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Abstract
We study the approximation properties of convo-
lutional architectures applied to time series mod-
elling, which can be formulated mathematically
as a functional approximation problem. In the
recurrent setting, recent results reveal an intricate
connection between approximation efficiency and
memory structures in the data generation process.
In this paper, we derive parallel results for con-
volutional architectures, with WaveNet being a
prime example. Our results reveal that in this
new setting, approximation efficiency is not only
characterised by memory, but also additional fine
structures in the target relationship. This leads
to a novel definition of spectrum-based regularity
that measures the complexity of temporal rela-
tionships under the convolutional approximation
scheme. These analyses provide a foundation to
understand the differences between architectural
choices for time series modelling and can give
theoretically grounded guidance for practical ap-
plications.

1. Introduction
While deep learning has evolved to be a powerful tool to
model temporal relationships, the choice of architectures
significantly affects performance. Classical recurrent neural
networks (RNNs) and recent adaptation of convolutional
neural networks (CNNs) to time series data represent two
popular classes of architectural choices. Empirical works
show that depending on the application setting, either one
can have an advantage over the other (Yin et al., 2017; Bai
et al., 2018; Banerjee et al., 2019). However, a concrete the-
oretical understanding of how such differences arise remains
largely unexplored.
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The recent work of Li et al. (2021) formulated the tempo-
ral modelling task into a functional analysis problem, and
uncovered relationships between approximation efficiency
of RNNs and memory structures of the target relationship.
In this paper, we develop parallel results for CNNs in the
functional approximation setting. On the one hand, these re-
sults provide approximation guarantees and rate estimations
for CNNs applied to time series modelling. On the other
hand, they allow us to concretely understand the differences
between CNNs and RNNs in terms of their approximation
capabilities for temporal relationships, serving as a starting
point to bridge theories and applications.

Our main contributions are:

1. We develop universal approximation results for CNNs
when applied to model temporal relationships in the
linear setting, which shows that the approximation ef-
ficiency is characterised by both memory structures
and a certain spectrum-based regularity of the target
relationship.

2. We make rigorous comparisons between CNNs and
RNNs in the approximation setting, where we show
that the targets that can be easily approximated are
completely different for these two architectures. This
provides a theoretical foundation for building princi-
pled model selection strategies for deep learning in
dynamical settings.

The paper is organised as follows. We discuss related work
in Section 2. In Section 3, we formulate the approximation
problem precisely and introduce the RNN and CNN hy-
pothesis spaces under this formulation. The approximation
results of CNNs are presented in Section 4. In Section 5, we
make a concrete comparison between CNNs and RNNs in
terms of approximation capabilities for different classes of
target temporal relationships. The proofs of all presented
results are found in the appendix.

1.1. Notations and definitions.

We use boldface letters x to denote discrete temporal se-
quences, and x(t) to denote the vector/scalar value of the
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sequence at the time index t. We use x[t1,t2] to denote val-
ues of the sequence x from t1 to t2, including the end points.
Subscripts such as xi, xm are used to specify dimensional
indices. All other dependencies are written as superscripts,
e.g. x(K) means that the temporal sequence x depends on
K. For a discrete sequence ρ : N→ Rd, define the radius
of ρ by r(ρ) = sup {s : ρ(s) = 0}. We refer [0, r(ρ)] as
its support. We use |·| to denote the Euclidean norm of a
vector.

We set the notation for the central operation under study,
namely the dilated convolution for discrete sequences.
Definition 1. Let f : Z→ Rd, g : Z→ Rd be two discrete
sequences. Define the following discrete dilated convolution:∑

(f ∗ l g)(t) = f(s)>g(t− ls). (1)
s∈Z

When l = 1, this is the usual convolution, and we denote it
by∗.

2. Related work
In this section, we discuss some related work to the results
presented here. On the application side, convolution-based
models are gradually becoming popular for a variety of
time series applications. For example, WaveNet (van den
Oord et al., 2016) is a generative model for processing and
generating raw audio. Since its emergence, WaveNet and
its variants (van den Oord et al., 2018; Jin et al., 2018;
Kalchbrenner et al., 2018; Prenger et al., 2019; Paine et al.,
2016) have been successfully applied to a variety of time
series modelling problems in natural language processing.
A more detailed review can be found in Boilard et al. (2019).
While convolutional architectures have become an impor-
tant alternative to classical recurrent neural networks, these
investigations focus on applications, lacking theoretical re-
sults to understand the origin of their superior performance
on practical tasks.

On the theoretical side, a number of universal approxima-
tion results for CNNs have been obtained in the image pro-
cessing setting. For example, Zhou (2020a;b) prove that
(simplified) deep CNNs are universal approximators, and
the approximation rate is characterised by Sobolev norms
of target functions. Bao et al. (2019) gives a theoretical
interpretation on the reason why the state-of-the-art CNNs
can achieve high classification accuracy. It is shown that the
hierarchical compositional structures in target functions can
help to (exponentially) reduce the parameters needed com-
pared with fully connected neural networks achieving the
same approximation accuracy. Beyond the approximation
theory, Oono & Suzuki (2019) studies the estimation error
rates of a ResNet-type of CNN applied to the Barron and
Holder¨ classes. All of these works share one thing in com-
mon, namely the targets to be approximated are functions

6

defined in finite space domains, i.e. images. By contrast,
our approximation results here are for the targets defined in
infinite time domains, where the memory of data plays an
important role. We will see that this leads to very different
approximation problems.

On the recurrent front, the approximation properties of
RNNs have been investigated in a number of works, in-
cluding both in discrete time (Matthews, 1993; Doya, 1993;
Schafer¨ & Zimmermann, 2006; 2007) and continuous time
(Funahashi & Nakamura, 1993; Chow & Xiao-Dong Li,
2000; Li et al., 2005; Maass et al., 2007; Nakamura & Nak-
agawa, 2009). Most of these study settings where the target
relationships are generated from hidden dynamical systems
(in the form of difference or differential equations). Re-
cently, Li et al. (2021) studies the general setting where
the target relationships are represented as functionals, and
derived the approximation theory of RNNs that revealed the
connection between approximation and memory: it takes an
exponentially large number of neurons to approximate the
target with memory that decays slowly. This sheds some
light on the interaction of the structure of RNNs and the
nature of relationships to be captured. Following this line
of enquiry, the purpose of the present paper is to develop
parallel approximation results for CNNs to highlight such
interactions. In particular, this work complements previous
theoretical analyses in the recurrent setting and allows one
to characterise the key difference between recurrent and
convolutional approaches for time series modelling.

3. Problem Formulation
3.1. Functional formulation of supervised learning for

temporal data

The temporal supervised learning task can be mathemati-
cally formulated as follows. Suppose we are given an input
sequence x indexed by a time parameter t ∈ Z. We want to
predict the corresponding output sequence y at each time
step, or up to some terminal time step y(T ). The map-
ping between x and y can be described by a sequence of
functionals:

{y(t) = Ht(x) : t ∈ Z} . (2)

That is, the output at each time step may potentially de-
pend on the entire input sequence through a time-dependent
functional. The goal is to learn this sequence of functionals
H = {Ht : t ∈ Z}.

As an illustrative example, we can consider a standard
benchmark example known as the adding problem (Hochre-
iter & Schmidhuber, 1997): each output y(t) is equal
to the weighted cumulative sum of inputs x(s) for∑ s ≤
t, i.e. t

y(t) = −∞ α(s)x(s), where α denotes the
weights. In this case, the sequence of functionals {Ht(x) =



Approximation Theory of CNN for Times Series∑t
−∞ α(s)x(s) : t ∈ Z} can be viewed as the target tem-

poral relationship, or ground truth.

In supervised learning, we need to define the input space,
output space and concept space precisely. We note that
vector-valued discrete temporal sequences can also be un-
derstood as functions from a time index set I into the real
vectors. We denote this set of functions by c(I,Rd). In
this paper, I is taken to be Z or N depending on the spe-
cific setting. For x ∈ c(I,Rd), we define its norm by√∑
‖x‖2 := |s∈I x(s)|2. We use c0(N,Rd) to denote the
sequence that converges to 0 at infinity.

Define the input space by{ ∑ }
X = x ∈ c(Z,Rd) : |x(s)|2 <∞ . (3)

s∈Z

This is the usual `2 sequence space, which is a Banach space√∑
with the norm ‖x‖X := ‖x‖2 = s∈Z|x(s)|2.

Since vector-valued outputs can be handled by considering
each dimension individually, we can restrict our attention to
the case where the output time series are real-valued. That
is, define the output space

Y = c(Z,R). (4)

3.2. RNN and CNN hypothesis spaces

We now introduce the RNN and CNN architectures in the
functional approximation language, which leads to different
types of hypothesis spaces. We start with the recurrent
setting. The simplest recurrent neural network with the
linear readout layer is given by

h(t+ 1) = σ(Wh(t) + Ux(t)),

ŷ(t) = c>h(t), (5)

with c ∈ Rm,W ∈ Rm×m, U ∈ Rm×d.

Here, h ∈ Rm is the hidden state and m denotes the width
of RNNs, which determines the model complexity. Note
that we do not include a bias term here because it can be
absorbed into the hidden state h.

This dynamics defines a family of functionals{
(m)H ˆ ˆ
RNN := H : Ht = ŷ(t) solves (5) } (6)

with c ∈ Rm,W ∈ Rm×m, U ∈ Rm×d .

The hypothesis space for one layer RNNs with arbitrary
depth is defined by ⋃

(m)HRNN := HRNN. (7)
m∈N+

In essence, RNNs can be understood as a way to represent
functionals by introducing hidden dynamical systems, with
the predicted outputs being observations.

Recent approaches based on convolutional architectures
present an entirely different class of methods to parameterise
the functionals. Concretely, a convolution based temporal
sequence model with K layers and Mk channels at layer k
is given by

h0,i = xi, ∑Mk

hk+1,i = σ wkji∗ dkhk,j , (8)
j=1

ŷ = hK .

Here, xi is the ith dimension of x, and wkji is the filter
from channel j at layer k to the channel i at layer k + 1.
All the filters have a size l ≥ 2, i.e. r(wkji) = l ≥ 2.
In the following discussion, we assume that the dilation
rate satisfies dk = lk. That is, the dilation rate increases
exponentially for each layer to achieve an exponentially
large receptive field. This is the standard practice for dilated
convolutional structures (Oord et al., 2016; Yu & Koltun,
2016).

The CNN model (8) also defines a family of functionals{
(l,K,{Mk})HCNN := Ĥ ˆ: Ht = ŷ(t) according to (8)} (9)

with wkji ∈ Rl .

For any l ≥ 2 and dk = lk, the hypothesis space for CNNs
with arbitrary depth and number of channels is defined as⋃ ⋃

(l) (l,K,{M })H H k

CNN = CNN . (10)
K∈N K+ {Mk}∈N+

4. Approximation theory for convolutional
structures

In this section, we study the approximation properties of
(l)HCNN. Our main results consist of two parts. First, we prove

that (l)HCNN is dense in appropriate concept spaces. Next, we
derive explicit upper and lower bounds for the approxima-
tion rate, which depends on the depth and width of CNNs,
together with appropriate notions of complexity of the target
functional family. This is an important result that charac-
terises the kind of targets that can be well-approximated by
CNNs using a small number of parameters.

To make analysis amenable, we consider the linear setting.
This is non-trivial for two reasons: first, the key feature
we would like to study for time series applications is the
dependence on time, for which non-linearity still plays an
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important role even in the case of linear activations. For
example, we will see that the Riesz representation of a
linear functional is nonlinear in time. The approximation
results for RNNs (Li et al., 2021) has already demonstrated
this. Second, since the approximation results for linear
RNNs have been derived in Li et al. (2021), by adopting the
same setting we can study explicitly the differences between
RNNs and CNNs. Under the assumption that the activation
σ is linear, the RNN and CNN hypothesis spaces can be
further simplified as{ ∑

(m)HRNN := Ĥ ˆ: Ht(x) = c>W s−1Ux(t− s),
s∈N } (11)

c ∈ Rm,W ∈ Rm×m, U ∈ Rm×d ,

{ ∑
(l,K,{Mk}) ˆ ˆ (ĤHCNN := H : Ht(x) = ρ )(s)>x(t− s),

s∈N
M∑K−1

ρ(Ĥ)(s) = wK−1,iK−1,t∗ lK−1

iK−1=1

M∑K−2

wK−2,i K−2
K−2,iK−1 ∗ l

iK−2=1 ∑M1 }
· · ·∗ l2 w1i1i2 ∗ l1w0i1(s) .

i1=1

(12)
We will also restrict to a target functional family (concept
space) that is consistent with the linear activation setting.
The following definition is introduced in Li et al. (2021).

Definition 2. Let H = {Ht : t ∈ Z} be a sequence of
functionals which satisfies

1. H is causal if it does not depend on the future inputs:
for any x1,x2 ∈ X and any t ∈ Z such that x1(s) =
x2(s) for all s ≤ t, the output satisfies Ht(x1) =
Ht(x2);

2. Ht ∈ H is a continuous linear functional if for any
x1,x2 ∈ X and λ1, λ2 ∈ R,

Ht(λ1x1 + λ2x2) = λ1Ht(x1) + λ2Ht(x2),

‖Ht‖ := sup |Ht(x)| <∞ (13),
x∈X ,‖x‖X≤1

where ‖Ht‖ denotes the induced functional norm. Fur-
thermore, the norm of a sequence of functionals is
defined by ‖H‖ := supt∈Z‖Ht‖.

3. A sequence of functionals H is time-homogeneous
if for any t, τ ∈ Z, Ht(x) = Ht+τ (x

(τ)) where
x(τ)(s) := x(s− τ) for all s ∈ Z.

Following the Definition 2, we consider the concept space

C ={H : Ht ∈H is linear continuous,H
(14)

is causal and time-homogeneous}.

Note that HRNN ⊂ C and (l)H ⊂ CCNN , which follows from
the fact that any sequences in these two spaces have con-
volutional (thus linear) representations. For a given Ĥ ,
we denote its corresponding representation by ρ(Ĥ). We
see that RNNs and CNNs are different in the sense that for
RNNs, the representation ρ(Ĥ)(s) = c>W s−1U , which has
an infinite support in time. However, for CNNs, the repre-
sentation ˆ

ρ(H) is a finitely supported sequence with radius
r(ρ(Ĥ)) = lK − 1. This can be understood as the maximal
memory length of the CNN model, which is usually called
the receptive field.

Next we present a key lemma regarding the hypothesis space,
which shows that any target in the concept space has a
convolutional representation.

Lemma 1. For any H ∈ C, there exists a unique `2 se-
quence ρ(H) : N→ Rd such that

∑∞
Ht(x) = ρ(H)(s)>x(t− s), t ∈ Z. (15)

s=0

For a targetH , the corresponding representation is denoted
as ρ(H). The approximation of H by RNNs or CNNs is
equivalent to the approximation of ρ(H) using the respective
ρ(Ĥ).

Remark 1. The hypothesis space is related with linear time-
invariant system (LTI system). In fact, a causal LTI system
will induce a linear functional which satisfies Definition 2.
However, we note that not every linear functional satisfying
Definition 2 corresponds to an LTI system. Our aim is to
investigate general funtionals, and does not assume the data
is generated from a hidden linear system.

4.1. Summary of approximation results for RNNs

In order to facilitate the presentation of CNN results and
subsequent comparisons, we first review the main approxi-
mation results for RNNs proved in Li et al. (2021) 1. It was
shown that under fairly general conditions,HRNN is dense
in C. With further assumptions that ρ(H) decays at least ex-
ponentially in time, an explicit bound of the approximation
rate can be obtained. That is, for any H ∈ C, there exists
Ĥ

(m)∈ HRNN such that

Cγd‖H − Ĥ‖ ≡ sup‖Ht − Ĥt‖ ≤ ,
t∈R βmα

(16)

1Note that the continuous time setting was considered there,
but the main conclusions remain the same under discretization.
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where C > 0 is a universal constant, β denotes the (expo-
nential) decay rate of ρ(H) and γ measures the smoothness
ofH . This result shows that a target functional family gen-
erating the temporal relationship can be well approximated
by RNN models if it is smooth and decays sufficiently fast.
For a target with long memory, say a power law decay, the
number of parameters sufficient to approximate it using
RNNs may increase exponentially. This is the so-called
“curse of memory” in approximation of RNNs (Li et al.,
2021).

4.2. Approximation results for CNNs

In this section, we present the main approximation results of
this paper, which can be viewed as parallel results to those
discussed in section 4.1, but for CNNs. This allows us to
understand precisely the similarity and differences of CNNs
and RNNs with respect to their approximation capabilities,
when applied to time series modelling.

First, we prove a density result. Recall that (l)H ⊂ CCNN . The
density result here shows that (l)HCNN is in fact dense in C. It
is also understood as a universal approximation property of
linear CNNs applied to linear functionals.

Theorem 2. (UAP for CNNs) Let H ∈ C. Then for any
, there exist ˆ (l)

ε > 0 H ∈ HCNN such that

‖H − Ĥ‖ ≡ sup‖Ht − Ĥt‖ < ε. (17)
t∈Z

Now we discuss some basic understanding of Theorem 2.
For any x such that ‖x‖X ≤ 1, we have∑∞ ∣ ∣2
| − ˆ ∣ ∣
Ht(x) Ht(x)|2 ≤ ∣ (H) ˆ

ρ (s)− ρ(H)(s)∣ (18)
s=0

l∑K−1 ∣ ∣2 ∑∞ ∣ ∣∣ 2ˆ
= ∣ρ(H)(s)− ρ(H) ∣ ∣

(s)∣ + ∣ρ(H) ∣
(s)∣ ,

s=0 s=lK

where we use the fact that r(ρ(Ĥ)) = lK − 1. Consider the
approximation error on two intervals. On [lK ,∞], ρ(Ĥ) is
always zero, thus the error only depends on the tail sum of
ρ(H). That is, the long term memory of the target. Since
ρ(H) ∈ `2, this error converges to zero when we choose a
deep model (with K appropriately large). On [0, lK − 1],
we can show that there exits a ρ(Ĥ) with a sufficient number
of channels such that ρ(Ĥ) = ρ(H) in this range.

The error on [lK ,∞] is easy to analyse as it only involves the
decay of ρ(H), which enters in the approximation of both
RNNs and CNNs. The more interesting phenomenon occurs
on the interval [0, lK − 1]. A natural question is, given a
targetH , how does the approximation error on this interval
depend on the number of channels and depth of CNNs? This
question is important since it reveals the structures in the

target functional family which facilitate efficient approxi-
mation using CNNs besides the decay of memory. In other
words, it characterises theoretically the type of temporal
modelling tasks for which CNNs are naturally suited.

Interestingly, it turns out that the approximation rate de-
pends on the spectrum of ρ(H) under a suitable tensorisa-
tion procedure. We motivate this idea by simple examples
where d = 1 and l = K = 2.
Example 1. Recall that a targetH has the representation
ρ(H). Since r(ρ(Ĥ)) = 4 here, the CNN performs ap-
proximation only on [0, 3], hence we restrict the target as
(H)
ρ ∈[0,3] R4. Denote the rearrangement operator by T , and( )( ) (H) (H)

(H) ρ ρ
T ρ = 0 2

[0,3] (H) (H) . (19)
ρ1 ρ3

We study( the )singular( value)decomposition (SVD) of the ma-
trix (H) (H)

T ρ T ρ[0,3] . If [0,3] has only one non-zero singular( )
value, then (H)

rank T ρ = 1[0,3] . It is straightforward to
deduce that a CNN with 1 channel in both layers is sufficient
to represent it. In fact, letw1 andw2 be the filter on the first
and second layer respectively. The resulting representation
is

ρ(Ĥ) = w2∗ 2w1 = (w11, w12)∗ 2(w21, w22) (20)
= (w11w21, w12w21, w11w22, w12w22),( )

T (ρ(Ĥ) w
) = 11w21 w11w22 (21)

w12w21 w12w( ) 22

w
= 11 ( )

w21 w22 . (22)
w12

This can represent any 2 by 2 rank 1 matrix. Thus, any( )
ρ(H) such that (H)

T ρ[0,3] with rank no more than 1 can be
represented.

In order to represent a rank 2 target, we need to increase
the number of channels. Let the first layer have 2 channels.
Then the resulting representation is

ρ(Ĥ) = w2∗ 2w1 + v2∗ 2 v1,( ) ( )
(Ĥ) w11w21 w11w22 v11v v v

T (ρ ) = + 21 11 22

w12w21 w12w22 v12v21 v12v22( )( )( )>1 w 1 v 1 w 1√ √ √ √11 11 21 v21
= σ1 σ2

σ1 σ1 σ2
1 .√ w 1 1 1√12 v12 σ √2 w √22 v22σ1 σ2 σ1 σ2

(23)
That is, T (ρ(Ĥ)) can represent the SVD for any 2 by 2
matrix with appropriate choices of w1,w2 and v1, which(
implies that (H))

T ρ[0,3] with rank no more than 2 can be
represented.

The above two examples show that the number of chan-
nels needed for an exact representation ( (Ĥ) (H)

ρ = ρ[0,3] [0,3])
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depends on the rank of targets, i.e. the number of non-zero(
singular values of (H))

T ρ[0,3] . Furthermore, when there is
no such exact representations, we need to decide the ap-
proximation error. Suppose the target is with rank 2, but
we use a CNN with only 1 channel to approximate it. By
the Eckart–Young–Mirsky theorem, the best approximation(
error is equal to the smallest singular value of (H))

T ρ[0,3] .
This inspires us to relate the approximation error with the
decay of singular values.

The above examples illustrate the basic approach on how
to determine the number of channels needed to achieve a
given approximation accuracy. Although the main tool used
in above examples, SVD, is only valid for K = 2 where we
can reshape the vector representation of ρ(H) into a matrix,
in general we can extend the above techniques to any K
using higher order singular value decomposition (HOSVD)
(De Lathauwer et al., 2000). Now we introduce some basic
facts about HOSVD.

HOSVD basics. For a discrete sequence ρ, we denote the
tensorisation of ρ[0,lK−1] by TlK (ρ). This is an order K
tensor, with all the dimensions equal to l i.e. TlK (ρ) ∈
Rl×l×···×l. The tensorisation follows column major order-
ing. The singular values of TlK (ρ) is defined by applying
the usual SVD for matrices to the K matrices with size
Rl×lK−1

obtained by mode-k flattening of the tensor. This
gives rise to at most lK singular values. Define the rank of
the tensor by its number of non-zero singular values. We
defer the precise but involved definition of HOSVD to the
appendix.

Similar to the SVD low rank approximation for matrices,
we have the following error estimation for tensors (De Lath-
auwer et al., 2000).
Lemma 3. Denote the singular values of A ∈ Rl×l×···×l
by σ1 ≥ σ2 ≥ · · · ≥ σlK ≥ 0, we have( )∥ ∥ ∑ 1∥ ∥ rankA 2

inf ∥ ˆA− TlK (ρ(H))∥ ≤ σ2
i , (24)

Ĥ
i=K′+1

where the infimum is taken over all ˆ (l,K,{M
H ∈ H k})

CNN such
that ′ , where ′ ˆ

K < rankA K = rankTlK (ρ(H)).

Based on Lemma 3, one can measure the complexity of a
targetH by the decay rate of singular values of TlK (ρ(H)).

Complexity measure and approximation rates. Now
we can get down to define appropriate complexity mea-
sures and prove approximation rates of CNNs. Based on
previous discussions on HOSVD, we have the following key
definition.
Definition 3. Consider a sequence of functionals H with
associated representation ρ(H). For any l,K ∈ N+, let

(K) (K) (K)
σ ≥1 σ ≥ · · · ≥2 σ ≥lK 0 be the singular values
of TlK (ρ(H)). Let g ∈ c0(N,R+) be a non-increasing
function with zero limit at infinity. Define the complexity
measure ofH by { ( )∑ 1

lK 2

C(l,g) (K)
(H) = inf c : |σ |2 ≤i cg(s),

i=s+K } (25)

s ≥ 0,K ≥ 1 .

Based on this complexity measure, we define a concept
space with certain spectral regularity (measured by the decay
of singular values) { }

C(l,g) := H ∈ C : C(l,g)(H) <∞ . (26)

Next, we discuss some facts and examples to enhance the
understanding of the space C(l,g).
Remark 2. Suppose the function g is monotonously de-
creasing and strictly positive. Then for any H ∈ C such
that ρ(H) is finitely supported, we haveH ∈ C(l,g).
Remark 3. Suppose H ∈ C with ρ(H) finitely supported.
Then there exists a finitely supported decreasing g such that
H ∈ C(l,g).

The details can be found in appendix.

The reason why the summation in (25) starts at s+K is that,
when K increases, there will be additional singular values
resulting from the additional matrix SVDs. These singular
values are all equal to the 2-norm of ρ(H). We show this by
the following example.
Example 2. Suppose the filter size l = 2 and ρ(H) =
(1, 0, 0, 1, 0, 0, 0, · · · ). The following table shows the corre-
sponding singular values of TlK (ρ(H)) for different K:

K Singular Values of TlK (ρ(H))
1 (1, 1)
2 (1, 1, 1, 1)√
3 ( 2, 1, 1, 1, 1, 0)√ √
4 ( 2, 2, 1, 1, 1, 1, 0, 0)

When K ≥ 2, [0, lK − 1] covers the support of ρ(H). If we
further increase K, there√will be additional singular values
all equal to ‖ρ(H)‖2 = 2.

For K ≥ 2, we have ∑lK 2, s = 1
(K)|σ |2i = 1, s = 2. (27)

i=s+K 
0, otherwise

Then given g one can compute C(l,g)(H) based on (25) and
(27).
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Based on Definition 3, we can now present our main result
on the approximation rate of CNNs.

Theorem 4. (Approximation rate for CNNs) Fix l ≥ 2
and g ∈ c (N,R ). For any H ∈ C(l,g)0 + and any set of
parameters (K, {Mk}), we have

1√ sup |ρ(H)(t)| ≤ inf ‖H − Ĥ‖ ≤
d { }t∈[lK ,∞] ˆ (l,K, M )

H∈H k
CNN

1 (H)
d g(KM K −K) C(l,g)(H) + ‖ρ ‖2,[lK ,∞]

(28)∑
where K

M := 1 ( k=2MkMk−1−lK)d denotes the effective
number of filters.

As discussed earlier, the term (H)‖ρ
[lK

‖
,∞ 2]

is the error on
[lK ,∞], due to the limited support of depth-K CNNs. This
error can be reduced by increasing the number of layers K,
and it is less important as lK increases exponentially fast.

Hence, the subsequent discussion will focus on the more
interesting term, i.e. the approximation error on the interval

K :
1

[0, l − 1] d g(KM K −K) C(l,g)(H). This is related to
the complexity measure ofH , which is small if there exists
effective low rank structures in the target. With the fact that
rankTlK (ρ(Ĥ)) is at least

1

KM K (see details in appendix),
combining Lemma 3 and (25) gives the result. Given a
targetH , this error can be reduced by either increasing the
number of filters M or the number of layers K.

Whether a target H can be easily approximated depends
on C(l,g)(H), which is determined by the decay of singular
values of TlK (ρ(H)). For TlK (ρ(H)) with fast decaying
singular values, even if the rank is large or ρ(H) decays
slowly, one can still have a good approximation with CNNs.
This is very different from previous results of RNNs.

We now introduce an example to illustrate this observation.
Consider 3 targets with the following representations{

π2

, t = 17, 18, 25, 26
ρ1(t) = 12 ,

0, otherwise{
π2

, t = 9, 15, 19, 26 1
ρ2(t) = 12 , ρ

0, otherwise
3(t) = .

t

Note that all of them are instances of the adding problem.
Moreover, they all have the same magnitude, ‖ρ1‖2 =
‖ρ2‖2 = ‖ρ3‖2. The support of both ρ1,ρ2 are finite,
while ρ3 have an infinite support. Furthermore, ρ1 and ρ2
have the same number of non-zero entries. We plot the error
bound of each targets in Figure 1.

First, from the figure we conclude that the approximation
can be reduced by increasing K or M . For a fixed K, when
M is sufficiently large such that the rank of the model is
no less than the rank of the target, the error will no longer

decrease if we further increase M . At this point the error
only comes from the tail which can only be reduced by
increasing K (hence increasing the support, or receptive
field of the CNN model).

Next, we compare ρ1 and ρ2. From Figure 1, we conclude
that ρ1 is easier to approximate than ρ2. The only difference
between these two targets is the position of their non-zero
entries, which results in T25(ρ1) being rank 5 while T25(ρ2)
being rank 10. This is the case where low rank structures
facilitates the approximation by CNNs.

Finally, we make a comparison between ρ2 and ρ3. We
conclude that ρ3 is easier to approximate as the overall
error is smaller than ρ2, in spite of the fact that ρ2 is finitely
supported and has a simple form. The reason is that the tail
sum of singular values of TlK (ρ3) decays faster than that
of TlK (ρ2). This illustrates the case where a target with
fast decaying singular values (i.e. low effective rank) can
be easily approximated.

5. Comparison of CNNs and RNNs in terms
of approximation

As motivated earlier, how to judiciously choose architectures
for time series modelling is an important practical problem,
and prior works only address it empirically. Combining
the approximation theory for CNNs developed here and
those for RNNs in Li et al. (2021), we are in a position
to provide theoretical answers to such problems, albeit in
specific settings. This is the purpose of the present section.

In short, our theoretical analyses show that neither CNNs
nor RNNs are always better than the other. Whether one
out-performs its counterpart depends on the properties of
the target relationship. Our results make this statement
precise, and provide general guidelines on how to select
architectures based on applications. We begin by presenting
two representative examples for the two aforementioned
cases, from which we can infer key differences between
RNNs and CNNs for time series modelling.

Example where RNNs out-perform CNNs. We assume
a scalar input with d = 1. Consider a targetH ∈ C with the
representation ρH(t) = γt, where 0 < γ < 1. It is easy for
RNNs to approximate this target, since the representation
has a power form. In fact, we have (1)

H ∈ HRNN, i.e. a
RNN with one hidden unit is sufficient to achieve an exact
representation, with 0 approximation error for any γ.

For a CNN Ĥ
(l)∈ HCNN, based on the lower bound of the

approximation error from Theorem 4, we have that ‖H −
Ĥ‖2 ≥ supt∈[lK ,∞]‖ρ(H)(t)‖2. Thus, in order to achieve
an approximation error with ‖H − Ĥ‖2 < ε, we have
supt∈[lK ,∞]‖ρ(H)(t)‖2 = γl

K

< ε. This implies lK ≥
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Figure 1. Let l = 2. We plot the upper bound of the approximation errors against the effective number of filters. Each line corresponds to
a fixed K. The error bound is calculated based on Theorem 4, where the tail term is calculated directly and the rank term is determined by
numerically compute the singular values of TlK (ρi). These curves describe, according to Theorem 4, the decay of approximation errors
of CNNs as one increases the number of filters. Observe that the decay depends on the low rank structures of the targets.
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log(γ) . That is to say, the necessary number of layers to
achieve an approximation error smaller than ε diverges to
infinity as γ approaches 1.

Example where CNNs out-perform RNNs. Still assume
a scalar input with d = 1. Consider a target H ∈ C with
representation ρ(H)(t) = δ(t− 2K) where K ∈ N+. This
is an discrete time impulse at t = 2K and can be regarded
as the copying memory problem (Bai et al., 2018): given an
input x, the output y satisfies y(t) = x(t− 2K). We have

(2,K,{1})
H ∈ HCNN . Thus, a K-layer CNN with one channel
per layer is sufficient to achieve an exact representation.

Recall that RNN approximates the target ρ(H) with a power
sum ρ(Ĥ)(s) = c>W s−1U . Suppose here W ∈ Rm×m is
a diagonalisable matrix with negative eigenvalues. The latter
has a special structure, which makes it difficult to approxi-
mate certain functions. Suppose u is a m-term power sum,∑
i.e. m

u(t) = c0 + i=1 ci γ
t
i . Then according to (Borwein

& Erdelyi´ , 1996), we have

2m|u(t+ 1)− u(t)| ≤ supu(s). (29)
t s≥0

For a fixed number of termsm, the changes between u(t+1)
and u(t) approaches zero as t approaches infinity. This
means that if there is a sudden change in u far from origin,
the number of terms n must be large.

For a RNN Ĥ
(m)∈ H ‖ − ˆ ‖RNN, assume H H < ε. Let

u(s) = c>W s−1U denote the power sum corresponding to
Ĥ . Since W is a m×m matrix, u(s) is a m2-term power
sum. We have that |u(2K + 1) − u(2K)| > 1 − 2ε, and
hence (29) implies m2 > 2K−1 1−2ε .1+ε As k increases, the
number of parameters needed for RNNs to achieve an error
less than ε increases exponentially, while this increment is
linear for CNNs.

For these examples, the targets actually come from the other
respective hypothesis spaces. This means that the func-
tionals these two hypothesis spaces can represent are quite
different. The difference between RNNs and CNNs comes
from their underlying structure: the RNN uses a power sum
to approximate the target, while the CNN uses a finitely
supported function. Therefore, RNNs are good at approxi-
mating targets with exponentially decaying structures, but it
is not efficient to handle targets with sudden changes. On
the other hand, CNN works well for targets with low ranks
or fast decaying singular values. However, it can become
inefficient if the tail error term is significant, and at the
same time, the truncated term does not possess low rank
structures.

In practice, the property of decay and sparsity can be
checked by querying the target relationship with proper
inputs. However, for a more general situation when there is
only access to sampled data for input/output, inferring these
underlying properties of targets remains challenging.

6. Conclusion
In this paper, we studied the approximation properties of
convolutional architectures when applied to time series mod-
elling. We considered the simple but representative linear
setting. The approximation error is characterised by both the
memory and the spectrum of the target relationship based
on a tensorisation argument. We concluded that a target
with a low rank property or fast decaying spectrum can be
efficiently approximated by a CNN model.

In particular, these results for CNNs, together with previous
results for RNNs, provide basic theoretical insights into the
problem of architectural choice for time series modelling:
the RNN exploits exponential decaying structures, whereas



Approximation Theory of CNN for Times Series

the CNN exploits low-rank structures. This forms the first
basic step towards a concrete understanding of the inter-
play between different neural network architectures and the
structures of temporal relationships under investigation.
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