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Abstract

We show a close connection between the mixing time of a broad class of Markov1

processes with generator L and stationary distribution p, and an appropriately2

chosen generalized score matching loss that tries to fit Op
p . In the special case3

of O = ∇x, and L being the generator of Langevin diffusion, this generalizes4

and recovers the results from Koehler et al. [2022]. This allows us to adapt5

techniques to speed up Markov chains to construct better score-matching losses.6

In particular, “preconditioning” the diffusion can be translated to an appropriate7

“preconditioning” of the score loss. Lifting the chain by adding a temperature like8

in simulated tempering can be shown to result in a Gaussian-convolution annealed9

score matching loss, similar to Song and Ermon [2019]. Moreover, we show that10

if the distribution being learned is a finite mixture of Gaussians in d dimensions11

with a shared covariance, the sample complexity of annealed score matching is12

polynomial in the ambient dimension, the diameter of the means, and the smallest13

and largest eigenvalues of the covariance—obviating the Poincaré constant-based14

lower bounds of the basic score matching loss shown in Koehler et al. [2022].15

1 Introduction16

Energy-based models (EBMs) are parametric families of probability distributions parametrized up17

to a constant of proportionality, namely pθ(x) ∝ exp(Eθ(x)) for some energy function Eθ(x).18

Fitting θ from data by using the standard approach of maximizing the likelihood of the training data19

with a gradient-based method requires evaluating ∇θ logZθ = Epθ
[∇θEθ(x)] — which cannot be20

done in closed form, and instead Markov Chain Monte Carlo methods are used. Score matching21

[Hyvärinen, 2005] obviates the need to estimate a partition function, by instead fitting the score of22

the distribution ∇x log p(x). While there is algorithmic gain, the statistical cost can be substantial. In23

recent work, Koehler et al. [2022] show that score matching is statistically much less efficient (i.e. the24

estimation error, given the same number of samples is much bigger) than maximum likelihood when25

the distribution being estimated has poor isoperimetric properties (i.e. a large Poincaré constant).26

However, even very simple multimodal distributions like a mixture of two Gaussians with far away27

means—have a very large Poincaré constant. As many distributions of interest (e.g. images) are28

multimodal in nature, the score matching estimator is likely to be statistically untenable.29

The seminal paper by Song and Ermon [2019] proposes a way to deal with multimodality and30

manifold structure in the data by annealing: namely, estimating the scores of convolutions of the data31

distribution with different levels of Gaussian noise. The intuitive explanation they propose is that32

the distribution smoothed with more Gaussian noise is easier to estimate (as there are no parts of33

the distribution that have low coverage by the training data), which should help estimate the score34

at lower levels of Gaussian noise. However, making this either quantitative or formal seems very35

challenging.36
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In this paper, we show that there is a deep connection between the mixing time of a broad class of37

continuous, time-homogeneous Markov processes with stationary distribution p and generator L, and38

the statistical efficiency of an appropriately chosen generalized score matching loss [Lyu, 2012] that39

tries to match Op
p . This “dictionary” allows us to design score losses with better statistical behavior,40

by adapting techniques for speeding up Markov chain convergence — e.g. preconditioning a diffusion41

and lifting the chain by introducing additional variables. To summarize our contributions:42

1. A general framework for designing generalized score matching losses with good sample com-43

plexity from fast-mixing diffusions. Precisely, for a broad class of diffusions with generator L44

and Poincaré constant CP , we can choose a linear operator O, such that the generalized score45

matching loss 1
2Ep

∥∥∥Op
p − Opθ

pθ

∥∥∥2
2

has statistical complexity that is a factor C2
P worse than that46

of maximum likelihood. (Recall, CP characterizes the mixing time of the Markov process with47

generator L in chi-squared distance.) In particular, for diffusions that look like “preconditioned”48

Langevin, this results in “appropriately preconditioned” score loss.49

2. We analyze a lifted diffusion, which introduces a new variable for temperature and provably50

show statistical benefits of annealing for score matching. Precisely, we exhibit continuously-51

tempered Langevin, a Markov process which mixes in time poly(D, d, 1/λmin, λmax) for finite52

mixtures of Gaussians in ambient dimension d with identical covariances whose smallest and53

largest eigenvalues are lower and upper bounded by λmin and λmax respectively, and means54

lying in a ball of radius D. (Note, the bound has no dependence on the number of components.)55

Moreover, the corresponding generalized score matching loss is a form of annealed score matching56

loss [Song and Ermon, 2019, Song et al., 2020], with a particular choice of weighing for the57

different amounts of Gaussian convolution. This is the first result formally showing the statistical58

benefits of annealing for score matching.59

Our work draws on and brings together, theoretical developments in understanding score matching,60

as well as designing and analyzing faster-mixing Markov chains based on strategies in annealing. We61

discuss these related lines of work here in Appendix J.62

2 Preliminaries63

The conventional score-matching objective [Hyvärinen, 2005] is defined as64

DSM (p, q) =
1

2
Ep ∥∇x log p−∇x log q∥22 =

1

2
Ep

∥∥∥∥∇xp

p
− ∇xq

q

∥∥∥∥2
2

(1)

Note, in this notation, the expression is asymmetric: p is the data distribution, q is the distribution that65

is being fit. Written like this, it is not clear how to minimize this loss, when we only have access to66

data samples from p. The main observation of Hyvärinen [2005] is that the objective can be rewritten67

(using integration by parts) in a form that is easy to fit given samples:68

DSM (p, q) = EX∼p

[
Tr∇2

x log q +
1

2
∥∇x log q∥2

]
+Kp (2)

where Kp is some constant independent of q. Generalized Score Matching, first introduced in Lyu69

[2012], generalizes ∇x to an arbitrary linear operator O:70

Definition 1. Let F1 and Fm be the space of all scalar-valued and m-variate functions of x ∈ Rd,71

respectively. The Generalized Score Matching (GSM) loss with a general linear operator O : F1 →72

Fm is defined as DGSM (p, q) = 1
2Ep

∥∥∥Op
p − Oq

q

∥∥∥2
2
.73

In this paper, we will be considering operators O, such that (Og)(x) = B(x)∇g(x). In other words,74

the generalized score matching loss will have the form:75

DGSM (p, q) =
1

2
Ep ∥B(x) (∇x log p−∇x log q)∥22 (3)

This can intuitively be thought of as a “preconditioned” version of the score matching loss, notably76

with a preconditioner function B(x) that is allowed to change at every point x. The generalized score77

matching loss can also be turned into an expression that doesn’t require evaluating the pdf of the data78

distribution (or gradients thereof), using a similar “integration-by-parts” identity: For the special case79

of the family of operators O in (3), the objective has the form (the proof is provided in Appendix B):80
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Lemma 1 (Integration by parts for the GSM in (3)). The generalized score matching objective in (3)81

satisfies DGSM (p, q) = 1
2

[
Ep∥B(x)∇x log q(x)∥2 + 2Epdiv

(
B(x)2∇x log q(x)

)]
+Kp.82

We also introduce some key definitions related to diffusion processes. More detailed preliminaries83

are in Section A.84

Definition 2 (Markov semigroup). We say that a family of functions {Pt(x, y)}t≥0 on a state space85

Ω is a Markov semigroup if Pt(x, ·) is a distribution on Ω and Pt+s(x, dy) =
∫
Ω
Pt(x, dz)Ps(z, dy).86

for all x, y ∈ Ω and s, t ≥ 0. Finally, we say that p(x) is a stationary distribution if X0 ∼ p implies87

that Xt ∼ p for all t.88

A particularly important class of time-homogeneous Markov processes is given by Itô diffusions,89

namely stochastic differential equations of the form dXt = b(Xt)dt+ σ(Xt)dBt for a drift function90

b, and a diffusion coefficient function. In fact, a classical result due to Dynkin (Rogers and Williams91

[2000], Theorem 13.3) states that any “sufficiently regular” time-homogeneous Markov process92

(specifically, a process whose semigroup is Feller-Dynkin) can be written in the above form. We93

will be interested in Itô diffusions, whose stationary distribution is a given distribution p(x) ∝94

exp(−f(x)). Perhaps the most well-known example of such a diffusion is Langevin diffusion,95

namely dXt = −∇f(Xt)dt+
√
2dBt. In fact, a completeness result due to Ma et al. [2015] states96

that we can characterize all Itô diffusions whose stationary distribution is p(x) ∝ exp(−f(x)):97

Theorem 1 (Itô diffusions with a given stationary distribution, Ma et al. [2015]). Any Itô diffusion98

with stationary distribution p(x) ∝ exp(−f(x)) can be written in the form:99

dXt = (−(D(Xt) +Q(Xt))∇f(Xt) + Γ(Xt)) dt+
√

2D(Xt)dBt (4)

where ∀x ∈ Rd, D(x) ∈ Rd×d is a positive-definite matrix, ∀x ∈ Rd, Q(x) is a skew-symmetric100

matrix, D,Q are differentiable, and Γi(x) :=
∑

j ∂j(Dij(x) +Qij(x)).101

Intuitively, D(x) can be viewed as “reshaping” the diffusion, whereas Q and Γ are “correction terms”102

to the drift so that the stationary distribution is preserved. Versions of the SDEs we consider have103

appeared in the literature under various names, e.g., Riemannian Langevin [Girolami and Calderhead,104

2011] and preconditioned Langevin [Hairer et al., 2007, Beskos et al., 2008], Fisher-adaptive Langevin105

[Titsias, 2023]. We finally recall a few objects related to the mixing time of Markov processes:106

Definition 3. The generator L corresponding to Markov semigroup is Lg = limt→0
Ptg−g

t . Moreover,107

if p is the unique stationary distribution, the Dirichlet form and the variance are respectively108

E(g, h) = −Ep⟨g,Lh⟩ and Varp(g) = Ep(g − Epg)
2 and denote E(g) := E(g, g)

Definition 4 (Poincaré inequality). A continuous-time Markov process satisfies a Poincaré inequality109

with constant C if for all functions g such that E(g) is defined (finite), we have E(g) ≥ 1
CVarp(g).110

We will abuse notation, and for a Markov process with stationary distribution p, denote by CP the111

Poincaré constant of p, the smallest C such that above Poincaré inequality is satisfied.112

The Poincaré inequality implies exponential ergodicity for the χ2-divergence, namely: χ2(pt, p) ≤113

e−2t/CPχ2(p0, p) where p is the stationary distribution of the chain and pt is the distribution after114

running the Markov process for time t, starting at p0.115

3 Main results116

The first main result is a general framework that provides a bound on the sample complexity of a117

generalized score matching objective under the assumption that an appropriate Markov process mixes118

fast. We let n denote the number of samples, and Ê will denote an empirical average, that is the119

expectation over the n training samples. We show:120

Theorem 2 (Main, sample complexity bound). Consider an Itô diffusion of the form (4) with121

stationary distribution p(x) ∝ exp(−f(x)) and Poincaré constant CP with respect to the generator122

of the Itô diffusion. Consider the generalized score matching loss with operator (Og)(x) :=123 √
D(x)∇g(x), namely DGSM (p, q) = 1

2Ep

∥∥∥√D(x) (∇x log p−∇x log q)
∥∥∥2
2
. Suppose we are124

optimizing this loss over a parametric family {pθ : θ ∈ Θ} satisfying:125
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1. (Asymptotic normality) Let Θ∗ be the set of global minima of the generalized score matching loss126

DGSM , that is Θ∗ = {θ∗ : DGSM (p, pθ∗) = minθ∈Θ DGSM (p, pθ)}. Suppose the generalized127

score matching loss is asymptotically normal: namely, for every θ∗ ∈ Θ∗, and every sufficiently128

small neighborhood S of θ∗, there exists a sufficiently large n, such that there is a unique minimizer129

θ̂n of Êlθ(x) in S, where1 lθ(x) := 1
2

[
∥
√

D(x)∇x log pθ(x)∥2 + 2div (D(x)∇x log pθ(x))
]
.130

Furthermore, assume θ̂n satisfies
√
n(θ̂n − θ∗)

d−→ N (0,ΓSM ).131

2. (Realizibility) At any θ∗ ∈ Θ∗, we have pθ∗ = p.132

Then, we have:∥ΓSM∥OP ≤ 2C2
P ∥ΓMLE∥

2
OP [∥cov(∇θ∇x log pθ(x)D(x)∇x log pθ(x))∥OP

+ ∥cov(∇θ∇x log pθ(x)
⊤div(D(x)))∥OP + ∥cov(∇θ Tr[D(x)∇2

x log pθ(x))∥OP ]

133 The two terms on the right hand sides qualitatively capture two intuitive properties needed for good134

sample complexity: the factor involving covariances can be thought of as a smoothness term capturing135

the regularity of the score; the CP term captures how the error compounds as we “extrapolate” the136

score into a probability density. Note that if we know
√
n(θ̂n − θ∗)

d−→ N (0,ΓSM ), we can extract137

bounds on the expected ℓ22 distance between θ̂n and θ∗. Namely, from Markov’s inequality (see e.g.,138

Remark 4 in Koehler et al. [2022]), we have for sufficiently large n, with probability at least 0.99 it139

holds that ∥θ̂n − θ∗∥22 ≤ Tr(ΓSM )
n .140

The second result is translating another technique used to speed up Markov chains to statistical benefits141

of score matching: “lifting” the Markov chain by introducing additional variables (e.g., momentum142

in underdamped Langevin, temperature in tempering techniques) can be used to design better score143

losses to deal with multimodality in the data distribution. Precisely, we introduce a diffusion we call144

Continuously Tempered Langevin Dynamics, and we show it mixes in time poly(D, d) for a mixture145

of K Gaussians (with identical covariance) in d dimensions, and means in a ball of radius D, with no146

dependence on the number of components K. Precisely:147

Assumption 1. Let p0 := N (0,Σ). We will assume the data distribution p is a K-Gaussian148

mixture p =
∑K

i=1 wipi, where pi(x) = p0(x − µi), i.e. a shift of the distribution p0 so its149

mean µi. We assume maxi ∥µi∥2 ≤ D and denote λmin := λmin(Σ), λmax := λmax(Σ), wmin :=150

mini wi, wmax := maxi wi. Let Σβ := Σ + βλminId.151

Note, mixtures of Gaussians are universal approximators, if we consider a mixture with sufficiently152

many components [Alspach and Sorenson, 1972]. Note also we are just saying that the data distribu-153

tion p can be described as a mixture of Gaussians, we are not saying anything about the parametric154

family we are fitting when optimizing the score matching loss. We will consider the following SDE:155

Definition 5 (Continuously Tempered Langevin Dynamics (CTLD)). We will consider an SDE over a156

temperature-augmented state space, that is a random variable (Xt, βt), Xt ∈ Rd, βt ∈ R+, defined157

as158 {
dXt = ∇x log p

β(Xt)dt+
√
2dBt

dβt = ∇β log r(βt)dt+∇β log p
β(Xt)dt+ νtL(dt) +

√
2dBt

where r : [0, βmax] → R is defined as r(β) ∝ exp
(
− 7D2

λmin(1+β)

)
, βmax := 14D2

λmin
− 1, and pβ :=159

p ∗ N (0, βλminId). L(dt) is a measure supported on the boundary of the interval [0, βmax] and νt is160

the unit normal at the endpoints of the interval, s.t. the stationary distribution is p(x, β) = r(β)pβ(x)161

[Saisho, 1987].162

The main result on the mixing time of CTLD is the following:163

Theorem 3 (Poincaré constant of CTLD). Under Assumption 1, the Poincaré constant of CTLD CP164

enjoys the upper bound CP ≲ D22d2λ9
maxλ

−2
min.165

Leveraging our “dictionary” between mixing time and sample complexity of generalized score166

matching losses, we can show an asymptotic sample complexity bound for the corresponding167

score matching loss, which scales polynomially in D, d, λmax, 1/λmin, circumventing the Poincaré168

constant-based lower bounds of basic score matching in Koehler et al. [2022]. Due to space constraints,169

the details and formal statement are relegated to Appendix D.170

1The notation divD(x) denotes the divergence of the vector field Rd → Rd, s.t. divD(x)i =
∑

j ∂jDji(x)
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A Preliminaries327

A.1 Markov Chain Decomposition Theorems328

Our mixing time bounds for the Continuously Tempered Langevin Dynamics will heavily use329

decomposition theorems to bound the Poincaré constant. These results “decompose” the Markov330

chain by partitioning the state space into sets, such that: (1) the mixing time of the Markov chain331

inside the sets is good; (2) the “projected” chain, which transitions between sets with probability332

equal to the probability flow between sets, also mixes fast.333

In particular, we recall the following two results:334

Theorem 4 (Decomposition of Markov Chains, Theorem 6.1 in Ge et al. [2018]). Let M = (Ω,L)335

be a continuous-time Markov chain with stationary distribution p and Dirichlet form E(g, g) =336

−⟨g,Lg⟩p. Suppose the following hold.337

1. The Dirichlet form for L decomposes as ⟨f,Lg⟩p =
∑m

j=1 wj⟨f,Ljg⟩pj
, where338

p =

m∑
j=1

wjpj

and Lj is the generator for some Markov chain Mj on Ω with stationary distribution pj .339

2. (Mixing for each Mj) The Dirichlet form Ej(f, g) = −⟨f,Lg⟩pj satisfies the Poincaré inequality340

Varpj (g) ≤ CEj(g, g).

3. (Mixing for projected chain) Define the χ2-projected chain M̄ as the Markov chain on [m]341

generated by L̄, where L̄ acts on g ∈ L2([m]) by342

L̄ḡ(j) =
∑

1≤k≤m,k ̸=j

[ḡ(k)− ḡ(j)]P̄ (j, k), where P̄ (j, k) =
wk

max{χ2(pj , pk), χ2(pk, pj), 1}
.

Let p̄ be the stationary distribution of M̄ . Suppose M̄ satisfies the Poincaré inequality Varp̄(ḡ) ≤343

C̄Ē(g, g).344

Then M satisfies the Poincaré inequality345

Varp(g) ≤ C

(
1 +

C̄

2

)
E(g, g).

346

The Poincaré constant bounds we will prove will also use a “continuous” version of the decomposition347

Theorem 4, which also appeared in Ge et al. [2018]:348

Theorem 5 (Continuous decomposition theorem, Theorem D.3 in Ge et al. [2018]). Consider a349

probability measure π with C1 density on Ω = Ω(1) × Ω(2), where Ω(1) ⊆ Rd1 and Ω(2) ⊆ Rd2 are350

closed sets. For X = (X1, X2) ∼ P with probability density function p (i.e., P (dx) = p(x) dx and351

P (dx2|x1) = p(x2|x1) dx2), suppose that352

• The marginal distribution of X1 satisfies a Poincaré inequality with constant C1.353

• For any x1 ∈ Ω(1), the conditional distribution X2|X1 = x1 satisfies a Poincaré inequality354

with constant C2.355

Then π satisfies a Poincaré inequality with constant356

C̃ = max

{
C2

(
1 + 2C1

∥∥∥∥∫
Ω(2)

∥∇x1
p(x2|x1)∥2

p(x2|x1)
dx2

∥∥∥∥
L∞(Ω(1))

)
, 2C1

}
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A.2 Asymptotic efficiency357

We will need a classical result about asymptotic convergence of M-estimators, under some mild358

identifiability and differentiability conditions. For this section, n will denote the number of samples,359

and Ê will denote an empirical average, that is the expectation over the n training samples. The360

following result holds:361

Lemma 2 (Van der Vaart [2000], Theorem 5.23). Consider a loss L : Θ 7→ R, such that L(θ) =362

Ep[ℓθ(x)] for lθ : X 7→ R. Let Θ∗ be the set of global minima of L, that is363

Θ∗ = {θ∗ : L(θ∗) = min
θ∈Θ

L(θ)}

Suppose the following conditions are met:364

• (Gradient bounds on lθ) The map θ 7→ lθ(x) is measurable and differentiable at every
θ∗ ∈ Θ∗ for p-almost every x. Furthermore, there exists a function B(x), s.t. EB(x)2 < ∞
and for every θ1, θ2 near θ∗, we have:

|lθ1(x)− lθ2(x)| < B(x)∥θ1 − θ2∥2

• (Twice-differentiability of L) L(θ) is twice-differentiable at every θ∗ ∈ Θ∗ with Hessian365

∇2
θL(θ

∗), and furthermore ∇2
θL(θ

∗) ≻ 0.366

• (Uniform law of large numbers) The loss L satisfies a uniform law of large numbers, that is367

sup
θ∈Θ

∣∣∣Êlθ(x)− L(θ)
∣∣∣ p−→ 0

Then, for every θ∗ ∈ Θ∗, and every sufficiently small neighborhood S of θ∗, there exists a sufficiently368

large n, such that there is a unique minimizer θ̂n of Êlθ(x) in S. Furthermore, θ̂n satisfies:369

√
n(θ̂n − θ∗)

d−→ N
(
0, (∇2

θL(θ
∗))−1Cov(∇θℓ(x; θ

∗))(∇2
θL(θ

∗))−1
)

A.3 Hermite Polynomials370

To obtain polynomial bounds on the moments of derivatives of Gaussians, we will use the known371

results on multivariate Hermite polynomials.372

Definition 6 (Hermite polynomial, [Holmquist, 1996]). The multivariate Hermite polynomial of373

order k corresponding to a Gaussian with mean 0 and covariance Σ is given by the Rodrigues374

formula:375

Hk(x; Σ) = (−1)k
(Σ∇x)

⊗kϕ(x; Σ)

ϕ(x; Σ)

where ϕ(x; Σ) is the pdf of a d-variate Gaussian with mean 0 and covariance Σ, and ⊗ denotes the376

Kronecker product.377

Note that ∇⊗k
x can be viewed as a formal Kronecker product, so that ∇⊗k

x f(x), where f : Rd → R378

is a Ck-smooth function gives a dk-dimensional vector consisting of all partial derivatives of f of379

order up to k.380

Proposition 1 (Integral representation of Hermite polynomial, [Holmquist, 1996]). The Hermite381

polynomial Hk defined in Definition 6 satisfies the integral formula:382

Hk(x; Σ) =

∫
(x+ iu)⊗kϕ(u; Σ)du

where ϕ(x; Σ) is the pdf of a d-variate Gaussian with mean 0 and covariance Σ.383

Note, the Hermite polynomials are either even functions or odd functions, depending on whether k is384

even or odd:385

Hk(−x; Σ) = (−1)kHk(x; Σ) (5)
This property can be observed from the Rodrigues formula, the fact that ϕ(·; Σ) is symmetric around386

0, and the fact that ∇−x = −∇x.387

We establish the following relationship between Hermite polynomial and (potentially mixed) deriva-388

tives in x and µ, which we will use to bound several smoothness terms appearing in Section H.389
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Lemma 3. If ϕ(x; Σ) is the pdf of a d-variate Gaussian with mean 0 and covariance Σ, we have:390

∇k1
µ ∇k2

x ϕ(x− µ; Σ)

ϕ(x− µ; Σ)
= (−1)k2Eu∼N (0,Σ)[Σ

−1(x− µ+ iu)]⊗(k1+k2)

where the left-hand-side is understood to be shaped as a vector of dimension Rdk1+k2 .391

Proof. Using the fact that ∇x−µ = ∇x in Definition 6, we get:392

Hk(x− µ; Σ) = (−1)k
(Σ∇x)

⊗kϕ(x− µ; Σ)

ϕ(x− µ; Σ)

Since the Kronecker product satisfies the property (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD), we have393

(Σ∇x)
⊗k = Σ⊗k∇⊗k

x . Thus, we have:394

∇k
xϕ(x− µ; Σ)

ϕ(x− µ; Σ)
= (−1)k(Σ−1)⊗kHk(x− µ; Σ) (6)

Since ϕ(µ− x; Σ) is symmetric in µ and x, taking derivatives with respect to µ we get:395

Hk(µ− x; Σ) = (−1)k
(Σ∇µ)

kϕ(µ− x; Σ)

ϕ(µ− x; Σ)

Rearranging again and using (5), we get:396

∇k
µϕ(x− µ; Σ)

ϕ(x− µ; Σ)
= (Σ−1)⊗kHk(x− µ; Σ) (7)

Combining (6) and (7), we get:397

∇k1
µ ∇k2

x ϕ(x− µ; Σ)

ϕ(x− µ; Σ)
= (−1)k2

∇k1
µ [(Σ−1)⊗k2Hk2(x− µ; Σ)ϕ(x− µ; Σ)]

ϕ(x− µ; Σ)

= (−1)k2
∇k1

µ [∇k2
µ ϕ(x− µ; Σ)]

ϕ(x− µ; Σ)

= (−1)k2
∇k1+k2

µ ϕ(x− µ; Σ)

ϕ(x− µ; Σ)

= (−1)k2(Σ−1)⊗(k1+k2)Hk1+k2(x− µ; Σ)

Applying the integral formula from Proposition 1, we have:398

∇k1
µ ∇k2

x ϕ(x− µ; Σ)

ϕ(x− µ; Σ)
= (−1)k2

∫
[Σ−1(x− µ+ iu)]⊗(k1+k2)ϕ(u; Σ) du

as we needed.399

Now we are ready to obtain an explicit polynomial bound for the mixed derivatives for a multivariate400

Gaussian with mean µ and covariance Σ. We have the following bounds:401

Lemma 4. If ϕ(x; Σ) is the pdf of a d-variate Gaussian with mean 0 and covariance Σ, we have:402 ∥∥∥∥∥∇k1
µ ∇k2

x ϕ(x− µ; Σ)

ϕ(x− µ; Σ)

∥∥∥∥∥
2

≲ ∥Σ−1(x− µ)∥k1+k2
2 + d(k1+k2)/2λ

−(k1+k2)/2
min

where the left-hand-side is understood to be shaped as a vector of dimension Rdk1+k2 .403

Proof. We start with Lemma 3 and use the convexity of the norm404 ∥∥∥∥∥∇k1
µ ∇k2

x ϕ(x− µ; Σ)

ϕ(x− µ; Σ)

∥∥∥∥∥
2

≤ Eu∼N (0,Σ)∥[Σ−1(x− µ+ iu)]⊗(k1+k2)∥2
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Bounding the right-hand side, we have:405

Eu∼N (0,Σ)∥[Σ−1(x− µ+ iu)]⊗(k1+k2)∥2 ≲ ∥Σ−1(x− µ)∥k1+k2
2 + Eu∼N (0,Σ)∥Σ−1u∥k1+k2

2

= ∥Σ−1(x− µ)∥k1+k2
2 + Ez∼N (0,Id)∥Σ

− 1
2 z∥k1+k2

2

≤ ∥Σ−1(x− µ)∥k1+k2
2 + ∥Σ− 1

2 ∥k1+k2

OP Ez∼N (0,Id)∥z∥
k1+k2
2

Applying Lemma 28 yields the desired result.406

Similarly, we can bound mixed derivatives involving a Laplacian in x:407

Lemma 5. If ϕ(x; Σ) is the pdf of a d-variate Gaussian with mean 0 and covariance Σ, we have:408 ∥∥∥∥∥∇k1
µ ∆k2

x ϕ(x− µ; Σ)

ϕ(x− µ; Σ)

∥∥∥∥∥ ≲
√
dk2∥Σ−1(x− µ)∥k1+2k2

2 + d(k1+3k2)/2λ
−(k1+2k2)/2
min

409

Proof. By the definition of a Laplacian, and the AM-GM inequality, we have, for any function410

f : Rd → R411

(∆kf(x))2 =

 d∑
i1,i2,...,ik=1

∂2
i1∂

2
i2 · · · ∂

2
ik
f(x)

2

≤ dk
d∑

i1,i2,...,ik=1

(
∂2
i1∂

2
i2 · · · ∂

2
ik
f(x)

)2
≤ dk∥∇2k

x f(x)∥22
Thus, we have412 ∥∥∥∥∥∇k1

µ ∆k2
x ϕ(x− µ; Σ)

ϕ(x− µ; Σ)

∥∥∥∥∥
2

≤
√
dk2

∥∥∥∥∥∇k1
µ ∇2k2

x ϕ(x− µ; Σ)

ϕ(x− µ; Σ)

∥∥∥∥∥
2

Applying Lemma 4, the result follows.413

414

A.4 Logarithmic derivatives415

Finally, we will need similar bounds for logarithic derivatives—that is, derivatives of log p(x), where416

p is a multivariate Gaussian.417

We recall the following result, which is a consequence of the multivariate extension of the Faá di418

Bruno formula:419

Proposition 2 (Constantine and Savits [1996], Corollary 2.10). Consider a function f : Rd → R, s.t.420

f is N times differentiable in an open neighborhood of x and f(x) ̸= 0. Then, for any multi-index421

I ∈ Nd, s.t. |I| ≤ N , we have:422

∂xI
log f(x) =

|I|∑
k,s=1

∑
ps(I,k)

(−1)k−1(k − 1)!

s∏
j=1

∂ljf(x)
mj

f(x)mj

∏d
i=1(Ii)!

mj !lj !mj

where ps(I, k) = {{li}si=1 ∈ (Nd)s, {mi}si=1 ∈ Ns : l1 ≺ l2 ≺ · · · ≺ ls,
∑s

i=1 mi =423

k,
∑s

i=1 mili = I}.424

The ≺ ordering on multi-indices is defined as follows: (a1, a2, . . . , ad) := a ≺ b := (b1, b2, . . . , bd)425

if:426

1. |a| < |b|427

2. |a| = |b| and a1 < b1.428
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3. |a| = |b| and ∃k >= 1, s.t. ∀j ≤ k, aj = bj and ak+1 < bk+1.429

As a straightforward corollary, we have the following:430

Corollary 1. For any multi-index I ∈ Nd, s.t. |I| is a constant, we have431

|∂xI
log f(x)| ≲ max

(
1,max

J≤I

∣∣∣∣∂Jf(x)f(x)

∣∣∣∣|I|
)

where J ∈ Nd is a multi-index, and J ≤ I iff ∀i ∈ d, Ji ≤ Ii.432

A.5 Moments of mixtures and the perspective map433

The main strategy in bounding moments of quantities involving a mixture will be to leverage the434

relationship between the expectation of the score function and the so-called perspective map. In435

particular, this allows us to bound the moments of derivatives of the mixture score in terms of those436

of the individual component scores, which are easier to bound using the machinery of Hermite437

polynomials in the prior section.438

Note in this section all derivatives are calculated at θ = θ∗ and therefore p(x, β) = pθ(x, β).439

Lemma 6. (Convexity of perspective, Boyd and Vandenberghe [2004]) Let f be a convex function.440

Then, its corresponding perspective map g(u, v) := vf
(
u
v

)
with domain {(u, v) : u

v ∈ Dom(f), v >441

0} is convex.442

We will apply the following lemma many times, with appropriate choice of differentiation operator443

D and power k.444

Lemma 7. Let D : F1 → Fm be a linear operator that maps from the space of all scalar-valued445

functions to the space of m-variate functions of x ∈ Rd and let θ be such that p = pθ. For k ∈ N,446

and any norm ∥ · ∥ of interest447

E(x,β)∼p(x,β)

∥∥∥∥ (Dpθ)(x|β)
pθ(x|β)

∥∥∥∥k ≤ max
β,i

Ex∼p(x|β,i)

∥∥∥∥ (Dpθ)(x|β, i)
pθ(x|β, i)

∥∥∥∥k
448

Proof. Let us denote g(u, v) := v∥u
v ∥

k. Note that since any norm is convex by definition, so is g, by449

Lemma 6. Then, we proceed as follows:450

E(x,β)∼p(x,β)

∥∥∥∥ (Dpθ)(x|β)
pθ(x|β)

∥∥∥∥k = Eβ∼r(β)Ex∼p(x|β)

∥∥∥∥ (Dpθ)(x|β)
pθ(x|β)

∥∥∥∥k
= Eβ∼r(β)

∫
g((Dpθ)(x|β), pθ(x|β))dx

= Eβ∼r(β)

∫
g

(
K∑
i=1

wi(Dpθ)(x|β, i),
K∑
i=1

wipθ(x|β, i)

)
dx (8)

≤ Eβ∼r(β)

∫ K∑
i=1

wig((Dpθ)(x|β, i), pθ(x|β, i))dx (9)

= Eβ∼r(β)

K∑
i=1

wiEx∼p(x|β,i)

∥∥∥∥ (Dpθ)(x|β, i)
pθ(x|β, i)

∥∥∥∥k
≤ max

β,i
Ex∼p(x|β,i)

∥∥∥∥ (Dpθ)(x|β, i)
pθ(x|β, i)

∥∥∥∥k
where (8) follows by linearity of D, and (9) by convexity of the function g.451

13



B Generators and score losses for diffusions452

In this section, we derive several expressions about generators, Dirichlet forms, and associated453

generalized score matching losses for diffusions of the kind (4).454

First, we derive the Dirichlet form of Itô diffusions of the form (4). Namely, we show:455

Lemma 8 (Dirichlet form of continuous Markov Process). Suppose p vanishes at infinity. For an Itô456

diffusion of the form (4), its Dirichlet form is:457

E(g) = Ep∥
√
D(x)∇g(x)∥22

458

Proof. By Itô’s Lemma, the generator L of the Itô diffusion (4) is:459

(Lg)(x) = ⟨−[D(x) +Q(x)]∇f(x) + Γ(x),∇g(x)⟩+Tr(D(x)∇2g(x))

The Dirichlet form is given by460

E(g) = −Ep⟨Lg, g⟩ = −
∫

p(x)

⟨−[D(x) +Q(x)]∇f(x) + Γ(x),∇g(x)⟩︸ ︷︷ ︸
I

+Tr(D(x)∇2g(x))︸ ︷︷ ︸
II

 g(x)dx

Expanding and using the definition of Γ, term I can be written as:461

I =
∫

p(x)⟨D(x)∇f(x),∇g(x)⟩g(x)dx (10)

+

∫
p(x)⟨Q(x)∇xf(x),∇g(x)⟩g(x)dx (11)

−
∫

p(x)
∑
i,j

∂jDij(x)∂ig(x)g(x)dx (12)

−
∫

p(x)
∑
i,j

∂jQij(x)∂ig(x)g(x)dx (13)

We will simplify term II via a sequence of integration by parts:462

II = −
∫

p(x) Tr(D(x)∇2g(x))g(x)dx

= −
∫

p(x)

∑
i,j

Dij(x)∂ijg(x)

 g(x)dx

= −
∑
i,j

∫
p(x)Dij(x)g(x)∂ijg(x)dx

= −
∑
i,j

(
p(x)Dij(x)g(x)∂ig(x)

∣∣∣∣∣
∞

x=−∞

−
∫

∂j [p(x)Dij(x)g(x)]∂ig(x)dx

)

=
∑
i,j

∫
∂j [p(x)Dij(x)g(x)]∂ig(x)dx

=
∑
i,j

∫
∂jp(x)Dij(x)g(x)∂ig(x)dx (14)

+
∑
i,j

∫
p(x)∂jDij(x)g(x)∂ig(x)dx (15)

+
∑
i,j

∫
p(x)Dij(x)∂jg(x)∂ig(x)dx (16)
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The term (14) cancels out with term (10), so that we get:463 ∑
i,j

∫
∂jp(x)Dij(x)g(x)∂ig(x)dx

=
∑
i,j

∫
p(x)∂j log p(x)Dij(x)g(x)∂ig(x)dx

= −
∫

p(x)⟨D(x)∇xf(x),∇xg(x)⟩g(x)dx

The term (15) cancels out with the term (12).464

For term (11),465 ∫
p(x)⟨Q(x)∇xf(x),∇xg(x)⟩g(x)dx

= −
∫
⟨Q(x)∇xp(x),∇xg(x)⟩g(x)dx

=

∫
⟨∇xp(x), Q(x)∇xg(x)⟩g(x)dx

=

∫ ∑
i,j

∂jp(x)Qji(x)∂ig(x)g(x)dx

= −
∫ ∑

i,j

∂jp(x)Qij(x)∂ig(x)g(x)dx

Combining term (11) and term (13),466 ∫
p(x)⟨Q(x)∇xf(x),∇xg(x)⟩g(x)dx−

∫
p(x)

∑
i,j

∂jQij(x)∂ig(x)g(x)dx

= −
∫ ∑

i,j

[∂jp(x)Qij(x) + p(x)∂jQij(x)]∂ig(x)g(x)dx

= −
∑
i,j

∫
∂j [p(x)Qij(x)]∂ig(x)g(x)dx

= −
∑
i,j

(
p(x)Qij(x)∂ig(x)g(x)

∣∣∣∣∣
∞

x=−∞

−
∫

p(x)Qij(x)∂j [∂ig(x)g(x)]dx

)

=
∑
i,j

∫
p(x)Qij(x)[∂ijg(x)g(x) + ∂ig(x)∂jg(x)]dx

=
1

2

∑
i,j

∫
p(x){Qij(x)[∂ijg(x)g(x) + ∂ig(x)∂jg(x)] +Qji(x)[∂jig(x)g(x) + ∂jg(x)∂ig(x)]}dx

=
1

2

∑
i,j

∫
p(x){Qij(x)[∂ijg(x)g(x) + ∂ig(x)∂jg(x)]−Qij(x)[∂jig(x)g(x) + ∂jg(x)∂ig(x)]}dx

= 0

In the end, we are only left with term (16):467

E(g) =
∑
i,j

∫
p(x)Dij(x)∂jg(x)∂ig(x)dx

=

∫
p(x)⟨∇xg(x), D(x)∇xg(x)⟩dx

= Ep∥
√

D(x)∇xg(x)∥22
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468

We also calculate the integration by parts version of the generalized score matching loss for (3).469

Lemma 9 (Integration by parts for the GSM in (3)). Suppose p vanishes at infinity. The generalized470

score matching objective in (3) satisfies the equality471

DGSM (p, q) =
1

2

[
Ep∥B(x)∇ log q∥2 + 2Epdiv

(
B(x)2∇ log q

)]
+Kp

Proof. Expanding the squares in (3), we have:472

DGSM (p, q) =
1

2

[
Ep∥B(x)∇ log p∥2 + Ep∥B(x)∇ log q∥2 − 2Ep⟨B(x)∇ log p,B(x)∇ log q⟩

]
The cross-term can be rewritten using integration by parts as:473

Ep⟨B(x)∇ log p,B(x)∇ log q⟩ =
∫
x

⟨∇p,B(x)2∇ log q⟩

= −
∫
x

p(x)div
(
B(x)2∇ log q

)
= −Epdiv

(
B(x)2∇ log q

)
474

C A Framework for Analyzing Generalized Score Matching475

First, by way of remarks, some conditions for asymptotic normality can be readily obtained by476

applying standard results from asymptotic statistics (e.g. Van der Vaart [2000], Theorem 5.23,477

reiterated as Lemma 2 for completeness). From that lemma, when an estimator θ̂ = argmin Êlθ(x) is478

asymptotically normal, we have
√
n(θ̂−θ∗)

d−→ N
(
0, (∇2

θL(θ
∗))−1Cov(∇θℓ(x; θ

∗))(∇2
θL(θ

∗))−1
)
,479

where L(θ) = Eθl(x). Therefore, to bound the spectral norm of ΓSM , we need to bound the Hessian480

and covariance terms in the expression above. The latter turns out to be a fairly straightforward481

calculation (Lemma 12). The bound on the Hessian is where the connection to the Poincaré constant482

manifests:483

Lemma 10 (Bounding Hessian). The loss DGSM defined in Theorem 2 satisfies484 [
∇2

θDGSM (p, pθ∗)
]−1 ⪯ CPΓMLE.

485 Proof. To reduce notational clutter, we will drop |θ=θ∗ since all the functions of θ are evaluated at θ∗.486

Consider an arbitrary direction w. We have:487

〈
w,∇2

θDGSM (p, pθ)w
〉 1
= Ep∥

√
D(x)∇x∇θ log pθ(x)w∥22

2
≥ 1

CP
Varp(⟨w,∇θ log pθ(x)⟩)

3
=

1

CP
wTΓ−1

MLEw

1 follows from a straightforward calculation (in Lemma 11), 2 follows from the definition488

of Poincaré inequality of a diffusion process with Dirichlet form derived in Lemma 8, applied489

to the function ⟨w,∇θ log pθ⟩, and 3 follows since ΓMLE =
[
Ep∇θ log pθ∇θ log p

⊤
θ

]−1
(i.e.490

the inverse Fisher matrix [Van der Vaart, 2000]). Since this holds for every vector w, we have491

∇2
θDGSM ⪰ 1

CP
Γ−1
MLE . By monotonicity of the matrix inverse operator [Toda, 2011], the claim of492

the lemma follows.493

Lemma 11 (Hessian of GSM loss). The Hessian of DGSM defined in Theorem 2 satisfies494

∇2
θDGSM (p, pθ∗) = Ep

[
∇θ∇x log pθ∗(x)⊤D(x)∇θ∇x log pθ∗(x)

]
495
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Proof. By a straightforward calculation, we have:496

∇θDGSM (p, pθ) = Ep∇θ

(√
D(x)∇xpθ(x)

pθ(x)

)(√
D(x)∇xpθ(x)

pθ(x)
−
√
D(x)∇xp(x)

p(x)

)

∇2
θDGSM (p, pθ) = Ep∇θ

(√
D(x)∇xpθ(x)

pθ(x)

)⊤

∇θ

(√
D(x)∇xpθ(x)

pθ(x)

)

−

(√
D(x)∇xpθ(x)

pθ(x)
−
√

D(x)∇xp(x)

p(x)

)⊤

∇2
θ

(√
D(x)∇xpθ(x)

pθ(x)

)

Since
√

D(x)∇xpθ∗ (x)

pθ∗ (x)
=

√
D(x)∇xp(x)

p(x) , the second term vanishes at θ = θ∗.497

∇2
θDGSM (p, pθ∗) = Ep

∇θ

(√
D(x)∇xpθ∗(x)

pθ∗(x)

)⊤

∇θ

(√
D(x)∇xpθ∗(x)

pθ∗(x)

)
498

Lemma 12 (Bound on smoothness). For lθ(x) defined in Theorem 2,499

cov(∇θlθ(x)) ≾ cov (∇θ∇x log pθ(x)D(x)∇x log pθ(x))

+ cov
(
∇θ∇x log pθ(x)

⊤div(D(x))
)

+ cov (∇θ Tr[D(x)∆ log pθ(x))

500

Proof. We have501

∇θlθ(x) =
1

2
∇θ

[
∥
√
D(x)∇x log pθ(x)∥2 + 2div (D(x)∇x log pθ(x))

]
= ∇θ∇x log pθ(x)D(x)∇x log pθ(x) +∇θ∇x log pθ(x)

⊤div(D(x)) +∇θ Tr[D(x)∆ log pθ(x)]

By Lemma 2 in Koehler et al. [2022], we also have502

cov(∇θlθ(x)) ≾ cov (∇θ∇x log pθ(x)D(x)∇x log pθ(x))

+ cov
(
∇θ∇x log pθ(x)

⊤div(D(x))
)

+ cov (∇θ Tr[D(x)∆ log pθ(x)])

which completes the proof.503

D Benefits of Annealing: Continuously Tempered Langevin Dynamics504

In this section, we will flesh out the results on how speed-ups in mixing due to annealing can be505

translated to score losses with improved sample complexity.506

First, we recall a nice property of mixture of Gaussians that facilitates our analysis: a convolution507

of a Gaussian mixture with a Gaussian produces another Gaussian mixture. Namely, the following508

holds from the distributivity property of the convolution operator, which is due to the linearity of an509

integral:510

Proposition 3 (Convolution with Gaussian). Under Assumption 1, the distribution p ∗ N (x; 0, σ2I)511

satisfies p ∗N (x; 0, σ2I) =
∑

i wi

(
p0(x− µi) ∗ N (x; 0, σ2I)

)
and (p0(x−µi) ∗N (x; 0, σ2I)) is512

a multivariate Gaussian with mean µi and covariance Σ+ σ2I .513

Next, we make several remarks on the CTLD process we introduced in Defition 5:514

17



Remark 1. CTLD can be readily seen as a “continuous-time” analogue of the usual simulated515

tempering chain [Lee et al., 2018, Ge et al., 2018], which either evolves x according to a Markov516

chain with probability pβ , or changes β (which has a discrete number of possible values), and applies517

an appropriate Metropolis-Hastings filter. The stationary distribution is p(x, β) = r(β)pβ(x), since518

the updates amount to performing (reflected) Langevin dynamics corresponding to this stationary519

distribution.520

Remark 2. The existence of the boundary measure is a standard result of reflecting diffusion521

processes via solutions to the Skorokhod problem [Saisho, 1987]. If we ignore the boundary reflection522

term, the updates for CTLD are simply Langevin dynamics applied to the distribution p(x, β). r(β)523

specifies the distribution over the different levels of noise and is set up roughly so the Gaussians in524

the mixture have variance βΣ with probability exp(−Θ(β)).525

Since CTLD amounts to performing (reflected) Langevin dynamics on the appropriate joint distribu-526

tion p(x, β), the corresponding generator L for CTLD is also readily written down:527

Proposition 4 (Dirichlet form for CTLD). The Dirichlet form corresponding to CTLD has the form528

E(f(x, β)) = Ep(x,β)∥∇f(x, β)∥2 = Er(β)Eβ(f(·, β)) (17)
where Eβ is the Dirichlet form corresponding to the Langevin diffusion (Lemma 8) with stationary529

distribution p(x|β).530

In fact, we can derive the explicit score loss corresponding to CTLD:531

Proposition 5. The generalized score matching loss with O = ∇x,β satisfies532 [
∇2

θDGSM (p, pθ∗)
]−1 ⪯ CPΓMLE

Moreover,533

DGSM (p, pθ) = Eβ∼r(β)Ex∼pβ (∥∇x log p(x, β)−∇x log pθ(x, β)∥2 + ∥∇β log p(x, β)−∇β log pθ(x, β)∥2)
= Eβ∼r(β)Ex∼pβ∥∇x log p(x|β)−∇x log pθ(x|β)∥2

+ λminEβ∼r(β)Ex∼pβ

((
Tr∇2

x log p(x|β)− Tr∇2
x log pθ(x|β)

)
+
(
∥∇x log p(x|β)∥22 − ∥∇x log pθ(x|β)∥22

))2
534

Proof. The first claim follows by Lemma 10 as a special case of Langevin on the lifted distribution.535

The second claim follows by writing ∇β log p(x|β) and ∇β log pθ(x|β) through the Fokker-Planck536

equation for p(x|β) (see Lemma 13).537

Remark 3. This loss was derived from first principles from the Markov Chain-based framework538

we propose, however, it is readily seen that this loss is a “second-order” version of the annealed539

losses in Song and Ermon [2019], Song et al. [2020] — the weights being given by the distribution540

r(β). Additionally, this loss has terms matching “second order” behavior of the distributions,541

namely Tr∇2
x log p(x|β) and ∥∇x log p(x|β)∥22 with a weighting of λmin. Note this loss would be542

straightforward to train by the change of variables formula (Proposition 6, Appendix E)—and we543

also note that somewhat related “higher-order” analogues of score matching have appeared in the544

literature (without analysis or guarantees), for example, Meng et al. [2021].545

To get a bound on the asymptotic sample complexity of generalized score matching, according to546

the framework from Theorem 2, we also need to bound the smoothness terms (Lemma 12 in the547

general framework). These terms of course depend on the choice of parametrization for the family548

of distributions we are fitting. To get a quantitative sense for how these terms might scale, we will549

consider the natural parametrization for a mixture:550

Assumption 2. Consider the case of learning unknown means, such that the parameters to be learned551

are a vector θ = (µ1, µ2, . . . , µK) ∈ RdK .552

Note that in this parametrization, we assume that the weights {wi}Ki=1 and shared covariance matrix553

Σ are known, though the results can be straightforwardly generalized to the natural parametrization in554

which we are additionally fitting a vector {wi}Ki=1 and matrix Σ, at the expense of some calculational555

complexity. With this parametrization, the smoothness term can be bounded as follows:556

Theorem 6 (Smoothness under the natural parameterization). Under Assumptions 1 and 2, the557

following upper bound obtains:558

∥cov
(
∇θ∇x,β log p

⊤
θ ∇x,β log pθ

)
∥OP + ∥cov (∇θ∆x,β log pθ) ∥OP ≲ poly

(
D, d, λ−1

min

)
559
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Note the above result also has no dependence on the number of components, or on the smallest560

component weight wmin. Finally, we show that the generalized score matching loss is asymptotically561

normal. The proof of this is in Appendix G, and proceeds by verifying standard technical conditions562

for asymptotic behavior of M-estimators (Lemma 2), along with the Poincaré inequality bound in563

Theorem 3 and the framework in Theorem 2. As in Theorem 2, n will denote the number of samples,564

and Ê will denote an empirical average, that is the expectation over the n training samples. We show:565

Theorem 7 (Main, Polynomial Sample Complexity Bound of CTLD). Let the data distribution566

p satisfy Assumption 1. Then, the generalized score matching loss defined in Proposition 6 with567

parametrization as in Assumption 2 satisfies:568

1. The set of optima Θ∗ := {θ∗ = (µ1, µ2, . . . , µK)|DGSM (p, pθ∗) = minθ DGSM (p, pθ)} satis-569

fies:570

θ∗ = (µ1, µ2, . . . , µK) ∈ Θ∗ if and only if ∃π : [K] → [K] satisfying ∀i ∈ [K], µπ(i) = µ∗
i , wπ(i) = wi}

2. Let θ∗ ∈ Θ∗ and let C be any compact set containing θ∗. Denote C0 = {θ ∈ C : pθ(x) =571

p(x) almost everywhere }. Finally, let D be any closed subset of C not intersecting C0. Then, we572

have limn→∞ Pr
[
infθ∈D D̂GSM (θ) < D̂GSM (θ∗)

]
→ 0.573

3. For every θ∗ ∈ Θ∗ and every sufficiently small neighborhood S of θ∗, there exists a suf-574

ficiently large n, such that there is a unique minimizer θ̂n of Êlθ(x) in S. Furthermore,575

θ̂n satisfies:
√
n(θ̂n − θ∗)

d−→ N (0,ΓSM ) for a matrix ΓSM satisfying ∥ΓSM∥OP ≤576

poly
(
D, d, λmax, λ

−1
min

)
∥ΓMLE∥

2
OP .577

We provide some brief comments on each parts of this theorem. The first condition is the standard578

identifiability condition [Yakowitz and Spragins, 1968] for mixtures of Gaussians: the means are579

identifiable up to “renaming” the components. This is of course, inevitable if some of the weights are580

equal; if all the weights are distinct, Θ∗ would in fact only consist of one point, s.t. ∀i ∈ [K], µi = µ∗
i .581

The second condition says that asymptotically, the empirical minimizers of DGSM are the points in582

Θ∗. It can be viewed as (and follows from) a uniform law of large numbers. Finally, the third point583

characterizes the sample complexity of minimizers in the neirhborhood of each of the points in Θ∗,584

and is a consequence of the CTLD Poincaré inequality estimate (Theorem 3) and the smoothness585

estimate (Theorem 6). Note that in fact the RHS of point 3 has no dependence on the number of586

components. This makes the result extremely general: the loss compared to MLE is very mild even587

for distributions with a large number of modes. 2588

Bounding the Poincaré constant: We will first sketch the proof of Theorem 3. By slight abuse589

of notation, we will define the distribution of the “individual components” of the mixture at a590

particular temperature, namely for i ∈ [K], define p(x, β, i) = r(β)wiN (x;µi,Σ + βλminId).591

Correspondingly, we will denote the conditional distribution for the i-th component by p(x, β|i) ∝592

r(β)N (x;µi,Σ + βλminId).The proof proceeds by applying the decomposition Theorem 4 to593

CTLD. Towards that, we denote by Ei the Dirichlet form corresponding to Langevin with stationary594

distribution p(x, β|i). By Proposition 4, it’s easy to see that the generator for CTLD satisfies595

E =
∑

i wiEi. This verifies condition (1) in Theorem 4. To verify condition (2), we will show596

Langevin for each of the distributions p(x, β|i) mixes fast (i.e. the Poincaré constant is bounded).597

The details of this are provided in Section F.1. To verify condition (3), we will show the projected598

chain “between” the components (as defined in Theorem 4) mixes fast. The details of this are provided599

in Section F.2.600

Smoothness under the natural parametrization: To obtain the polynomial upper bound in Theo-601

rem 6, we note the two terms ∥cov
(
∇θ∇x,β log p

⊤
θ ∇x,β log pθ

)
∥OP and ∥cov (∇θ∆x,β log pθ) ∥OP602

can be completely characterized by bounds on the higher-order derivatives with respect to x and µi of603

the log-pdf since derivatives with respect to β can be related to derivatives with respect to x via the604

Fokker-Planck equation (Lemma 13). The polynomial bound requires three ingredients: In Lemma 7,605

we relate the derivatives of the mixture to derivatives of components by recognizing the higher-order606

score functions [Janzamin et al., 2014] of the form Dp
p is closely related to the convex perspective607

2Of course, in the parametrization in Assumption 2, ∥ΓMLE∥OP itself will generally have dependence on
K, which has to be the case since we are fitting Ω(K) parameters.

19



map. In Lemma 4, we derive a new result in mixed derivatives of Gaussian components based on608

Hermite polynomials. In Corollary 1, we handle log derivatives with higher-order versions of the Faá609

di Bruno formula [Constantine and Savits, 1996], which is a combinatorial formula characterizing610

higher-order analogues of the chain rule. See Appendix H for details.611

E Technical calculations related to CTLD612

In this section, we provide several calculations around the score matching losses associated with613

Continuously Tempered Langevin Dynamics.614

Lemma 13 (β derivatives via Fokker Planck). For any distribution pβ such that pβ = p ∗615

N (0, λminβI) for some p, we have the following PDE for its log-density:616

∇β log p
β(x) = λmin

(
Tr
(
∇2

x log p
β(x)

)
+ ∥∇x log p

β(x)∥22
)

As a consequence, both p(x|β, i) and p(x|β) follow the above PDE.617

Proof. Consider the SDE dXt =
√
2λmindBt. Let qt be the law of Xt. Then, qt = q0∗N(0, λmintI).618

On the other hand, by the Fokker-Planck equation, d
dtqt(x) = λmin∆xqt(x). From this, it follows619

that620

∇βp
β(x) = λmin∆xp

β(x)

= λmin Tr(∇2
xp

β(x))

Hence, by the chain rule,621

∇β log p
β(x) =

λmin Tr(∇2
xp

β(x))

pβ(x)
(18)

Furthermore, by a straightforward calculation, we have622

∇2
x log p

β(x) =
∇2

xp
β(x)

pβ(x)
−
(
∇x log p

β(x)
) (

∇x log p
β(x)

)⊤
Plugging this in (18), we have623

λmin Tr(∇2
xp

β(x))

pβ(x)
= λmin

(
Tr
(
∇2

x log p
β(x)

)
+Tr

((
∇x log p

β(x)
) (

∇x log p
β(x)

)⊤))
= λmin

(
Tr
(
∇2

x log p
β(x)

)
+Tr

((
∇x log p

β(x)
)⊤ (∇x log p

β(x)
)))

= λmin

(
Tr
(
∇2

x log p
β(x)

)
+ ∥∇x log p

β(x)∥22
)

as we needed.624

Proposition 6 (Integration-by-part Generalized Score Matching Loss for CTLD). The loss DGSM625

can be written in the integration by parts form as DGSM (p, pθ) = Eplθ(x, β) +Kp, where626

lθ(x, β) := l1θ(x, β) + l2θ(x, β), and l1θ(x, β) :=
1

2
∥∇x log pθ(x|β)∥22 +∆x log pθ(x|β), and

l2θ(x, β) :=
1

2
(∇β log pθ(x|β))2 +∇β log r(β)∇β log pθ(x|β) + ∆β log pθ(x|β)

Moreover, all the terms in the definition of l1θ(x, β) and l2θ(x, β) can be written as a sum of powers of627

partial derivatives of ∇x log pθ(x|β).628
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Proof of Lemma 6.

DGSM (p, pθ)

=
1

2
Ep[
∥∥∇(x,β) log pθ(x, β)

∥∥2
2
+ 2∆(x,β) log pθ(x, β)]

=
1

2
Ep[∥∇x log pθ(x, β)∥22 + 2∆x log pθ(x, β) + ∥∇β log pθ(x, β)∥22 + 2∆β log pθ(x, β)]

=
1

2
Ep[∥∇x log pθ(x|β) +∇x log r(β)∥22 + 2∆x log pθ(x|β) + 2∆x log r(β)

+ ∥∇β log pθ(x|β) +∇β log r(β)∥22 + 2∆β log pθ(x|β) + 2∆β log r(β)]

= Ep[
1

2
∥∇x log pθ(x|β)∥22 +∆x log pθ(x|β)

+
1

2
∥∇β log pθ(x|β)∥22 +∇β log r(β)∇β log pθ(x|β) + ∆β log pθ(x|β)] + C

By Lemma 13, ∇β log pθ(x|β) is a function of partial derivatives of the score ∇x log pθ(x|β). Simi-629

larly, ∇2
β log pθ(x|β) can be shown to be a function of partial derivatives of the score ∇x log pθ(x|β)630

as well:631

∆β log pθ(x|β) = ∇βλmin(Tr(∇2
x log pθ(x|β)) + ∥∇x log pθ(x|β)∥22)

= λmin(Tr(∇2
x∇β log pθ(x|β)) + 2∇x∇β log pθ(x|β)⊤∇x log pθ(x|β))

632

F Polynomial mixing time bound: proof of Theorem 3633

The proof of Theorem 3 will follow by applying Theorem 4. Towards that, we need to verify the634

three conditions of the theorem:635

1. (Decomposition of Dirichlet form) The Dirichlet energy of CTLD for p(x, β), by the tower rule636

of expectation, decomposes into a linear combination of the Dirichlet forms of Langevin with637

stationary distribution p(x, β|i). Precisely, we have638

E(x,β)∼p(x,β)∥∇f(x, β)∥2 =
∑
i

wiE(x,β)∼p(x,β|i)∥∇f(x, β)∥2

2. (Polynomial mixing for individual modes) By Lemma 14, for all i ∈ [K] the distribution p(x, β|i)639

has Poincaré constant Cx,β|i with respect to the Langevin generator that satisfies:640

Cx,β|i ≲ D20d2λ9
maxλ

−1
min

3. (Polynomial mixing for projected chain) To bound the Poincaré constant of the projected chain,641

by Lemma 17 we have642

C̄ ≲ D2λ−1
min

Putting the above together, by Theorem 6.1 in Ge et al. [2018] we have:643

CP ≤ Cx,β|i

(
1 +

C̄

2

)
≤ Cx,β|iC̄

≲ D22d2λ9
maxλ

−2
min

F.1 Fast Mixing Within a Component644

The first claim we will show is that we have fast mixing “inside” each of the components of the645

mixture. Formally, we show:646
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Lemma 14. For i ∈ [K], let Cx,β|i be the Poincaré constant of p(x, β|i). Then, we have Cx,β|i ≲647

D20d2λ9
maxλ

−1
min.648

The proof of this lemma proceeds via another (continuous) decomposition theorem. Intuitively,649

what we show is that for every β, p(x|β, i) has a good Poincaré constant; moreover, the marginal650

distribution of β, which is r(β), is log-concave and supported over a convex set (an interval), so has651

a good Poincaré constant. Putting these two facts together via a continuous decomposition theorem652

(Theorem D.3 in Ge et al. [2018], repeated as Theorem 5), we get the claim of the lemma.653

Proof. The proof will follow by an application of a continuous decomposition result (Theorem D.3654

in Ge et al. [2018], repeated as Theorem 5) , which requires three bounds:655

1. A bound on the Poincaré constants of the distributions p(β|i): since β is independent of i, we656

have p(β|i) = r(β). Since r(β) is a log-concave distribution over a convex set (an interval), we657

can bound its Poincaré constant by standard results [Bebendorf, 2003]. The details are in Lemma658

15, Cβ ≤ 14D2

πλmin
.659

2. A bound on the Poincaré constant Cx|β,i of the conditional distribution p(x|β, i): We claim660

Cx|β,i ≤ λmax + βλmin. This follows from standard results on Poincaré inequalities for strongly661

log-concave distributions. Namely, by the Bakry-Emery criterion, an α-strongly log-concave662

distribution has Poincaré constant 1
α [Bakry and Émery, 2006]. Since p(x|β, i) is a Gaussian663

whose covariance matrix has smallest eigenvalue lower bounded by λmax + βλmin, it is (λmax +664

βλmin)
−1-strongly log-concave. Since β ∈ [0, βmax], we have Cx|β,i ≤ λmax + βmaxλmin ≤665

λmax + 14D2.666

3. A bound on the “rate of change” of the density p(x|β, i), i.e.
∥∥∥∫ ∥∇βp(x|β,i)∥2

2

p(x|β,i) dx
∥∥∥
L∞

: This is667

done via an explicit calculation, the details of which are in Lemma 16.668

By Theorem D.3 in Ge et al. [2018], the Poincaré constant Cx,β|i of p(x, β|i) enjoys the upper bound:669

Cx,β|i ≤ max

{
Cx|βmax,i

(
1 + Cβ

∥∥∥∥∫ ∥∇βp(x|β, i)∥22
p(x|β, i)

dx

∥∥∥∥
L∞(β)

)
, 2Cβ

}

≲ max

{(
λmax + 14D2

)(
1 +

14D2

πλmin
d2 max{λ8

max, D
16}
)
,
28D2

πλmin

}
≲

D20d2λ9
max

λmin

which completes the proof.670

Lemma 15 (Bound on the Poincaré constant of r(β)). Let Cβ be the Poincaré constant of the671

distribution r(β) with respect to reflected Langevin diffusion. Then,672

Cβ ≤ 14D2

πλmin

673

Proof. We first show that r(β) is a log-concave distribution. By a direct calculation, the second674

derivative in β satisfies:675

∇2
β log r(β) = − 14D2

λmin(1 + β)3
≤ 0

Since the interval is a convex set, with diameter βmax, by Bebendorf [2003] we have676

Cβ ≤ βmax

π
=

14D2

πλmin
− 1

π

from which the Lemma immediately follows.677
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Lemma 16 (Bound on “rate of change" of the density p(x|β, i)).∥∥∥∥∫ ∥∇βp(x|β, i)∥22
p(x|β, i)

dx

∥∥∥∥
L∞(β)

≲ d2 max{λ8
max, D

16}

678

Proof. ∥∥∥∥∫ ∥∇βp(x|β, i)∥22
p(x|β, i)

dx

∥∥∥∥
L∞(β)

=

∥∥∥∥∫ (∇β log p(x|β, i))2 p(x|β, i)dx
∥∥∥∥
L∞(β)

= sup
β

Ex∼p(x|β,i) (∇β log p(x|β, i))2

We can apply Lemma 13 to derive explicit expressions for the right-hand side:679 ∥∥∥∥∫ ∥∇βp(x|β, i)∥22
p(x|β, i)

dx

∥∥∥∥
L∞(β)

= sup
β

Ex∼p(x|β,i)λ
2
min

[
Tr(Σ−1

β ) + ∥Σβ(x− µi)∥22
]2

1
≤ 2λ2

min sup
β

[
Tr(Σ−1

β )2 + Ex∼p(x|β,i)∥Σβ(x− µi)∥42
]

≤ 2λ2
min sup

β

[
d2((1 + β)λmin)

−2 + Ez∼N (0,I)∥Σ
3
2

β zΣ
1
2

β ∥
4
2

]
≤ 2λ2

min sup
β

[
d2((1 + β)λmin)

−2 + ∥Σ
3
2

β ∥
4
OP ∥Σ

1
2

β ∥
4
OPEz∼N (0,I)∥z∥42

]
2
≤ 4 sup

β

[
d2(1 + β)−2 + λ2

min∥Σβ∥8OP d
2
]

= 4 sup
β

[
d2(1 + β)−2 + λ2

min(λmax + βλmin)
8d2
]

= 4
(
d2 + λ2

min(λmax + βmaxλmin)
8d2
)

3
≤ 4d2 + 4d2λ2

min(λmax + 14D2)8

≤ 16d2 max{λ8
max, 14

8D16}

In 1 , we use (a + b)2 ≤ 2(a2 + b2) for a, b ≥ 0; in 2 we apply the moment bound for the680

Chi-Squared distribution of degree-of-freedom d in Lemma 28; and in 3 we plug in the bound on681

βmax.682

F.2 Mixing between components683

Next, we show the “projected” chain between the components mixes fast:684

Lemma 17 (Poincaré constant of projected chain). Define the projected chain M̄ over [K] with
transition probability

T (i, j) =
wj

max{χ2
max(p(x, β|i), p(x, β|j)), 1}

where χ2
max(p, q) = max{χ2(p, q), χ2(q, p)}. If

∑
j ̸=i T (i, j) < 1, the remaining mass is assigned685

to the self-loop T (i, i). The stationary distribution p̄ of this chain satisfies p̄(i) = wi. Furthermore,686

the projected chain has Poincaré constant687

C̄ ≲ D2λ−1
min.

688

The intuition for this claim is that the transition probability graph is complete, i.e. T (i, j) ̸= 0 for689

every pair i, j ∈ [K]. Moreover, the transition probabilities are lower bounded, since the χ2 distances690
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between any pair of “annealed” distributions p(x, β|i) and p(x, β|j) can be upper bounded. The691

reason for this is that at large β, the Gaussians with mean µi and µj are smoothed enough so that692

they have substantial overlap; moreover, the distribution r(β) is set up so that enough mass is placed693

on the large β. The precise lemma bounding the χ2 divergence between the components is stated as694

Lemma 18.695

Proof. The stationary distribution follows from the detailed balance condition wiT (i, j) = wjT (j, i).696

We upper bound the Poincaré constant using the method of canonical paths [Diaconis and Stroock,697

1991]. For all i, j ∈ [K], we set γij = {(i, j)} to be the canonical path. Define the weighted length698

of the path699

∥γij∥T =
∑

(k,l)∈γij ,k,l∈[K]

T (k, l)−1

= T (i, j)−1

=
max{χ2

max(p(x, β|i), p(x, β|j)), 1}
wj

≤ 14D2

λminwj

where the inequality comes from Lemma 18 which provides an upper bound for the chi-squared700

divergence. Since D is an upper bound and λmin is a lower bound, we may assume without loss of701

generality that χ2
max ≥ 1.702

Finally, we can upper bound the Poincaré constant using Proposition 1 in Diaconis and Stroock703

[1991]704

C̄ ≤ max
k,l∈[K]

∑
γij∋(k,l)

∥γij∥Twiwj

= max
k,l∈[K]

∥γkl∥Twkwl

≤ 14D2wmax

λmin

≤ 14D2

λmin

705

Next, we will prove a bound on the chi-square distance between the joint distributions p(x, β|i) and706

p(x, β|j). Intuitively, this bound is proven by showing bounds on the chi-square distances between707

p(x|β, i) and p(x|β, j) (Lemma 19) — which can be explicitly calculated since they are Gaussian,708

along with tracking how much weight r(β) places on each of the β. Moreover, the Gaussians are709

flatter for larger β, so they overlap more — making the chi-square distance smaller.710

Lemma 18 (χ2-divergence between joint “annealed” Gaussians).

χ2(p(x, β|i), p(x, β|j)) ≤ 14D2

λmin

711
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Proof. Expanding the definition of χ2-divergence, we have:712

χ2(p(x, β|i), p(x, β|j)) =
∫ (

p(x, β|i)
p(x, β|j)

− 1

)2

p(x, β|i)dxdβ

=

∫ βmax

0

∫ +∞

−∞

(
p(x|β, i)r(β)
p(x|β, j)r(β)

− 1

)2

p(x|β, i)r(β)dxdβ

=

∫ βmax

0

χ2(p(x|β, i), p(x|β, j))r(β)dβ

≤
∫ βmax

0

exp

(
7D2

λmin(1 + β)

)
r(β)dβ (19)

=

∫ βmax

0

exp

(
7D2

λmin(1 + β)

)
1

Z(D,λmin)
exp

(
− 7D2

λmin(1 + β)

)
dβ

=
βmax

Z(D,λmin)

where in Line 19, we apply our Lemma 19 to bound the χ2-divergence between two Gaussians with713

identical covariance. By a change of variable β̃ := 7D2

λmin(1+β) , β = 7D2

λminβ̃
− 1, dβ = − 7D2

λmin

1
β̃2
dβ̃,714

we can rewrite the integral as:715

Z(D,λmin) =

∫ βmax

0

exp

(
− 7D2

λmin(1 + β)

)
dβ

= − 7D2

λmin

∫ 7D2

λmin(1+βmax)

7D2

λmin

exp
(
−β̃
) 1

β̃2
dβ̃

=
7D2

λmin

∫ 7D2

λmin

7D2

λmin(1+βmax)

exp
(
−β̃
) 1

β̃2
dβ̃

≥ 7D2

λmin

∫ 7D2

λmin

7D2

λmin(1+βmax)

exp
(
−2β̃

)
dβ̃

=
7D2

2λmin

(
exp

(
− 14D2

λmin(1 + βmax)

)
− exp

(
−14D2

λmin

))

Since D is an upper bound and λmin is a lower bound, we can assume D2

λmin
≥ 1 without loss of716

generality. Plugging in βmax = 14D2

λmin
− 1, we get717

Z(D,λmin) ≥
7

2
(exp (−1)− exp (−14)) ≥ 1

Finally, we get the desired bound

χ2(p(x, β|i), p(x, β|j)) ≤ βmax =
14D2

λmin
− 1

718

The next lemma bounds the χ2-divergence between two Gaussians with the same covariance.719

Lemma 19 (χ2-divergence between Gaussians with same covariance).

χ2(p(x|β, i), p(x|β, j)) ≤ exp

(
7D2

λmin(1 + β)

)
720
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Proof. Plugging in the definition of χ2-distance for Gaussians, we have:721

χ2(p(x|β, i), p(x|β, j))

≤ det(Σβ)
1
2

det(Σβ)
det
(
Σ−1

β

)− 1
2

exp

(
1

2

(
Σ−1

β (2µj − µi)
)⊤

(Σ−1
β )−1

(
Σ−1

β (2µj − µi)
)
+

1

2
µ⊤
i Σ

−1
β µi − µ⊤

j Σ
−1
β µj

)
(20)

= exp

(
1

2

(
Σ−1

β (2µj − µi)
)⊤

(Σ−1
β )−1

(
Σ−1

β (2µj − µi)
)
+

1

2
µ⊤
i Σ

−1
β µi

)
exp

(
−µ⊤

j Σ
−1
β µj

)
≤ exp

(
1

2
(2µj − µi)

⊤Σ−1
β (2µj − µi) +

1

2
µ⊤
i Σ

−1
β µi

)
(21)

≤ exp

(
∥2µj − µi∥22 + ∥2µi∥22

2λmin(1 + β)

)
≤ exp

(
(∥2µj∥2 + ∥µi∥2)2 + 4∥µi∥22

2λmin(1 + β)

)
≤ exp

(
2∥2µj∥22 + 2∥µi∥22 + 4∥µi∥22

2λmin(1 + β)

)
≤ exp

(
7D2

λmin(1 + β)

)
In Equation 20, we apply Lemma G.7 from Ge et al. [2018] for the chi-square divergence between722

two Gaussian distributions. In Equation 21, we use the fact that Σ−1
β is PSD.723

724

G Asymptotic normality of generalized score matching for CTLD725

The main theorem of this section is proving asymptotic normality for the generalized score matching726

loss corresponding to CTLD. Precisely, we show:727

Theorem 8 (Asymptotic normality of generalized score matching for CTLD). Let the data distribution728

p satisfy Assumption 1. Then, the generalized score matching loss defined in Proposition 6 satisfies:729

1. The set of optima730

Θ∗ := {θ∗ = (µ1, µ2, . . . , µK)|DGSM (p, pθ∗) = min
θ

DGSM (p, pθ)}

satisfies731

θ∗ = (µ1, µ2, . . . , µK) ∈ Θ∗ if and only if ∃π : [K] → [K] satisfying ∀i ∈ [K], µπ(i) = µ∗
i , wπ(i) = wi}

2. Let θ∗ ∈ Θ∗ and let C be any compact set containing θ∗. Denote732

C0 = {θ ∈ C : pθ(x) = p(x) almost everywhere }

Finally, let D be any closed subset of C not intersecting C0. Then, we have:733

lim
n→∞

Pr
[
inf
θ∈D

D̂GSM (θ) < D̂GSM (θ∗)

]
→ 0

3. For every θ∗ ∈ Θ∗ and every sufficiently small neighborhood S of θ∗, there exists a734

sufficiently large n, such that there is a unique minimizer θ̂n of Êlθ(x) in S. Furthermore,735

θ̂n satisfies:736

√
n(θ̂n − θ∗)

d−→ N (0,ΓSM )

for some matrix ΓSM .737
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Proof. Part 1 is shown in Lemma 20: the claim roughly follows by classic results on the identifiability738

of the parameters of a mixture (up to permutations of the components) [Yakowitz and Spragins,739

1968].740

Part 2 is shown in Lemma 22: it follows from a uniform law of large numbers.741

Finally, Part 3 follows from an application of Lemma 2—so we verify the conditions of the lemma742

are satisfied. The gradient bounds on lθ are verified Lemma 21—and it largely follows by moment743

bounds on gradients of the score derived in Section H. Uniform law of large numbers is shown in744

Lemma 22, and the the existence of Hessian of L = DGSM is trivially verified.745

For the sake of notational brevity, in this section, we will slightly abuse notation and denote746

DGSM (θ) := DGSM (p, pθ).747

Lemma 20 (Uniqueness of optima). Suppose for θ := (µ1, µ2, . . . , µK) there is no permutation748

π : [K] → [K], such that µπ(i) = µ∗
i and wπ(i) = wi,∀i ∈ [K]. Then, DGSM (θ) > DGSM (θ∗)749

Proof. For notational convenience, let DSM denote the standard score matching loss, and let us
denote DSM (θ) := DSM (p, pθ). For any distributions pθ, by Proposition 1 in Koehler et al. [2022],
it holds that

DSM (θ)−DSM (θ∗) ≥ 1

LSI(pθ)
KL(pθ∗ , pθ)

where LSI(q) denotes the Log-Sobolev constant of the distribution q. If θ = (µ1, µ2, . . . , µK) is750

such that there is no permutation π : [K] → [K] satisfying µπ(i) = µ∗
i and wπ(i) = wi,∀i ∈ [K], by751

Yakowitz and Spragins [1968] we have KL(pθ∗ , pθ) > 0. Furthermore, the distribution pθ, by virtue752

of being a mixture of Gaussians, has a finite log-Sobolev constant (Theorem 1 in Chen et al. [2021]).753

Therefore, DSM (θ) > DSM (θ∗).754

However, note that DGSM (pθ) is a (weighted) average of DSM losses, treating the data distribution755

as pβθ∗ , a convolution of pθ∗ with a Gaussian with covariance βλminId; and the distribution being756

fitted as pβθ . Thus, the above argument implies that if θ ̸= θ∗, we have DGSM (θ) > DGSM (θ∗), as757

we need.758

Lemma 21 (Gradient bounds of lθ). Let lθ(x, β) be as defined in Proposition 6. Then, there exists a
constant C(d,D, 1

λmin
) (depending on d,D, 1

λmin
), such that

E∥∇θl(x, β)∥2 ≤ C

(
d,D,

1

λmin

)
Proof. By Proposition 6,759

lθ(x, β) = l1θ(x, β) + l2θ(x, β), and

l1θ(x, β) :=
1

2
∥∇x log pθ(x|β)∥22 +∆x log pθ(x|β)

l2θ(x, β) :=
1

2
(∇β log pθ(x|β))2 +∇β log r(β)∇β log pθ(x|β) + ∆β log pθ(x|β)

Using repeatedly the fact that ∥a+ b∥2 ≤ 2
(
∥a∥2 + ∥b∥2

)
, we have:760

E ∥lθ(x, β)∥22 ≲ E
∥∥l2θ(x, β)∥∥22 + E

∥∥l2θ(x, β)∥∥22
E
∥∥l1θ(x, β)∥∥22 ≲ E ∥∇x log pθ(x, β)∥42 + E (∆x log pθ(x, β))

2

E
∥∥l2θ(x, β)∥∥22 ≲ E (∇β log pθ(x|β))4 + E (∇β log r(β)∇β log pθ(x|β))2 + E (∆β log pθ(x|β))2

We proceed to bound the right hand sides above. We have:761

E
∥∥l1θ(x, β)∥∥22 ≲ E ∥∇x log pθ(x, β)∥42 + E (∆x log pθ(x, β))

2

≲ max
β,i

Ex∼p(x|β,i) ∥∇x log pθ(x|β, i)∥42 +max
β,i

Ex∼p(x|β,i) (∆x log pθ(x|β, i))2

(22)

≤ poly

(
d,

1

λmin

)
(23)
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Where (22) follows by Lemma 7, and (23) follows by combining Corollaries 2 and 1.762

The same argument, along with Lemma 13, and the fact that maxβ(∇β log r(β))
4 ≲ D8λ−4

min by a763

direct calculation shows that764

E
∥∥l2θ(x, β)∥∥22 ≲ E (∇β log pθ(x|β))4 + E (∇β log r(β)∇β log pθ(x|β))2 + E (∆β log pθ(x|β))2

≤ poly

(
d,D,

1

λmin

)
765

Lemma 22 (Uniform convergence). The generalized score matching loss satisfies a uniform law of766

large numbers:767

sup
θ∈Θ

∣∣∣D̂GSM (θ)−DGSM (θ)
∣∣∣ p−→ 0

Proof. The proof will proceed by a fairly standard argument, using symmetrization and covering768

number bounds. Precisely, let T = {(xi, βi)}ni=1 be the training data. We will denote by ÊT the769

empirical expectation (i.e. the average over) a training set T .770

We will first show that771

ET supθ∈Θ

∣∣∣D̂GSM (θ)−DGSM (θ)
∣∣∣ ≤ C

(
K, d,D, 1

λmin

)
√
n

(24)

from which the claim will follow. First, we will apply the symmetrization trick, by introducing a772

“ghost training set” T ′ = {(x′
i, β

′
i)}ni=1. Precisely, we have:773

ET supθ∈Θ

∣∣∣D̂GSM (θ)−DGSM (θ)
∣∣∣ = ET supθ∈Θ

∣∣∣ÊT lθ(x, β)−DGSM (θ)
∣∣∣

= ET supθ∈Θ

∣∣∣ÊT lθ(x, β)− ET ′ÊT ′ lθ(x, β)
∣∣∣ (25)

≤ ET,T ′supθ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

(lθ(xi, βi)− lθ(x
′
i, β

′
i))

∣∣∣∣∣ (26)

where (25) follows by noting the population expectation can be expressed as the expectation over774

a choice of a (fresh) training set T ′, (26) follows by applying Jensen’s inequality. Next, consider775

Rademacher variables {εi}ni=1. Since a Rademacher random variable is symmetric about 0, we have776

ET,T ′supθ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

(lθ(xi, βi)− lθ(x
′
i, β

′
i))

∣∣∣∣∣ = ET,T ′supθ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

εi (lθ(xi, βi)− lθ(x
′
i, β

′
i))

∣∣∣∣∣
≤ 2ET supθ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

εilθ(xi, βi)

∣∣∣∣∣
For notational convenience, let us denote by777

R :=

√√√√ 1

n

n∑
i=1

∥∇θlθ(xi, βi)∥2

We will bound this supremum by a Dudley integral, along with covering number bounds. Considering778

T as fixed, with respect to the randomness in {εi}, the process 1
n

∑n
i=1 εilθ(xi, βi) is subgaussian779

with respect to the metric780

d(θ, θ′) :=
1√
n
R∥θ − θ′∥2

In other words, we have781

E{εi} exp

(
λ
1

n

n∑
i=1

εi (lθ(xi, βi)− lθ′(xi, βi))

)
≤ exp

(
λ2d(θ, θ′)

)
(27)
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The proof of this is as follows: since εi is 1-subgaussian, and782

|lθ(xi, βi)− lθ′(xi, βi)| ≤ ∥∇θlθ(xi, βi)∥∥θ − θ′∥

we have that εi (lθ(xi, βi)− lθ′(xi, βi)) is subgaussian with variance proxy ∥∇θ(xi, βi)∥2∥θ− θ′∥2.783

Thus, 1
n

∑n
i=1 εilθ(xi, βi) is subgaussian with variance proxy 1

n2

∑n
i=1 ∥∇θlθ(xi, βi)∥2∥θ − θ′∥22,784

which is equivalent to (27).785

The Dudley entropy integral then gives786

supθ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

εilθ(xi, βi)

∣∣∣∣∣ ≲
∫ ∞

0

√
logN(ϵ,Θ, d)dϵ (28)

where N(ϵ,Θ, d) denotes the size of the smallest possible ϵ-cover of the set of parameters Θ in the787

metric d.788

Note that the ϵ in the integral bigger than the diameter of Θ in the metric d does not contribute to the789

integral, so we may assume the integral has an upper limit790

M =
2√
n
RD

Moreover, Θ is a product of K d-dimensional balls of (Euclidean) radius D, so791

logN(ϵ,Θ, d) ≤ log

((
1 +

RD√
nϵ

)Kd
)

≤ KdRD√
nϵ

Plugging this estimate back in (28), we get792

supθ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

εilθ(xi, βi)

∣∣∣∣∣ ≲
√

KdRD/
√
n

∫ M

0

1√
ϵ
dϵ

≲
√
MKdRD/

√
n

≲ RD

√
Kd

n

Taking expectations over the set T (keeping in mind that R is a function of T ), by Lemma 21 we get793

ET supθ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

εilθ(xi, βi)

∣∣∣∣∣ ≲ ET [R]D

√
Kd

n

≲
C
(
K, d,D, 1

λmin

)
√
n

This completes the proof of (24). By Markov’s inequality, (24) implies that for every ϵ > 0,794

PrT
[
supθ∈Θ

∣∣∣D̂GSM (θ)−DGSM (θ)
∣∣∣ > ϵ

]
≤

C
(
K, d,D, 1

λmin

)
√
nϵ

Thus, for every ϵ > 0,795

lim
n→∞

PrT
[
supθ∈Θ

∣∣∣D̂GSM (θ)−DGSM (θ)
∣∣∣ > ϵ

]
= 0

Thus,796

sup
θ∈Θ

∣∣∣D̂GSM (θ)−DGSM (θ)
∣∣∣ p−→ 0

as we need.797

29



H Polynomial smoothness bound: proof of Theorem 6798

First, we need several easy consequences of the machinery developed in Section A.3, specialized to799

Gaussians appearing in CTLD.800

Lemma 23. For all k ∈ N, we have:801

max
β,i

Ex∼p(x|β,i)∥Σ−1
β (x− µi)∥2k2 ≤ dkλ−k

min

Proof.

Ex∼p(x|β,i)∥Σ−1
β (x− µi)∥2k2 = Ez∼N (0,Id)∥Σ

− 1
2

β z∥2k2
≤ Ez∼N (0,Id)∥Σ

−1
β ∥kOP ∥z∥2k2

≤ λ−k
minEz∼N (0,Id)∥z∥

2k
2

≤ dkλ−k
min

where the last inequality follows by Lemma 28.802

Combining this Lemma with Lemmas 4 and 5, we get the following corollary:803

Corollary 2.

max
β,i

Ex∼p(x|β,i)

∥∥∥∥∥∇k1
µi
∇k2

x p(x|β, i)
p(x|β, i)

∥∥∥∥∥
2k

≲ d(k1+k2)kλ
−(k1+k2)k
min

max
β,i

E(x,β)∼p(x|β,i)

∥∥∥∥∥∇k1
µi
∆k2

x p(x|β, i)
p(x|β, i)

∥∥∥∥∥
2k

≲ d(k1+3k2)kλ
−(k1+3k2)k
min

Finally, we will need the following simple technical lemma:804

Lemma 24. Let X be a vector-valued random variable with finite Var(X). Then, we have805

∥Var(X)∥OP ≤ 6E∥X∥22
806

Proof. We have807

∥Var(X)∥OP =
∥∥∥E [(X − E[X]) (X − E[X])

⊤
]∥∥∥

OP

≤ E ∥X − E[X]∥22 (29)

≤ 6E∥X∥22 (30)

where (29) follows from the subadditivity of the spectral norm, (30) follows from the fact that808

∥x+ y∥22 = ∥x∥22 + ∥y∥22 + 2⟨x, y⟩ ≤ 3(∥x∥22 + ∥y∥22)

for any two vectors x, y, as well as the fact that by Jensen’s inequality, ∥E[X]∥22 ≤ E∥X∥22.809

Given this lemma, it suffices to bound E∥(∇θ∇x,β log p
⊤
θ ∇x,β log pθ∥22 and E∥∇θ∆x,β log pθ∥22,810

which are given by Lemma 25 and Lemma 26, respectively.811

Lemma 25.

E(x,β)∼p(x,β)

∥∥∇θ∇x,β log p
⊤
θ ∇x,β log pθ

∥∥2
2
≤ poly

(
D, d,

1

λmin

)
812
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Proof. Recall that θ = (µ1, µ2, . . . , µK), where each µi is a d-dimensional vector, and we are813

viewing θ as a dK-dimensional vector.814

E(x,β)∼p(x,β)

∥∥∇θ∇x,β log p
⊤
θ ∇x,β log pθ

∥∥2
2

≤ E(x,β)∼p(x,β)

[
∥∇θ∇x,β log pθ∥2OP ∥∇x,β log pθ∥22

]
≤
√
E(x,β)∼p(x,β)∥∇θ∇x,β log pθ∥4OP

√
E(x,β)∼p(x,β)∥∇x,β log pθ∥42

where the last step follows by Cauchy-Schwartz. To bound both factors above, we will essentially815

first use Lemma 7 to relate moments over the mixture, with moments over the components of the816

mixture. Subsequently, we will use estimates for a single Gaussian, i.e. Corollaries 2 and 1.817

Proceeding to the first factor, we have:818

E(x,β)∼p(x,β) ∥∇x,β∇θ log pθ(x, β)∥4OP

≲ E(x,β)∼p(x,β) ∥∇x∇θ log pθ(x, β)∥4OP + E(x,β)∼p(x,β) ∥∇β∇θ log pθ(x, β)∥42
≲ E(x,β)∼p(x,β) ∥∇x∇θ log pθ(x|β)∥4OP + E(x,β)∼p(x,β) ∥∇β∇θ log pθ(x|β)∥42
≲ max

β,i
Ex∼p(x|β,i) ∥∇x∇θ log pθ(x|β, i)∥4OP +max

β,i
Ex∼p(x|β,i) ∥∇β∇θ log pθ(x|β, i)∥42 (31)

≤ poly(d, 1/λmin) (32)

where (31) follows from Lemma 7, and (32) follows by combining Corollaries 2 and 1 and Lemma819

13.820

The second factor is handled similarly3. We have:821

E(x,β)∼p(x,β)∥∇x,β log pθ(x, β)∥42
≲ E(x,β)∼p(x,β)∥∇x log pθ(x, β)∥42 + E(x,β)∼p(x,β) (∇β log pθ(x, β))

4

≲ E(x,β)∼p(x,β)∥∇x log pθ(x|β)∥42 + E(x,β)∼p(x,β) (∇β log pθ(x|β))4 + Eβ∼r(β) (∇β log r(β))
4

≲ max
β,i

Ex∼p(x|β,i)∥∇x log pθ(x|β, i)∥42 +max
β,i

Ex∼p(x|β,i)(∇β log pθ(x|β, i))4 +max
β

(∇β log r(β))
4

(33)
≤ poly(d,D, 1/λmin) (34)

where (33) follows from Lemma 7, and (34) follows by combining Corollaries 2 and 1 and Lemma822

13, as well as the fact that maxβ(∇β log r(β))
4 ≲ D8λ−4

min by a direct calculation.823

Together the estimates (32) and (34) complete the proof of the lemma.824

Lemma 26.

E(x,β)∼p(x,β)∥∇θ∆x,β log pθ(x, β)∥22 ≤ poly

(
d,

1

λmin

)
825

Proof.

∇θ∆(x,β) log pθ(x, β) (35)

= ∇θ∆x log pθ(x, β) +∇θ∇2
β log pθ(x, β) (36)

= ∇θ∆x log pθ(x|β) +∇θ∆x log r(β) +∇θ∇2
β log pθ(x|β) +∇θ∇2

β log r(β)

= ∇θ∆x log pθ(x|β) +∇θ∇2
β log pθ(x|β) (37)

where (35) follows by exchanging the order of derivatives, (36) since β is a scalar, so the Laplacian826

just equals to the Hessian, (37) by dropping the derivatives that are zero in the prior expression.827

3Note, ∇βf(β) for f : R → R is a scalar, since β is scalar.
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To bound both summands above, we will essentially first use Lemma 7 to relate moments over the828

mixture, with moments over the components of the mixture. Subsequently, we will use estimates for829

a single Gaussian, i.e. Corollaries 1 and 2. Precisely, we have:830

E(x,β)∼p(x,β)∥∇θ∆x,β log pθ∥22
≲ E(x,β)∼p(x,β)∥∇θ Tr(∇2

x log pθ(x|β))∥22 + E(x,β)∼p(x,β)∥∇θ∇2
β log pθ(x|β)∥22

≲ max
β,i

Ex∼p(x|β,i)

∥∥∥∥∇θ∆xpθ(x|β, i)
pθ(x|β, i)

∥∥∥∥2
2

+max
β,i

Ex∼p(x|β,i)

∥∥∥∥∇θ∇xpθ(x|β, i)
pθ(x|β, i)

∥∥∥∥4
OP

(38)

≤ poly(d, 1/λmin) (39)

where (38) follows from Lemma 7 and Lemma 13, and (39) follows by combining Corollaries 1 and831

2.832

833

I Technical Lemmas834

I.1 Moments of a chi-squared random variable835

For the lemmas in this subsection, we consider a random variable z ∼ N (0, Id) and random variable836

x ∼ N (µ,Σ) where ∥µ∥ ≤ D and Σ ⪯ σ2
maxI .837

Lemma 27 (Norm of Gaussian). The random variable z enjoys the bound838

E∥z∥2 ≤
√
d

Proof.

(E∥z∥2)2 ≤ E∥z∥22 (40)

= E
d∑

i=1

z2i

= d (41)

where (40) follows from Jensen, and (41) by plugging in the mean of a chi-squared distribution with839

d degree of freedom.840

Lemma 28 (Moments of Gaussian). Let z ∼ N (0, Id). For l ∈ Z+, E∥z∥2l2 ≲ dl.841

Proof. The key observation required is ∥z∥22 =
∑d

i=1 z
2
i is a Chi-Squared distribution of degree d.842

E∥z∥2l2 = E
(
∥z∥22

)l
= Eq∼χ2(d)q

l

=
(d+ 2l − 2)!!

(d− 2)!!
≤ (d+ 2l − 2)l

≲ dl

843

J Related work844

Score matching: Score matching was originally proposed by Hyvärinen [2005], who also provided845

some conditions under which the estimator is consistent and asymptotically normal. Asymptotic846

normality is also proven for various kernelized variants of score matching in Barp et al. [2019].847

Recent work by Koehler et al. [2022] proves that when the family of distributions being fit is rich848

enough, the statistical sample complexity of score matching is comparable to the sample complexity849

of maximum likelihood only when the distribution satisfies a Poincaré inequality. In particular, even850

simple bimodal distributions in 1 dimension (like a mixture of 2 Gaussians) can significantly worsen851
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the sample complexity of score matching (exponential with respect to mode separation). For restricted852

parametric families (e.g. exponential families with sufficient statistics consisting of bounded-degree853

polynomials), recent work [Pabbaraju et al., 2023] showed that score matching can be comparably854

efficient to maximum likelihood, by leveraging the fact that a restricted version of the Poincaré855

inequality suffices for good sample complexity.856

Theoretical understanding of annealed versions of score matching is still very impoverished. A recent857

line of work [Lee et al., 2022, 2023, Chen et al., 2022] explores how accurately one can sample using858

a learned (annealed) score, if the (population) score loss is successfully minimized. This line of work859

can be viewed as a kind of “error propagation” analysis: namely, how much larger the sampling860

error with a score learned up to some tolerance. It does not provide insight on when the score can be861

efficiently learned, either in terms of sample complexity or computational complexity.862

Sampling by annealing: There are a plethora of methods proposed in the literature that use863

temperature heuristics [Marinari and Parisi, 1992, Neal, 1996, Earl and Deem, 2005] to alleviate the864

slow mixing of various Markov Chains in the presence of multimodal structure or data lying close to865

a low-dimensional manifold. A precise understanding of when such strategies have provable benefits,866

however, is fairly nascent. Most related to our work, in Ge et al. [2018], Lee et al. [2018], the authors867

show that when a distribution is (close to) a mixture of K Gaussians with identical covariances,868

the classical simulated tempering chain [Marinari and Parisi, 1992] with temperature annealing (i.e.869

scaling the log-pdf of the distribution), along with Metropolis-Hastings to swap the temperature in870

the chain mixes in time poly(K).871

Decomposition theorems and mixing times The mixing time bounds we prove for CTLD rely872

on decomposition techniques. At the level of the state space of a Markov Chain, these techniques873

“decompose” the Markov chain by partitioning the state space into sets, such that: (1) the mixing time874

of the Markov chain inside the sets is good; (2) the “projected” chain, which transitions between sets875

with probability equal to the probability flow between sets, also mixes fast. These techniques also can876

be thought of through the lens of functional inequalities, like Poincaré and Log-Sobolev inequalities.877

Namely, these inequalities relate the variance or entropy of functions to the Dirichlet energy of the878

Markov Chain: the decomposition can be thought of as decomposing the variance/entropy inside the879

sets of the partition, as well as between the sets.880

Most related to our work are Ge et al. [2018], Moitra and Risteski [2020], Madras and Randall881

[2002], who largely focus on decomposition techniques for bounding the Poincaré constant. Related882

“multiscale” techniques for bounding the log-Sobolev constant have also appeared in the literature883

Otto and Reznikoff [2007], Lelièvre [2009], Grunewald et al. [2009].884

Learning mixtures of Gaussians Even though not the focus of our work, the annealed score-885

matching estimator with the natural parametrization (i.e. the unknown means) can be used to learn886

the parameters of a mixture from data. This is a rich line of work with a long history. Identifiability887

of the parameters from data has been known since the works of Teicher [1963], Yakowitz and888

Spragins [1968]. Early work in the theoretical computer science community provided guarantees for889

clustering-based algorithms [Dasgupta, 1999, Sanjeev and Kannan, 2001]; subsequent work provided890

polynomial-time algorithms down to the information theoretic threshold for identifiability based on891

the method of moments [Moitra and Valiant, 2010, Belkin and Sinha, 2010]; even more recent work892

tackles robust algorithms for learning mixtures in the presence of outliers [Hopkins and Li, 2018,893

Bakshi et al., 2022]; finally, there has been a lot of interest in understanding the success and failure894

modes of practical heuristics like expectation-maximization [Balakrishnan et al., 2017, Daskalakis895

et al., 2017].896

Techniques to speed up mixing time of Markov chains SDEs with different choices of the drift897

and covariance term are common when designing faster mixing Markov chains. A lot of such schemas898

“precondition” by a judiciously chosen D(x) in the formalism of equation (4). A particularly common899

choice is a Newton-like method, which amounts to preconditioning by the Fisher matrix [Girolami900

and Calderhead, 2011, Li et al., 2016, Simsekli et al., 2016], or some cheaper approximation thereof.901

More generally, non-reversible SDEs by judicious choice of D,Q have been shown to be quite helpful902

practically [Ma et al., 2015]903

“Lifting” the Markov chain by introducing new variables is also a very rich and useful paradigms.904

There are many related techniques for constructing Markov Chains by introducing an annealing905
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parameter (typically called a “temperature”). Our chain is augmented by a temperature random906

variable, akin to the simulated tempering chain proposed by Marinari and Parisi [1992]. In parallel907

tempering [Swendsen and Wang, 1986, Hukushima and Nemoto, 1996], one maintains multiple908

particles (replicas), each evolving according to the Markov Chain at some particular temperature,909

along with allowing swapping moves. Sequential Monte Carlo [Yang and Dunson, 2013] is a related910

technique available when gradients of the log-likelihood can be evaluated.911

Analyses of such techniques are few and far between. Most related to our work, Ge et al. [2018]912

analyze a variant of simulated tempering when the data distribution looks like a mixture of (unknown)913

Gaussians with identical covariance, and can be accessed via gradients to the log-pdf. We compare914

in more detail to this work in Section D. In the discrete case (i.e. for Ising models), Woodard et al.915

[2009b,a] provide some cases in which simulated and parallel tempering provide some benefits to916

mixing time.917

Another way to “lift” the Markov chain is to introduce a velocity variable, and come up with918

“momentum-like” variants of Langevin. The two most widely known ones are underdamped Langevin919

and Hamiltonian Monte Carlo. There are many recent results showing (both theoretically and920

practically) the benefit of such variants of Langevin, e.g. [Chen and Vempala, 2019, Cao et al., 2023].921

The proofs of convergence times of these chains is unfortunately more involved than merely a bound922

on a Poincaré constant (in fact, one can prove that they don’t satisfy a Poincaré constant) — and it’s923

not so clear how to “translate” them into a statistical complexity analysis using the toolkit we provide924

in this paper. This is fertile ground for future work, as score losses including a velocity term have925

already shown useful in training score-based models [Dockhorn et al., 2021].926
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