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Abstract

The possibility of algorithmic collusion between pricing algorithms and the neces-
sary antitrust legislation to regulate against it are hotly debated among academics
and policymakers. However, none of the algorithms shown to collude have theoret-
ical convergence guarantees and no theoretical framework exists for characterizing
an algorithm’s likelihood to collude. In this article, we summarize recent work
which provides tools for quantifying the likelihood of collusion for a provably
convergent algorithm and applies the results to two simple pricing environments.

1 Introduction

As reinforcement learning (RL) algorithms are increasingly used for real world applications, situations
in which multiple algorithms learn in the same environment will become more prevalent. Algorithms
should thus be designed to solve the inherent pathologies of multiagent reinforcement learning
(MARL) [25]. The information that is shared among the algorithms can be used to categorize
algorithms of this type. In the decentralized setting, almost no information is shared between the
algorithm. Provably convergent algorithms in this setting are particularly difficult to design, but
recent work has made some progress. In the class of zero-sum Markov games, convergence can be
proved for a two-timescale Q-learning algorithm by [29], for a new algorithm called V-learning by
[14] and for an Actor-Critic type algorithm in [26]. Markov potential games also allow for convergent
decentralized MARL algorithms, as shown in [16, 18]. The case of convergence in continuous-space
Markov games is tackled by a quantized Q-learning algorithm in [2]. Convergence to coarse correlated
equilibria has been shown, for example, in general-sum Markov games by [17]. In this paper, we
focus on the Decentralized Q-learning (DQ) algorithm of [3], which converges to a Nash equilibrium
in the class of weakly acyclic games. The convergence proof relies on showing that DQ approximates
a modification of the usual best-response dynamics called the best-response strategy adjustment
process (BRSAP) arbitrarily closely.

Previous work has focussed on the convergence of MARL algorithms to an equilibrium, but in
many cases there are multiple equilibria. The outcomes in the different equilibria may be drastically
different in terms of the payoff the agents receive. An example of this is algorithmic collusion, which
will be discussed below. To improve performance, it then becomes necessary to analyze the likelihood
of observing different outcomes, with the objective of designing algorithms that select preferable
outcomes with high probability.

The case of algorithmic collusion between pricing algorithms is particularly pressing in this regard.
Recent simulation-based research by [10, 9] has concluded that basic RL algorithms can lead
to supracompetitive prices. In addition, classical dynamic pricing algorithms can provably learn
supracompetitive prices under self-play [21, 15]. The occurrence of algorithmic collusion in the
real world has been strongly suggested by empirical studies of gas prices [4] and multifamily rental
markets by [8]. This is a cause for concern for competition authorities, as current legislation in, for
example, the United States and Europe may be insufficient for prosecuting companies employing such
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algorithms (see, for example, the discussion in [24]). Understanding when and how algorithms can
learn to collude is essential for designing effective policy and designing efficient detection techniques.

The RL simulation studies showing that algorithms can learn to price supracompetitively use algo-
rithms without convergence guarantees in multi-agent environments. The results may thus be due to
insufficient learning [12]. Of the algorithms with convergence guarantees, only those convergent in
weakly acyclic games such as in [3] or algorithms convergent in potential games such as in [16] are
relevant here, as pricing environments are not zero-sum. We show that DQ converges in the simplest
pricing environment making collusion possible.

Collusion1 is already possible when the algorithms select one of two prices: the competitive or the
collusive price. The resulting payoffs corresponds to the prisoner’s dilemma for most demand models.
In more realistic pricing environments, the algorithms will have to select prices from more than two
prices. We investigate if the addition of prices increases or decreases the likelihood of collusion.
To do this, we consider a generalized prisoner’s dilemma, in which we add an intermediate price
between the competitive and collusive prices.

Adding a third action to the prisoner’s dilemma may affect the level of cooperation. A third irrelevant
(because dominated) action can, for example, increase the chance of reaching sustainable cooperative
outcomes, as shown in [30]. Similarly, the option of opting out of playing the prisoner’s dilemma may
also lead to an increase in cooperation [7]. The payoffs’ ordering in [30] and [7], however, differs
from the ordering we will consider here. A model with the same payoff structure as our, which leads
to an increase of cooperation, is studied in [28].

In this article, we summarize the results of [20] and [19] with a focus on the relevance of the results
for algorithmic collusion. We show that DQ is provably convergent in two simple pricing setting in
which algorithmic collusion could be observed: the iterated prisoner’s dilemma with a memory of one
period and a generalization thereof with three actions. By characterizing the likelihood of observing
different equilibria in these games when using DQ, we can conclude that DQ learns to collude with
positive probability under conditions favorable for collusion, but does not exhibit a significant level
of collusion as measured by the likelihood of learning collusive strategy equilibria under self-play.
For the sake of brevity, many details (including proofs) have been omitted, but these can be found in
[20, 19]. The text of the article is largely based on that of the aforementioned articles.

2 Setting

We will consider two-player finite discounted stochastic games. The strategies available to both
players are taken from a common (finite) strategy space Π, and the best-response (BR) for each of the
players given their opponent’s strategy is unique. We will denote the BR of player i by BRi : Π→ Π.
Our results will focus on the symmetric game setting where BR1(·) = BR2(·), allowing us to drop the
subscript and refer to the best-response function as BR(·). The function BR(·) induces a functional
relation on the strategy space Π, which we will call the individual best-response (IBR) graph. The
particular structure of functional relations (see Theorem 2.6) allows us to obtain our theoretical
results. To define functional relations, we start with the definition of relations in Definition 2.1.
Definition 2.1 (Relations). Relations have the following primitives:

1. A set V of elements called “vertices”.

2. A set E of elements called “edges”.

3. A function f whose domain is E and whose range is contained in V .

4. A function s whose domain is E and whose range is contained in V .

and the following axioms:

1. The set V is finite and not empty.

2. The set E is finite.
1A formal, agreed upon definition of algorithmic collusion is still lacking. A mathematical definition is

proposed in [11] and an informal definition is proposed in [1]. For our purposes, we will define strategy equilibria
as being collusive if they lead to stable supracompetitive prices (see Definition 4.1).
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3. No two distinct edges are parallel.

Let vivj represent the edge from vertex vi to vertex vj . This allows us to define paths and semipaths
in Definition 2.2.
Definition 2.2 (Path and Semipath). A (directed) path from v1 to vn is a collection of distinct vertices,
v1, v2, . . . , vn, together with the edges v1v2, v2v3, . . . , vn−1vn. A semipath joining v1 and vn is a
collection of distinct vertices, v1, v2, . . . , vn together with n− 1 edges, one from each pair of edges,
vivi+1 or vi+1vi for i ∈ {1, 2 . . . , n− 1}.

A semipath between two vertices thus exists if and only if they are connected in the graph, where we
replace all directed edges of the relation by undirected edges. We can use the definitions of paths and
semipaths to define various notions of connectedness for relations in Definition 2.3.
Definition 2.3 (Connectedness). A relation R is strongly connected, if every two vertices are mutually
reachable; R is unilaterally connected, if for any two vertices at least one is reachable from the other.
We say that R is weakly connected, if every two vertices are joined by a semipath.

The class of games we will consider has unique best-response functions, which motivates the definition
of functional relations in Definition 2.4.
Definition 2.4 (Functional relation). A functional relation is a relation in which every vertex has
outdegree one. A relation R is functional if and only if each of its weakly connected components is
functional.
Definition 2.5 (IBR graphs). Given a symmetric, two-player game with unique BR function, the IBR
graph consists of nodes representing all possible strategies π ∈ Π and directed edges from each π to
its best-response BR(π).

The structure of functional relations is characterized by Theorem 2.6, which is adapted to relations
from [13, Theorem 12.2].
Theorem 2.6 (Structure of functional relations). The following statements are equivalent for a weakly
connected relation R.

1. R is functional.

2. R has exactly one cycle or self-loop, and after deleting its edge(s), each weak component of
the resulting relation consists of a tree toward a vertex

A relation R is functional if and only if each of its weakly connected components is functional.

Given a strategy profile (π1, π2), where π1, π2 ∈ Π, the IBR dictates the strategy profiles reached
when exactly one of the players plays a best-response to the current strategy of their opponent. This
results in (BR(π1), π2) and (π1,BR(π1)). Note that these strategy profiles do not depend on the
initial strategy of the player playing a best-response. The BR graph is constructed by connecting
every strategy profile with the profiles in which one player best-responds, leading to a directed graph
on Π×Π. Due to the assumption of uniqueness for the BR function, this will be a graph where each
vertex has an out-degree of two.

Nash equilibrium are strategy profiles in which no player can improve their expected future discounted
payoff by unilaterally changing strategy. In the BR graph, these appear as vertices with two self-loops.
Definition 2.7 (Nash equilibrium). A Nash equilibrium is given by a strategy profile

(π1, π2) such that π1 = BR(π2) and π2 = BR(π1). (1)

For the DQ algorithm to converge, the BR graph must be weakly acyclic.
Definition 2.8 (Weak acyclicity). A BR graph is weakly acyclic if there exists a finite directed path
from any strategy profile to a Nash equilibrium.

We are interested in understanding the dynamics of DQ of [3] in such a setting. Thus, we assume that
the players do not know the payoffs of the game or the strategy employed by their opponent. The goal
of the players is to learn a strategy that maximizes their expected discounted sum of future rewards

E
[ ∞∑

t=1

δtrit

]
, (2)
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where rit is the reward received by the ith agent in the tth round of the game and δ is a common
discount factor. They do this using the DQ as in Algorithm 1. The version given here is a slight
variation of the original in [3].

Algorithm 1 Decentralized Q-learning
Given discount factor δ, exploration rate ϵ, batch size K, state space S , action space A and inertia λ
begin

Initialize qact(s, a) = qenv(s, a) randomly for all s ∈ S and a ∈ A.
Set πact(a|s) as ϵ-greedy strategy from qact(s, a).
Set πenv(a|s) as ϵ-greedy strategy from qenv(s, a).
Observe initial state s.
repeat

for t = 1 to K do
Execute action a using πact(a|s);
Observe reward r and next state s′;
Set n(s, a)← n(s, a) + 1;
Set α̃← 1

n(s,a)+1 ;

Set qenv(s, a)← (1− α̃)qenv(s, a) + α̃
[
r + δ

∑
b πenv(b|s′)qenv(s

′, b)
]
;

Set πenv(a|s) as ϵ-greedy strategy from qenv(s, a);
Set s← s′;

end
Generate random variable u from U [0, 1];
foreach ŝ, â do

if u > λ then
Set qact(ŝ, â)← qenv(ŝ, â);

end
Set π(â|ŝ) as ϵ-greedy strategy from qact(ŝ, â);
Set qenv(ŝ, â)← qact(ŝ, â);

end
until done;

end

3 Theoretical results

IBR graphs of symmetric games with unique best-responses consist of weak relations, each containing
a single cycle (from Theorem 2.6), referred to as the “eye” (following [27]). An IBR graph thus
contains at least one eye and a maximum of |Π| eyes. Besides the eye, the weak relations consist of
trees connected to one of the vertices in the eye (from Theorem 2.6).

The IBR graphs contain all the information contained in the BR graphs. The Nash equilibria, which
correspond to vertices with self-loops in the BR graphs, correspond to two possible structures in the
IBR graphs: self-loops and 2-cycles. If the pair of vertices in the IBR graph corresponding to a vertex
in the BR graph is given by the same vertex twice and this vertex has a self-loop, then both of the
outgoing edges in the BR graph will also be self-loops. We refer to such equilibria as symmetric.
Similarly, if the pair of vertices in the IBR graph have outgoing edges pointing to each other, i.e.,
they form a 2-cycle, then the pair corresponds to two different vertices in the BR graph which both
have self-loops in the BR graph. Such equilibria are referred to as asymmetric. This leads us to our
first result, Lemma 3.1.
Lemma 3.1 (Nash equilibria in IBR graphs). Nash equilibria correspond to eyes in the IBR graph
that are either self-loops or 2-cycles.

The existence of inescapable cycle in the BR graph corresponds with the existence of cycle of length
three or more in the IBR graph. We will refer to such eyes as “bad eyes”.
Definition 3.2 (Bad eye). For IBR graphs, a bad eye consists of a cycle of length three or more.
Theorem 3.3 (IBR graph conditions for weak acyclicity). A symmetric game with unique best-
response function is weakly acyclic if and only if its IBR graph contains no bad eyes.

4



We may be interested not only in whether a specific game is weakly acyclic, but if a class of games is
weakly acyclic. As an example, consider the iterated prisoner’s dilemma in which players employ
strategies with a memory of one period and exploration as discussed in Section 4. Here, the structure
of the IBR graph may depend on the combination of the parameters T,R, P, S as well as ϵ and δ. In
the normalized case without exploration, i.e., with T = 1, S = 0 and ϵ = 0, the parameter space is
split into 12 regions each with its own IBR graph (see [22]). Including the exploration rate increases
the number of regions significantly.

To check whether the game is weakly acyclic for all allowed parameter values, would require checking
whether the game is weakly acyclic in all possible regions. Such a tedious calculation can be avoided
by examining the graph of all possible edges of the IBR graph. Each of the vertices in the IBR graph
has a unique BR, which may vary depending on the combination of environmental and algorithmic
parameters. Calculating such a list of best-responses and the corresponding existence conditions can
be automated following [22]. This leads to a list of all the edges that are possible in the IBR graph.
Definition 3.4 (Maximal IBR graph). For a given class of symmetric games, the maximal IBR graph
is the graph containing all edges that are possible in the IBR graphs of the class.

The Maximal IBR graph is no longer a functional relation. Nevertheless, we can use it to determine
sufficient conditions for the class of symmetric games under consideration being weakly acyclic.
Corollary 3.5 (Sufficient conditions for weak acyclicity). If the Maximal IBR graph contains no
cycles of length three or more, the corresponding class of games is weakly acyclic.

Taking the limit of K → ∞ of the DQ algorithm given in Algorithm 1, results in the BRSAP
introduced in [3] and defined as follows.
Definition 3.6 (BRSAP). At time t = 0, the players choose a strategy uniformly at random from the
strategy space. Subsequently, they may change their strategy at discrete time points t ∈ {1, 2, . . .}.
We endow the players with an additional parameter λ ∈ (0, 1), which we call inertia. At each point in
time, a player plays the BR to their opponent’s previous strategy with probability 1− λ and continues
playing their previous strategy with probability λ.

If the BR graph of the game is weakly acyclic, the BRSAP must converge to a Nash equilibria. But
how likely is the process is to end in the different equilibria when multiple equilibria are possible? To
answer this, we construct the BRSAP graph. This is a weighted directed graph, with the edge weights
corresponding to the likelihood of observing the represented transition.
Definition 3.7 (BRSAP graph). To construct the BRSAP graph, weigh all edges in the BR graph by
λ(1− λ), add self-loops to all vertices in the BR graph with weight λ2, and add edges with weight
(1− λ)2 between all strategy profiles (πi, πj) and (BR(πj),BR(πi)) for i, j ∈ {1, . . . , |Π|}.

To quantify the likelihood of ending in an equilibrium, we introduce the concept of a stochastic basin
of attraction (SBA). The BRSAP is an absorbing Markov Chain when the BR graph is weakly acyclic.
Definition 3.8 (Stochastic Basin of Attraction). We define the SBA for a given Nash equilibrium of
the BRSAP as the probability corresponding to that equilibrium in the stationary distribution of the
process.

Note that we will identify the SBA of asymmetric strategy equilibria with the likelihood of ending in
either of the two asymmetric equilibria.

Using the transition matrix of the BRSAP graph, we can calculate the stationary distribution as
the eigenvector corresponding to eigenvalue 1. The eigenvector will contain nonzero entries at the
positions corresponding to the equilibria and these entries tell us the likelihood of learning that
equilibrium.
Theorem 3.9 (Relating BRSAP to IBR graph). Assume that the BR graph is weakly acyclic. The
stationary distribution on the equilibria of the BRSAP is the same as the stationary distribution on
the eyes of a random walk on the IBR graph with uniform initial conditions.

Theorem 3.9 allows us to calculate the stationary distribution on the absorbing states using the IBR
graph. The structure of the IBR graph consists of disconnected components, each consisting of a
weakly connected functional relation. This means that the stationary distribution on the eye of a
particular component is given by the number of vertices in that component divided by the total number
of vertices. From Theorem 3.9, we can also conclude that the stationary distribution is independent
of the inertia parameter, λ.
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Figure 1: The maximal IBR graph of the iterated prisoner’s dilemma with a memory of one period
and ϵ-greedy strategies. The strategies are enumerated from 1 to 16 with the AD, GT and WSLS
strategies being given by nodes 1, 2 and 10 respectively.

4 Applications

4.1 Prisoner’s dilemma

The simplest pricing environment in which collusion may be observed corresponds to the iterated
prisoner’s dilemma, with a memory of one period. The actions are either to cooperate (C) or to defect
(D), where cooperation corresponds to charging the monopoly price and defection corresponds to
charging the competitive price. The payoffs are given below.

1 \ 2 D C

D (P, P ) (T, S)
C (S, T ) (R,R)

Here T > R > P > S. To reduce the number of parameters and without loss of generality, we will
consider the normalized versions of this game, where we set T = 1 and S = 0.

Some of the most famous strategies played in the iterated prisoner’s dilemma rely on conditioning
the choice of action on the actions played in the previous round, as studied in [5]. An example of this
is the win-stay, loose-shift (WSLS) strategy (see [23]), in which players cooperate if both players
played the same action in the previous round and defect otherwise. For this reason, we allow the
players to choose their one-period memory strategy from the set of 16 possible ϵ-greedy strategies of
this kind, i.e., |Π| = 16.2

Note that there are combinations of the parameters T,R, P, S, δ and ϵ that lead to a game in which
the best-response function is not unique. This occurs at the critical conditions in the parameter space,
and therefore only for a set of parameter values with measure zero. We will therefore exclude such
parameter values in the following analysis.

Using Theorem 3.3, we find that the normalized iterated prisoner’s dilemma with a memory of one
period is weakly acyclic for all R,P, δ, ϵ ∈ (0, 1) with R > P . The maximal IBR (Figure 1) shows
that three Nash equilibria are possible in this setting, namely, both players playing all-defect (AD),
grim trigger (GT) or win-stay, lose-shift (WSLS). Using Theorem 3.9, we find tight upper and lower
bounds on the SBAs for all three Nash equilibria across all parameter values R,P, δ, ϵ ∈ (0, 1) with
R > P as shown in Table 1. In Figure 2 we show two IBR graphs that realize all upper and lower
bounds of Table 1.

4.2 Generalized prisoner’s dilemma

Inspired by the pricing setting, we consider a generalized prisoner’s dilemma with three actions. We
will base the payoff structure on the prices and revenues of a logit demand model. This choice is

2We assume that the initial action is chosen uniformly at random by all players.
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Equilibrium Maximum SBA Minimum SBA

AD 1 0.8125
GT 0.0625 0

WSLS 0.125 0
Table 1: Tight upper and lower bounds on the SBAs for the three Nash equilibria possible in the
iterated prisoner’s dilemma with a one period memory and ϵ-greedy exploration under the BRSAP.
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Figure 2: Examples of IBR graphs for the PD with T = 1, R = 0.9, P = 0.3, S = 0, ϵ = 0.1, δ = 0.9
on the left and T = 1, R = 0.9, P = 0.3, S = 0, ϵ = 0.1, δ = 0.1 on the right.

motivated by the recent application of Q-learning in the pricing setting [10]. The realized demand of
player i, is

di(pi, p−i) =
e

ai+pi
µ

1 + e
a1+p1

µ + e
a2+p2

µ

. (3)

Here pi ∈ {pL, pM , pH} is the price chosen by player i and p−i ∈ {pL, pM , pH} is the price chosen
by player −i = {1, 2}\i. a1, a2 and µ are model parameters, where a1 and a2 capture vertical
differentiation and µ captures horizontal differentiation. Given a price pair (p1, p2), player i receives
reward

ri(pi, p−i) = di(pi, p−i)(pi − ci), (4)
where ci ≥ 0 is the marginal cost. The three possible prices we will consider are the competitive
price, the collusive price and the average of the competitive and collusive price, which we will refer
to as pL, pH , and pM respectively. There are thus nine possible price pairs. To illustrate the payoff
structure, we consider the case where a1 = a2 = 1, µ = 4 and c1 = c2 = 0. This leads to the payoffs
given in Table 2.

1 \ 2 pL pM pH

pL (1.06336, 1.06336) (1.09345, 1.05559) (1.12102, 1.03431)
pM (1.05559, 1.09345) (1.08634, 1.08634) (1.11455, 1.06522)
pH (1.03431, 1.12102) (1.06522, 1.11455) (1.09361, 1.09361)

Table 2: Payoffs for each of the nine possible price pairs in the case of logit demand with parameters
a1 = a2 = 1, c1 = c2 = 0 and µ = 4. For each pair of payoffs, the first is the payoff to player one
and the second is the payoff to player two.

In general, we are thus interested in the payoff matrix in Table 3. To match the payoffs of Table 2 we
must have

s3 < s1 < p < s2 < m < t1 < r < t2 < t3, (5)
and to ensure that it is not profitable to alternate between off-diagonal states we also impose the
following conditions:

2r > t3 + s3, 2r > t2 + s2, and 2m > t1 + s1. (6)
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Figure 3: Example of a stably collusive strategy equilibrium. Here the nodes represent all possible one
period histories, with nodes 1, 5 and 9 representing the histories (pL, pL), (pM , pM ) and (pH , pH),
respectively.

These conditions are satisfied by the payoffs in Table 2.

1 \ 2 pL pM pH

pL (p, p) (t1, s1) (t3, s3)
pM (s1, t1) (m,m) (t2, s2)
pH (s3, t3) (s2, t2) (r, r)

Table 3: General payoff matrix for three action iterated prisoner’s dilemma based on logit demand.

To quantify the likelihood of observing collusive strategy equilibria, we consider all Nash equilibria
and determine whether they lead to stable supra-competitive prices. The rationale behind our
definition of such strategies differs from that used in [10, 9] where the focus is on the existence of
a reward-and-punishment scheme. In our case, we define the concept of stably collusive strategy
equilibria in Definition 4.1 which focuses on the existence of a forgiveness mechanism restoring
supracompetitive prices after a deviation.

Definition 4.1 (Stably collusive strategy equilibria). We consider a strategy equilibrium stably
collusive if it fulfills the following two conditions:

(1) Both players play the same action and an action other than pL in the (pL, pL) state.

(2) Both players either play pM in the (pM , pM ) state or pH in the (pM , pM ) and the (pH , pH)
state.

We identify all strategy equilibria fulfilling the conditions in Definition 4.1 and calculate the size of
their joint SBA using the IBR graph. By taking the maximum value over δ of the collusive SBA,
we obtain an upper bound for the likelihood of collusion by DQ in the large batch size limit in the
pricing environment given by Table 2.

In addition, we calculate the size of the basin of attraction for all symmetric Nash equilibria and
the AD strategy. This is the strategy in which both players play pL in all states and gives rise to
competitive prices. There may be other strategies that lead to competitive prices, therefore the size of
the basin of attraction of the AD strategy equilibrium gives a lower bound on observing a competitive
strategy equilibrium in the BRSAP.
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Measure \ δ 0.2 0.3 0.4 0.6 0.75 0.85 0.95 0.99

NE 1 21 41 33 41 53 65 69

Symmetric NE 1 9 17 18 21 24 29 31

Symmetric SBA 1 0.98 0.93 0.95 0.95 0.95 0.92 0.92

Collusive NE 0 0 20 20 23 31 37 41

Collusive SBA 0 0 0.07 0.07 0.06 0.06 0.08 0.08

Sym. Coll. SBA 0 0 0.02 0.02 0.02 0.02 0.03 0.03

AD SBA 1 0.97 0.90 0.92 0.92 0.92 0.88 0.88

Table 4: Measures of the IBR graph for different values of δ. The first row gives the number of Nash
equilibria (NE) in the game. The second row gives the number of symmetric Nash equilibria and
the third row gives the SBA for the symmetric Nash equilibria. The fourth row gives the number of
collusive Nash equilibria, the fifth row gives the SBA of all collusive Nash equilibria and the sixth
row gives the SBA of symmetric and collusive Nash equilibria. The last row gives the SBA of the all
defect strategy.
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Figure 4: Fraction of trajectories in the equilibria of the prisoner’s dilemma: WSLS (green), GT
(blue) and AD (black) as well as the total fraction of trajectories in equilibria as a function of
time. The dashed lines indicate the theoretical SBA based on Theorem 3.9. We set the discount
factor at δ = 0.95, the exploration rate at ϵ = 0.2 and the inertia at λ = 0.1. The algorithm
makes use of a batch size of K = 200000 and executes 30 batches. All simulations are based on
500 samples. The game parameters are set to T = 1.0, R = 0.8, P = 0.2, S = 0.0 (left) and
T = 1.0, R = 0.8, P = 0.3, S = 0.0 (right).

5 Numerical simulation

Simulating the Decentralized Q-learning algorithm with a large batch size for both environments
in Figure 4 and Figure 5 shows that the theoretical predictions are accurate when finite, but large
batches are used. In both cases, we include simulations and theoretical predictions for two sets
of payoff parameters. Our simulations show that our definition of collusive strategy equilibria in
Definition 4.1 captures the extent to which consumers experience supracompetitive prices well. In
the PD setting, supracompetitive prices are caused by the WSLS strategy equilibria which is the only
strategy equilibrium that satisfies Definition 4.1 in this setting. In the generalized PD setting, this can
be seen by the close match between the level of collusion and the theoretical basin of attraction of
strategy equilibria satisfying Definition 4.1.

6 Conclusion

By examining Table 1 we conclude that DQ can learn to collude in the iterated prisoner’s dilemma
with a memory of one period with positive probability when the environmental and algorithmic
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Figure 5: Fraction of trajectories in the AD strategy pair, symmetric Nash equilibrium, Collusive and
symmetric Nash equilibrium and the level of collusion of the DQ algorithm. Here, we define the level
of collusion to be the fraction of times during a batch that the players played (pM , pM ) or (pH , pH).
For the simulation on the left we use the payoffs as defined in Table 2 and for the simulation on
the right we use the payoffs corresponding to a logit demand with a1 = a2 = 2, c1 = c2 = 1
and µ = 1/4. In both cases, we set δ = 0.95 and use 500 samples. For the algorithm, we use an
exploration rate of ϵ = 0.1, an inertia of λ = 0.1 and a batch size of K = 2000000. The dashed lines
indicate the theoretical SBA based on Theorem 3.9.

parameters are conducive for collusion. The probability of collusion in the large batch size limit is
bounded from above by 0.125.

Table 4 shows that when δ is small enough, only the AD strategy is an equilibrium, leads to competitive
prices. Increasing δ increases the number of symmetric Nash equilibria. Their joint SBA does not
necessarily increase, however. Similarly, the size of the joint SBA for stably collusive Nash equilibria
is not monotonically increasing in δ, but reaches a maximum of 0.08 for δ close to one. This gives an
upper bound on the likelihood of observing collusion, and is lower than the upper bound of 0.125
found in the setting with two prices. The SBA of the AD strategy dominates the strategy space, as its
size is between 0.88 and 1 for all values of δ we consider. To motivate our focus on the AD strategy,
note that the size of the second-largest SBA for a single strategy never exceeds 0.011 for all values of
δ we considered. The value of 0.88 can thus serve as a lower bound on the likelihood of observing a
competitive Nash equilibrium, and is close to the lower bound of 0.875 found in the two-price setting.

Collusion is thus possible with DQ, but its likelihood is significantly lower than the level of collusion
observed by Q-learning in [10]. We find that adding a third intermediate action to the prisoner’s
dilemma does not facilitate the learning of collusion, but actually leads to a decrease in the likelihood
of collusion. The introduction of fluctuations as a result of using smaller batches may however
drastically increase the occurrence of collusive outcomes, as observed in [6] and also shown in [19].
Characterizing the likelihood of learning different equilibria when smaller batches are used is a
promising avenue for future research.
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