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Abstract

Persistence-based summaries are increasingly integrated into deep learning through
topological loss functions or regularisers. The implicit role of a topological term
in a loss function is to restrict the class of functions in which we are learning
(the hypothesis class) to those with a specific topology. Although doing so has
had empirical success, to the best of our knowledge there exists no result in the
literature that theoretically justifies this restriction. Given a binary classifier in
the plane with a Morse-like decision boundary, we prove that the hypothesis class
defined by restricting the topology of the possible decision boundaries to those with
a unique persistence diagram results in a nonuniformly learnable class of functions.
In doing so, we provide a statistical learning theoretic justification for the use of
persistence-based summaries in loss functions.

Important: Since presenting this work at the TDA & Beyond workshop, we have found that the
result is incorrect. We have left Sections 1-3 of this paper as they were at the workshop but have
added Section 4, which explains why the result is incorrect and describes our (failed) attempts to find
an additional condition on the hypothesis class that makes it nonuniformly learnable.

1 Introduction

Persistence diagrams concisely summarise the topology of an underlying dataset whilst offering
strong theoretical guarantees. Diagrams and their embeddings, collectively referred to as persistence-
based summaries, are increasingly being integrated into deep learning (Gabrielsson et al., 2020).
Many techniques add persistence-based terms to loss functions, either seeking to integrate knowledge
of topological priors or to regularise the learner by encouraging topological simplicity. In both cases,
the implicit role of this term is to topologically restrict the class of functions from which the learnt
function can be selected. Doing so has had empirical success, but to the best of our knowledge
there are no results in the literature that give a theoretical justification for imposing a topological
restriction on the hypothesis class in this manner. In the context of statistical learning theory, if a
hypothesis class of functions is learnable then there are bounds on the number of sampled points
required to probably approximately learn the best classifier. We show that, for a certain class of
functions, restricting the hypothesis class using prior knowledge in the form of a persistence diagram
D results in a nonuniformly learnable class of functions.
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Specifically, given prior knowledge about the topology in the form of a persistence diagram D,
topological loss terms implicitly restrict the decision boundaries to the class of functions

PH−1(D) = {f : PH(f) = D} ,
where PH is the persistence map. This class of functions has been studied by Curry (2018). Given
a real-valued function f : [0, 1] → R, we identify its graph as the decision boundary of a binary
classifier hf : [0, 1]× R→ {0, 1} by

hf ((x, y)) =

{
0, f(x) ≤ y,
1, f(x) > y.

Thus we are studying the hypothesis class

HD = {hf : f ∈ PH−1(D)}.

2 Background

2.1 Persistence-based loss functions

In the context of machine learning, the persistence map, given by

PHk : X 7→ D,

takes a set of points X ⊂ Rd and maps them to a persistence diagram D: a multiset in the extended
plane that concisely represents the k-persistent homology (roughly, the topology of the points at
all scales). See Edelsbrunner and Harer (2010) for an introduction to computational topology. The
persistence diagram has strong theoretical guarantees that make it appealing for use in data analysis:
it is stable with respect to perturbations of the underlying points (Cohen-Steiner et al., 2005) and if
the data X is sampled from some distribution µ then there are guarantees that the persistence diagram
of X is close to the persistence diagram of the support of µ (Fasy et al., 2014).

When endowed with the Wasserstein metric the space of persistence diagrams is complete and
separable (Mileyko et al., 2011), but does not admit an isometry into a Hilbert space (Bubenik
and Wagner, 2020). As most machine learning workflows require a Hilbert structure, research has
been done into embedding persistence diagrams, either into finite vectors (Kališnik, 2018; Fabio
and Ferri, 2015; Chepushtanova et al., 2015) or functional summaries (Bubenik, 2015; Rieck et al.,
2019). Persistence diagrams and their embeddings, collectively referred to as persistence-based
summaries, have been integrated into deep learning via topological loss or regularisation terms. Chen
et al. (2018) first use the sum of squares of robustness, a concept linked to persistence, to regularise
learning algorithms. Gabrielsson et al. (2020) use functions defined on persistence diagrams to
enforce a topology when learning, either by promoting topological simplicity to regularise or through
integrating known topological priors. Hofer et al. (2019) and Moor et al. (2019) use persistence
to integrate topological information into autoencoders. Clough et al. (2020) and Hu et al. (2019)
use topological losses to improve image segmentation. All of these papers empirically demonstrate
success, but none offer a theoretical justification for the inclusion of topological information in the
loss function.

2.2 The fibre of the persistence map

We use work by Curry (2018) on the fibre of the persistence map to understand the hypothesis class
HD. We say two continuous functions f, g : [0, 1]→ R are graph-equivalent if there is an orientation
preserving homeomorphism φ : [0, 1] → [0, 1] such that f = g ◦ φ. We say a continuous function
f : [0, 1] → R is Morse-like if it is graph equivalent to a piecewise linear function where every
critical point is isolated and has a distinct critical value. Let PH0 :M→D, whereM is the set of
Morse-like real-valued functions on the interval with local minima at x = 0 and x = 1, and D is the
space of persistence diagrams. Then Curry (2018) tells us that for any persistence diagram D,

PH−10 (D) =
⋃
i∈I
Hfi ,

where I is a finite indexing set over some collection of functions {fi}i andHfi = {g ∈M : g ∼ fi}
where ∼ denotes graph equivalence.
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2.3 Statistical learning theory

Consider the standard supervised machine learning setting, in which a learner, when given an input
example x ∈ X , from an input space X , would like to accurately predict the corresponding target
label y ∈ Y , from an output space Y . The learner has access to a finite sample, S = {(xi, yi)}mi=1, of
training examples, sampled from a distribution, µ over X × Y , of interest.

The goal of the learner is to select a hypothesis, h : X → Y , belonging to the hypothesis set, H,
which achieves low expected error with respect to the distribution µ. The error of a given hypothesis
rule h on a given example (x, y) is given via a loss function, ` : Y×Y → R, by evaluating `(h(x), y).
Common examples of loss functions include the square loss, used for least squares regression, and
the hinge loss, used as surrogate loss in support vector machines. More formally, the goal of the
learner is to select a hypothesis which attains low risk:

Lµ(h) = E(x,y)∼µ [`(h(x), y)]

A learning algorithm is a, potentially randomised, mapping from samples to the hypothesis set H.
Of course, the learner would like to employ a learning algorithm which selects a hypothesis that
attains low risk with high probability. These motivations are captured by the agnostic probably-
approximately-correct (PAC) framework, first introduced by Valiant (1984):
Definition 2.1 (Agnostic PAC learnability (Valiant, 1984)). A hypothesis classH is agnostic PAC
learnable if there exists a function mH : (0, 1)2 → N and a learning algorithm with the following
property: For every ε, δ ∈ (0, 1) and for every distribution µ over X ×Y , when running the learning
algorithm on m ≥ mH(ε, δ) i.i.d. examples generated by µ, the algorithm returns a hypothesis h
such that, with probability of at least 1− δ (over the choice of the m training examples),

Lµ(h) ≤ min
h′∈H

Lµ(h
′) + ε

We call any such algorithm an agnostic PAC learning algorithm for the setH.

In other words, a hypothesis set is agnostic PAC learnable if there exists a learning algorithm, such
that for any (ε, δ), there is an m ∈ N, such that when the algorithm receives at least m training
examples, it returns a hypothesis rule that attains risk ε-close to the that of the best hypothesis in the
set with probability 1 − δ. Of course, any learner would like to employ an agnostic PAC learning
algorithm when one is available, as they give theoretical guarantees on the risk achieved as the sample
size increases. Typically, m is referred to as the sample complexity necessary for a given algorithm to
guarantee an ε-efficient hypothesis with probability 1− δ.

In the context of binary classification, we have Y = {0, 1}. In such a setting, a useful property to
consider when analysing the PAC learnability of a hypothesis set H is the Vapnik-Chervonenkis
dimension (VC-dimension) ofH.
Definition 2.2 (Shattering). Let C = {c1, . . . , cm} ⊂ X . Moreover, HC be the restriction of H to
C:

HC = {(h(c1), . . . , h(cm)) : h ∈ H}
Then we say thatH shatters C if |HC | = 2|C|.
Definition 2.3 (VC-dimension (Vapnik, 2000)). The VC-dimension of a hypothesis classH, denoted
by VCdim(H) is the maximal size of a set C ⊂ X , which can be shattered byH. IfH shatters sets of
arbitrary size, we say thatH has infinite VC-dimension.

In fact, it is well-known that VC-dimension characterises the PAC learnability of a hypothesis class
in the case of binary classification. That is, a hypothesis setH is PAC learnable if and only if it has
finite VC-dimension (Vapnik, 2000).

In many cases we desire learnability guarantees for complex hypothesis sets which do not have finite
VC-dimension. In such cases, we can consider a relaxation of the PAC framework, in which we can
derive weaker, but still useful, guarantees for generalisation:
Definition 2.4 (Nonuniform learnability (Benedek and Itai, 1988)). A hypothesis classH is nonuni-
formly learnable if there exists a learning algorithm, A, and a function mNUL

H : (0, 1)2×H → N such
that, for every ε, δ ∈ (0, 1) and for every h ∈ H, if m ≥ mNUL

H (ε, δ, h) then for every distribution µ,
with probability at least 1− δ over the choice of S ∼ µm, it holds that:

Lµ(A(S)) ≤ Lµ(h) + ε
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Similarly to the framework of PAC learning, nonuniform learnability of hypothesis classes for binary
classification can be characterised through VC-dimension:
Theorem 1 (Necessary and sufficient conditions for nonuniform learnability (Benedek and Itai,
1988)). A hypothesis class H of binary classifiers is nonuniformly learnable if and only if it is a
countable union of agnostic PAC learnable hypothesis classes.

In what follows, we will illustrate how persistence diagrams can help in constructing hypothesis
classes which are nonuniformly learnable.

3 The class of functions with a unique persistence diagram is nonuniformly
learnable

Following previous work on the fibre of the persistence map, we concern ourselves with Morse-like
real-valued functions on the unit interval with local minima at x = 0, 1, and the 0th persistence
diagram. Although this is clearly a restricted setting, it provides an initial justification for the use
of topology in learning. Curry (2018) tells us that PH−10 (D) is finite when we introduce graph
equivalence on the set of functions. Moreover, Theorem 1 tells us that a hypothesis class of binary
classifiers is nonuniformly learnable if and only if it is a countable union of agnostic PAC learnable
hypothesis classes. Therefore, to show that restricting a hypothesis class of functions to those with a
unique persistence diagram is nonuniformly learnable, we are required to show that the class of graph
equivalent functions is agnostic PAC learnable, or equivalently, that it has finite VC-dimension.
Theorem 2. Let f : [0, 1] → R be a Morse-like real-valued function on the unit interval with
local minima at x = 0, 1, and Hf be the class of functions that are graph equivalent to f . Then
VCdim(Hf ) = 0.

Proof. Since f is a continuous real-valued function on a closed interval of R, then, by the boundedness
theorem, there is an (attained) upper bound M of f . Let g : [0, 1]→ R be graph equivalent to f , i.e.,
there exists an orientation preserving homeomorphism φ : [0, 1]→ [0, 1] such that g = f ◦ φ. Then
g(x) = f(φ(x)) ≤M for all x ∈ [0, 1]. Thus, given our classifier, hg, we have that hg((x, y)) 6= 0
whenever y > M . Since g is an arbitrary function that is graph equivalent to f , Hf cannot shatter
every set of size 1, so has VC-dimension 0.

Therefore we have the following result:
Theorem 3. Given a persistence diagram D, the hypothesis class of binary classifiers with decision
boundaries defined by Morse-like real-valued functions on the interval with local minima at x = 0, 1
given by

HD = {hf : f ∈ PH−10 (D)}.
is nonuniformly learnable.

Proof. Theorem 6.12 by Curry (2018) shows that PH−10 (D) =
⋃
i∈I Hfi for some finite indexing

set I . Meanwhile, Theorem 2 shows that eachHfi has finite VC-dimension, and is therefore agnostic
PAC learnable. In addition, Theorem 1 shows that the countable union of agnostic PAC learnable
hypothesis classes is nonuniformly learnable. Therefore,HD is nonuniformly learnable.

4 A counterexample to nonuniform learnability

Our error came from a misunderstanding of the VC dimension (Definition 2.3). In order to show
that a hypothesis class H has VC dimension k, we believed we had to show that H cannot shatter
every set of k points (as we showed in Theorem 2). This led us to believe that VCdim(Hf ) = 0.
However, you in fact need to show that (i) there exists a set of size k that can be shattered by H
and (ii) every set of size k + 1 cannot be shattered by H (Shalev-Shwartz and Ben-David, 2014).
Therefore to prove that VCdim(Hf ) > 0 we just need to find one point that can be shattered byHf .
Recall that two functions are graph equivalent if there is an orientation preserving homeomorphism
between them, and a continuous function f is Morse-like if it is graph equivalent to a piecewise
linear function where every critical point is isolated and has a distinct critical value. By applying
orientation-preserving transformations, we can ‘stretch and squeeze’ the x axis, but we can never
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change the number of critical points or their values. Imagine the most simple case: a point to
be classified lying between two critical points that are connected with a line. We can easily find
orientation-preserving homeomorphisms that allow us to classify that point as either 0 or 1, as shown
in Figure 1(a). Therefore we have shattered that point. In fact, if there are arbitrarily many points
lying on a line between two critical points, then we can shatter them, as demonstrated in Figure 1(b).
We formalise this below.

(a) Shattering one point (b) Shattering several points

Figure 1: We can shatter arbitrarily many points between two critical points using graph equivalent
functions, proving that the VC dimension ofHf is unbounded.

Proposition 3.1. Let f : [0, 1]→ R be a Morse-like real-valued function on the unit interval with
local minima at x = 0, 1, and Hf be the class of functions that are graph equivalent to f . Then
VCdim(Hf ) =∞ andHD is not (nonuniformly) learnable.

Proof. LetHf be the class of classifiers with decision boundaries graph equivalent to some piecewise
linear function f . Let n points lie equally spaced on the straight line between two adjacent critical
points of f . By introducing inflection points using orientation-preserving homeomorphisms we
can shatter the points, as shown in Figure 1(b). Note that we only introduce inflection points, not
stationary points, as the number and values of critical points must remain constant inHf . Since we
can shatter an arbitrary number of points, VCdim(Hf ) =∞. The non-learnability ofHD follows
immediately.

Note that since we only need one counterexample, this is sufficient, but by the pigeonhole principle
we can force an arbitrary number of points to be strictly between two adjacent critical points for
anyHf (where they are strictly between the two critical points because any point above or below a
critical point cannot be shattered).

Our counterexample to Hf came about when we introduced inflection points. As these allow our
classifier to change from convex to concave without introducing additional critical points, this lets
graph equivalent functions be extremely expressive. This gave us the idea that perhaps restricting the
number of inflection points allowed withinHf could lead to a finite VC dimension. Such a restriction
is realistic: the number of inflection points is finite in many common learning algorithms, including
neural networks. However, there remains sets of points that can be shattered, as we show in the
following proposition.

Proposition 3.2. Let f andHf be as in Proposition 4.5.1, and additionally suppose that the number
of inflection points (i.e., points where the function changes from convex to concave) is finite. Then it
remains the case that VCdim(Hf ) =∞ andHD is not (nonuniformly) learnable.

Proof. Without loss of generality, consider a section of f that is increasing and concave, i.e., it lies
between two critical or inflection points (x0, y0), (xn+1, yn+1). Place n points (x1, y1), . . . , (xn, yn)
between them so that 2xi = xi−1 and yi = 2yi−1 for all i = 1, . . . , n+1. Define a new list of points
by

(αi, βi) =

{
(xi + ε, yi), if (xi, yi) is labelled 1,

(xi − ε, yi), if (xi, yi) is labelled 0,

for some small ε > 0. The decision boundary defined by connecting {(αi, βi)}i into a piecewise
linear function can attain any labelling of the n points, and so shatters them. Furthermore, it is
increasing, has no critical points, and is concave (an example is shown in Figure 2). Therefore n
points can be shattered by such a function for arbitrary n, and VCdim(Hf ) =∞.
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Figure 2: Bounding the number of inflection points does not prevent an arbitrary number of points
from being shattered.

In fact, we could not think of any reasonable conditions on the hypothesis class that would make
them learnable.

5 Conclusion

We initially believed that our work provided the first learning theoretic justification for integrating
persistence-based summaries into loss functions for deep learning. Although we’ve now shown
that topologically restricted hypothesis classes are not nonuniformly learnable, the existence of
pathological examples that prevent learning theoretic bounds being achieved does not mean that
topological loss functions have no practical value. On the contrary, we’ve seen that the literature
demonstrates they can still provide valuable additional information (Section 2.1).
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