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Fig. 1: My research is towards developing the core competencies of embodied perception in robots. These include methods that: (a) fuse
localized touch information with physics constraints [1], (b) predict finger pose from touch [2], (c) create a learned representation of
objects [3], and (d) combine vision with robot kinematics for humanoid manipulation [4].

I. INTRODUCTION

Robots currently lack the cognition to replicate even a frac-
tion of the tasks humans do, a trend summarized by Moravec’s
Paradox [7]. Humans effortlessly combine their senses for
everyday interactions—we can rummage through our pockets
in search of our keys, and deftly insert them to unlock our front
door. Before robots can demonstrate such dexterity, they must
first be aware of the objects they manipulate. Unstructured
environments with novel objects present challenges across
robot perception, learning, and control.

In perception, knowledge of object pose and shape is crucial
for downstream policy learning [6, 8]. The status quo for
in-hand perception is restricted to tracking known objects
with vision as the dominant modality [8], or circumventing
the problem via fiducials [9, 10]. Moreover, vision fails in
regimes where occlusion is imminent—like rotating [3, 11], re-
orienting [8, 12], and sliding [2, 13]. Touch provides a local
window into these interactions, but a general technique for
visuo-tactile estimation remains an open question [14].

Alongside these challenges, advances in tactile sensing,
rendering, and computer vision make this an opportune time to
pursue this direction. First, vision-based touch sensors—like
the GelSight and DIGIT [15–18]—provide spatial acuity at an
affordable price. When chained with robot kinematics, they
give dense, situated contact that can be processed similar to
natural camera images. Second, touch simulation with realistic
rendering [19, 20] enables practitioners to learn tactile obser-
vation models. Third, the progress in computer vision [21, 22]
sets us up to transfer these ideas towards multimodal problems.

Research goals: In my research, I look at how we can lever-
age multimodal data—vision, touch, and proprioception—to
unlock object manipulation capabilities. I operate under the
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constraints of robots in the wild: (i) causal perception i.e., no
access to future information, (ii) lack of fiducials and motion
capture, (iii) noisy, occluded multimodal sensing, and (iv)
apriori unknown objects. This is towards the long-term goal
of robot dexterity: such that vision can locate a mug on the
cluttered counter-top while touch can singulate the contours
of the handle for a firm grasp.

II. THESIS RESEARCH

My research studies (i) spatial representations for object-
centric SLAM, (ii) tactile perception and simulation, and (iii)
combining learned models with online optimization. I began
with exploring how to fuse localized touch information with
physics to reason about objects (Sec. II-A). Subsequently, I
worked with high-dimensional touch sensors [17], focusing
on developing a learned representation for pose estimation
(Sec. II-B). Drawing upon these efforts, I developed a neu-
ral representation for in-hand perception, which unified vi-
sion, touch, and proprioception data (Sec. II-C). Finally, in
Sec. II-D, I discuss my research in industry, that extends these
ideas to drive humanoid manipulation problems.

A. Tactile SLAM: shape and pose from pushing [1]

When humans rummage a bag blindfolded, we can delineate
objects just through tactile cues [23]. This is challenging
for robots as, unlike vision, touch cannot provide global
context about an object, but only localized information. This
is analogous to the simultaneous localization and mapping
(SLAM) problem for mobile robots, but rather by fusing
force and contact measurements over time. To demonstrate
this, I present a method that predicts both object shape and
pose through a stream of tactile data from pushing [1]. Prior
methods are restricted to constrained settings [24] or simple
batch optimizations that have access to future data [25]. Our
method combines surface contact information from the robot,
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Fig. 2: Perception stack with vision and
touch. In Neural Feels [3], an object-centric
representation is learned from vision, touch,
and proprioception. Sensor data is first fed
into the frontend, which extracts visuo-tactile
depth with pre-trained models. The back-
end samples from this depth to train a
neural signed distance field (SDF), while
the pose graph tracks the object’s pose on-
line. Through this combination of vision and
touch, we accurately infer and track a novel
object through in-hand rotation.

with quasi-static pushing constraints [26] with force-torque
measurements (Fig. 1a). In a follow-up work, I extend this to
perform 3D shape reconstruction of objects through touch [5].

B. MidasTouch: learning pose estimation from touch [2]
Along with shape reconstruction, robots can reason through

touch where they make contact with the objects. Consider
grasping a mug: with a curved body, flat base, rounded
handle, and sharp lip. Without global context, a single-touch
is ambiguous: a detected sharp edge could lie anywhere along
the lip of the mug. Such a likelihood distribution is spread
across the object’s surface and not unimodal, but interaction
over time can disambiguate it.

To demonstrate this idea, I worked on MidasTouch, that ac-
curately predicts where we make contact with a known object
through touch (Fig. 1b). Alongside, I open-sourced YCB-Slide,
the largest tactile perception dataset with annotated poses.
Given the small form-factor of vision-based touch sensors,
prior methods have been restricted to small parts [27] or local
tracking [28]. Our experiments demonstrate the surprising ef-
fectiveness of pairing learned tactile embeddings with Monte-
Carlo methods to resolve any pose distribution ambiguities.
This mirrors haptic apprehension, or the exploration humans
perform when presented with a familiar object [29].

C. NeuralFeels: Multimodal in-hand perception [3]
With NeuralFeels, I put together these threads of work to

build a multimodal perception system for in-hand manipula-
tion. My goal was to present the robot with a novel object, and
for it to infer and tracks its geometry through just interaction.
In the work, I unify vision, touch, and proprioception into
a neural representation and demonstrate SLAM for novel
objects, and robust tracking of known objects (Fig. 1c). The
algorithm is built on a dexterous hand [30] retrofit with vision-
based touch sensors [17] and a fixed RGB-D camera. To
explore the objects, we train a proprioception-driven policy
in simulation for stable, in-hand rotation [11].

Over 70 rotation experiments, we show high-accuracy
reconstructions and average pose drifts of 4.7mm, further
reduced to 2.3mm with known object models. The cho-
sen objects are sized between 6-18 cm in diagonal length.
Additionally, under heavy visual occlusion we can achieve
up to 94% improvements in tracking compared to vision-
only methods. These results demonstrate that touch, at the

very least, refines and, at the very best, disambiguates visual
estimates during in-hand manipulation. NeuralFeels requires
fewer sensors for pose estimation than prior work [10]—the
entire online learning pipeline is illustrated in Fig. 2.

D. Humanoid perception: enabling useful manipulation [4]
I build upon this research direction as an industry research

scientist at Boston Dynamics. Here, I led machine learning
(ML) research focused on creating perception models for
humanoid manipulation. For a robot to autonomously execute
the wide-array of tasks in the factory, it requires accurate
knowledge of both its environment and the objects it ma-
nipulates. One of the tasks I worked on is known as part
sequencing, where the robot must autonomously grasp, carry,
and insert objects from one receptacle to another.

For successful grasp and insertion policies, the margins are
just a few centimeters, so accurate knowledge of the hand-
object interaction is crucial. However these objects are often
occluded, the environment constantly evolves, and lighting
conditions are challenging. Our research developed vision-
based ML models to accurately estimate the 3D pose of these
objects from egocentric camera data. We combine these low-
rate predictions, with force and proprioceptive robot data for
consistent, real-time tracks for our manipulation policy [4].

III. FUTURE RESEARCH

While my thesis focused on object geometry, this work
only scratches the surface of the broader unsolved challenges
in visuo-tactile perception. As sensing standardizes [18, 31],
the sim-to-real gap is narrowing, enabling the development
of reliable simulators for touch-based policy learning [6, 32].
Moreover, interaction reveals properties like texture [33],
friction [34], and object dynamics [35] that are imperceptible
to cameras. With growing real-world touch datasets [2, 3, 36],
researchers can train tactile representations [37] that have the
potential to predict these latent properties.

Further, neural fields show promise in conjunction with mul-
timodal sensing, as researchers explore high-fidelity, sample-
efficient representations [38, 39]. The scope of multimodal
sensing is growing with contact microphones [36, 40], heat,
and even vibrations [31] actively being used by the robot
learning community. Progress in learning from egocentric
vision combined with touch sensing will drive the dexterous
manipulation policies of the future.

https://github.com/rpl-cmu/YCB-Slide
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