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Abstract
This paper explores the connections between opti-
mal transport and variational inference, with a fo-
cus on forward and reverse time stochastic differ-
ential equations and Girsanov transformations.We
present a principled and systematic framework
for sampling and generative modelling centred
around divergences on path space. Our work
culminates in the development of a novel score-
based annealed flow technique (with connections
to Jarzynski and Crooks identities from statisti-
cal physics) and a regularised iterative propor-
tional fitting (IPF)-type objective, departing from
the sequential nature of standard IPF. Through
a series of generative modelling examples and a
double-well-based rare event task, we showcase
the potential of the proposed methods.

1. Introduction
Optimal transport (Villani et al., 2009) and variational infer-
ence (Blei et al., 2017) have for a long time been separate
fields of research. In recent years, many fruitful connections
have been established (Liu et al., 2019), in particular based
on dynamical formulations (Tzen and Raginsky, 2019), and
in conjunction with time reversals (Huang et al., 2021a;
Song et al., 2021). In this paper, we enhance those re-
lationships based on forward and reverse time stochastic
differential equations, and associated Girsanov transforma-
tions.

To set the stage, we recall a classical approach (Kingma
and Welling, 2014; Rezende and Mohamed, 2015) towards
generating samples from a target distribution µ(x), which
is the goal both in generative modelling and sampling:
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Generative processes, encoders and decoders. We con-
sider methodologies which can be implemented via the fol-
lowing generative process,

z ∼ ν(z), x|z ∼ pθ(x|z), (1)

transforming a sample z ∼ ν(z) into a sample x ∼∫
pθ(x|z)ν(dz). Traditionally, ν(z) is a simple auxiliary

distribution, and the family of transitions pθ(x|z) is param-
eterised flexibly and in such a way that sampling according
to (1) is tractable. Then we can frame the tasks of generative
modelling and sampling as finding transition densities such
that the marginal in x matches the target distribution,

µ(x) =

∫
pθ(x|z)ν(dz). (2)

To learn such a transition, it is helpful to introduce a re-
versed process

x ∼ µ(x), z|x ∼ qϕ(z|x), (3)

relying on an appropriately parameterised backward transi-
tion qϕ(z|x). We will say that (1) and (3) are reversals of
each other in the case when the joint distributions associated
to both coincide, that is, when

qϕ(z|x)µ(x) = pθ(x|z)ν(z). (4)

To appreciate the significance of the reversed process in (3),
notice that if the reversal relation in (4) holds, then (2) is
implied by integrating both sides with respect to z. Building
on this observation, it is natural to define the loss function

LD(ϕ, θ) := D
(
qϕ(z|x)µ(x)

∣∣∣∣pθ(x|z)ν(z)) , (5)

where D is a divergence1 between distributions yet to be
specified. Along the lines of Bengio et al. (2021); Sohl-
Dickstein et al. (2015); Wu et al. (2020); Liu et al. (a),
we summarise the discussion so far as follows, laying the
foundation for algorithmic approaches that aim at sampling
from µ(x) by minimising LD(ϕ, θ):
Framework 1. Let D be an arbitrary divergence, and as-
sume that LD(ϕ, θ) = 0. Then we have

µ(x)=

∫
pθ(x|z)ν(dz) and ν(z)=

∫
qϕ(z|x)µ(dx), (6)

1As usual, divergences are characterised by the requirement
that D(α

∣∣∣∣β) ≥ 0, with equality if and only if α = β.
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that is, ν(z) is transformed into µ(x) by pθ(x|z), and µ(x)
is transformed into ν(z) by qϕ(z|x).

KL-divergence, ELBO and variational inference. Choos-
ing D = DKL in (5), variational inference (VI) and latent
variable model (LVM) based approaches (Dempster et al.,
1977; Blei et al., 2017; Kingma and Welling, 2014) can
elegantly be placed within Framework 1. Indeed, direct
computation shows that

LDKL
(ϕ, θ) = −Ex∼µ(x)

=ELBOx(ϕ,θ)︷ ︸︸ ︷[∫
ln
pθ(x|z)ν(z)
qϕ(z|x)

qϕ(dz|x)
]

+

∫
lnµ(x)µ(dx), (7)

so that minimising LDKL
(ϕ, θ) is equivalent to maximising

the expected evidence lower bound (ELBO), also known as
the negative free energy (Blei et al., 2017). This derivation is
alternative to the standard approach via maximum likelihood
and convex duality (or Jensen’s inequality) (Kingma et al.,
2021, Section 2.2), and straightforwardly accomodates var-
ious modifications by replacing the DKL-divergence (see
Appendix B). Other popular choices forD include the f and
α divergences (Csiszár, 1967; Ali and Silvey, 1966; Rényi,
1961).

Couplings, (optimal) transport and nonuniqueness. As-
suming that (4) holds, it is natural to define the joint dis-
tribution π(x, z) := qϕ(z|x)µ(x) = pθ(x|z)ν(z), which
is then a coupling between µ(x) and ν(z) by virtue of (6).
Viewed from this angle, it is clear that the set of minimisers
associated to L(ϕ, θ) stands in one-to-one correspondence
with the set of couplings between µ(x) and ν(z), provided
that the parameterisations are chosen flexibly enough. Under
the latter assumption, the objective in (5) hence generically
admits an infinite number of minimisers, rendering algorith-
mic approaches solely based on Framework 1 potentially
unstable and their output hard to interpret. In the language
of optimal transport (Villani, 2003), minimising L(ϕ, θ) en-
forces the marginal (‘transport’) constraints in (6) without
a selection principle based on an appropriate cost function
(‘optimal’).

In practice, methodologies such as VAEs (Kingma and
Welling, 2014) parameterise the transition densities pθ(x|z)
and qϕ(z|x) with a restricted family of distributions (such as
Gaussians), thus restricting the set of couplings. Expectation
maximisation (EM) carries out the minimisation of L(ϕ, θ)
in a component-wise fashion, resolving nonquniqueness in
a procedural manner (see Section 4.1 for a connection to
Schrödinger bridges). In this paper, we develop principled
approaches towards resolving the nonuniqueness inherent in
Framework 1, relying on a hierarchical extension of pθ(x|z)
and qϕ(z|x) and proceeding to an infinite-depth limit. In
particular, we proceed as follows:

Outline and contributions. In Section 2 we recall hier-

archical VAEs (Rezende et al., 2014) and, following Tzen
and Raginsky (2019), proceed to the infinite-depth limit
described by the SDEs in (13). Readers more familiar with
VI and discrete time might want to take the development
in Section 2.1 as an explanation of (13); readers with back-
ground in stochastic analysis might take Framework 1′ as
their starting point. In Proposition 2.2 we provide a gen-
eralised form of the Girsanov theorem for forward-reverse
time SDEs, crucially incorporating the choice of a reference
process that allows us to reason about sampling and gener-
ation in a systematic and principled way. In Section 3, we
utilise the flexibility in this formulation to recover recent
approaches from the literature, allowing for slight varia-
tions and generalisations, and develop a novel score-based
annealed flow technique. Section 4 reinforces the connec-
tion between optimal transport and VI by establishing a
correspondence between expectation-maximisation (EM)
and iterative proportional fitting (IPF). Motivated by this
result and building on the set-up of Section 2, we suggest a
regularised IPF-type objective that allows us to circumvent
the sequential nature of standard IPF. Finally, we explore
our proposed regularised IPF objective across a series of
toy generative modelling examples and a double-well-based
rare event (Hartmann et al., 2013) task.

2. From hierarchical VAEs to forward-reverse
SDEs

2.1. Hierarchical VAEs (Rezende et al., 2014)

A particularly flexible choice of implicitly parameterising
pθ(x|z) and qϕ(z|x) can be achieved via a hierarchical
model with intermediate latents: We identify x =: y0 and
z =: yL with the ‘endpoints’ of the layered augmentation
(y0,y1, . . . ,yL−1,yL) =: y0:L, and define

qϕ(yL,yL−1, . . . ,y1|y0) :=

L∏
l=1

qϕl−1(yl|yl−1),

pθ(y0,y1, . . . ,yL−1|yL) :=
L∏
l=1

pθl(yl−1|yl), (8)

so that qϕ(z|x) and pθ(x|z) can be obtained from (8) by
marginalising over the auxiliary variables y1, . . . ,yL−1.
Here, ϕ = (ϕ0, . . . , ϕL−1) and θ = (θ1, . . . , θL) re-
fer to sets of parameters to be specified in more de-
tail below. Further introducing notation, we write
qµ,ϕ(y0:L) := qϕ(y1:L|y0)µ(y0) as well as pν,θ(y0:L) :=
pθ(y0:L−1|yL)ν(yL) and think of those implied joint dis-
tributions as emanating from µ(x) = µ(y0) and ν(z) =
ν(yL), respectively, moving ‘forwards’ or ‘backwards’ ac-
cording to the specific choices for ϕ and θ. In the regime
when L is large, the models in (8) are very expressive, even
if the intermediate transition kernels are parameterised in a
simple manner. We hence proceed by assuming Gaussian
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distributions,

qϕl−1(yl|yl−1) = N (yl|yl−1 + δaϕl−1(yl−1), δσ
2I),

pθl(yl−1|yl) = N (yl−1|yl + δbθl (yl), δσ
2I), (9)

where σ > 0 controls the standard deviation, and δ > 0 is
a small parameter, anticipating the limits L → ∞, δ → 0
to be taken in Section 2.2 below. The vector fields aϕl (yl)
and bθl (yl) introduced in (9) should be thought of as param-
eterised by ϕ and θ, but we will henceforth suppress this
dependence for notational efficiency (in fact, those vector
fields form a natural parameterisation in their own right).

The models (8)-(9) could equivalently be defined via the
Markov chains

yl+1 = yl + δal(yl) +
√
δσξl, y0 ∼ µ

=⇒ y0:L ∼ qµ,ϕ(y0:L), (10a)

yl−1 = yl + δbl(yl) +
√
δσξl, yL ∼ ν

=⇒ y0:L ∼ pν,θ(y0:L), (10b)

where (ξl)
L
l=1 is an iid sequence of standard Gaussian ran-

dom variables. As indicated, the forward process in (10a)
may serve to define the distribution qµ,ϕ(y0:L), whilst the
backward process in (10b) induces pν,θ(y0:L).

Note that the transition densities pθ(x|z) and qϕ(z|x) ob-
tained as the marginals of (8) will in general not be available
in closed form. However, generalising slightly from Frame-
work 1, we may set out to minimise the extended loss

Lext
D (ϕ, θ) = D(qµ,ϕ(y0:L)||pν,θ(y0:L)), (11)

where D refers to a divergence on the ‘discrete path space’
{y0:L}. Clearly, Lext

D (ϕ, θ) = 0 still implies (6), but is
no longer equivalent. More specifically, in the case when
D = DKL, the data processing inequality yields

DKL(q
µ,ϕ(y0:L)||pν,θ(y0:L)) ≥
DKL

(
qϕ(z|x)µ(x)

∣∣∣∣pθ(x|z)ν(z)) , (12)

so that Lext
DKL

(ϕ, θ) provides an upper bound for LDKL
(ϕ, θ)

as defined in (5).

2.2. SDE transition densities – hierarchical VAEs in the
infinite depth limit

In this section, we take inspiration from Section 2.1 and
Tzen and Raginsky (2019); Li et al. (2020); Huang et al.
(2021a) to develop the infinite-depth limit (L→∞), using
the machinery of stochastic differential equations (SDEs).
To this end, we think of l = 0, . . . , L as discrete instances
in a fixed time interval [0, T ], equidistant with time step δ,
that is, we set δ = TL−1. The discrete paths y0:L give rise
to continuous paths (Yt)0≤t≤T ∈ C([0, T ];Rd) by setting

Yδl = yl and interpolating linearly between Yδl and Yδ(l+1).
To complete the set-up, we think of aϕ = (aϕ0 , . . . , a

ϕ
L−1)

and bθ = (bθ1, . . . , b
θ
L) in (9) as arising from time-dependent

vector fields a, b ∈ C∞([0, T ] × Rd;Rd) via aϕl (yl) =
atδ−1(Yδl) and bθl (yl) = btδ−1(Yδl).

We are now prepared to invoke the limit δ → 0 (equivalently,
L → ∞), keeping T > 0 fixed. The proposed relabelling
and rescaling transforms the Markov chains in (10) into
continuous-time dynamics described by the SDEs

dYt = at(Yt) dt+ σ
−→
dWt, Y0 ∼ µ

=⇒ (Yt)0≤t≤T ∼ Qµ,a ≡
−→
P µ,a, (13a)

dYt = bt(Yt) dt+ σ
←−
dWt, YT ∼ ν

=⇒ (Yt)0≤t≤T ∼ Pν,b ≡
←−
P ν,b, (13b)

where
−→
d and

←−
d denote forward and backward Itô integra-

tion (see Appendix A for more details and remarks on the
notation), and (Wt)0≤t≤T is a standard Brownian motion.
In complete analogy with (10), the SDEs in (13) induce the
distributions Qµ,a and Pν,b on the path space C([0, T ];Rd).
Relating back to the discussion in the introduction, note that
we maintain the relations Y0 = x and YT = z, and the
transitions are parameterised by the vector fields a, b, in the
sense that pθ(x|z) = Pν,b

θ

0 (x|YT = z) = Pδz,b
θ

0 (x) and
qϕ(z|x) = Qµ,a

ϕ

T (z|Y0 = x) = Qδx,a
ϕ

T (z).

The following well-known result (Anderson, 1982; Hauss-
mann and Pardoux, 1985; Nelson, 1967) allows us to relate
forward and backward path measures via a local (score-
matching) condition for the reversal relation in (4). 2

Proposition 2.1 (Nelson’s relation). For fixed µ and a, de-
note the time-marginals of the corresponding path measure
by Pµ,at =: ρµ,at . Assuming that for all t ∈ (0, T ], ρt admits
a strictly positive and smooth density with respect to the
Lebesgue measure, we have that

−→
P µ,a =

←−
P ν,b if and only

if ν =
−→
P µ,a
T and

bt = at − σ2∇ ln ρµ,at , for all t ∈ (0, T ]. (14)

Remark 1. A similarly clean characterisation of equality
between forward and backward path measures is not avail-
able for the discrete-time setting as presented in (10). In
particular, Gaussianity of the intermediate transitions is not
preserved under time-reversal, and thus the parameterisa-
tions in (9) are sub-optimal without the limit δ → 0.

A recurring theme in this work and related literature is
the interplay between the score-matching condition in (14)
and the global condition D(

−→
P µ,a|

←−
P ν,b) = 0, invoking

Framework 1. To enable calculations involving the latter,
we will rely on the following result:

2The global condition
−→
P µ,a =

←−
P ν,b can be captured by the

local condition (14) due to the Markovian nature of (13).
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Proposition 2.2 (forward-backward Radon-Nikodym
derivatives). Let

−→
P Γ0,γ

+

=
←−
P ΓT ,γ

−
be a reference path

measure (that is, Γ0, ΓT and γ± define diffusions as in (13)
and are related as in Proposition 2.1), absolutely continuous
with respect to both

−→
P µ,a and

←−
P ν,b. Then,

−→
P µ,a-almost

surely, the corresponding Radon-Nikodym derivative (RND)
can be expressed as follows,

ln

(
d
−→
P µ,a

d
←−
P ν,b

)
(Y ) = ln

(
dµ

dΓ0

)
(Y0)− ln

(
dν

dΓT

)
(YT )

(15a)

+ 1
σ2

∫ T

0

(
at − γ+t

)
(Yt)·

(−→
d Yt − 1

2

(
at + γ+t

)
(Yt) dt

)
(15b)

− 1
σ2

∫ T

0

(
bt − γ−t

)
(Yt)·

(←−
d Yt − 1

2

(
bt + γ−t

)
(Yt) dt

)
.

(15c)

Proof. The proof relies on Girsanov’s theorem (Üstünel and
Zakai, 2013), using the reference to relate the forward and
backward processes. For details, see Appendix E.

Remark 2 (Role of the reference process). According to
Proposition 2.2, the Radon-Nikodym derivative between
−→
P µ,a and

←−
P ν,b can be decomposed into boundary terms

involving the marginals in (15a), as well as forward and
backward path integrals in (15b) and (15c). Note that the
left-hand side of (15a) does not depend on the reference
Γ0,T , γ±. Hence, the expressions in (15) are in principle
equivalent for all choices of reference, and close inspec-
tion shows that the freedom in Γ0,T and γ± allows us to
‘reweight’ between (15a), (15b) and (15c), or even cancel
terms.3 A canonical choice is the Lebesgue measure for Γ0

and ΓT , and γ± = 0, see Appendix C.1. For constructing
algorithms, we may however choose the reference diffusion
in such a way that intractable quantities are suppressed, or
so that the variance of associated estimators is reduced. We
will come back to these points in Section 3.

Remark 3 (Discretisation and conversion formulae). The
distinction between forward and backward integration in
(15) is related to the time points at which the integrands(
at − γ+t

)
(Yt) and

(
bt − γ−t

)
(Yt) would be evaluated in

discrete-time approximations, e.g.,∫ T

0

at(Yt)·
−→
d Yt ≈

∑
i

ati(Yti)·(Yti+1 − Yti),∫ T

0

at(Yt)·
←−
d Yt≈

∑
i

ati+1(Yti+1) · (Yti+1 − Yti).

3Note that not all terms can be cancelled at the same time, since
Γ0,T , γ± cannot be chosen independently (they need to satisfy the
conditions imposed by Proposition 2.1).

Alternatively, forward and backward integrals can be trans-
formed into each other using the conversion formula∫ T

0

at(Yt)·
−→
d Yt =

∫ T

0

at(Yt)·
←−
d Yt−σ2

∫ T

0

(∇·at)(Yt) dt.
(16)

We refer to Kunita (2019) and Appendix A for further details.
In passing, we note that (16) allows us to eliminate the
Hutchinson estimator (Hutchinson, 1989) from a variety
of objectives, potentially reducing the variance of gradient
estimators, see Appendix C.1.

Let us conclude this section by translating Framework 1 into
the setting of (13), noting that (12) continues to hold with
appropriate modifications.
Framework 1′. For a divergence D on path space, min-
imise D(

−→
P µ,a|

←−
P ν,b). If D(

−→
P µ,a|

←−
P ν,b) = 0, then (13a)

transports µ to ν, and (13b) transports ν to µ.

At optimality, D(
−→
P µ,a|

←−
P ν,b) = 0, Proposition 2.1 allows

us to obtain the scores associated to the learned diffusion via
σ2∇ ln ρµ,at = at− bt. In this way, Framework 1′ is closely
connected to (and in some ways extends) score-matching
ideas (Song and Ermon, 2019; Song et al., 2021).

3. Forward-reverse SDEs as a unifying
perspective for generative modeling and
sampling

We begin by showing that recent approaches towards gener-
ative modeling and sampling can be recovered from Frame-
work 1′ by making specific choices for the divergenceD, the
parameterisations for a and b, as well as for the reference
diffusion

−→
P Γ0,γ

+

=
←−
P ΓT ,γ

−
in Proposition 2.2. Recall

from the introduction that complete flexibility in a and b
will render the minima ofD(

−→
P µ,a|

←−
P ν,b) highly nonunique,

and so it is natural to fix either
−→
P µ,a or

←−
P ν,b, or to impose

further constraints relating the two (see Section 3.1).

Score-based generative modeling: Letting µ be the target
and fixing the forward drift at, and, motivated by Proposi-
tion 2.1, parameterising the backward drift as bt = at − st,
we recover the SGM objectives in Hyvärinen and Dayan
(2005); Song and Ermon (2019); Song et al. (2021) from
D = DKL; when

−→
P µ,a =

←−
P ν,b, the variable drift compo-

nent st will represent the score σ2∇ ln ρµ,at . Modifications
can be obtained from the conversion formula (16), see Ap-
pendix C.2.

Score-based sampling – ergodic drift: In this setting, ν
becomes the target and we fix bt to be the drift of an ergodic
(backward) process. Then choosing Γ0,T = µ, γ± = b
allows us to recover the approaches in Vargas et al. (2023a);
Berner et al. (2022). Possible generalisations based on
Framework 1′ include IWAE-type objectives, see Appendix
C.3.
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Score-based sampling – Föllmer drift: Finally choosing
bt(x) = x/t we can recover the Föllmer drift approach to
sampling (Follmer, 1984; Vargas et al., 2023b; Zhang and
Chen, 2022; Huang et al., 2021b), see Appendix C.3.

Domain adaptation and stochastic filtering: Setting
−→
P Γ0,γ

+

equal to the signal process in stochastic filtering
(Reich and Cotter, 2015), we can target the corresponding
Bayesian posterior with log-likelihood ln(ν/ΓT ). Note that
to obtain a tractable objective, we would need in a pre-
liminary step to learn γ− using score matching techniques.
Similarly, we can design a reference process with ΓT = ν
in case the log-density of ν is not available, as in domain
adaptation (Courty et al., 2017).

3.1. Score-based annealed flows

Departing from the discussion so far, we now attempt to vary
both

−→
P µ,a and

←−
P ν,b simultaneously. To retain uniqueness,

and guided by Proposition 2.1, we impose the additional
constraint bt = at−σ2∇ lnπt, so that when

−→
P µ,a =

←−
P ν,b,

the time marginals necessarily satisfy
−→
P µ,a
t =

←−
P ν,b
t = πt,

for all t ∈ [0, T ]. In this construction, (πt)t∈[0,T ] is a
prescribed curve of distributions whose scores (and un-
normalised densities π̂t) are assumed to be available in
tractable form; this is the scenario typically considered in
annealed importance sampling and related approaches to-
wards computing posterior expectations (Neal, 2001; Reich,
2011; Heng et al., 2021; 2020; Arbel et al., 2021; Doucet
et al., 2022). To complete the setting, we fix the parameteri-
sation at = σ2∇ lnπt +∇ϕt in terms of a scalar function
ϕt,4 so that the forward process is given by the controlled
time-inhomogeneous Langevin dynamics

Y0∼π0,

dYt=
(
σ2∇ lnπt(Yt)+∇ϕt(Yt)

)
dt+ σ

√
2
−→
dWt. (17)

Using the score constraint, we obtain bt = −σ2∇ lnπt +
∇ϕt for the backward drift. Notice that for ϕ = 0, the
dynamics is ‘locally at equilibrium’, that is, Yt ∼ π0 for
all t ∈ [0, T ], if πt = π0, for all t ∈ [0, T ]. Consequently,
∇ϕt may be thought of as a control enabling the transition
between neighbouring densities πt and πt+δt.

In order to learn the drift ∇ϕt so that (17) reproduces
(πt)t∈[0,T ], we can define the loss

L(ϕ) := D
(−→
P π0,σ

2∇ lnπ+∇ϕ,
←−
P πT ,−σ2∇ lnπ+∇ϕ

)
, (18)

as per Framework 1′, and choose for instance the KL or the
log-variance divergence (see Appendix B) for D, where the
RND can be computed and discretised as per equation (73)
in Appendix F.1. Additionally, we can simplify the RND to
observe the following connection to normalising flows:

4Restricting at further to be of gradient form ensures unique-
ness, see Proposition 3.1 below.

Remark 4. Consider the log-variance loss, which can be
re-expressed as

L(ϕ) := Var

(
ln

d
−→
P π0,σ

2∇ lnπ+∇ϕ

d
←−
P πT ,−σ2∇ lnπ+∇ϕ

)
=

= Var

(
lnπT (YT )− lnπ0(Y0) +

∫ T

0

∆ϕt(Yt) dt

−σ
√
2

∫ T

0

∇ lnπt(Yt)◦dWt− σ2

∫ T

0

|∇ lnπt(Yt)|2dt

)
, (19)

see Appendix D. Here, ◦dWt denotes Stratonovich integra-
tion, and the variance is taken with respect to samples from
(17). We note that in the limit σ → 0, the objective in (19)
enforces an integrated version of the instantaneous change
of density formula ∂t lnπt(Yt) = −∆ϕt(Yt) for contin-
uous time normalising flows of the form Ẏt = ∇ϕt(Yt),
see Papamakarios et al. (2021, Section 4). Notwithstanding
the intuitive appeal of the term involving ∆ϕt, it may be
favourable computationally to replace it by a combination
of forward and backward integrals using (16), see Remark
13.

The additional constraints detailed above resolve the
nonuniqueness in Frameworks 1 and 1′:

Proposition 3.1. Under mild conditions on (πt)t∈[0,T ], (18)
admits a (πt-a.e.)unique minimiser, up to additive constants.

We provide a proof in Appendix D; a numerical evaluation
is postponed to future work.

Remark 5 (Detaching the gradient). Since the log-variance
divergence is valid regardless of the base distribution ac-
cording to which the variance is computed, it is possible
to detach the gradient with respect to Yt when optimising
(19) (Nüsken and Richter, 2021; Richter et al., 2020), avoid-
ing differentiation through the score ∇ lnπt from which a
DKL-based objective would suffer.

Remark 6 (Action matching). Neklyudov et al. similarly
propose to learn ϕt in such a way that (17) reproduces a
fixed curve of distributions (πt)t∈[0,T ], albeit from samples
rather than from available scores. We show in Appendix
C.4 that their objective can be recovered from Framework 1′

using a diffusion with marginals (πt)t∈[0,T ] as the reference
process.

Finally following Zhang and Chen (2022); Vargas et al.
(2023a), we can obtain an unbiased estimate of the nor-
malising Z in πT = π̂T /Z from the RND in (19) via the
following importance sampling identity:

S(Y )= lnπT (YT )− lnπ0(Y0) +

∫ T

0

∆ϕt(Yt) dt

−σ
√
2

∫ T

0

∇ lnπt(Yt)◦dWt−σ2

∫ T

0

|∇ lnπt(Yt)|2dt,
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Ẑ = e−S(Y ), (20)

where, as mentioned previously, we can use the more com-
putationally friendly expression for the RND in equation
(73), which as in Vargas et al. (2023a) provides an ELBO
for Ẑ when discretised (see Remark 17).

3.2. Fluctuation theorem and the Jarzynski equality

To shed further light on score-based annealed flows, we
examine the RND involved in (19) when ϕ = 0. Connecting
(20) to well-established importance sampling (IS) estimators
for partition functions (Jarzynski, 1997; Neal, 2001; Chopin,
2002) we will motivate how our approach in Section 3.1
allows us to improve on said estimators. At the same time,
we showcase an application of Proposition 2.2.

To establish the aforementioned connection we present a
novel derivation of the Jarzynski equality (Jarzynski, 1997)
and Crooks’ fluctuation theorem (Crooks, 1999) for diffu-
sion processes which is more in line with Crooks’ original
proof. Our derivation appears to be more succinct and ‘path-
wise’, in contrast to previous approaches which combine the
Feynman-Kac formula with the FPK equation (Chen et al.,
2019; Stoltz et al., 2010; Hartmann et al., 2019; Hummer
and Szabo, 2001).

Proposition 3.2 (Crooks’ fluctuation theorem). Given the
annealed flow πt = π̂t/Zt interpolating between π0 and
πT , we define work done and free energy as

WT (Y ) = −
∫ T

0

σ2∂t ln π̂t(Yt) dt, Ft = −σ2 lnZt,

see Jarzynski (1997); Chen et al. (2019). Then we have
Crooks’ identity,(

d
−→
P π0,σ

2∇ lnπ

d
←−
P πT ,−σ2∇ lnπ

)
(Y ) = e−

1
σ2

(FT−F0)e
1
σ2

WT (Y ),

−→
P π0,σ

2∇ lnπ-a.s., which implies Jarzynski’s equality

E−→P π0,σ2∇ lnπ

[
e−

1
σ2

WT

]
=
ZT
Z0

(21)

by taking expectations.

The proof directly uses Proposition 2.2 and the
conversion formula (16) to compute the RND
d
−→
P π0,σ

2∇ lnπ/d
←−
P πT ,−σ2∇ lnπ, followed by an ap-

plication of Itô’s formula to t 7→ ln π̂t(Yt), see Appendix
E.2.

Prior works (Vaikuntanathan and Jarzynski, 2008; Neal,
2001; Chopin, 2002) have made use of the Jarzynski equality
(21) to estimate partition functions via importance sampling.
However, such choices for forward and backward processes
do not yield optimal variance for the estimator (Del Moral

et al., 2006), and indeed standard Monte Carlo estimators
for (21) might exhibit high variance, see Stoltz et al. (2010,
Section 4.1.4). In contrast, our proposed approach allows
us to optimise the vector field∇ϕt which if optimised fully
would make the IS estimator (20) optimal (zero variance).
Remark 7 (Related work). The task of learning the vec-
tor field ∇ϕt so that (17) reproduces (πt)t∈[0,T ] has been
approached from various directions. Reich (2011); Heng
et al. (2021); Reich (2022); Vaikuntanathan and Jarzynski
(2008) explore methodologies that exploit the characterisa-
tion of ∇ϕt in terms of the elliptic PDE (55). Arbel et al.
(2021) propose to leverage normalising flows sequentially
to minimise KL divergences between implied neighboring
densities. In an appropriate limiting regime, they recover the
SDE (17), see Remark 14. More closely related to the ob-
jective in (19) are physics-inspired attempts to optimise the
IS-variance in (21), see (Hartmann et al., 2019; Doucet et al.,
2022; Zhang, 2021), however, these methods are based on
the time reversal of ULA diffusions and unlike ours do not
reproduce the interpolating distribution (πt)t∈[0,T ].

4. Entropic optimal transport
Another way of selecting a particular transition between µ
and ν is by imposing an entropic penalty, encouraging the
dynamics to stay close to a prescribed, oftentimes physically
or biologically motivated, reference process. Using the
notation employed in Framework 1, the static Schrödinger
problem (Schrödinger, 1931) is given by

π∗(x, z) ∈ argmin
π(x,z)

{
DKL(π(x, z)||r(x, z)) :

πx(x) = µ(x), πz(z) = ν(z)
}
, (22)

where r(x, z) is the Schrödinger prior encoding additional
domain-specific information. In the context of Framework
1′, the dynamical Schrödinger problem can be presented in
the form

P∗∈ argmin
−→P µ,aT = ν

E
Y ∼

−→P µ,a

[
1

2σ2

∫ T

0

∥at − ft∥2(Yt) dt

]
, (23)

that is, the driving vector field at determining P∗ should be
chosen in such a way that (i), the corresponding diffusion
transitions from µ to ν, and (ii), among such diffusions, the
vector field at remains close to the prescribed vector field
ft, in mean square sense. Under mild conditions, it can
be shown that solutions to the problems in (22) and (23)
exist and are unique, and that the static and dynamic view-
points are related through a mixture-of-bridges construction
(assuming that the conditionals r(z|x) correspond to the
transitions induced by ft),5 see (Léonard, 2014a, Section

5This correspondence shows that the solution in (22) only de-
pends on the conditionals r(z|x), and not on the full distribution
r(x,z).
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2). To make this relationship plausible, we remark that
the DKL-divergence in (22) can be translated into the time
integral in (23) using Girsanov’s theorem.

4.1. Iterative proportional fitting (IPF) and the EM
algorithm

It is well known that approximate solutions for π∗(x, z)
and P∗ can be obtained using alternating DKL-projections,
keeping one of the marginals fixed in each iteration: Under
mild conditions, the sequence defined by

π2n+1(x, z) = (24a)

argmin
π(x,z)

{
DKL(π(x, z)||π2n(x, z)) : πx(x) = µ(x)

}
,

π2n+2(x, z) = (24b)

argmin
π(x,z)

{
DKL(π(x, z)||π2n+1(x, z)) : πz(z) = ν(z)

}
,

for n ≥ 0, with initialisation π0(x, z) = r(x, z), is known
to converge to π∗(x, z) as n→∞ (De Bortoli et al., 2021),
and this procedure is commonly referred to as iterative
proportional fitting (IPF) (Fortet, 1940; Kullback, 1968;
Ruschendorf, 1995; Reich, 2019) or Sinkhorn updates (Cu-
turi, 2013). IPF can straightforwardly be modified to the
path space setting of (23), and the resulting updates coincide
with the Föllmer drift updates discussed in Section C.3, see
(Vargas et al., 2021a). In applications, however, IPF is faced
with the following challenges:

1. The sequential nature of IPF, coupled with the need
for each iteration to undergo comprehensive training
as outlined in Section C.3, results in significant com-
putational demands.

2. The reference distribution r(x, z) (or the reference vec-
tor field ft) enters the iterations in (24) only through the
initialisation. As a consequence, numerical errors ac-
cumulate, and it is often observed that the Schrödinger
prior is ‘forgotten’ as IPF proceeds (Vargas et al.,
2021a; Fernandes et al., 2021; Shi et al., 2023).

To address these issues, we first establish a connection to
expectation-maximization (EM) (Dempster et al., 1977),
originally devised for finding maximum likelihood estimates
in models with latent (or hidden) variables. According to
Neal and Hinton (1998), the EM-algorithm can be described
in the setting from the introduction, and written in the form

θn+1 = argmin
θ
LDKL

(ϕn, θ),

ϕn+1 = argmin
ϕ

LDKL
(ϕ, θn+1), (25)

with LDKL defined as in (5). If the initialisations are
matched appropriately, the following result establishes an

exact correspondence between the IPF updates in (24) and
the EM updates in (25):

Proposition 4.1 (EM ⇐⇒ IPF). Assume that the transi-
tion densities pθ(x|z) and qϕ(z|x) are parameterised with
perfect flexibility,6 and furthermore that the EM-scheme (25)
is initialised at ϕ0 in such a way that qϕ0(z|x) = r(z|x).
Then the IPF iterations in (24) agree with the EM iterations
in (25) for all n ≥ 1, in the sense that

πn(x, z) = qϕ(n−1)/2(z|x)µ(x), for n odd,

πn(x, z) = pθn/2(x|z)ν(z), for n even. (26)

Proof. See Appendix E.

Corollary 4.2 (Path space EM). For the initialisation ϕ0 =
0 the alternating scheme

θn+1 = argmin
θ

DKL(
−→
P µ,f+σ2∇ϕn ,

←−
P ν,f+σ2∇θ),

ϕn+1 = argmin
ϕ

DKL(
−→
P µ,f+σ2∇ϕ,

←−
P ν,f+σ2∇θn+1)

agrees with the path space IPF iterations in (Bernton et al.,
2019; Vargas et al., 2021a; De Bortoli et al., 2021).

The key observation in the proof of Proposition 4.1 is that
replacing forward-DKL by reverse-DKL in one or both
of (24a) and (24b) does not – in theory – change the se-
quence of minimisers. In practice, however, optimisation
with respect to forward-DKL and backward-DKL encour-
ages moment-matching and mode-seeking behaviour, re-
spectively, and so an alternating scheme as defined in (25)
might present a suitable compromise. For comparisons of
IPF using different directions of DKL we refer the reader to
Vargas et al. (2021a); Zhang et al. (2014).

4.2. Optimality conditions and HJB-regularisers

As per Section 4.1, IPF resolves the nonquniqueness in
minimising LD(ϕ, θ) by performing the coordinate-wise
updates (25) starting from an initialisation informed by the
Schrödinger prior. On the basis of this observation, the
joint updates (ϕn+1, θn+1) ← (ϕn, θn) − h∇ϕ,θLD(ϕ, θ)
suggest themselves, in the spirit of VAEs (Kingma et al.,
2019) and as already proposed by Neal and Hinton (1998).
However, as is clear from the introduction, the limit
limn→∞(ϕn, θn), can merely be expected to respect the
marginals in (6), and no optimality in the sense of (23) is
obtained. As a remedy, we recall the following result:

Proposition 4.3 (Mean-field game formulation). Assume
that ϕ∈C1,2([0, T ]×Rd;R) satisfies the conditions:

6In precise terms, we assume that for any transition density
p(x|z), there exists θ∗ such that p(x|z) = pθ∗(x|z). Likewise,
we assume that for any transition density q(z|x), there exists ϕ∗
such that q(z|x) = qϕ∗(z|x).
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Target Method KL SBP Loss PINN Loss Cross Ent

Val Train Val Train Val Train Val Train

tree λ = 0.5 1.67±0.02 1.40±0.01 47.84±1.58 42.31±1.52 0.06±0.00 0.05±0.00 2.87±0.01 2.80±0.01
DNF (EM Init) 1.63±0.02 1.39±0.01 55.33±1.79 49.60±1.68 1.74±0.04 1.64±0.04 2.88±0.01 2.80±0.01

olympics λ = 0.5 2.95±0.06 0.12±0.01 39.30±0.90 25.24±0.62 0.26±0.01 0.10±0.00 2.49±0.01 2.77±0.02
DNF (EM Init) 2.70±0.05 0.02±0.01 40.20±0.77 38.30±1.53 1.64±0.04 2.05±0.08 2.54±0.01 2.77±0.02

sierpinski λ = 0.5 2.31±0.01 2.20±0.01 28.54±1.49 26.67±0.90 0.04±0.00 0.03±0.00 2.82±0.01 2.83±0.01
DNF (EM Init) 2.30±0.01 2.20±0.00 30.87±1.93 29.53±1.18 7.25±0.14 7.22±0.14 2.80±0.01 2.82±0.02

swirl λ = 0.5 15.67±0.29 1.95±0.03 121.81±1.94 40.24±1.74 1.01±0.03 0.14±0.00 2.97±0.01 2.69±0.02
DNF (EM Init) 13.77±0.38 1.92±0.04 151.67±3.68 67.55±1.86 5.89±0.15 2.63±0.08 2.95±0.02 2.74±0.03

checkerboard λ = 0.5 4.79±0.01 4.70±0.01 34.47±0.80 33.70±0.91 0.03±0.00 0.02±0.00 2.82±0.00 2.81±0.01
DNF (EM Init) 4.78±0.01 4.70±0.02 39.76±0.83 39.20±1.10 3.66±0.07 3.68±0.06 2.81±0.01 2.81±0.02

Table 1. Generative Modelling Results comparing DNF (Zhang and Chen, 2021) (λ = 0) to our PINN regualirsed approach with λ = 0.5.
We observe that PINN regularisation obtains similar KL and Cross entropy losses to DNF whilst achieving lower distances to the prior.

(a) λ = 2 (b) λ = 0 (EM Init) (c) λ = 0 (Random Init) (d) DNF (No Prior)
Figure 1. (a) our proposed regularised objective, (b) λ set to 0 but using clever EM motivated initialisation, (c) λ set to 0 with random
initialisation of the forward drift, (d) for reference DNF with ft = 0 (uninformative Schrödinger prior).

1. The forward SDE

dYt= ft(Yt) dt+ σ2∇ϕt(Yt) dt+ σ
−→
dWt, Y0∼µ

(27)
admits a unique strong solution on [0, T ], satisfying
moreover the terminal constraint YT ∼ ν.

2. The Hamilton-Jacobi-Bellmann (HJB) equation

∂tϕ+ f · ∇ϕ+
σ2

2
∆ϕ+ σ2

2 |∇ϕ|
2 = 0 (28)

holds for all (t, x) ∈ [0, T ]× Rd.

Then a = σ2∇ϕ provides the unique solution to the dynam-
ical Schrödinger problem as posed in (23).

For a proof, see Chen et al. (2021, Proposition 5.1) or Ap-
pendix E. Proposition 4.3 identifies the HJB-equation (28)
as the missing link that renders joint minimisation of ob-
jectives of the form D(

−→
P µ,a|

←−
P ν,b) theoretically sound for

solving (23):

Corollary 4.4. For λ > 0 and ϕ, ψ ∈ C1,2([0, T ]×Rd;R),

let LSchr(ϕ, θ) :=DKL(
−→
P µ,f+σ2∇ϕ,

←−
P ν,f+σ2∇θ)+λReg(ϕ),

(29)

where D is a divergence on path space, and Reg(ϕ) = 0 if
and only if (28) is satisfied. Then LSchr(ϕ, θ) = 0 implies
that the drift at = σ2∇ϕt solves (23).

In the experiments in Section 5 we choose D = DKL and
the PINN (Raissi et al., 2019) regulariser

Reg(ϕ)=

∫ T

0

E
∣∣∣∣∂tϕ+f ·∇ϕ+ σ2

2
∆ϕ+ σ2

2 |∇ϕ|
2

∣∣∣∣ (Yt) dt,
(30)

but other choices are possible, see Remarks 8 and 15 below.
The objective (29) can now be optimised, jointly in (ϕ, θ),
without reverting to the block-form IPF updates in (25).
Procedures based on (29) hold the promise of alleviating the
drawbacks of IPF mentioned in Section 4.1:

1. The objective LSchr allows for joint updates in (ϕ, θ),
without the need to follow the iterative IPF schedule.

2. Since the vector field ft enters the objective directly
through Reg(ϕ), see (30), optimality in the sense of
(23) is enforced throughout training.

Remark 8 (Relationship to previous work). For λ = 0,
coordinate-wise updates of LSchr(ϕ, θ) recover the IPF up-
dates from De Bortoli et al. (2021); Vargas et al. (2021a)
according to Corollary 4.1. Note that LSchr is an un-
constrained objective, in contrast to (23); previous works
(Koshizuka and Sato, 2023; Zhang and Katsoulakis, 2023)
have suggested incorporating the marginal constraints softly
by adding penalising terms to the running cost in (23). Those
approaches require a limiting argument (from an algorith-
mic standpoint, adaptive tuning of a weight parameter) to
recover the solution to (23). In contrast, the conclusion of
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Corollary 4.4 holds for arbitrary λ > 0. Shi et al. (2023);
Peluchetti (2023) suggest an algorithm involving recipro-
cal projections onto the reciprocal class associated to ft.
From (Clark, 1991; Thieullen, 2002; Rœlly, 2013), the HJB-
equation (28) is a local characteristic (Reg(ϕ) = 0 forces
(27) to be in the reciprocal class); hence Reg(ϕ) in (29)
plays a similar role as the reciprocal projection (Shi et al.,
2023, Definition 3), see Remark 15. Liu et al. (b) suggest
an iterative IPF-like scheme involving a temporal difference
term (Sutton and Barto, 2018, Chapter 6). As in Nüsken
and Richter (2023), this is a an HJB-regulariser in the sense
of Corollary 4.4, see Remark 15. Finally, Albergo et al.
(2023, Theorem 5.3) and Gushchin et al. (2022) develop
saddle-point objectives for (23).

Remark 9 (Role of the backward drift∇θt). The transtion
from the one-drift objective (23) to the two-drift objective
(29) allows us to perform optimisation without constraints.
Enforcing the backward drift to be of gradient form is not
essential, and ∇θ may be replaced by v in Corollary 4.4,
allowing for more flexible NN-parameterisations. It is also
possible to introduce a regulariser based on θ and a suitable
HJB equation; we elaborate on this in Remark 16.

5. Experiments
Across our experiments, we use DKL and let Γ0 = ΓT =
Leb, which can be simplified to the forward-backwards KL
objective used in DNF (Zhang et al., 2014), see Appendix
F.1. We use the Adam optimiser (Kingma and Ba, 2015)
trained on 50,000 samples and batches of size 5000 follow-
ing Zhang and Chen (2021). For the generative modelling
tasks we use 30 time steps and train for 100 epochs whilst
for the double well we train all experiments for 17 epochs
(early stopping via the validation set) and 60 discretisation
steps. Finally note we typically compare our approach with
λ > 0 to DNF (λ = 0), with DNF initialised at the reference
process, which we call DNF (EM Init), see Appendix E.4
for further details.

5.1. 2D toy targets – generative modelling

Here we consider the suite of standard 2D toy targets for
generative modelling explored in Zhang and Chen (2021)
In contrast to Zhang and Chen (2021) we consider the SDE
dYt = −σ2Yt dt + σ

√
2 dWt as the Schrödinger prior

across methods. We parametrise DNF and our proposed
approach with the same architectures for a fair compari-
son. Furthermore, we incorporate the drift of the above
Schrödinger prior into DNF via parameterising the forward
drift as in (27), partly motivated by Corollary 4.2.

In order to assess the quality of the bridge we consider three
different error metrics. Firstly we estimate DKL between
the Schrödinger prior and the learned forward process (i.e.
E
Y ∼

−→P µ,a

[
1

2σ2

∫ T
0
∥at − ft∥2(Yt) dt

]
). Secondly, we eval-

uate DKL(
−→
P µ,f+σ2∇ϕ,

←−
P ν,f+σ2∇θ) to obtain a proxy error

between the learned and target marginals. Finally, we esti-
mate the cross entropy between

−→
P µ,a
T and ν to assess how

well the constraint at time T is met.

In Table 1 we observe that similar values of DKL are at-
tained across both approaches in the tree, sierpinski, and
checkerboard datatsets whilst achieving significantly lower
values of the SBP loss across all training sets, and for tree,
swirl and checkerboard validation datasets. At the same
time, we can see that the cross-entropy errors are effectively
the same across both approaches. Overall we can conclude
that on the empirical measures over which we train our ap-
proach, we obtain a much better fit for the target Schrödinger
bridge, and on the validation results we can see that we gen-
eralise to 3/5 datasets in improving the bridge quality whilst
preserving the marginals to a similar quality.

5.2. Double well – rare event

In this task we consider the double well potential explored
in (Vargas et al., 2021b; Hartmann et al., 2013) where the
Schrödinger prior is specified via the following overdamped
Langevin dynamics dYt = −∇YtU(Yt) dt+ σ dWt. The
potential U(y) typically models a landscape for which it is
difficult to transport µ into ν.

This is a notably challenging task as we are trying to sample
a rare event and as noted by Vargas et al. (2021a) many runs
would result in collapsing into one path rather than bifur-
cating. In Figure 1 we can observe how our proposed regu-
larised approach (1a) is able to successfully transport parti-
cles across the well whilst respecting the potential, whilst
both variants of DNF using the EM-Init for ϕ (1b) and ran-
dom init (1c) fail to respect the prior as nicely and do not
bifurcate, with the random init in particular sampling quite
inconsistent trajectories. Finally for reference we train a
DNF model with ft = 0 and ϕ (1d) initialised at random to
illustrate the significance of the initialisation of ϕ.

6. Discussion
Overall we have successfully introduced a novel variational
framework bridging VI and transport using modern ad-
vances in diffusion models and processes. In particular,
we have shown that many existing diffusion-based methods
for generative modelling and sampling can be viewed as
special instances of our proposed framework. Building on
this, we have developed novel objectives for annealed flows
(with connections to fluctuation theorems due to Crook and
Jarzynski, rooted in statistical physics) and dynamic entropy
regularised transports (based on a relationship between the
EM and IPF algorithms). Finally, we have explored an in-
stance of our proposed Schrödinger objective across a series
of toy generative modelling tasks and a rare event problem
where we obtain both promising and competitive results.
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Christian Léonard. A survey of the Schrödinger problem and
some of its connections with optimal transport. Discrete
and Continuous Dynamical Systems-Series A, 34(4):1533–
1574, 2014a.

Qinsheng Zhang and Yongxin Chen. Diffusion normaliz-
ing flow. Advances in Neural Information Processing
Systems, 34:16280–16291, 2021.

Valentin De Bortoli, James Thornton, Jeremy Heng, and
Arnaud Doucet. Diffusion Schrödinger bridge with ap-
plications to score-based generative modeling. Advances
in Neural Information Processing Systems, 34:17695–
17709, 2021.

Robert Fortet. Résolution d’un systeme d’équations de M.
Schrödinger. J. Math. Pure Appl. IX, 1:83–105, 1940.

Solomon Kullback. Probability densities with given
marginals. The Annals of Mathematical Statistics, 39
(4):1236–1243, 1968.

Ludger Ruschendorf. Convergence of the iterative propor-
tional fitting procedure. The Annals of Statistics, 23(4):
1160–1174, 1995.

Sebastian Reich. Data assimilation: the Schrödinger per-
spective. Acta Numerica, 28:635–711, 2019.

Marco Cuturi. Sinkhorn distances: Lightspeed computation
of optimal transport. In Advances in Neural Information
Processing Systems, 2013.

Francisco Vargas, Pierre Thodoroff, Austen Lamacraft, and
Neil Lawrence. Solving Schrödinger bridges via maxi-
mum likelihood. Entropy, 23(9):1134, 2021a.

David Lopes Fernandes, Francisco Vargas, Carl Henrik Ek,
and Neill DF Campbell. Shooting Schrödinger’s cat. In
Fourth Symposium on Advances in Approximate Bayesian
Inference, 2021.

Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and
Arnaud Doucet. Diffusion Schrödinger bridge matching.
arXiv preprint arXiv:2303.16852, 2023.

Radford M Neal and Geoffrey E Hinton. A view of the
EM algorithm that justifies incremental, sparse, and other
variants. Learning in graphical models, pages 355–368,
1998.

Espen Bernton, Jeremy Heng, Arnaud Doucet, and Pierre E
Jacob. Schrödinger bridge samplers. arXiv preprint,
2019.

Wei Zhang, Han Wang, Carsten Hartmann, Marcus Weber,
and Christof Schütte. Applications of the cross-entropy
method to importance sampling and optimal control of
diffusions. SIAM Journal on Scientific Computing, 36(6):
A2654–A2672, 2014.

Diederik P Kingma, Max Welling, et al. An introduction to
variational autoencoders. Foundations and Trends® in
Machine Learning, 12(4):307–392, 2019.

Yongxin Chen, Tryphon T Georgiou, and Michele Pavon.
Stochastic control liaisons: Richard sinkhorn meets gas-
pard monge on a schrodinger bridge. Siam Review, 63(2):
249–313, 2021.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis.
Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems in-
volving nonlinear partial differential equations. Journal
of Computational physics, 378:686–707, 2019.



Transport, Variational Inference and Diffusions: with Applications to Annealed Flows and Schrödinger Bridges

Takeshi Koshizuka and Issei Sato. Neural Lagrangian
Schrödinger bridge: Diffusion modeling for popula-
tion dynamics. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=d3QNWD_pcFv.

Benjamin J Zhang and Markos A Katsoulakis. A mean-field
games laboratory for generative modeling. arXiv preprint
arXiv:2304.13534, 2023.

Stefano Peluchetti. Diffusion bridge mixture transports,
Schrödinger bridge problems and generative modeling.
arXiv preprint arXiv:2304.00917, 2023.

JMC Clark. A local characterization of reciprocal diffusions.
Applied Stochastic Analysis, 5:45–59, 1991.
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ume 2. Cambridge university press, 2000.

Mao Ye, Lemeng Wu, and Qiang Liu. First hitting diffusion
models for generating manifold, graph and categorical
data. In Advances in Neural Information Processing
Systems, 2022.

Paolo Dai Pra. A stochastic control approach to reciprocal
diffusion processes. Applied mathematics and Optimiza-
tion, 23(1):313–329, 1991.

Francisco Vargas. Machine-learning approaches for the
empirical Schrödinger bridge problem. Technical report,
University of Cambridge, Computer Laboratory, 2021.

Dominique Bakry, Ivan Gentil, Michel Ledoux, et al. Anal-
ysis and geometry of Markov diffusion operators, volume
103. Springer, 2014.

Christian Léonard. Some properties of path measures. In
Séminaire de Probabilités XLVI, pages 207–230. Springer,
2014b.
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A. Stochastic analysis for backward processes
In this appendix, we briefly discuss background in stochastic analysis relevant to the SDEs in (13), here repeated for
convenience:

dYt = at(Yt) dt+ σ
−→
dWt, Y0 ∼ µ, (31a)

dYt = bt(Yt) dt+ σ
←−
dWt, YT ∼ ν. (31b)

Recall that the forward Itô differential
−→
d in (31a) is far more commonly denoted simply7 by d, and theory for the forward

SDE (31a) is widely known (Karatzas et al., 1991; Øksendal, 2003). In contrast, reverse-time SDEs of the form (31b) are
less common and there are fewer textbook accounts of their interactions with forward SDEs. We highlight Kunita (2019) for
an in-depth treatment, and alert the reader to the fact that ‘backward stochastic differential equations’ as discussed in Zhang
(2017); Chen et al. (2022), for instance, are largely unrelated. We therefore refer to (31b) as a ‘reverse-time’ SDE.

Remark 10 (Notation). We deliberately depart from some of the notation employed in the recent literature (see, for instance,
Huang et al. (2021a); Liu et al. (a)) by using Yt in both (31a) and (31b), and not introducing an auxiliary process capturing
the reverse-time dynamics. From a technical perspective, this is justified since (Yt)0≤t≤T merely represents a generic
element in path space, and full information is encoded in the path measures Qµ,a ≡

−→
P µ,a and Pν,b ≡

←−
P ν,b. Importantly,

placing (31a) and (31b) on an equal footing seems essential for a convenient formulation of Proposition 2.2. Slightly
departing from the VAE-inspired notation from Section 2.1, we equivalently refer to these path measures by

−→
P µ,a and

←−
P ν,b,

highlighting the symmetry of the setting in (31).

Intuitively, (31) can be viewed as continuous time limits of the Markov chains defined in (10), or, in other words, the Markov
chains (10) are the Euler-Maruyama discretisations for (31), see Kloeden et al. (1992, Section 9.1). Throughout, we impose
the following:

Assumption A.1 (Smoothness and linear growth of vector fields). All (time-dependent) vector fields in this paper belong to
the set

U :=

{
a ∈ C∞([0, T ]× Rd;Rd) : there exists a constant C > 0

such that ∥at(x)− at(y)∥ ≤ C∥x− y∥, for all t ∈ [0, T ], x,y ∈ Rd
}
.

The preceding assumption guarantees existence and uniqueness for (31a) and (31b), and it allows us to use Girsanov’s
theorem in the proof of Proposition 2.2 (Novikov’s condition can be shown to be satisfied, see Øksendal (2003, Section 8.6)).
Furthermore, Assumption A.1 is sufficient to conclude Nelson’s relation (Proposition 2.1), see Haussmann and Pardoux
(1985); Millet et al. (1989); Föllmer (2006a) and the discussion in Russo and Vallois (1996). Having said all that, it is
possible to substantially weaken Assumption A.1 with more technical effort. Moreover, we can replace the constant σ > 0
by σ : [0, T ]× Rd → Rd×d throughout, assuming sufficient regularity, growth and invertibility properties, and amending
the formulas accordingly.

The precise meaning of (31) is given by the integrated formulations

Yt = Y0 +

∫ t

0

as(Ys) ds+

∫ t

0

σ
−→
dWs, Y0 ∼ µ, (33a)

Yt = YT −
∫ T

t

bs(Ys) ds−
∫ T

t

σ
←−
dWs, YT ∼ ν, (33b)

where the forward and backward integrals need defining. Roughly speaking, we have∫ t1

t0

Xs ·
−→
dZs = lim

‘∆t→0′

∑
i

Xti · (Zti+1 −Zti), (34a)

7...but in this paper we stick to the notation
−→
d to emphasise the symmetry of the setting.
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t0

Xs ·
←−
dZs = lim

‘∆t→0′

∑
i

Xti+1 · (Zti+1 −Zti), (34b)

see Remark 3, for ‘appropriate’ processes (Xt)0≤t≤T and (Zt)0≤t≤T , and where the limit ∆t→ 0 of vanishing step sizes
needs careful analysis (see Remark 11 below). The most salient difference between (31a) and (31b) is the fact that Xti is
replaced by Xti+1 in (34b).

Remark 11 (Convergence of the limits in (34)). If we only assume that X,Z ∈ C([t0, t1];Rd), possibly pathwise, that
is, deterministically, then the limits in (34) might not exist, or when they do, their values might depends on the specific
sequence of mesh refinements. The following approaches are available to make the definitions (34) rigorous:

1. Itô calculus (see, for example, Revuz and Yor (2013, Chapter 9)) uses adaptedness and semimartingale properties for
the forward integral in (34a), but note that the definition is not pathwise (that is, the limit (34a) is defined up to a set
of measure zero). For the backward integrals in (34b) and, importantly for us, in (57), it can then be shown that the
relevant processes are (continuous) reverse-time martingales (see Kunita (2019) for a discussion of the corresponding
filtrations). The latter property is guaranteed under Assumption A.1, see the discussion around Theorem 2.3 in Russo
and Vallois (1996).

2. Föllmer’s ‘Itô calculus without probabilities’ (Föllmer, 2006b) is convenient, since it allows to us to perform calculations
using (31) and Proposition 2.2 without introducing filtrations and related stochastic machinery. The caveat is that the
results may in principle depend on the sequence of mesh refinements, but under Assumption A.1, those differences
only appear on a set of measure zero, see Russo and Vallois (1995); Föllmer and Protter (2000).

3. Similarly, the integrals in (34) can be defined in a pathwise fashion using rough path techniques, see Friz and Hairer
(2020, Section 5.4).

For the current paper, the following conversion formulas are crucial,∫ t

0

Xs ·
←−
dZs −

∫ t

0

Xs ·
−→
dZs = ⟨X,Z⟩t, (35a)∫ t

0

Xs ·
←−
dZs +

∫ t

0

Xs ·
−→
dZs = 2

∫ t

0

Xs ◦Zs, (35b)

where ⟨X,Z⟩ is the quadratic variation process (if defined, see Russo and Vallois (1995)), and ◦ denotes Stratonovich
integration. For solutions to (31), we obtain (16) from (35a). In particular, we can often trade backward integrals for
divergence terms (see Appendix C.1), using the (backward) martingale properties

E
[∫ t

0

ft(Yt) ·
−→
dWt

]
= 0, if (Yt)0≤t≤T solves (31a), (36a)

E

[∫ T

t

ft(Yt) ·
←−
dWt

]
= 0, if (Yt)0≤t≤T solves (31b). (36b)

B. Variational inference and divergences
Various concepts well-known in the variational inference community have direct counterparts in the diffusion setting. In this
appendix we review a few that are directly relevant to this paper.

Maximum likelihood. The traditional approach (Blei et al., 2017; Kingma et al., 2019) towards the evidence lower bound
(ELBO) in (7) is via maximum likelihood in latent variable models. Using the notation and set-up from the introduction, one
can show using Jensen’s inequality (or dual representations of the KL divergence), that

ln

(∫
pθ(x, z) dz

)
= ln pθ(x) ≥ ELBOx(ϕ, θ), (37)

with equality if and only if qϕ(z|x) = pθ(z|x). The bound in (37) motivates maximising the (tractable) right-hand side,
performing model selection (according to Bayesian evidence) and posterior approximation (in terms of the variational family
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qϕ(z|x)) at the same time. The calculation in (7) shows that this objective can equivalently be derived from Framework 1
and connected to the KL divergence between the joint distributions qϕ(x, z) and pθ(x, z).

Reparameterisation trick (Kingma and Welling, 2014; Rezende et al., 2014). For optimising ELBOx(ϕ, θ), it is crucial
to select efficient low-variance gradient estimators. In this context, it has been observed that reparameterising z ∼ qϕ(z|x)
in the form z = g(ϵ, ϕ,x), see Kingma et al. (2019, Section 2.4.1), substantially stabilises the training procedure. Here, ϵ
is an auxiliary random variable with tractable ‘base distribution’ that is independent of ϕ and x, and g is a deterministic
function (transforming ϵ into z), parameterised by ϕ and x. We would like to point out that many (although not all,
see below) objectives in diffusion modelling are already reparameterised, since the SDEs (13) transform the ‘auxiliary’
variables (Wt)0≤t≤T into (Yt)0≤t≤T . With this viewpoint, the vector field at corresponds to the parameter ϕ, (Wt)0≤t≤T
corresponds to ϵ, and g corresponds to the solution map associated to the SDE (13a), sometimes referred to as the Itô map.
In this sense, the objectives (29), (44) and (45) are reparameterised, but (19) is not if the gradients are detached according to
Remark 5. We mention in passing that sticking the landing (Roeder et al., 2017) offers a further variance reduction close to
optimality, and that the same method can be employed for diffusion objectives, see Vargas et al. (2023b); Xu et al. (2021).

Reinforce gradient estimators. As an alternative to the KL-divergence, Nüsken and Richter (2021) investigated the family
of log-variance divergences

Du
Var(q||p) = Varx∼u

(
ln

dq

dp
(x)

)
, (38)

parameterised by an auxiliary distribution u, in order to connect variational inference to backward stochastic differential
equations (Zhang, 2017). The fact that gradients of (38) do not have to be taken with respect to x (see Remark 5) reduces
the computational cost and provides additional flexibility in the choice of u, but the gradient estimates potentially suffer
from higher variance since the reparameterisation trick is not available. The latter drawback is alleviated somewhat by the
fact that particular choices of u can be linked to control variate enhanced reinforce gradient estimators (Richter et al., 2020)
that are particularly useful when reparameterisation is not available (such as in discrete models). We note that the same
divergence has also been used as a variational inference objective in El Moselhy and Marzouk (2012).

Importance weighted autoencoders (IWAE). Burda et al. (2015) have developed a multi-sample version of ELBOx(ϕ, θ)
that achieves a tighter lower bound on the marginal log-likelihood in (37). To develop similar objectives in a diffusion
setting, we observe that for each K ≥ 1,

D
(K)
KL (q||p) = E

x1,...,xK
iid∼ q

[
ln

(
1

K

K∑
i=1

dq

dp
(xi)

)]
(39)

defines a generalised KL divergence8 that reproduces the IWAE lower bound as per Framework 1, in the sense of equation
(7). To the best of our knowledge, the precise formulation in (39) is new, but similar to the previous works Hernandez-Lobato
et al. (2016); Li and Turner (2016); Daudel et al. (2022). We exhibit an example of (39) applied in a diffusion context in
Section C.3, see Remark 12.

C. Connections to previous work

C.1. Discussion of equivalent expressions for DKL(
−→
P µ,a||

←−
P ν,b)

Notice that we can realise samples from
←−
P ν,b both via the reverse-time SDE in (13b) or via its time reversal given by the

following forward SDE (Nelson, 1967; Anderson, 1982; Haussmann and Pardoux, 1985):

dŶt =
(
bT−t(Ŷt)− σ2∇ ln←−ρ ν,bT−t(Ŷt)

)
dt+ σ

−→
dWt, Ŷ0 ∼ ν, (40)

using Ŷt := ŶT−t. This allows us to obtain an expression for DKL(
−→
P µ,a|

←−
P ν,b) via Girsanov’s theorem:

DKL(
−→
P µ,a||

←−
P ν,b) = DKL(

←−ρ ν,b0 ||ν) + E

[
1

2σ2

∫ T

0

∣∣∣∣∣∣at(Yt)− (bt(Yt)− σ2∇ ln←−ρ ν,bt (Yt)
) ∣∣∣∣∣∣2dt] . (41)

8Indeed, by Jensen’s inequality, we have that D(K+1)
KL (q||p) ≥ D

(K)
KL (q||p), so that in particular q ̸= p implies D(K)

KL (q||p) > 0.
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However there are several terms here that we cannot estimate or realise in a tractable manner, one being the score ∇ ln←−ρ ν,bt
and the other being sampling from the distribution←−ρ ν,b0 . 9

In order to circumvent the score term, the authors Vargas et al. (2021b); Chen et al. (2022) use the Fokker-Plank (FPK)
equation and integration by parts, respectively, trading of the score with a divergence term, whilst Huang et al. (2021a) use a
variant of the Feynman Kac formula to arrive at an equivalent solution. From Proposition 2.2, we can avoid the divergence
entirely and replace it by a backwards integral (making use of the conversion formula (16) and the fact that the ensuing
forward integral is zero in expectation). As hinted at in Remark 3, this replacement might have favourable variance-reducing
properties, but numerical evidence would be necessary.

C.2. Score-based generative modeling

Generative modeling is concerned with the scenario where µ(x) can be sampled from (but its density is unknown), and the
goal is to learn a backward diffusion as in (13b) that allows us to generate further samples from µ(x), see Song et al. (2021).
We may fix a reference forward drift at, and, motivated by Proposition 2.1, parameterise the backward drift as bt = at − st,
so that in the case when

−→
P µ,a =

←−
P ν,b, the variable drift component st will represent the score σ2∇ ln ρµ,at . When the

diffusion associated to at is ergodic and T is large,
−→
P µ,a =

←−
P ν,b requires that ν(z) is close to the corresponding invariant

measure. Choosing γ−t = at, and, for simplicity σ = 1, direct calculations using Proposition 2.2 show that

LISM(s) := DKL(
−→
P µ,a||

←−
P ν,a−s) = E

Y ∼
−→P µ,a

[
1
2

∫ T

0

s2t (Yt) dt+

∫ T

0

(∇ · st)(Yt) dt

]
+ const. (42)

recovers the implicit score matching objective (Hyvärinen and Dayan, 2005), up to a constant that does not depend on st.

Proof. We start by noticing that the contributions in (15a) and (15b) do not depend on st, and can therefore be absorbed in
the constant in (42) Notice that the precise forms of Γ0, ΓT and γ+ are left unspecified or unknown, but this does not affect
the argument. We find

DKL(
−→
P µ,a||

←−
P ν,a−s) = E

Y ∼
−→P µ,a

[∫ T

0

st(Yt) ·
(←−
d Yt − 1

2 (2at − st) (Yt) dt
)]

+ const.

= E

[∫ T

0

st(Yt) ·
(
σ
←−
dWt +

1
2st(Yt) dt

)]
+ const. = E

[
1
2

∫ T

0

s2t (Yt) dt+

∫ T

0

(∇ · st)(Yt) dt

]
+ const.,

where in the first line we use Proposition 2.2 together with bt = at − st and γ−t = at, and to proceed to the second line
we substitute

←−
d Yt using the SDE in (13a). The last equality follows from the conversion formula between forward and

backward Itô integrals, see (16), and the fact that forward integrals with respect to Brownian motion have zero (forward)
expectation, see (36a).

Notice that the nonuniqueness in Framework 1′ has been circumvented by fixing the forward drift at; indeed LISM is convex
in s, confirming Note that using integration by parts, LISM is equivalent to denoising score matching (Song et al., 2020;
2021):

DKL(
−→
P µ,a||

←−
P ν,a−s) = E

Y ∼
−→P µ,a

[
1

2σ2

∫ T

0

∥∥∥st(Yt)−∇ ln ρµ,at|0 (Yt|Y0)
∥∥∥2 dt

]
+ const.. (43)

Framework 1′ accommodates modifications of (42); in particular the divergence term in (42) can be replaced by a backward
integral, see Appendix C.1 and Remark 3. Note that the settings discussed in this section are also akin to the formulations in
Kingma et al. (2021); Huang et al. (2021a).

Finally, it is worth highlighting that this setting is not limited to ergodic models and can in fact accommodate finite time
models in the exact same fashion as the Föllmer drift is used for sampling (Section C.3) by using a Doob’s transform (Rogers
and Williams, 2000) based SDE for

−→
P µ,a as opposed to the classical VP-SDE see Example 2.4 in Ye et al. (2022).

9When Ŷt is an OU process and µ is Gaussian we are in the traditional DDPM setting (Song et al., 2021) and these two quantities
admit the classical tractable score matching approximations
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C.3. Score-based sampling

Consider the setting when ν(z) is a target distribution that can be evaluated pointwise up to a normalisation constant. In
order to construct a diffusion process that transports an appropriate auxiliary distribution µ(x) to ν(z), one approach is
to fix a drift bt in the backward diffusion (13b), and then learn the corresponding forward diffusion (13a) by minimising
a 7→ D(

−→
P µ,a|

←−
P ν,b). Tractability of this objective requires that µ :=

←−
P ν,b

0 be known explicitly, at least approximately. In
the following we review possible choices.

The Föllmer drift. Choosing bt(x) = x/t, one can show using Doob’s transform (Rogers and Williams, 2000, Theorem
40.3(iii)), that

←−
P ν,b

0 (x) = δ(x), for any terminal distribution ν(z). Hence, minimising a 7→ DKL(
−→
P δ0,a|

←−
P ν,b) leads to a

tractable objective. In particular consider the choice Γ0 = δ0, γ+ = 0, corresponding to a standard Brownian motion, then
it follows that γ− = x

t , ΓT = N (0, Tσ2) and thus via Proposition 2.2:

DKL(
−→
P δ0,a|

←−
P ν,b) = E

Y ∼
−→P µ,a

[
1

σ2

∫ T

0

a2(Yt) dt+ln

(
dN (0, Tσ2)

dν

)
(YT )

]
+ const., (44)

in accordance with (Dai Pra, 1991; Vargas et al., 2023b; Zhang and Chen, 2022). For further details, see Follmer (1984);
Vargas et al. (2023b); Zhang and Chen (2022); Huang et al. (2021b). As hinted at in Appendix B, replacing DKL in (44) by
the log-variance divergence (38) leads to an objective that directly links to BSDEs, see (Nüsken and Richter, 2021, Section
3.2).

Ergodic diffusions. Vargas et al. (2023a); Berner et al. (2022) fix a backward drift bt that induces an ergodic backward
diffusion, so that for large T , the marginal at initial time

←−
P ν,b
t=0 is close to the corresponding invariant distribution, and

in particular (almost) independent of ν(z).10 Defining µ :=
←−
P ν,b
t=0, Vargas et al. (2023a); Berner et al. (2022) set out to

minimise the denoising diffusion sampler loss LDDS(f) := DKL(
−→
P µ,b+σ2f |

←−
P ν,b). Choosing the reference process to be

Γ0,T = µ, γ± = b (that is, the reference process is at stationarity, with invariant measure µ(z)), direct calculation based on
(15) shows that

LDDS(f) = E
Y ∼

−→P µ,b+σ2f

[
σ2

∫ T

0

f2(Yt) dt+ln

(
dΓT
dν

)
(YT )

]
, (45)

Remark 12 (IWAE-objective). In line with (39), we may also consider the multi-sample objective

L(K)
DDS(f) := D

(K)
KL (
−→
P µ,b+σ2f |

←−
P ν,b)

= E
Y 1,...,Y Kiid∼

−→P µ,b+σ2f

[
ln

(
1
K

K∑
i=1

exp

(
σ2

∫ T

0

f2(Y i
t ) dt+ln

(
dΓT
dν

)
(Y i

T )

))]

Proof. We start by noticing that the choice γ−t = bt cancels the terms in (15c), and the choice Γ0 = µ cancels the first term
in (15a). Using at = bt + σ2ft, we therefore obtain

LDDS(f) = DKL(
−→
P µ,b+σ2f |

←−
P ν,b) = E

[
σ2

∫ T

0

ft(Yt) ·
(
(bt + ft)(Yt) dt− 1

2 (2bt + ft)(Yt) dt
)
+ ln

(
dΓT
dν

)
(YT )

]

= E

[
σ2

∫ T

0

f2t (Yt) dt+ ln

(
dΓT
dν

)
(YT )

]
. (46a)

As is implicit in Berner et al. (2022), it is also possible to choose γ± = 0 for the reference process, with Γ0 = ΓT = Leb,
the Lebesgue measure on Rd. We notice in passing that although the Lebesgue measure is not normalisable, it is invariant
under Brownian motion (the forward and backward drifts are both zero), and the arguments can be made rigorous by a

10Vargas et al. (2023a) chose a (time-inhomoegenous) backward Ornstein-Uhlenbeck process, so that
←−
P ν,b

t=0 is close to a Gaussian, but
generalisations are straightforward.
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limiting argument (take Gaussians with diverging variances), or by using the techniques in Léonard (2014a, Appendix A.1).
By similar calculations as above, we obtain

LDDS(f) = E

[
σ2

∫ T

0

f2t (Yt) dt− 1
σ

∫ T

0

bt(Yt) ·
←−
dWt + lnµ(Y0)− ln ν(YT )

]
(47a)

= E

[
σ2

∫ T

0

f2t (Yt) dt−
∫ T

0

(∇ · bt)(Yt) dt− ln ν(YT )

]
+ const., (47b)

where we overload notation and denote the Lebesgue densities of µ and ν with the same letters. In the second line we have
used the conversion formula in (16), together with the fact that the forward Itô integrals are forward martingales (Kunita,
2019), and therefore have zero expectation. Comparing (45) and (47b), we notice the additional divergence term, due to the
fact that the choice γ− = 0 does not cancel the terms in (57). See also the discussion in Appendix C.1.

Finally we note that whilst the work in Berner et al. (2022) focuses on exploring a VP-SDE-based approach which is ergodic,
their overarching framework generalises beyond ergodic settings, notice this objective is akin to the KL expressions in
Vargas (2021, Proposition 1) and Liu et al. (b, Proposition 9).

C.4. Action matching (Neklyudov et al.)

Similar to our approach in Section 3.1, Neklyudov et al. fix a curve of distributions (πt)t∈[0,T ]. In contrast to us, they
assume that samples from πt are available, for each t ∈ [0, T ] (but scores and unnormalised densities are not). Still, we can
use Framework 1′ to rederive their objective:

Akin to the proof of Proposition 3.1, under mild conditions on (πt)t∈[0,T ], there exists a unique vector field∇ϕ∗t that satisfies
the Fokker-Planck equation

∂tπt +∇ · (πt∇ϕ∗t ) = σ2

2 ∆πt. (48)

We can now use the reference process
−→
P π0,∇ϕ∗

(that is, Γ0 = π0, γ+t = ∇ϕ∗t , ΓT = πT , γ−t = ∇ϕ∗t − σ2∇ lnπt) to
compute the objective

ψ 7→ DKL(
−→
P π0,∇ψ||

←−
P πT ,∇ψ−σ2∇ lnπ),

relying on the same calculational techniques as in Sections C.2 and C.3 (the particular choice of reference process cancels the
terms in (15a)). Notice that the parameterisation in this objective constrains the target diffusion to have time-marginals πt,
just as in Section 3.1. By direct calculation, we obtain (up to a factor of 2/σ2) the action-gap in equation (5) in Neklyudov
et al.. Indeed, we see that

DKL(
−→
P π0,∇ψ||

←−
P πT ,∇ψ−σ2∇ lnπ) = E−→P π0,∇ψ

[
ln

(
d
−→
P π0,∇ψ

d
←−
P∇ψ−σ2∇ lnπ

)]

= E

[
1
σ2

∫ T

0

(∇ψt −∇ϕ∗t )
2
(Yt) dt− 1

σ

∫ T

0

(∇ψt −∇ϕ∗t )(Yt) ·
←−
dWt −

∫ T

0

∇ lnπt(Yt) · (∇ψt −∇ϕ∗t )(Yt) dt

]

= E

[
1
σ2

∫ T

0

(∇ψt −∇ϕ∗t )
2
(Yt) dt

]
,

where in the last line we have used the conversion formula (16) together with (36a) to compute

E

[
1
σ

∫ T

0

(∇ψt −∇ϕ∗t )(Yt) ·
←−
dWt

]
= E

[∫ T

0

(∇ · (∇ψt −∇ϕ∗t ))(Yt) dt

]

=

∫ T

0

∫
Rd
(∇ · (∇ψt −∇ϕ∗t ))(x)πt(dx) dt = −

∫ T

0

∫
Rd
(∇ψt −∇ϕ∗t )(x) · ∇ lnπt(x)πt(dx) dt

= E

[∫ T

0

∇ lnπt(Yt) · (∇ψt −∇ϕ∗t )(Yt) dt

]
and cancel the two last terms in the penultimate line.
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D. Score-based annealing (Section 3.1)
D.1. Derivation of the RND in equation (19)

In this section, we first verify the expression in (19), using Proposition 2.2, and choosing Γ0 = ΓT to be the Lebesgue
measure, γ+ = γ− = 0. We recall that although the Lebesgue measure in not normalisable, the arguments can be made
rigorous using the techniques in Léonard (2014a, Appendix A).

The Radon-Nikodym derivative (RND) along (17) reads(
ln

d
−→
P π0,σ

2∇ lnπ+∇ϕ

d
←−
P πT ,−σ2∇ lnπ+∇ϕ

)
(Y ) = (lnπ0)(Y0)− (lnπT )(YT )

+ 1
2σ2

∫ T

0

(σ2∇ lnπt +∇ϕt)(Yt)
(
(σ2∇ lnπt +∇ϕt)(Yt) dt+

√
2σ
−→
dWt − 1

2 (σ
2∇ lnπt +∇ϕt)(Yt) dt

)
− 1

2σ2

∫ T

0

(−σ2∇ lnπt +∇ϕt)(Yt)
(
(σ2∇ lnπt +∇ϕt)(Yt) dt+

√
2σ
←−
dWt − 1

2 (−σ
2∇ lnπt +∇ϕt)(Yt) dt

)
= (lnπ0)(Y0)− (lnπT )(YT ) + σ2

∫ T

0

|∇ lnπt(Yt)|2 dt

+ σ√
2

(∫ T

0

∇ lnπt(Yt) ·
−→
dWt +

∫ T

0

∇ lnπt(Yt) ·
←−
dWt

)
+ 1

σ
√
2

(∫ T

0

∇ϕ(Yt) ·
−→
dWt −

∫ T

0

∇ϕ(Yt) ·
←−
dWt

)
.

Using (35b), we obtain

σ√
2

(∫ T

0

∇ lnπt(Yt) ·
−→
dWt +

∫ T

0

∇ lnπt(Yt) ·
←−
dWt

)
=
√
2σ

∫ T

0

∇ lnπt(Yt) ◦ dWt.

Furthermore, from (16) we see that

1
σ
√
2

(∫ T

0

∇ϕ(Yt) ·
−→
dWt −

∫ T

0

∇ϕ(Yt) ·
←−
dWt

)
= −

∫ T

0

∆ϕt(Yt) dt, (52)

from which the claim follows.

Remark 13 (Estimating (19) without second derivatives). Using (52), we can equivalently write the RND as(
ln

d
−→
P π0,σ

2∇ lnπ+∇ϕ

d
←−
P πT ,−σ2∇ lnπ+∇ϕ

)
(Y ) = lnπT (YT )− lnπ0(Y0)

− 1
σ
√
2

(∫ T

0

∇ϕ(Yt) ·
−→
dWt −

∫ T

0

∇ϕ(Yt) ·
←−
dWt

)
−σ
√
2

∫ T

0

∇ lnπt(Yt)◦dWt− σ2

∫ T

0

|∇ lnπt(Yt)|2 dt,

so that the loss in (19) can be estimated without the need to evaluate ∆ϕ. Note that the identity (52) is similar to a finite
difference approximation of ∆ϕ along the process Yt.

D.2. Existence and uniqueness of the drift

Before proceeding to the proof of Propostion 3.1, we state the following assumption on the curve of distributions (πt)t∈[0,T ]:

Assumption D.1. Assume that π ∈ C∞([0, T ]× Rd;R), and that for all t ∈ [0, T ]

1. the time derivative ∂tπt is square-integrable, that is, ∂tπt(t, ·) ∈ L2(Rd),

2. πt satisfies a Poincaré inequality, that is, there exists a constant Ct > 0 such that

Varπt(f) ≤ Ct
∫
Rd
|∇f |2dπt, (54)

for all f ∈ C1
b (Rd).
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Note that at the boundary ∂[0, T ] = {0, T}, we agree to denote by ∂tπt the ‘inward-pointing derivative’ and interpret
C∞([0, T ]×Rd;R) in that way. We remark that the Poincaré inequality (54) is satisfied under relatively mild conditions on
the tails of πt (for instance, Gaussian tails) and control of its derivatives, see, e.g., Bakry et al. (2014, Chapter 4). Under
Assumption D.1, we can prove Proposition 3.1 as follows:

Proof of Proposition 3.1. The Fokker-Planck equation associated to (17) is given by

∂tπt +∇ · (πt∇ϕt) = 0. (55)

The operator ϕ 7→ −∇ · (πt∇ϕ) is essentially self-adjoint in L2(Rd), and, by (54) coercive on L2
0(Rd) := {f ∈ L2(Rd) :∫

fdx = 0}. Therefore, there exists a unique solution ϕ∗t ∈ L2
0(Rd) to (55), for any t ∈ [0, T ]. This solution is smooth by

elliptic regularity. By Proposition 2.1 and our general framework, any minimiser ϕ̃ of (18) necessarily satisfies (55) as well.
We then obtain

∇ · (πt∇(ϕt − ϕ̃t)) = 0.

Multiplying this equation by ϕt − ϕ̃t, integrating, and integrating by parts shows that
∫
∥∇(ϕ− ϕ̃)∥2 dπt = 0, proving the

claim.

Remark 14 (Relation to previous work). Note we can carry out a change of variables to equation (55),

∂t lnπt = −π−1
t (∇πt · ∇ϕt + πt∆ϕ) = −∇ lnπt · ∇ϕ−∆ϕ,

yielding the PDE

∂t lnπt +∇ lnπt · ∇ϕ+∆ϕ = 0,

which when considered in terms of the unnormalised flow π̂t = Ztπt coincides with PDE in Vaikuntanathan and Jarzynski
(2008); Arbel et al. (2021):

∂t ln π̂t +∇ ln π̂t · ∇ϕ+∆ϕ− Eπt [∂t ln π̂t] = 0.

In particular, we note that the Markov chain proposed in Arbel et al. (2021) converges to our proposed parameterisation in
equation (17) (see equation (12) in (Arbel et al., 2021)).

E. Proofs
E.1. Proof of Proposition 2.2 (forward-backward Radon-Nikodym derivatives)

Proof. We begin with the forward Radon-Nikodym derivative

ln

(
d
−→
P µ,a

d
−→
P ν,b

)
(Y ) = ln

(
dµ

dν

)
(Y0) +

1
σ2

∫ T

0

(at − bt)(Yt) ·
−→
d Yt +

1
2σ2

∫ T

0

(
b2t − a2t

)
(Yt) dt, (56)

following from Girsanov’s theorem (see, for instance, Nüsken and Richter (2021, Lemma A.1) and substitute σu = a− b).
To compute the backward Radon-Nikodym derivative, we temporarily introduce the time-reversal operator R, acting as
(RY )t := YT−t on paths11, and as (Ra)t(y) := aT−t(y) on vector fields. We then observe that

ln

(
d
←−
P µ,Ra

d
←−
P ν,Rb

)
(RY ) = ln

(
d
−→
P µ,a

d
−→
P ν,b

)
(Y ),

for instance by comparing the discrete-time processes in (10a) and (10b). Equivalently,

ln

(
d
←−
P µ,a

d
←−
P ν,b

)
(Y ) = ln

(
d
−→
P µ,Ra

d
−→
P ν,Rb

)
(RY ),

11Although pathwise definitions should be treated with care (because Itô integrals are defined only up to a set of measure zero), the
arguments can be made rigorous using the machinery referred to in Appendix A.
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sinceR2 is the identity. Building on (56), the backward Radon-Nikodym derivative therefore reads

ln

(
d
←−
P µ,a

d
←−
P ν,b

)
(Y ) = ln

(
dµ

dν

)
((RY )0) +

1
σ2

∫ T

0

((Ra)t − (Rb)t)(RYt) ·
−→
d (RY )t

+ 1
2σ2

∫ T

0

(
(Rb)2t − (Ra)2t

)
((RY )t) dt,

= ln

(
dµ

dν

)
(YT ) +

1
σ2

∫ T

0

(at − bt)(Yt) ·
←−
d Yt +

1
2σ2

∫ T

0

(
b2t − a2t

)
(Yt) dt, (57)

where the integrals have been transformed using the substitution t 7→ T − t. The result in (15) now follows by writing

ln

(
d
−→
P µ,a

d
←−
P ν,b

)
(Y ) = ln

(
d
−→
P µ,a

d
−→
P Γ0,γ+

)
(Y ) + ln

(
d
←−
P ΓT ,γ

−

d
←−
P ν,b

)
(Y ),

using the assumption
−→
P Γ0,γ

+

=
←−
P ΓT ,γ

−
, and inserting (56) as well as (57).

E.2. Proof of Proposition 3.2 (Crooks’ fluctuation theorem and the Jarzinky equality)

Proof. For simplicity (and in order to use Proposition 2.2), we parameterise the SDE (17) in the same way as (13),

dYt =
σ2

2
∇ lnπt(Yt) dt+ σdWt,

which is simply relabeling σ
√
2 7→ σ.

Using the divergence-based conversion formula for the backwards integral (see (16)) and letting a = −b = σ2

2 ∇ lnπt, we
obtain

ln

(
d
−→
P µ,σ

2

2 ∇ lnπ

d
←−
P ν,−σ2

2 ∇ lnπ

)
(Y ) = lnµ(Y0)− ln ν(YT ) +

σ2

2

∫ T

0

||∇ lnπt||2(Yt) dt

+ σ

∫ T

0

∇ lnπt(Yt) ·
−→
dWt +

σ2

2

∫ T

0

∆ lnπt(Yt) dt.

Then via Itô’s lemma applied to the unnormalised annealed log target ln π̂t = lnπt − lnZt we have:

ln π̂T (YT )− ln π̂0(Y0)−
∫ T

0

∂t ln π̂t(Yt) dt

=
σ2

2

∫ T

0

||∇ lnπt||2(Yt) dt+
σ2

2

∫ T

0

∆ lnπ(Yt) dt+ σ

∫ T

0

∇ lnπt(Yt) ·
−→
dWt,

thus we arrive at Crooks’ generalised fluctuation theorem (Crooks, 1999),

ln

(
d
−→
P µ,σ

2

2 ∇ lnπ

d
←−
P ν,−σ2

2 ∇ lnπ

)
(Y ) = lnµ(Y0)− ln ν(YT ) + ln π̂T (YT )− ln π̂0(Y0)−

∫ T

0

∂t ln π̂t(Yt) dt, (59)

for arbitrary initial initial and final densities µ and ν. Now notice that:

1 = E−→P µ,
σ2
2

∇ lnπ

( d
−→
P µ,σ

2

2 ∇ lnπ

d
←−
P ν,−σ2

2 ∇ lnπ

)−1


= E−→P µ,
σ2
2

∇ lnπ

[
exp

(
− lnµ(Y0) + ln ν(YT )− ln π̂T (YT ) + ln π̂0(Y0) +

∫ T

0

∂t ln π̂t(Yt) dt

)]
,
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which implies the Jarzynski equality when considering the boundaries µ = π0 and ν = πT , resulting in:

E−→P π0,
σ2
2

∇ lnπ

[
exp

(∫ T

0

∂t ln π̂t(Yt) dt

)]
= e−(lnZ0−lnZT ).

Similarly considering the same boundaries in (59) yields Crooks’ identity:(
d
−→
P π0,σ

2∇ lnπ

d
←−
P πT ,−σ2∇ lnπ

)
(Y ) = e−

1
σ2

(FT−F0)e
1
σ2

WT .

E.3. Proof of Proposition 4.1: EM ⇐⇒ IPF

Proof. The proof proceeds by induction.

To begin with, the update formula in (24a) implies that

π1(x, z) = argmin
π(x,z)

{DKL(π(x, z)||r(x, z)) : πx(x) = µ(x)} ,

recalling the initialisation π(x, z) = r(x, z). To take account of the marginal constraint, we may write π(x, z) =
µ(x)π(z|x) and vary over the conditionals π(z|x). By the chain rule for DKL, we see that

DKL(µ(x)π(z|x)||r(x, z)) = DKL(µ(x)||r(x)) + Ex∼µ(x)[DKL(π(z|x)||r(z|x))], (60)

which is minimised at π(z|x) = r(z|x). From this, it follows that π1(x, z) = µ(x)r(z|x) for the first IPF iterate. By
assumption, the EM iteration is initialised in such a way that qϕ0(z|x) = r(z|x), so that indeed π1(x, z) = qϕ0(z|x)µ(x).
The induction step is split (depending on whether n is odd or even):

1.) First assume that the first line of (26) holds for a fixed odd n ≥ 1. Our aim is to show that this implies that

πn+1(x, z) = pθ(n+1)/2(x|z)ν(z), (61)

that is, the second line of (26) with n replaced by n+ 1. From (24b), we see that

πn+1(x, z) = argmin
π(x,z)

{DKL(π(x, z)||πn(x, z)) : πz(z) = ν(z)} .

Again, we enforce the marginal constraint by setting π(x, z) = π(z|x)ν(z) and proceed as in (60) to obtain πn+1(x, z) =
πn(x|z)ν(z). The statement in (61) is therefore equivalent to πn(x|z) = pθ(n+1)/2(x|z). To show this, we observe from
the EM-scheme in (25) that

θ(n+1)/2 = argmin
θ
LDKL

(ϕ(n−1)/2, θ).

In combination with the second line of (26) and the definition of LD(ϕ, θ) in (5), we obtain

θ(n+1)/2 = argmin
θ

DKL(π
n(x, z)||pθ(x|z)ν(z)) = argmin

θ
Ez∼πnz (z)

[
DKL(π

n(x|z)||pθ(x|z))
]
,

where the second equality follows from the chain rule for DKL as in (60). Since by assumption the parameterisation of
pθ(x|z) is flexible, we indeed conclude that πn(x|z) = pθ(n+1)/2(x|z).
2.) Assume now that the second line of (26) holds for a fixed even n ≥ 2. We need to show that the first line holds with n
replaced by n+ 1, that is,

πn+1(x, z) = qϕn/2(z|x)µ(x).

Using similar arguments as before, we see that πn+1(x, z) = πn(x|z)µ(x), so that it is left to show that πn(x|z) =
qϕn/2(z|x). Along the same lines as in 1.), we obtain

ϕn/2 = argmin
ϕ

LDKL
(ϕ, θn/2) = argmin

ϕ
DKL(q

ϕ(z|x)µ(x)||πn(x, z))
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= argmin
ϕ

Ex∼µ(x)
[
qϕ(z|x)||πn(z|x)

]
.

Again, this allows us to conclude, since the parameterisation in qϕ(z|x) is assumed to be flexible enough to allow for
qϕn/2(z|x) = πn(x|z).
The proof for the path space IPF scheme is verbatim the same after adjusting the notation. For completeness, we consider a
drift-wise version below.

E.4. Drift based EM

As remarked in the previous subsection, the proof of the equivalence between IPF and EM in path space follows the exact
same lines, replacing the chain rule of DKL with the (slightly more general) disintegration theorem (Léonard, 2014b). In
this section, we provide a direct extension to the control setting, yielding yet another IPF-type algorithm and motivating
certain design choices for the family of methods we study.

Corollary E.1. For the intialisation ϕ0 = 0, the alternating scheme

θn+1 = argmin
θ

DKL(
−→
P µ,f+σ2∇ϕn ,

←−
P ν,f+σ2∇θ), ϕn+1 = argmin

ϕ
DKL(

−→
P µ,f+σ2∇ϕ,

←−
P ν,f+σ2∇θn+1)

agrees with the path space IPF iterations in Bernton et al. (2019); Vargas et al. (2021a); De Bortoli et al. (2021).

Proof. For brevity let LFB(ϕ, θ) := DKL(
−→
P µ,f+σ2∇ϕ,

←−
P ν,f+σ2∇θ). Additionally, we parameterise the forwards and

backwards SDEs with respective path distributions
−→
P µ,f+σ2∇ϕ,

←−
P ν,f+σ2∇θ as:

dYt= ft(Yt) dt+ σ2∇ϕt(Yt) dt+ σ
−→
dWt, Y0∼µ,

dYt = ft(Yt) dt+ σ2∇θt(Yt) dt+ σ
←−
dWt, YT ∼ ν.

The proof will proceed quite similarly, so instead we will consider just the inductive step for the odd half bridge:

θn = argmin
θ
LFB(ϕn−1, θ).

We can show via the DKL chain rule and the disintegration theorem (Léonard, 2014b) that the above is minimised when
θ satisfies

←−
P ν,f+σ2∇θ =

−→
P µ,f+σ2∇ϕn−1 dν

dρ
µ,f+σ2∇ϕn−1
T

which corresponds to∇θn = σ2∇ϕn−1 − σ2∇ ln ρ
µ,f+σ2∇ϕn−1

t

following Observation 1 in Vargas et al. (2021a). Similarly as per Proposition 4.1 the results will follow for the even half
bridges.

EM initialisation: The above corollary provides us with convergence guarantees when performing coordinate descent on
DKL(

−→
P µ,f+σ2∇ϕ,

←−
P ν,f+σ2∇θ) subject to initialising ϕ0 = 0. n practice, this indicates that the way of initialising ϕ has a

major impact on which bridge we converge to.

Thus as a rule of thumb we propose initialising ϕ0 = 0 such that we initialise at the Schrödinger prior: then one may carry
out joint updates as an alternate heuristic, we call this approach DNF (EM Init), as it is effectively a clever initialisation of
DNF inspired by the relationship between IPF and EM.

E.5. Proof of Proposition 4.3 (HJB-regularisers)

This result can be found in Chen et al. (2021, Proposition 5.1), for instance, but since it is relevant to the connections pointed
out in Remark 15 below, we present an independent proof:

Proof. We denote the path measures associated to the SDE

dYt = ft(Yt) dt+ σ dWt (63)
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by P and the SDE (27) by Pϕ, respectively. According to Girsanov’s theorem, the Radon-Nikodym derivative satisfies

dPϕ

dP
= exp

(
σ

∫ T

0

∇ϕt(Yt) · dWt − σ2

2

∫ T

0

|∇ϕt|2(Yt) dt

)
, (64)

provided that the marginals agree at initial time, P0 = Pϕ0 . Along solutions of (63), we have by Itô’s formula

ϕT (YT )− ϕ0(Y0) =

∫ T

0

∂tϕt(Yt) dt+

∫ T

0

(ft · ∇ϕt)(Yt) dt+ σ2

2

∫ T

0

∆ϕt(Yt) dt+ σ

∫ T

0

∇ϕt(Yt) · dWt

= −σ
2

2

∫ T

0

|∇ϕt|2(Yt) dt+ σ

∫ T

0

∇ϕt(Yt) · dWt = ln

(
dPϕ

dP

)
, (65)

where we have used the HJB-equation (28) in the second line. Combining this with (64), we see that

dPϕ

dP
(Y ) = exp (−ϕ0(Y0)) exp (ϕT (YT )) . (66)

The claim now follows, since the unique solution to the Schrödinger problem is characterised by the product-form expression
in (66, see Léonard (2014a, Section 2), together with the marginal constraints Pϕ0 = µ and PϕT = ν, which are satisfied by
assumption.

Remark 15 (Connection to reciprocal classes (Shi et al., 2023; Peluchetti, 2023) and TD learning (Liu et al., b)). The
calculation in equation (65) makes the relationship between the HJB equation (28) and reciprocal classes manifest (since
reciprocal classes can essentially be defined through the relationship (66), see Léonard et al. (2014); Rœlly (2013)).
Moreover, equation (65) showcases the relationship between TD learning (Sutton and Barto, 2018, Chapter 6) as suggested
in Liu et al. (b) and HJB regularisation. Indeed,

RegBSDE(ϕ) := Var

(
ϕT (YT )− ϕ0(Y0) +

σ2

2

∫ T

0

|∇ϕt|2(Yt) dt− σ
∫ T

0

∇ϕt(Yt) · dWt

)
, (67)

where the variance is taken with respect to the path measure induced by (63), is a valid HJB-regulariser in the sense of
Corollary 4.4. The equivalence between RegBSDE(ϕ) = 0 and the HJB equation (28) follows from the theory of backward
stochastic differential equations (BSDEs)12, see, for example, the proof of Proposition 3.4 in Nüsken and Richter (2023) and
the discussion in Nüsken and Richter (2021, Section 3.2).

In the following, we present an analogue of Proposition 4.3 involving the backward drift (Chen et al., 2019):

Proposition E.2. Assume that θ ∈ C1,2([0, T ]× Rd;R) satisfies the following two conditions:

1. The backward SDE
dYt = ft(Yt) dt+ σ2∇θt(Yt) dt+ σ

←−
dWt, YT ∼ ν (68)

admits a unique strong solution on [0, T ], satisfying moreover the initial constraint Y0 ∼ µ.

2. The Hamilton-Jacobi-Bellmann (HJB) equation

∂tθ + f · ∇θ − σ2

2
∆θ + σ2

2 |∇θ|
2 −∇ · f = 0 (69)

holds for all (t, x) ∈ [0, T ]× Rd.

Assuming furthermore that the solution to (68) admits a smooth positive density ρ, we have that at = ∇θt + σ2∇ ln ρt
provides the unique solution to the Schrödinger problem as posed in (23).

Remark 16. As opposed to Chen et al. (2016, equation (41)), the HJB-equation (69) does not involve the time reversal
of the Schrödinger prior; the form of the HJB equations is not uniquely determined. On the other hand, (69) contains the
divergence term∇ · f , which discourages us from enforcing this constraint in the same way as (28). An akin result can be
found in (Liu et al., b) stated in terms of BSDEs.

12... not to be confused with reverse-time SDEs as in (13).
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Proof of Corollary E.2. Using the forward-backward Radon-Nikodym derivative in (15), we compute

ln

(
d
−→
P µ,f

d
←−
P ν,f+σ2∇ψ

)
(Y ) = ln

(
dµ

dLeb

)
− ln

(
dν

dLeb

)
+ σ

∫ T

0

ft(Yt) · dWt − σ
∫ T

0

ft(Yt) ·
←−
dWt

− σ
∫ T

0

θt(Yt) ·
←−
dWt +

σ2

2

∫ T

0

|∇θt|2(Yt) dt

= ln

(
dµ

dLeb

)
− ln

(
dν

dLeb

)
− σ

∫ T

0

(∇ · ft)(Yt) dt− σ
∫ T

0

θt(Yt) ·
←−
dWt +

σ2

2

∫ T

0

|∇θt|2(Yt) dt.

Here we have chosen −→γ = ←−γ = 0, and Γ0 = ΓT = Leb. The initial measure for the Schrödinger prior is µ, but the
argument is unaffected by this choice (as the solution is independent of this). We now use the (backward) Itô formula along
the Schrödinger prior,

θt(YT )− θ0(Y0) =

∫ T

0

∂tθt(Yt) dt+

∫ T

0

∇θt(Wt) ·
←−
dWt +

∫ T

0

∇θt(Yt) · ft(Yt) dt− 1
2

∫ T

0

∆θt(Yt) dt.

Using the HJB-equation (69), we see that

ln

(
d
−→
P µ,f

d
←−
P ν,f+σ2∇θ

)
(Y ) = ln

(
dµ

dLeb

)
− ln

(
dν

dLeb

)
− θt(YT ) + θ0(Y0), (70)

and we can conclude as in the proof of Proposition 4.3.

F. Numerical implementation
F.1. Discretisation and connection to DNFs (diffusion normalising flows)

In this section we derive the main discretisation formula used in our implementations for the forward-backwards Radon-
Nikodym derivative (RND).

Proposition F.1. Letting Γ0 = ΓT = Leb and γ± = 0, we have that the RND in (15) is given by

ln

(
d
−→
P µ,a

d
←−
P ν,b

)
(Y ) = lnµ(Y0)− ln ν(YT ) +

1
σ2

∫ T

0

at(Yt) ·
−→
d Yt − 1

2σ2

∫ T

0

||at(Yt)||2 dt

− 1
σ2

∫ T

0

bt(Yt) ·
←−
d Yt +

1
2σ2

∫ T

0

||bt(Yt)|||2 dt,
−→
P µ,a-almost surely,

and admits the following discrete-time approximation up to constant terms in at and bt (following Remark 3),

ln

 d̂
−→
P µ,a

d
←−
P ν,b

 (Y ) = − ln ν(YT ) +

K−1∑
i=0

1
2σ2

√
ti+1−ti+1

||Yti − Yti+1 + bti+1(Yti+1)(ti+1 − ti+1)||2 + const.,

when using the Euler-Maruyama discretisation:

Yti+1 = Yti + ati(Yti)(ti+1 − ti) +
√
(ti+1 − ti)σξ, ξ ∼ N (0, I).

Proof. The first part follows by direct computation.

From here on, we will use the notation fti = fti(Yti) for brevity. Following Remark 3 we have that

ln

(
d
−→
P µ,a

d
←−
P ν,b

)
(Y ) ≈ lnµ(Y0)− ln ν(YT )

+ 1
σ2

K−1∑
i=0

ati · (Yti+1
− Yti)− 1

2σ2

K−1∑
i=0

||ati ||2 (ti+1 − ti)
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− 1
σ2

K−1∑
i=0

bti+1 · (Yti+1 − Yti) +
1

2σ2

K−1∑
i=0

||bti+1 |||2 (ti+1 − ti).

Adding and subtracting Yti+1 − Yti allows us to complete the square in each sum, resulting in:

ln

(
d
−→
P µ,a

d
←−
P ν,b

)
(Y ) ≈ lnµ(Y0)− ln ν(YT ) +

K−1∑
i=0

1
2σ2

√
ti+1−ti ||Yti+1

− Yti − ati(ti+1 − ti)||2

+

K−1∑
i=0

1
2σ2

√
ti+1−ti ||Yti − Yti+1

+ bti+1
(ti+1 − ti)||2. (73)

Now notice that under the Euler-Maruyama discretisation ||Yti+1−Yti−ati(ti+1−ti)||2 = σ2||ξ||2 where ξ ∼ N (0, I) does
not depend on at or bt; in particular when usingDKL for the divergence we have that E−→P µ,aEM

||Yti+1−Yti−ati(ti+1−ti)||2 =

σ2 and thus:

ln

 d̂
−→
P µ,a

d
←−
P ν,b

 (Y ) ∝ lnµ(Y0)− ln ν(YT ) +

K−1∑
i=0

1
2σ2

√
ti+1−ti ||Yti − Yti+1 + bti+1(ti+1 − ti)||2. (74)

Notice that in expectation (for computing DKL), equation (74) matches equation (15) in Zhang and Chen (2021) and thus
provides a theoretical backing to the objective used in Zhang and Chen (2021). Resolving the term E−→P µ,aEM

||Yti+1
− Yti −

ati(ti+1 − ti)||2 analytically may offer a variance reduction similar to the analytic calculations in Sohl-Dickstein et al.
(2015, Equation 14) and the Rao-Blackwelizations of DKL in Ho et al. (2020).

Remark 17. The time discretised RND in equation (73) can be expressed as the ratio of the transition densities corresponding
to two discrete-time Markov chains µ(y0)q

a(y1:K |y0)/p
b(y0:K−1|yK)ν(yK) with y0:K ∼ qa(y1:K |y0)µ(y0). As a

result considering ν(x) = ν̂(x)/Z and the IS estimator Ẑ = pb(y0:K−1|yK)ν̂(yK)/µ(y0)q
a(y1:K |y0) it follows that

Eqa(y1:K |y0)µ(y0)[ln Ẑ] is an ELBO of Ẑ (e.g. Eqa(y1:K |y0)µ(y0)[ln Ẑ] ≤ lnZ).

Whilst superficially simple, Remark 17 guarantees that normalizing constant estimators arising from our discretisation do
not overestimate the true normalizing constant. This result is beneficial in practice as it allows us to compare estimators
possessing this property by selecting the one with the largest value. As highlighted in (Vargas et al., 2023a) many SDE
discretisations can result in estimators that do not yield an ELBO: for example, the estimators used in (Berner et al., 2022)
can result in overestimating the normalising constant. Note similar remarks have been established in the context of free
energy computation and the Jarzynski equality see Stoltz et al. (2010, Remark 4.5).

F.2. Neural network parameterisations

Following Zhang and Chen (2021) and the recent success in score generative modelling we choose the following parameteri-
sations:

at(x) = ft(x) + σ2∇ϕ(t,x), (75a)

bt(x) = ft(x) + σ2∇ϕ(t,x)− σ2sθ(t,x), (75b)

where sθ is a score network (Song et al., 2021; De Bortoli et al., 2021; Zhang and Chen, 2021) and ϕ(t,x) is a neural
network potential. We adapt the architectures proposed in Onken et al. (2021); Koshizuka and Sato (2023) to general
activation functions. Note that these architectures allow for fast computation of ∆ϕ comparable to that of Hutchinson’s
trace estimator (Grathwohl et al., 2019; Hutchinson, 1989).

Finally, we remark that the parametrisation in (75b) allows us to learn the score of the learned SDE and thus seamlessly
adapt our approach to using the probability flow ODE (Song et al., 2021) at inference time.

F.3. 2D toy targets - generative modelling

For these tasks, we mirror the experimental setup in Zhang and Chen (2021) where we start from t0 = 0.001 rather
than 0 and go up to T = 0.05 and an exponential schedule with base 0.9 for the discretisation grid as specified in
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Figure 2. Generated samples trained by our approach (λ = 0.5) left and DNF (λ = 0) right. Qualitatively we can observe that both
learned models have similarly matched marginals.

https://github.com/qsh-zh/DiffFlow/blob/62200f0e1089c97e16e7fc38cf3db2526bfeae11/
utils/scalars.py#L58. Furthermore we use a diffusion coefficient of σ = 0.2.

F.4. Double well potential

We used the following potential (Vargas et al., 2021a):

U

((
x

y

))
=

5

2
(x2 − 1)2 + y2 +

1

δ
exp

(
−x

2 + y2

δ

)
, (76)

with δ = 0.35, furthermore, we used the boundary distributions:

µ ∼ N
((
−1
0

)
,

(
0.0125 0

0 0.15

))
, ν ∼ N

((
1
0

)
,

(
0.0125 0

0 0.15

))
.

The Schrödinger prior is given by:

dYt = −∇YtU(Yt) dt+ σ dWt, (77)

with σ = 0.4. The terminal time is T = 1. Furthermore, we employ the same exponential discretisation scheme as in the
generative modelling experiments.

F.5. PINN Loss

For the PINN loss across all tasks, we sample the trajectories from Y ϕ
0:T ∼

−→
P µ,∇ϕ and thus employ the same discretisation

as used in the KL loss. However, we detach the trajectories Y detach(ϕ)
0:T before calculating the gradient updates in a similar

fashion to Nüsken and Richter (2021).

https://github.com/qsh-zh/DiffFlow/blob/62200f0e1089c97e16e7fc38cf3db2526bfeae11/utils/scalars.py#L58
https://github.com/qsh-zh/DiffFlow/blob/62200f0e1089c97e16e7fc38cf3db2526bfeae11/utils/scalars.py#L58

