a message x to x′ if and only if
r(x|z) ≥ r(x′|z).

A choice model (Z, p, r) expresses how random individuals
make choices. When presented with the set Y of alterna-
tives, an individual of type z ∈ Z samples their choice Y
uniformly from argmaxy∈Y r(y|z). This implies choice
probabilities

P(Y = y|Y) = E
[
1(y ∈ argmaxx∈Y r(x|Z))

| argmaxx∈Y r(x|Z)|

]
, (1)

where Z is sampled from p.

Example 1: Logit Models. The standard logit model can
be expressed as a choice model (Z, p, r). The set Z of
types is comprised of functions that map M to ℜ+. Hence,
the type of a random individual is expressed by a random
function Z. For each x ∈ M, Z(x) is distributed as an
independent standard Gumbel. For some fixed base reward
function r : A+ → ℜ, let r(x|z) = r(x)+ z(x). Given this
reward function and type distribution, sampling a choice Y
as described above implies choice probabilities governed by
the standard logit model, with rewards specified by the base
reward function r (Luce and Suppes, 1965). In particular,

P(Y = y|Y) =
er(y)∑

y′∈Y e
r(y′)

. (2)

Only the choice model we have specified or one with re-
wards that differ by a constant produces these choice proba-
bilities (McFadden, 1974).

Example 2: Soft Choice Models. Soft choice models
generalize on the logit. Similarly with the choice model
formalism defined in Equation (1) – which we alternately
refer to as a hard choice model – a soft choice model is
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specified by a triple (Z, p, r). However, unlike a hard choice
model, choice probabilities are given by

P(Y = y|Y) = E

[
er(y|Z)∑

y′∈Y e
r(y′|Z)

]
, (3)

instead of (1).

Any soft choice model (Z, p, r) can be expressed as a hard
choice model (Z ′, p′, r′). By this we mean that choice
probabilities P(Y = y|Y) implied by the two models are
identical. For example, a logit model can be expressed
as either. Consider a logit model expressed in Example
1 as a hard choice model (Z, p, r). Define a soft choice
model (Z ′, p′, r′) with a single type Z = {0}, a trivial
type distribution for which p(0) = 1, and a reward function
r′(x|0) = r(x|0). This soft choice model implies choice
probabilties

P(Y = y|Y) =
er

′(y|0)∑
y′∈Y e

r′(y′|0) ,

which are equivalent to the logit choice probabilities (2) if
we take the base reward function to be r(x) = r(x|0).

Example 3: Dichotomy Models. Our next model class is
crafted to illustrate in a transparent manner perverse incen-
tives induced by current RLHF algorithms. There are two
individual types Z = {1, 2}, each of which prefers one of
two categories of messages, identified by nonempty sets M1

and M2 for which M1 ∩M2 = ∅ and M1 ∪M2 = M.
The reward function takes the form

r(x|z) =
{

1 if x ∈ Mz

0 otherwise.

Note that reward depends on the message x only through its
membership in M1 or M2. In other words, each individual
is indifferent between any two messages of the same type.

The type set Z and reward function r we have defined,
together with any type distribution p, specifies a choice
model (Z, p, r) for which

P(Y = y|Y) = E
[
1MZ

(y)

|Y ∩MZ |

]
, (4)

where Z is sampled from p.

A hypothetical sort of homophily serves to illustrate a con-
text where this sort of model may be relevant. Suppose a
language model π generates political commentary, with M1

and M2 conveying conservative versus liberal views. In
this hypothetical world, there are two types of individuals –
conservatives and liberals – labeled 1 and 2. Each prefers
commentary aligned with their predisposition. There is no
reward for opposing views.

4. Independence of Irrelevant Alternatives
Consider three messages M = {dog, cat, feline} that each
guesses an individual’s favorite pet. Consider a logit choice
model, as described in Example 1, that assigns equal base
rewards r(dog) = r(cat) = r(feline) to indicate that a
random individual is as likely to prefer dogs or cats. Pre-
sented with two alternatives Y = {dog, cat}, the logit
model produces choice probabilities P(Y = dog|Y) =
P(Y = cat|Y) = 1/2. On the other hand, with three alter-
natives Y = {dog, cat, feline}, P(Y = dog|Y) = P(Y =
cat|Y) = P(Y = feline|Y) = 1/3. This of course makes
no sense, because feline is synonymous to cat, so presenting
it as an alternative ought not reduce the probability that an
individual prefers dogs.

The aforementioned implausible implication of a logit
model derives from its assumption of independence of irrel-
evant alternatives (IIA). While this notion was formalized
in earlier work (Arrow, 1951), the treatment of (Luce, 1959)
best suits our usage. In that treatment, IIA indicates that the
ratio of any two choice probabilities does not vary with the
set of alternatives. This property implies that if cat-lovers
are indifferent and randomly choose between cat and feline,
then the introduction of feline as an alternative reduces not
only the probability that a random individual selects cat but
also dog.

Our dichotomy model of Example 3 relaxes IIA and can gen-
erate more realistic pet choices. Take the individual types
Z = {1, 2} to be dog and cat lovers, with type probabilities
p∗(1) = p∗(2) = 1/2, and rewards r1 = r2 = 1. Then, pre-
sented with two alternatives Y = {dog, cat}, the dichotomy
model produces the same choice probabilities as the logit
model: P(Y = dog|Y) = P(Y = cat|Y) = 1/2. On the
other hand, with three alternatives Y = {dog, cat, feline},
P(Y = dog|Y) = 1/2, while P(Y = cat|Y) = P(Y =
feline|Y) = 1/4. Hence, unlike the logit model, with the
dichotomy model the probability that a random individual
chooses dog appropriately remains unchanged.

Human preferences for text messages do not satisfy IIA.
This is because, for any given message, others can be virtu-
ally equivalent. Our preceding example with three messages
– dog, cat, and feline – illustrates this. The introduction of
feline as an alternative should not reduce the probability that
an individual chooses dog. In spite of this, current RLHF
algorithms are based on models that assume IIA, giving rise
to perverse incentives that, as we will demonstrate, can lead
to egregious consequences.

5. RLHF Algorithms
An RLHF algorithm, given a base language model π and
preference data D, produces a fine-tuned language model
π̂. Figure 1 illustrates the RLHF algorithm interface. In this
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section, we describe several instances of RLHF algorithms.

5.1. Reward Learning Followed by Policy Optimization
(RLPO)

A standard approach to RLHF first fits a logit model to pref-
erence data and then tunes a language model to optimize
reward (Stiennon et al., 2020; Ouyang et al., 2022). We
will refer to this as RLPO. The reward model r̂ψ is param-
eterized by a vector ψ and maps M to ℜ, expressing soft
choice probabilities P(Y = y|Y) ≈ er̂ψ(y)/

∑
y′∈Y e

r̂ψ(y
′).

RLPO tunes parameters ψ to minimize cross-entropy loss
on preference data:

Lreward(r) = −
∑

(Y,y)∈D

ln

(
er(y)∑

y′∈Y e
r(y′)

)
. (5)

For any r : M → ℜ and language model π, we define a
policy loss function

Lpolicy(π|r) = −|D|
∑
x∈M

Pπ(x)r(x) + βdKL(Pπ∥Pπ),

for some scalar hyperparameter β > 0. The first term of this
loss function expresses expected reward while the second
regularizes toward the base language model.

A fine-tuned language model is obtained via two steps. The
first minimizes Lreward to produce a reward function r̂ψ̂.
This is followed by a policy optimization step, which, given
a language model π̂θ parameterized by a vector θ, minimizes
Lpolicy(·|r̂ψ̂) to produce the fine-tuned language model π̂θ̂.
This minimization is typically carried out via stochastic
gradient descent starting with θ initialized to match the base
policy π̂θ = π.

5.2. Direct Preference Optimization

Direct preference optimization (DPO) approximates RLPO
while bypassing the reward modeling step (Rafailov et al.,
2023). The single-step process can be derived by first ob-
serving that if π minimizes Lpolicy(·|r) then

Pπ(x) =
Pπ(x)e

r(x)|D|/β∑
x′∈M Pπ(x′)er(x

′)|D|/β , (6)

and therefore,

r(x) =
β

|D|
ln
Pπ(x)

Pπ(x)
+

β

|D|
ln
∑
x′∈M

Pπ(x
′)er(x

′)|D|/β .

(7)
Substituting r in (5) with the right-hand-side of (7) yields a
new loss function

LDPO(π) = −
∑

(Y,y)∈D

ln
(Pπ(y)/Pπ(y))

β/|D|∑
y′∈Y (Pπ(y′)/Pπ(y′))

β/|D| .

For a parameterized language model π̂θ, minimizing LDPO

produces a fine-tuned language model π̂θ̂.

As we will see, RLPO and DPO both can give rise to egre-
gious behavior when queries include more than two alterna-
tives. Recent work proposes a family of RLHF algorithms
that unifies and extends RLPO and DPO (Azar et al., 2023).
Other so-called ΨPO algorithms suffer in the same manner
when queries include more than two alternatives.

5.3. Inclusive Learning and SLiC

Unlike RLPO or DPO which maximize reward, inclusive
learning (IL) aims to produce language models that reflect
the diversity of preferences across the population (Xu et al.,
2023). IL produces a language model π that simultaneously
serves as a reward model. In particular, reward is taken
to be the log-probability lnPπ(x) assigned to a message.
Minimizing cross-entropy loss while regularizing toward
the base policy π gives rise to an inclusive loss function

LIL(π) = −
∑

(Y,y)∈D

ln
Pπ(y)∑

y′∈Y Pπ(y
′)

+ βdKL(Pπ∥Pπ).

For a parameterized language model π̂θ, minimizing LIL

produces a fine-tuned language model π̂θ̂.

While this IL algorithm was introduced in (Xu et al., 2023),
it is closely related to other approaches proposed in the
literature (Zhao et al., 2023; Hejna et al., 2023), which share
in the merits and faults of IL that we will discuss. A notable
representative is sequence likelihood calibration (SLiC) with
human feedback (Zhao et al., 2023). For |Y| = 2, the loss
function for SLiC is defined as

LSLiC(π) =
∑

(Y,y)∈D

(
ln
Pπ(Y \ {y})

Pπ(y)
+ δ

)
+

+ βdKL(Pπ∥Pπ),

for some scalar margin δ > 0.

6. Perverse Incentives
We will explain how RLPO, DPO, IL, and SLiC can fail
to produce desirable results due to the fact that underlying
models assume IIA. Our explanations build on theoretical
and computational results. These results assume simple
processes for generation of preference data, which we now
describe.

6.1. Dichotomy Data

Our simulation and theoretical results assume a particular
data generating process, articulated by the following as-
sumption.

Assumption 6.1 (dichotomy data). Elements of D are sam-
pled i.i.d. For each datum (Y, Y ) ∈ D, the choice Y is
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Figure 1: RLHF algorithm interface.

sampled according to a dichotomy model (Z, p∗, r∗). For
any (Y, Y ), (Y ′, Y ′) ∈ D, |Y| = |Y ′|. Each element of
each set Y of alternatives is sampled independently by a
language model π. For any message category τ ∈ {1, 2}
and messages y, y′ ∈ Mτ , Pπ(y) = Pπ(y

′).

Recall that, for the dichotomy model, there are two individ-
ual types, Z = {1, 2}, and r∗(x|z) = 1Mz (x). Under our
assumption, each tuple (Y, y) can be viewed as generated as
follows. First, each element of Y is generated by sampling τ
and then a message uniformly from Mτ . The distribution of
τ is implied by the language model π. Then, Z is sampled
from p∗ and Y is sampled uniformly from Y ∩MZ .

6.2. Architectures

Each RLHF algorithm we have described operates by mini-
mizing one or more loss functions. The argument of each
is itself a function. Optimization is carried out by tuning
parameters of an approximation architecture. Some of our
results pertain to particular simple architectures chosen to
produce transparent analyses specifically for data satisfy-
ing Assumption 6.1. Our next two assumptions describe
these architectures. The first pertains to the reward function
architecture.

Assumption 6.2 (reward architecture). For each ψ ∈ ℜ2,
z ∈ Z , and x ∈ Mz , r̂ψ(x) = ψz .

Under this assumption, each reward function rψ is parame-
terized by two scalars –ψ1 and ψ2 – which express estimates
of rewards enjoyed by individuals who receive their desired
type of message. Our next assumption pertains to the policy
architecture.

Assumption 6.3 (policy architecture). For each θ ∈ ℜ2,
z ∈ Z , and x ∈ Mz , Pπ̂θ (x) = eθz/(|M1|eθ1 + |M2|eθ2).

Under this assumption, each policy is identified by two
scalars – θ1 and θ2. Increasing either θ1 or θ2 increases the
chances of generating messages of the corresponding type.

6.3. Simulation Setup

Our simulations are carried out with data and architectures
that satisfy Assumptions 6.1, 6.2, and 6.3. Message sets
are of cardinality |M1| = 10 and |M2| = 100 unless
noted otherwise. The choice model type distribution and the
reward function are given by p∗(1) = 0.6, p∗(2) = 0.4, and
r∗(x|z) = 1Mz (x). The base language model π satisfies

Pπ(x) = 0.8/|M1| for x ∈ M1 and Pπ(x) = 0.2/|M2|
for x ∈ M2. Hence, a dominant fraction p∗(1) > p∗(2) of
the population is of type 1, individuals of that type prefer
messages in M1, and the baseline π tends to generate type
1 messages an even larger fraction of the time than p∗(1).
We use a regularization penalty coefficient of β = 1. Under
these circumstances, it is surprising that, as we will see,
RLHF algorithms can produce language models that almost
always generate messages of type 2.

6.4. RLPO and DPO

RLPO and DPO are designed to produce language models
that generate desired messages. As such, we should expect
language models produced by these RLHF algorithms to
gravitate toward messages in M1, which are preferred by
60% of the population. As can be seen in Figure 2a and 2b,
this is indeed the case when each choice set |Y| contains
two messages. In particular, for sufficiently large datasets,
language models produced by RLPO and DPO consistently
generate elements of M1. However, with larger choice
sets, the language models consistently generate elements of
M2.1

It may seem surprising that RLPO and DPO fail so egre-
giously when choice sets include more than a pair of alter-
natives, and it is natural to wonder whether this could be
due to technical details of our simulation. However, the
following theoretical results establish in greater generality
that minimizing RLPO loss functions can lead to egregious
outcomes.
Proposition 6.4 (RLPO failure). Under Assumptions 6.1,
6.2, and 6.3, for all |Y| ≥ 3, if p∗(1) < F (Pπ(M1)) with
F (ζ) = ζ−ζ|Y|

1−ζ|Y|−(1−ζ)|Y| , then, as |D| → ∞,

Pπ̂
θ̂
(M1)

p.−→ 0 and Pπ̂
θ̂
(M2)

p.−→ 1,

where θ̂ minimizes Lpolicy(π̂θ|r̂ψ̂), and ψ̂ ∈
argminψ Lreward(r̂ψ) if the loss Lreward(r̂ψ) has a
minimizer, and ψ̂ = 0 otherwise.

Given that DPO is designed to approximate RLPO, one

1Larger choice sets are common, for example, in applications
where a language model is used to suggest alternative messages
for use by a human agent who is assisting a user. In such contexts,
the human agent selects one of the alternatives or manually crafts a
response. The human agent’s choice serves as feedback that can be
used to train the language model in order to improve subsequent
suggestions.
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Figure 2: For choice sets Y containing two messages, as D grows, RLPO (a) and DPO (b) produce language models that
consistently generate messages most likely to be preferred. However, with larger choice sets, less preferred messages are
consistently generated. Each plot is averaged over one hundred independent simulations. Inclusive learning (c) tends to
generate a message in the less desired set M2 as that set grows.

would expect a similar theoretical result to hold for DPO.
The following proposition formally establishes this.
Proposition 6.5 (DPO failure). Under Assumptions 6.1,
6.2, and 6.3, for all |Y| ≥ 3, if p∗(1) < F (Pπ(M1)) with
F (ζ) = ζ−ζ|Y|

1−ζ|Y|−(1−ζ)|Y| , then as |D| → ∞,

Pπ̂
θ̂
(M1)

p.−→ 0 and Pπ̂
θ̂
(M2)

p.−→ 1,

where θ̂ ∈ argminθ LDPO(π̂θ) if the loss LDPO(π̂θ) has a
minimizer, and θ̂ = 0 otherwise.

To understand what causes these failures, let us consider
as a thought experiment a simplified data generating pro-
cess where each choice set contains the same triple Y =
{y1, y2, y3}, with y1, y2 ∈ M1 and y3 ∈ M2. Since
p∗(1) = 0.6 and p∗(2) = 0.4, choice probabilities gen-
erating the preference data are given by P(Y = 1|Y) =
P(Y = 2|Y) = 0.3 and P(Y = 3|Y) = 0.4. As the
dataset grows, minimizing Lreward(r̂ψ) identifies parame-
ters ψ̂ to match these probabilities, if possible. In particular,

e
r̂
ψ̂

(y1)∑3
i=1 e

r̂
ψ̂

(yi)
= e

r̂
ψ̂

(y2)∑3
i=1 e

r̂
ψ̂

(yi)
= 0.3 and e

r̂
ψ̂

(y3)∑3
i=1 e

r̂
ψ̂

(yi)
= 0.4.

These equations imply that ψ̂2− ψ̂1 = ln(4/3) > 0. Hence,
the estimated reward r̂ψ̂(x) is maximized, as RLPO aims to
do, by generating messages x ∈ M2. DPO is designed to
approximate RLPO and therefore leads to similar behavior.

In our thought experiment, the fact that each choice set had
twice as many more desirable (M1) than the less desirable
(M2) messages biased reward estimates in favor of M2.
This tendency is expressed in the above propositions though
the requirement that F (Pπ(M1)) > p∗(1), with F (·) de-
fined in Propositions 6.4 and 6.5. The baseline policy π is
used to generate choice sets, and perhaps surprisingly, the
fact that it biases samples toward desirable messages leads
to undesirable outcomes.

The root cause is that r̂ψ̂ assumes IIA while the process
generating preferences does not. In our thought experiment,

for example, where P(Y = 1|Y) = P(Y = 2|Y) = 0.3 and
P(Y = 3|Y) = 0.4, if the choice sets were instead to only
contain two alternatives Y = {y2, y3} of different types,
then we would have P(Y = 2|Y) = 0.6 and P(Y = 3|Y) =

0.4, giving rise to different equations e
r̂
ψ̂

(y2)∑3
i=2 e

r̂
ψ̂

(yi)
= 0.6

and e
r̂
ψ̂

(y3)∑3
i=2 e

r̂
ψ̂

(yi)
= 0.4. These new equations imply that

ψ̂2 − ψ̂1 = ln(2/3) < 0, correctly identifying M1 as more
desirable than M2. The irrelevant alternative y1 is able to
distort estimates because the reward model assumes IIA.

6.5. IL and SLiC

IL is designed to produce language models that reflect the
diversity of preferences across the population (Xu et al.,
2023). In particular, IL ought to generate messages in M1

and M2 according to the probabilities 0.6 and 0.4 with
which they are preferred by random individuals. As can
be seen in Figure 2c, this is indeed the case when |Y| = 2
and |M1| = |M2| = 10. However, as the set M2 of
less desired messages grows, the probability Pπ̂

θ̂
(M1) of

generating a more desired message vanishes.

The following proposition formalizes this phenomenon, es-
tablishing that IL fails as D and M2 grow.

Proposition 6.6 (IL failure). Under Assumptions 6.1 and
6.3, if |Y| ≥ 2 and θ̂ minimizes LIL(π̂θ), then for fixed M1,

lim
|D|→∞

P
(

lim
|M2|→∞

Pπ̂
θ̂
(M1) = 0

)
= 1. (8)

To understand what causes the failure, let us consider an-
other thought experiment. Suppose that each choice set
contains two messages Y = {y1, y2}, with y1 ∈ M1

and y2 ∈ M2. Choice probabilities generating the pref-
erence data are given by P(Y = 1|Y) = p∗(1) =
0.6 and P(Y = 2|Y) = p∗(2) = 0.4. As the
dataset grows, minimizing LIL(π̂θ) identifies parameters

6
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θ̂ to match these probabilities, if possible. In particular,
Pπ̂
θ̂
(y1)

Pπ̂
θ̂
(y1)+Pπ̂

θ̂
(y2)

= 0.6 and
Pπ̂
θ̂
(y2)

Pπ̂
θ̂
(y1)+Pπ̂

θ̂
(y2)

= 0.4. This

implies that Pπ̂
θ̂
(y1)/Pπ̂

θ̂
(y2) = 3/2. Since Pπ̂

θ̂
(yi) =

Pπ̂
θ̂
(Mi)/|Mi| for i ∈ {1, 2}, we have

3

2
=
Pπ̂

θ̂
(M1)/|M1|

Pπ̂
θ̂
(M2)/|M2|

=
|M2|
10

·
Pπ̂

θ̂
(M1)

1− Pπ̂
θ̂
(M1)

. (9)

Hence, Pπ̂
θ̂
(M1) = 15/(15 + |M2|). It follows that, as

M2 grows, Pπ̂
θ̂
(M1) vanishes.

While the number of messages in M2 does not influ-
ence how a human would choose between two messages,
(9) implies that it impacts the probabilities Pπ̂

θ̂
(M1) and

Pπ̂
θ̂
(M2) of generating more or less liked messages. The

more equivalent messages there are in M2, the more likely
the resulting fine-tuned language model is to produce less-
liked messages. This is again due to the fact that the model
underlying IL satisfies IIA while the preference data gener-
ating process does not.

A similar reasoning implies that SLiC also experiences the
same type of failure, the proof of which we defer to the
appendix.

Proposition 6.7 (SLiC failure). Under Assumptions 6.1 and
6.3, if |Y| = 2 and θ̂ minimizes LSLiC(π̂θ), for fixed M1,

lim
|D|→∞

P
(

lim
|M2|→∞

Pπ̂
θ̂
(M1) = 0

)
= 1. (10)

This observation suggests that using IL or SLiC to fine-tune
real language models will induce a bias toward generating
longer messages. To see why, suppose there are two ideas
that might be expressed as responses to a prompt, and that
the first requires a about ten words, while the second re-
quires about one thousand words. Suppose that 60% of
the population would prefer the first idea while 40% would
prefer the second. Because the number of ways to express
information scales quickly with the length of message re-
quired to express that information, there are likely to be
many more roughly equivalent expressions of the second
idea than the first. Since IL and SLiC biases generation
toward messages with many equivalent alternatives, the fine-
tuned language model would tend to express the second
idea, even though more people prefer the first idea.

7. Empirical Study
We next demonstrate that the sort of egregious behavior
we have identified manifests when learning reward models
of practical scale from realistic datasets. In particular, we
fit reward models that build on the PaLM 2 (Google et al.,
2023) XXS language model to data generated using GPT-3.5
and GPT-4 (OpenAI, 2023). Each query includes reponses

generated by GPT-3.5 and GPT-4. We additionally use GPT-
4 to simulate choices made by human annotators.

Our results establish that, when training queries each in-
clude a pair of responses, the reward model correctly learns
to assign higher scores to GPT-4 responses. However, when
training queries each include four responses, the reward
model erroneously assigns favorable scores to GPT-3.5 re-
sponses. It is striking that a seemingly innocuous change
to the training query format gives rise to such egregious
behavior. The results are summarized in Figure 3. Before
discussing them in detail, we first describe the datasets, the
reward model architecture, and the training algorithm.

7.1. Preference Datasets

For simplicity, we consider only a single prompt. While
other prompts lead to similar results, we arbitrarily choose
to present results produced by the following prompt, based
on a popular movie last year:

prompt: Did Oppenheimer win a Nobel Prize?

We sample candidate responses using GPT-3.5 and GPT-4
with the temperature parameter of each language model set
to the default value of 1. Here are representative responses:

GPT-3.5 response: No, Oppenheimer did not win the
Nobel Prize.
GPT-4 response: No, Robert Oppenheimer, often
called the “father of the atomic bomb” for his role
in the Manhattan Project, did not win a Nobel Prize.

GPT-3.5 tends to produce concise responses relative to the
more informative ones from GPT-4. From each of these two
language models, we sample 100 responses for training and
validation, and 100 responses for testing. We subsample
from these responses when constructing each training or val-
idation query, or each test sample. We produce two training
sets that differ in the number of alternative responses per
query. The first training set has 2 responses per query, one
from GPT-3.5 and one from GPT-4. The second training
set has 4 responses per query, one from GPT-3.5 and three
from GPT-4. We generate 800 queries for each training set.
Additionally, we generate 200 queries for each validation
set. These are used in tuning hyperparameters to optimize
validation accuracy. We produce a single test dataset made
up of 1000 queries, each with one response from GPT-3.5
and one from GPT-4.

To simulate human annotator choices, we prompt GPT-4
to select its favorite response among a set. We use two
types of prompts, which express preference for concise and
informative responses respectively:

(i) concise choice prompt: Suppose that you are looking
for a concise answer to the following question. Which
response below do you like the best...

7
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(a) Test accuracy of a standard reward model trained on pref-
erence data with 2 or 4 responses per query. The dashed line
indicates a purely random baseline.
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(b) Percentage of test data where the reward model assigns a
higher score to GPT-4’s response.

Figure 3: Standard reward model training can lead to egregious outcomes when training data involves more than two
responses per query.

(ii) informative choice prompt: Suppose that you are try-
ing to learn more about the following question. Which
response below do you like the best...

We find that prompting for a concise choice typically favors
GPT-3.5, while prompting for an informative choice typi-
cally favors GPT-4. When simulating a human annotator,
we sample one of these two types of choice prompts accord-
ing to probabilities 0.3 and 0.7, respectively. Using these
choice prompts, we find that regardless of the number of
responses per query, our simulated human annotators select
responses from GPT-4 approximately 70% of the time.

7.2. Reward Model Architecture and Training

Our reward model builds on the PaLM 2 (Google et al.,
2023) XXS language model. In particular, given a context
formed by concatenating a prompt and a response, we take
the final embedding produced by the base language model
and apply a linear layer to obtain reward. We train the linear
layer, as well as the base language model, to minimize
cross-entropy loss on preference data. For each training
dataset, we train the reward model over 150 gradient steps
using the Adafactor optimizer (Shazeer and Stern, 2018)
with a learning rate of 1e-4 and batch size of 16. The
hyperparameters are tuned to optimize validation accuracy.
We average results over 3 seeds.

7.3. Results

Figure 3a plots the test accuracy of the reward model trained
on queries with 2 or 4 responses. When each training query
includes only a pair of responses, the reward model cor-
rectly selects the preferred response for around 70% of test
samples. However, with four responses per training query,
the test accuracy drops below 50%. In other words, choice
predictions generated by the reward model fare worse than
random guessing. Figure 3b provides more insight into how
learned reward models score responses. Since the majority
of simulated annotators favor GPT-4, we would expect that

the learned reward model assigns higher scores to GPT-4
responses. We see in Figure 3b that, when trained on pair-
wise comparisons, the reward model almost always assigns
higher scores to GPT-4 responses. However, when trained
on queries each with 4 responses, the reward model tends to
erroneously assign higher scores to GPT-3.5 responses.

The culprit here is the IIA assumption made in reward learn-
ing, which is violated by the data as we will now explain.
Intuitively, each simulated human annotator prefers either
concise or informative responses but is relatively indifferent
between alternatives in each of these two categories. Con-
sider a simulated annotator who, when presented with one
concise and one informative response, selects the former
with probability 2/5. Under the IIA assumption, increasing
the number of informative alternatives from one to three
would increase the probability of choosing the concise re-
sponse to 2/3. However, if the annotator is indifferent
between the three informative responses, the probability of
choosing the concise response should remain 2/5, regardless
of whether there are one or three informative alternatives.

8. Closing Remarks
It is worthwhile to think carefully about foundations of
RLHF to inform algorithmic innovation and ultimately pro-
duce reliable AIs. What we have presented, which points
out how the IIA assumption adopted by models underlying
current algorithms can give rise to egregious behavior, offers
one of what will hopefully be many steps in this direction.

The design of RLHF algorithms that mitigate perverse incen-
tives we have identified remains a subject for future research.
Trade-offs between query formats and how feedback is pro-
cessed also deserve further study. For example, while RLPO
can fail when queries present more than two alternatives,
one can heuristically convert a feedback from such a query
to multiple pairwise choices. This could offer more robust
results, though there may be other flaws to this approach.

8



RLHF and IIA: Perverse Incentives

9. Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. While there are many potential soci-
etal consequences of working towards this goal, we don’t
strongly feel that any of which must be specifically high-
lighted here.
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A. Proofs
A.1. RLPO

In this subsection, we provide the proof for Proposition 6.4. We start by defining two key quantities for messages of category
1 in D. First, we let

ρchosen =
1

|D|
∑

(Y,y)∈D

1 (y ∈ M1)

denote the fraction of data in D where the chosen message is in M1. Second, we let

ρdata =
1

|D|
∑

(Y,y)∈D

|Y ∩M1|
|Y|

denote the fraction of messages in D that belong to M1.

Lemma A.1. For all strictly convex functions f : ℜ → ℜ such that f ′(1) < 0, if f(ζ) = 0 for some ζ ∈ ℜ, then
ζ > 1− f(1)

f ′(1) .

Proof. Since f is strictly convex, f(ζ) > f(1) + f ′(1)(ζ − 1). Since f ′(1) < 0, this implies ζ − 1 > − f(1)
f ′(1) .

Lemma A.2. Under Assumption 6.2, if ρdata > ρchosen > 0, then the minimizer ψ̂ of Lreward(r̂ψ) exists and satisfies

ψ̂2 − ψ̂1 >
ρdata − ρchosen

1 + ρdata − ρchosen
.

Proof. Since Lreward is invariant under translations of ψ, without loss of generality, set ψ1 = 0.

Lreward(r̂ψ) = −
∑

(Y,y)∈D

ln
er̂ψ(y)∑

y′∈Y e
r̂ψ(y′)

= −ψ2|D|(1− ρchosen) +
∑

(Y,y)∈D

ln
(
|Y ∩M1|+ |Y ∩M2|eψ2

)
.

Note that this loss function is strictly convex and thus a local minima is also a global minima. Examining the derivative, we
see that ψ̂2, if exists, satisfies ∑

(Y,y)∈D

|Y ∩M1|
|Y ∩M1|+ |Y ∩M2|eψ̂2

− |D|ρchosen = 0.

With a change of variable, let x = eψ2 and

f(x) =
∑

(Y,y)∈D

|Y ∩M1|
|Y ∩M1|+ |Y ∩M2|x

− |D|ρchosen.

Clearly, f(x) is strictly decreasing on ℜ+ and f(x) → −|D|ρchosen as x → ∞. Since ρchosen > 0, there exists a unique
ζ > 0 such that f(ζ) = 0. Thus, ψ̂2 = ln ζ exists. Further, we note that f(x) is strictly convex and f ′(1) < 0. By Lemma
A.1,

ζ > 1− f(1)

f ′(1)
= 1 + |D|(ρdata − ρchosen) · |Y|2

 ∑
(Y,y)∈D

|Y ∩M1| · |Y ∩M2|

−1

> 1 + ρdata − ρchosen. (11)

The result follows from combining Equation (11) and the fact that ln(1 + α) ≥ α
1+α for all α > −1.

For all η > 0, define the high probability event

Eη(D) = {ρdata − ρchosen > η}
⋂

{ρchosen > 0} . (12)

11
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Lemma A.3. Under Assumptions 6.2 and 6.3, if there exists η > 0 such that P(Eη(D)) → 1 as |D| → ∞, then as |D| → ∞,

Pπ̂
θ̂
(M1)

p.−→ 0 and Pπ̂
θ̂
(M2)

p.−→ 1,

where θ̂ minimizes Lpolicy(π̂θ|r̂ψ̂), and ψ̂ ∈ argminψ Lreward(r̂ψ) if the loss Lreward(r̂ψ) has a minimizer, and ψ̂ = 0
otherwise.

Proof. By Lemma A.2, under event Eη(D), ψ̂ = argminψ Lreward(r̂ψ) and ψ̂2 − ψ̂1 >
ρdata−ρchosen

1+ρdata−ρchosen > η
1+η . When

β = 0, π̂θ̂ maximizes reward. Thus, under event Eη(D), Pπ̂
θ̂
(M1) = 0 and Pπ̂

θ̂
(M2) = 1. When β > 0, π̂θ̂ satisfies

Pπ̂
θ̂
(y) =

Pπ(y)e
r̂
ψ̂
(y)|D|/β∑

y′∈M Pπ(y′)e
r̂
ψ̂
(y′)|D|/β .

Under event Eη(D),
Pπ̂

θ̂
(M1)

Pπ̂
θ̂
(M2)

=
p1
p2

· e(ψ̂1−ψ̂2)|D|/β < e−
η

1+η ·
|D|
β .

For all ϵ > 0, there exists N > 0 such that e−
η

1+η ·
|D|
β < ϵ for all |D| > N . In turn, for all β ≥ 0 and ϵ > 0, there exists

N > 0 such that for all |D| > N ,

P

(
Pπ̂

θ̂
(M1)

Pπ̂
θ̂
(M2)

≥ ϵ

)
≤ P (Eη(D)c) .

The proof follows from the fact that P(Eη(D)c) → 0 as |D| → ∞ and Pπ̂
θ̂
(M1) + Pπ̂

θ̂
(M2) = 1.

Finally, we prove that under the dichotomy data assumption, there exists η > 0 such that the event Eη(D) holds with high
probability. Define

I =
{
(Y, y) ∈ D |Y ∩M1 ̸= ∅, Y ∩M2 ̸= ∅

}
as the subset of D that contains messages in both categories. The first lemma below shows that most of the data contain both
categories of messages with high probability.

Lemma A.4. Under Assumption 6.1, if Pπ(M1) ∈ (0, 1), |Y| ≥ 2, then there exists a constant γ = γ(|Y|) ∈ (0, 1) such

that for all |D| > 0, P(|I| ≤ |D|(1− γ)) ≤ e−
|D|(1−γ)γ2

8 .

Proof. Under Assumption 6.1, for each (Y, y) ∈ D, the membership τ of each message y′ ∈ Y follows Bernoulli(Pπ(M1)).
Let s = 1− Pπ(M1)

|Y| − Pπ(M2)
|Y| < 1. Then s equals the probability of sampling both categories of messages in each

datum, and |I| ∼ Binomial(|D|, s). By Chernoff’s bound,

P (|I| ≤ s · |D|s) ≤ e−
|D|s(1−s)2

2 .

Letting γ = 1− s2 ∈ (0, 1), we have s(1− s)2 > (1− γ)γ2/4. Therefore,

P (|I| ≤ |D|(1− γ)) ≤ e−
|D|(1−γ)γ2

8 . (13)

Lemma A.5. Under Assumption 6.1, for all |Y| ≥ 3, if p∗(1) < F (Pπ(M1)) with F (ζ) = ζ−ζ|Y|

1−ζ|Y|−(1−ζ)|Y| , then there
exists η > 0 such that P(Eη(D)) → 1 as |D| → ∞.

Proof. Let δ = F (Pπ(M1))− p∗(1) > 0. Under Assumption 6.1, |Y ∩M1| ∼ Binomial(|Y|, Pπ(M1)), giving

E
[
|Y ∩M1|

|Y|
| (Y, y) ∈ I

]
=

Pπ(M1)− Pπ(M1)
|Y|

1− Pπ(M1)|Y| − Pπ(M2)|Y| = F (Pπ(M1)).

12
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On the other hand,
E [1(y ∈ M1) | (Y, y) ∈ I] = p∗(1).

For (Y, y) /∈ I, observe that |Y∩M1|
|Y| = 1(y ∈ M1). Thus

1

|I|
∑

(Y,y)∈I

|Y ∩M1|
|Y|

− 1

|I|
∑

(Y,y)∈I

1(y ∈ M1) =
|D|
|I|

(ρdata − ρchosen). (14)

By Hoeffding’s inequality,

P

 1

|I|
∑

(Y,y)∈I

|Y ∩M1|
|Y|

− F (Pπ(M1)) ≤ −δ
2
| I

 ≤ e−
|I|δ2

4

P

 1

|I|
∑

(Y,y)∈I

1(y ∈ M1)− p∗(1) ≥
δ

4
| I

 ≤ e−
|I|δ2

8

P

 1

|I|
∑

(Y,y)∈I

1(y ∈ M1)− p∗(1) ≤ −p∗(1)
2

| I

 ≤ e−
|I|p2∗(1)

2 .

A union bound gives

P

 1

|I|
∑

(Y,y)∈I

|Y ∩M1|
|Y|

− 1

|I|
∑

(Y,y)∈I

1(y ∈ M1) >
δ

4

⋂
 1

|I|
∑

(Y,y)∈I

1(y ∈ M1) > 0

 | I


> 1− e−

|I|δ2
4 − e−

|I|δ2
8 − e−

|I|p2∗(1)

2 .

By Lemma A.4, there exists 0 < γ < 1 such that P(|I| ≤ |D|(1− γ)) ≤ e−
|D|(1−γ)γ2

8 . By Equation (14),

P
({

|D|
|I|

(ρdata − ρchosen) >
δ

4

}⋂{
|D|
|I|

ρchosen > 0

}⋂
{|I| > |D|(1− γ))}

)
= P

({
|D|
|I|

(ρdata − ρchosen) >
δ

4

}⋂{
|D|
|I|

ρchosen > 0

}
| |I| > |D|(1− γ))

)
P (|I| > |D|(1− γ)))

>

(
1− e−

|D|(1−γ)δ2
4 − e−

|D|(1−γ)δ2
8 − e−

|D|(1−γ)p2∗(1)

2

)(
1− e−

|D|(1−γ)γ2
8

)
> 1− e−

|D|(1−γ)δ2
4 − e−

|D|(1−γ)δ2
8 − e−

|D|(1−γ)p2∗(1)

2 − e−
|D|(1−γ)γ2

8 .

Let η = (1−γ)δ
4 > 0. It follows that

P (Eη(D)) = P
(
{ρdata − ρchosen > η}

⋂
{ρchosen > 0}

)
≥ P

({
|D|
|I|

(ρdata − ρchosen) >
δ

4

}⋂{
|D|
|I|

ρchosen > 0

}⋂
{|I| > |D|(1− γ))}

)
> 1− e−

|D|(1−γ)δ2
4 − e−

|D|(1−γ)δ2
8 − e−

|D|(1−γ)p2∗(1)

2 − e−
|D|(1−γ)γ2

8 .

The proof follows by taking |D| → ∞.

We are now ready to prove the following failure case for RLPO.

13
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Proposition 6.4 (RLPO failure). Under Assumptions 6.1, 6.2, and 6.3, for all |Y| ≥ 3, if p∗(1) < F (Pπ(M1)) with
F (ζ) = ζ−ζ|Y|

1−ζ|Y|−(1−ζ)|Y| , then, as |D| → ∞,

Pπ̂
θ̂
(M1)

p.−→ 0 and Pπ̂
θ̂
(M2)

p.−→ 1,

where θ̂ minimizes Lpolicy(π̂θ|r̂ψ̂), and ψ̂ ∈ argminψ Lreward(r̂ψ) if the loss Lreward(r̂ψ) has a minimizer, and ψ̂ = 0
otherwise.

Proof. The proof follows from applying Lemmas A.3 and A.5.

A.2. DPO

In Lemma A.6, we show that DPO and RLPO produces the same policy, which then allows us to directly apply the analysis
for RLPO to reach the same conclusion for DPO.

Lemma A.6. If there exists a minimizer r̂ to Lreward, then the optimal policy for LDPO and for Lpolicy(·|r̂) are identical.

Proof. Recall that for any given reward function r, the optimal policy πr for Lpolicy satisfies

Pπr (x) =
Pπ(x)e

r(x)|D|/β∑
x′∈M Pπ(x′)er(x

′)|D|/β . (15)

It follows that

−
∑

(Y,y)∈D

[
ln

(
er(y)∑

y′∈Y e
r(y′)

)]
= −

∑
(Y,y)∈D

[
ln

(Pπr (y)/Pπ(y))
β/|D|∑

y′∈Y (Pπr (y
′)/Pπ(y′))

β/|D|

]
. (16)

Thus the value Lreward(r) equals the value LDPO(πr). Note also that r 7→ πr is surjective.

Suppose r̂ is the minimizer for Lreward. Then πr̂ is the optimal policy obtained by minimizing Lpolicy(·|r̂). If πr̂ is not
optimal for LDPO, then there exists another policy π′ that obtains a strictly lower loss LDPO(π

′). Since r 7→ πr is surjective,
there exists a reward function r′ such that π′ = πr′ . For example, we can take r′(x) = β

|D| ln
Pπ′ (x)
Pπ(x)

, which achieves a
lower reward loss Lreward(r

′) = LDPO(πr′) < LDPO(πr̂) = Lreward(r̂), a contradiction.

Similarly, if π∗ is optimal for LDPO, the corresponding reward r∗(x) = β
|D| ln

Pπ∗ (x)
Pπ(x)

must be optimal for Lreward. The
corresponding optimal policy πr∗ for Lpolicy(·|r∗) then satisfies

Pπr∗ (x) ∝ Pπ(x)e
β

|D| ln
Pπ∗ (x)

Pπ(x)
|D|/β

= Pπ∗(x),

as desired.

Proposition 6.5 (DPO failure). Under Assumptions 6.1, 6.2, and 6.3, for all |Y| ≥ 3, if p∗(1) < F (Pπ(M1)) with
F (ζ) = ζ−ζ|Y|

1−ζ|Y|−(1−ζ)|Y| , then as |D| → ∞,

Pπ̂
θ̂
(M1)

p.−→ 0 and Pπ̂
θ̂
(M2)

p.−→ 1,

where θ̂ ∈ argminθ LDPO(π̂θ) if the loss LDPO(π̂θ) has a minimizer, and θ̂ = 0 otherwise.

Proof. By Lemma A.6, if ψ̂ is as defined in Proposition 6.4, then ψ̂ = argminψ Lreward(r̂ψ) and we have θ̂ =
argminθ LDPO(π̂θ) = argminθ Lpolicy(π̂θ|r̂ψ̂). The proof follows from Proposition 6.4.

14
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A.3. Inclusive Learning

In this subsection, we prove Proposition 6.6. We start by defining two key sets that describe messages in D. Recall that in
the proof for Proposition 6.4, we defined

I =
{
(Y, y) ∈ D |Y ∩M1 ̸= ∅, Y ∩M2 ̸= ∅

}
.

To facilitate the exposition, we also define

Iτ = {(Y, y) ∈ I | y ∈ Mτ} for τ = 1, 2

to be the set of data in I where a message of category τ is chosen. We first prove the following lemma that characterizes the
optimal solution for a class of convex loss functions.
Lemma A.7. Suppose that for all m > 0, the loss L(x;m) : (0, 1) → ℜ is convex in x, L(xm;m) = minx L(x;m), and
there exists M > 0 such that for all m > M ,

∂L(x;m)

∂x
< 0.

Then limm→∞ xm = 1.

Proof. Since L(x;m) is convex on (0, 1), its local minima is also a global minima. For all m > M , L is strictly decreasing
for x ∈ (0, 1), so limm→∞ xm = 1.

Then, we define the high probability event

E(D) = {|I1| > 1} ∩
{
|I2| > max{1 + β, 2β ln

p∗(2)

p∗(1)
}
}
.

Lemma A.8. Under Assumption 6.3, for all fixed M1 and D such that E(D) holds, if θ̂ minimizes LIL(π̂θ), then

Pπ̂
θ̂
(M1) → 0 and Pπ̂

θ̂
(M2) → 1

as the size of M2 grows.

Proof. First, we notice that LIL(π̂θ) is strongly convex for β > 0 and LIL(π̂θ) → ∞ as ∥θ∥2 → ∞, thus a minimizer for
LIL(π̂θ) exists and is unique. Let m = |M2|

|M1| and q = Pπ̂θ (M2). The loss function can be written in terms of m and q as

L(q,m) = LIL(π̂θ) = −
∑

(Y,y)∈D

ln
m(1− q) · 1M1(y) + q · 1M2(y)

m(1− q) · |Y ∩M1|+ q · |Y ∩M2|
+ β

[
(1− q) ln

1− q

p∗(1)
+ q ln

q

p∗(2)

]
. (17)

Taking the partial derivative with respect to q, under the event E(D),

∂L(q,m)

∂q
=

∑
(Y,y)∈I

|Y ∩M2|
m(1− q)2|Y ∩M1|+ q(1− q)|Y ∩M2|

−
∑

(Y,y)∈I2

(
1

q
+

1

1− q

)
+ β

(
ln

q

1− q
+ ln

p∗(1)

p∗(2)

)
(a)
<

∑
(Y,y)∈I

|Y ∩M2|
m(1− q)2|Y ∩M1|+ q(1− q)|Y ∩M2|

− |I2|
q

− |I2|
1− q

+
β

1− q
+

|I2|
2

(b)
<

∑
(Y,y)∈I

|Y ∩M2|
m(1− q)2|Y ∩M1|+ q(1− q)|Y ∩M2|

− |I2|
2q

− 1

1− q
,

where (a) follows from |I2| > 2β ln p∗(2)
p∗(1)

and ln q
1−q <

1
1−q , and (b) follows from |I2| > 1 + β and q < 1. For all

0 < q < 1, the first term is always positive and converges to 0 as m→ ∞. Thus, there exists an M > 0 such that for all
m > M ,

∑
(Y,y)∈I

|Y∩M2|
m(1−q)2|Y∩M1|+q(1−q)|Y∩M2| <

|I2|
2q . This implies that

∂L(q,m)

∂q
< − 1

1− q
< 0.

The proof follows from applying Lemma A.7.
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Finally, we prove that under the dichotomy data assumption, the event E(D) holds with high probability.

Lemma A.9. Under Assumption 6.1, if |Y| ≥ 2, then for fixed M1, P(E(D)) → 1 as |M2| → ∞.

Proof. By Lemma A.4, there exists a constant γ ∈ (0, 1) such that for all |D| > 0, P(|I| ≤ |D|(1 − γ)) ≤ e−
|D|(1−γ)γ2

8 .
Let ϵ(β) = max{β + 1, 2β ln p∗(1)

p∗(2)
}, then E[1(y ∈ M2) | (Y, y) ∈ I] = p∗(2). By Hoeffding’s inequality,

P

 ∑
(Y,y)∈I

1(y ∈ M2)− |I| · p∗(2) ≤ ϵ(β)− |I| · p∗(2) | I

 ≤ e−2
(ϵ(β)−|I|p∗(2))2

|I| < e−2|I|p2∗(2)+4ϵ(β)p∗(2)

P

 ∑
(Y,y)∈I

1(y ∈ M1)− |I| · p∗(1) ≤ 1− |I| · p∗(1) | I

 ≤ e−2
(1−|I|p∗(2))2

|I| < e−2|I|p2∗(2)+4p∗(2).

Following a similar argument as that in the proof for Lemma A.5, we have

P(E(D)) ≥ P ({|I| > |D|(1− γ)} ∩ {|I1| > 1} ∩ {|I2| > ϵ(β)})

≥ 1− e−
|D|(1−γ)γ2

8 − e−2|D|(1−γ)p2∗(2)+4ϵ(β)p∗(2) − e−2|D|(1−γ)p2∗(2)+4p∗(2).

The proof follows by taking |M2| → ∞.

Finally, we prove the following failure case for inclusive learning.

Proposition 6.6 (IL failure). Under Assumptions 6.1 and 6.3, if |Y| ≥ 2 and θ̂ minimizes LIL(π̂θ), then for fixed M1,

lim
|D|→∞

P
(

lim
|M2|→∞

Pπ̂
θ̂
(M1) = 0

)
= 1. (8)

Proof. The proof follows from applying Lemmas A.8 and A.9, and noticing that P(lim|M2|→∞ Pπ̂
θ̂
(M1) = 0) ≥

P(E(D)).

A.4. SLiC

The proof for Proposition 6.7 is similar to that for Proposition 6.6. We present the proof here.

Lemma A.10. Under Assumption 6.3, if |Y| = 2, for all fixed M1 and D such that E(D) holds, if θ̂ minimizes LSLiC(π̂θ),
then

Pπ̂
θ̂
(M1) → 0 and Pπ̂

θ̂
(M2) → 1

as the size of M2 grows.

Proof. First, we notice that LSLiC(π̂θ) is strongly convex for β > 0 and LSLiC(π̂θ) → ∞ as ∥θ∥2 → ∞, thus a minimizer
for LSLiC(π̂θ) exists and is unique. Let m = |M2|

|M1| and q = Pπ̂θ (M2). When |Y| = 2, the loss function can be written in
terms of m and q as

L(q,m) = LSLiC(π̂θ) =
∑

(Y,y)∈D

[
ln

(
m(1− q)

q
1M1

(y) · 1M2
(Y \ {y}) + q

m(1− q)
1M2

(y) · 1M1
(Y \ {y})

)
+ δ

]
+

+ β

[
(1− q) ln

1− q

p∗(1)
+ q ln

q

p∗(2)

]
.

Let h(q,m) = ln
m(1−q)·1M1

(y)+q·1M2
(y)

q·1M2
(Y\{y})+m(1−q)·1M1

(Y\{y}) + δ. We have that

∂h(q,m)

∂q
= −m

q2
1M1

(y) · 1M2
(Y \ {y}) + 1

m(1− q)2
1M2

(y) · 1M1
(Y \ {y}).
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For any fixed q ∈ (0, 1), when m is large enough, m(1−q)
q > e−δ and q

m(1−q) < e−δ. Consequently, when m is large
enough,

∂L(q,m)

∂q
= −

∑
(Y,y)∈I1

m

q2
+ β

(
(1− q) ln

1− q

p∗(1)
+ q ln

q

p∗(2)

)
< 0.

The proof follows by applying Lemma A.7.

With this, we are ready to prove the failure case for SLiC-HF.

Proposition 6.7 (SLiC failure). Under Assumptions 6.1 and 6.3, if |Y| = 2 and θ̂ minimizes LSLiC(π̂θ), for fixed M1,

lim
|D|→∞

P
(

lim
|M2|→∞

Pπ̂
θ̂
(M1) = 0

)
= 1. (10)

Proof. The proof follows from applying Lemmas A.10 and A.9, and noticing that P(lim|M2|→∞ Pπ̂
θ̂
(M1) = 0) ≥

P(E(D)).
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