
Model-Free Reinforcement Learning with
the Decision-Estimation Coefficient

Dylan J. Foster
dylanfoster@microsoft.com

Noah Golowich
nzg@mit.edu

Jian Qian
jianqian@mit.edu

Alexander Rakhlin
rakhlin@mit.edu

Ayush Sekhari
sekhari@mit.edu

Abstract

We consider the problem of interactive decision making, encompassing structured
bandits and reinforcement learning with general function approximation. Recently,
Foster et al. [12] introduced the Decision-Estimation Coefficient, a measure of
statistical complexity that lower bounds the optimal regret for interactive decision
making, as well as a meta-algorithm, Estimation-to-Decisions, which achieves
upper bounds in terms of the same quantity. Estimation-to-Decisions is a reduction,
which lifts algorithms for (supervised) online estimation into algorithms for deci-
sion making. In this paper, we show that by combining Estimation-to-Decisions
with a specialized form of optimistic estimation introduced by Zhang [31], it is
possible to obtain guarantees that improve upon those of Foster et al. [12] by
accommodating more lenient notions of estimation error. We use this approach
to derive regret bounds for model-free reinforcement learning with value function
approximation, and give structural results showing when it can and cannot help
more generally.

1 Introduction

The theory of interactive decision making—ranging from bandits to reinforcement learning with
function approximation—contains a variety of sufficient conditions for sample-efficient learning, [25,
17, 26, 11, 19, 7, 29, 18, 23, 3, 20, 10, 22, 9, 33], but necessary conditions have been comparatively
unexplored. Recently, however, Foster et al. [12] introduced the Decision-Estimation Coefficient
(DEC), a measure of statistical complexity which leads to upper and lower bounds on the optimal
sample complexity for interactive decision making.

Regret bounds based on the Decision-Estimation Coefficient are achieved by Estimation-to-Decisions
(E2D), a meta-algorithm which reduces the problem of interactive decision making to supervised
online estimation. While the Decision-Estimation Coefficient leads to tight lower bounds on regret
for many problem settings, the upper bounds in Foster et al. [12] can be suboptimal in certain
situations due to the need to perform estimation with respect to Hellinger distance, a stringent notion
of estimation error. When specialized to reinforcement learning, the guarantees for the E2D meta-
algorithm in Foster et al. [12] are only tight for model-based settings (where function approximation
is employed to model and estimate transition probabilities), and do not lead to meaningful guarantees
for model-free settings with value function approximation. In this paper, we explore the prospect of
developing tighter regret bounds suitable for model-free settings.

Contributions. We show that by combining Estimation-to-Decisions with optimistic online estima-
tion, an elegant technique recently introduced by Zhang [31], it is possible to obtain regret bounds
that improve upon Foster et al. [12] by accommodating weaker notions of estimation error. Our main
contributions are:
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• We introduce a new optimistic variant of the Decision-Estimation Coefficient, and show
that a variant of Estimation-to-Decisions that incorporates optimistic estimation achieves
regret bounds that scale with this quantity (Section 2). Using this approach, we derive the
first regret bounds for Estimation-to-Decisions applied to model-free reinforcement learning
with bilinear classes [11] (Section 2.3).

• We show that in general, whether or not optimistic estimation leads to improvement depends
on the divergence with respect to which estimation is performed: For symmetric divergences,
optimistic estimation offers no improvement, but for asymmetric divergences, including
those found in reinforcement learning, the improvement can be drastic (Section 3). In
addition, we highlight settings in which combining optimistic estimation with Estimation-to-
Decisions offers provable improvement over previous approaches that apply the technique
with posterior sampling [31].

Perhaps the most important aspect of our work is to elucidate the connection between the DEC
framework and optimistic estimation, building foundations for further research into these techniques.

In what follows, we review the Decision-Estimation Coefficient and Estimation-to-Decisions meta-
algorithm (Section 1.2), highlighting opportunities for improvement. In Section 2, we present
our main results, including our application to model-free reinforcement learning. We close with
discussion and structural results, highlighting situations in which optimistic estimation can and cannot
help (Section 3).

1.1 Problem Setting
We adopt the Decision Making with Structured Observations (DMSO) framework of Foster et al.
[12], which is a general setting for interactive decision making that encompasses bandit problems
(structured, contextual, and so forth) and reinforcement learning with function approximation.

The protocol consists of T rounds. For each round t = 1, . . . , T :

1. The learner selects a decision πt ∈ Π, where Π is the decision space.

2. The learner receives a reward rt ∈ R ⊆ R and observation ot ∈ O sampled via (rt, ot) ∼
M?(πt), where M? : Π→ ∆(R×O) is the underlying model.

Above,R is the reward space and O is the observation space. The model (conditional distribution)
M? represents the underlying environment, and is unknown to the learner, but the learner is assumed
to have access to a model classM⊂ (Π→ ∆(R×O)) that is flexible enough to capture M?.

Assumption 1.1 (Realizability). The learner has access to a model classM containing the true
model M?.

The model classM represents the learner’s prior knowledge about the decision making problem,
and allows one to appeal to estimation and function approximation. For structured bandit problems,
models correspond to reward distributions, andM encodes structure in the reward landscape. For
reinforcement learning problems, models correspond to Markov decision processes (MDPs), andM
typically encodes structure in value functions or transition probabilities. We refer to Foster et al. [12]
for further background.

For a model M ∈ M, EM,π[·] denotes the expectation under the process (r, o) ∼ M(π),
fM(π) := EM,π[r] denotes the mean reward function, and πM := arg maxπ∈Π f

M(π) de-
notes the optimal decision. We measure performance in terms of regret, which is given by
RegDM :=

∑T
t=1 Eπt∼pt [f

M?
(πM?)− fM?

(πt)], where pt is the learner’s randomization dis-
tribution for round t.

Additional notation. For an integer n ∈ N, we let [n] denote the set {1, . . . , n}. For a set Z , we
let ∆(Z) denote the set of all probability distributions over Z . For a model classM, co(M) denotes
the convex hull. We write f = Õ(g) to denote that f = O(g · max{1,polylog(g)}), and use . as
shorthand for a = O(b).

1.2 Background: Estimation-to-Decisions and Decision-Estimation Coefficient
To motivate our results, this section provides a primer on the Estimation-to-Decisions meta-algorithm
and the Decision-Estimation Coefficient. We refer to Foster et al. [12] for further background.
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Algorithm 1 Estimation-to-Decisions (E2D) for General Divergences
1: parameters: Estimation oracle AlgEst, Exp. parameter γ > 0, divergence Dπ(· ‖ ·).
2: for t = 1, 2, · · · , T do
3: Compute estimate M̂ t = Algt

Est

(
{(πi, ri, oi)}t−1

i=1

)
.

4: pt ← arg minp∈∆(Π) supM∈M Eπ∼p
[
fM(πM)− fM(π)− γ ·Dπ

(
M̂ t ‖M

)]
. // Eq. (2).

5: Sample decision πt ∼ pt and update estimation oracle with (πt, rt, ot).

Online estimation. Estimation-to-Decisions (Algorithm 1) is a reduction that lifts algorithms for on-
line estimation into algorithms for decision making. An online estimation oracle, denoted by AlgEst,
is an algorithm that, using knowledge of the classM, estimates the underlying model M? from data
in a sequential fashion. At each round t, given the data Ht−1 = (π1, r1, o1), . . . , (πt−1, rt−1, ot−1)

observed so far, the estimation oracle computes an estimate M̂ t = Algt

Est

(
{(πi, ri, oi)}t−1

i=1

)
for

the true model M?.

To measure the estimation oracle’s performance, we make use of a user-specified divergence-like func-
tion, which quantifies the discrepancy between models. Formally, we define a divergence-like function
(henceforth, “divergence”) as any function D : Π × co(M) × co(M) → R+, with Dπ(M ‖M ′)
representing the discrepancy between the models M and M ′ at the decision π. Standard choices used
in past work [12, 13, 5, 15, 14, 27] include the squared error Dπ

sq(M,M ′) := (fM(π)− fM′(π))2

for bandit problems, and squared Hellinger distance1 Dπ
H(M,M ′) := D2

H(M(π),M ′(π)) for RL,
where for distributions P and Q, D2

H(P,Q) :=
∫ (√

dP−
√
dQ
)2

. We then measure the estimation
oracle’s performance in terms of cumulative estimation error with respect to D, defined as

EstD :=

T∑
t=1

Eπt∼pt
[
Dπt

(
M̂ t ‖M?

)]
, (1)

where pt is the conditional distribution over πt givenHt−1. We make the following assumption on
the algorithm’s performance.

Assumption 1.2. At each time t ∈ [T ], the online estimation oracle AlgEst returns, given
(π1, r1, o1), . . . , (πt−1, rt−1, ot−1) with (ri, oi) ∼ M?(πi) and πi ∼ pi, an estimator M̂ t : Π →
∆(R×O) such that EstD ≤ EstD(T, δ), with probability at least 1 − δ, where EstD(T, δ) is a
known upper bound.

For the squared error, one can obtain Estsq(T, δ) := EstDsq(T, δ) . log(|FM|/δ),
where FM := {fM | M ∈ M}, and for Hellinger distance, it is possible to obtain
EstH(T, δ) := EstDH(T, δ) . log(|M|/δ).

Estimation-to-Decisions. A general version of the E2D meta-algorithm is displayed in Algorithm 1.
At each timestep t, the algorithm queries estimation oracle to obtain an estimator M̂ t using the
data (π1, r1, o1), . . . , (πt−1, rt−1, ot−1) observed so far. The algorithm then computes the decision
distribution pt by solving a min-max optimization problem involving M̂ t andM (as well as the
divergence D), and then samples the decision πt from this distribution.

The Decision-Estimation Coefficient. The min-max optimization problem in Algorithm 1 is
derived from the Decision-Estimation Coefficient (DEC), a complexity measure whose value, for a
given scale parameter γ > 0 and reference model M : Π→ ∆(R×O), is given by

decDγ (M,M) = inf
p∈∆(Π)

sup
M∈M

Eπ∼p
[
fM(πM)− fM(π)− γ ·Dπ

(
M ‖M

)]
, (2)

with decDγ (M) := supM∈co(M) dec
D
γ (M,M). Informally, the DEC measures the best tradeoff

between suboptimality (fM(πM)− fM(π)) and information gain (measured by Dπ
(
M ‖M

)
) that

can be achieved by a decision distribution p in the face of a worst-case model M ∈M.

1When Dπ(· ‖ ·) is symmetric, we write Dπ(·, ·) to make this explicit.
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The main result of Foster et al. [12] shows that the regret of E2D is controlled by the DEC and the
estimation oracle’s cumulative error EstD. Let M̂ be any set for which M̂ t ∈ M̂ for all t almost
surely. We have the following guarantee.

Theorem 1.1 (Foster et al. [12]). Algorithm 1 with exploration parameter γ > 0 guarantees that
RegDM ≤ sup

M∈M̂ decDγ (M,M) · T + γ ·EstD almost surely.

For the special case of Hellinger distance, standard algorithms (exponential weights) achieve
EstH(T, δ) . log(|M|/δ) with M̂ = co(M), so that Theorem 1.1 gives (abbreviating decHγ ≡
decDH

γ ):

RegDM . decHγ (M) · T + γ · log(|M|/δ). (3)

Opportunities for improvement. Foster et al. [12, 15] provide lower bounds on the regret for any
decision making problem that have a similar expression to (3), showing that the Decision-Estimation
Coefficient with Hellinger distance (decHγ (M)) plays a fundamental role in determining the statistical
complexity of decision making. However, these lower bounds do contain the estimation term
EstH(T, δ) = log(|M|/δ)) appearing in (3), and thus capture the price of moving from estimation
to decision making (as characterized by the DEC), but not the complexity of estimation itself.

In general, the dependence on EstH(T, δ) = log(|M|/δ) in the upper bound (3) can render the
bound loose. In reinforcement learning, working with Hellinger distance necessitates modeling
transition probabilities. While this leads to optimal results in some settings, in general the optimal
rates for Hellinger estimation error can be prohibitively large, even in settings where model-free (or,
value-based) methods, which directly model value functions, are known to succeed; this drawback
is shared by all subsequent work based on the DEC [13, 5, 15, 14, 27]. A natural solution is to
replace Hellinger distance with a divergence (e.g., based on Bellman error) tailored to value function
approximation, but naive choices for D along these lines render decDγ (M,M) too large to give
meaningful guarantees, and Foster et al. [12, 15] left this as an open problem.2

2 Estimation-to-Decisions with Optimistic Estimation
To derive improved regret bounds that address the shortcomings described in the prequel, we combine
Estimation-to-Decisions with a specialized estimation approach introduced by Zhang [31] (see also
Dann et al. [6], Agarwal and Zhang [1, 2], Zhong et al. [32]), which we refer to as optimistic
estimation. We then use this approach to derive regret bounds for model-free reinforcement learning.

2.1 Optimistic Estimation
The idea of optimistic estimation is to augment the estimation objective with a bonus that biases the
estimator toward models M ∈M for which the value fM(πM) is large. We present a general version
of the technique.

Let a divergence Dπ(· ‖ ·) be fixed. Following the development in Section 1.2, an optimistic
estimation oracle AlgEst is an algorithm which, at each step t, given the observations and rewards
collected so far, computes an estimate for the underlying model. For technical reasons, it will be useful
to consider randomized estimators (Foster et al. [12], Chen et al. [5]) that, at each round, produce a
distribution µt ∈ ∆(M) over models. Such estimators take the form µt = Algt

Est

(
{(πi, ri, oi)}t−1

i=1

)
.

where µt ∈ ∆(M). For a parameter γ > 0, we define the optimistic estimation error as

OptEstDγ :=

T∑
t=1

Eπt∼pt EM̂t∼µt

[
Dπ
(
M̂ t ‖M?

)
+ γ−1(fM?

(πM?)− f M̂t
(πM̂t)

]
. (4)

This quantity is similar to (1), but incorporates a bonus term γ−1(fM?
(πM?)− f M̂t

(πM̂t)), which
encourages the estimation algorithm to over-estimate the optimal value fM?

(πM?) for the underlying
model M?.

2For simpler model classes, it is possible to improve upon (3) by moving from Hellinger distance to
lenient notions of estimation error: In bandit problems with Gaussian rewards, it suffices to consider the
Dπ

sq

(
M,M

)
:= (fM(π)− fM(π))2, which leads to upper bounds that scale with log|FM| � log|M| [12].
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Algorithm 2 Optimistic Estimation-to-Decisions (E2D.Opt)
1: params: Estimation oracle AlgEst, Exp. param. γ > 0, divergence D with suff. stat. space Ψ.
2: for t = 1, 2, · · · , T do
3: Receive randomized estimator µt ∈ ∆(Ψ) = Algt

Est

(
{(πi, ri, oi)}t−1

i=1

)
.

4: Compute

pt ← arg min
p∈∆(Π)

sup
M∈M

Eπ∼p Eψ̂∼µt

[
f ψ̂(πψ̂)− fM(π)− γ ·Dπ

(
ψ̂ ‖M

)]
// Eq. (6).

5: Sample decision πt ∼ pt and update estimation oracle with (πt, rt, ot).

Assumption 2.1. At each time t ∈ [T ], the optimistic estimation oracle AlgEst returns, given
(π1, r1, o1), . . . , (πt−1, rt−1, ot−1) with (ri, oi) ∼ M?(πi) and πi ∼ pi, a randomized estimator
µt ∈ ∆(M) such that OptEstDγ ≤ OptEstDγ (T, δ), with w.p. 1 − δ, where OptEstDγ (T, δ) is a
known upper bound.

For the case of contextual bandits, Zhang [31] proposes an augmented version of the ex-
ponential weights algorithm which, for a learning rate parameter η > 0, sets µ(M) ∝
exp
(
−η
(
Lt(fM)− γ−1fM(πM)

))
, where Lt(fM) is the squared prediction error for the rewards

observed so far. This method achieves E
[
OptEstsqγ

]
. log(|FM|) +

√
T log|FM|/γ, and Zhang

[31] combines this estimator with posterior sampling to achieve optimal contextual bandit regret.
Agarwal and Zhang [1], Zhong et al. [32], Agarwal and Zhang [2] extend this development to rein-
forcement learning, also using posterior sampling as the exploration mechanism.3 In what follows, we
combine optimistic estimation with Estimation-to-Decisions, which provides a universal mechanism
for exploration. Beyond giving guarantees which were previously out of reach for E2D (Section 2.3),
this approach generalizes and subsumes posterior sampling, and can succeed in situations where
posterior sampling fails (Section 3).

Remark 2.1. For the non-optimistic estimation error EstD, it is possible to obtain low error for well-
behaved losses such as the square loss and Hellinger distance without the use of randomization by
appealing to improper mixture estimators (e.g., Foster et al. [12]). We show in Section 3 that for such
divergences, randomization does not lead to statistical improvements. For the optimistic estimation
error (4), randomization is essential due to the presence of the term γ−1(fM?

(πM?)− f M̂t
(πM̂t). /

Sufficient statistics. Before proceeding, we note that many divergences of interest have the useful
property that they depend on the estimated model M̂ only through a “sufficient statistic” for the
model class under consideration. Formally, there exists a sufficient statistic space Ψ and sufficient
statistic ψ :M→ Ψ with the property that we can write (overloading notation)

Dπ(M ‖M ′) = Dπ(ψ(M) ‖M ′), fM(π) = fψ(M)(π), and πM = πψ(M)

for all models M,M ′. In this case, it suffices for the online estimation oracle to directly estimate the
sufficient statistic by producing a randomized estimator µt ∈ ∆(Ψ). We measure performance via

OptEstDγ :=

T∑
t=1

Eπt∼pt Eψ̂t∼µt

[
Dπt

(
ψ̂t ‖M?

)
+ γ−1(fM?

(πM?)− f ψ̂
t

(πψ̂t))
]

(5)

Examples include bandit problems, where one may use squared estimation error Dπ
sq(·, ·) and take

ψ(M) = fM , and model-free reinforcement learning, where we show that by choosing the divergence
D appropriately, one can use Q-value functions as a sufficient statistic. Note that we only focus on
sufficient statistics for the first argument to Dπ(· ‖ ·), since this is the quantity we wish to estimate.

2.2 Algorithm and Main Result
We provide an optimistic variant of the E2D meta-algorithm (E2D.Opt) in Algorithm 2. At each
timestep t, the algorithm calls the estimation oracle to obtain a randomized estimator µt using the data

3Dann et al. [6] also apply the optimistic estimation idea to model-free reinforcement learning, but do not
provide online estimation guarantees.
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(π1, r1, o1), . . . , (πt−1, rt−1, ot−1) collected so far. The algorithm then uses the estimator to compute
a distribution pt ∈ ∆(Π) and samples πt from this distribution, with the main change relative to
Algorithm 1 being that the minimax problem in Algorithm 2 is derived from an “optimistic” variant
of the DEC, which we refer to as the Optimistic Decision-Estimation Coefficient. For µ ∈ ∆(M),
define

o-decDγ (M, µ) = inf
p∈∆(Π)

sup
M∈M

Eπ∼p EM∼µ
[
fM(πM)− fM(π)− γ ·Dπ

(
M ‖M

)]
. (6)

and o-decDγ (M) = supµ∈∆(M) o-decDγ (M, µ). The Optimistic DEC has two difference from the
original DEC. First, it is parameterized by a distribution µ ∈ ∆(M) rather than a reference model
M : Π → ∆(R × O), which reflects the use of randomized estimators; the value in (6) takes the
expectation over a reference model M drawn from this distribution (this modification also appears
in the randomized DEC introduced in Foster et al. [12]). Second, and more critically, the optimal
value fM(πM) in (2) is replaced by the optimal value fM(πM) for the (randomized) reference model.
This seemingly small change is the main advantage of incorporating optimistic estimation, and
makes it possible to bound the Optimistic DEC for certain divergences D for which the value of
the unmodified DEC would otherwise be unbounded (cf. Section 3).

Remark 2.2. When the divergence D admits a sufficient statistic ψ :M→ Ψ, for any distribution
µ ∈ ∆(M), if we define ν ∈ ∆(Ψ) via ν(ψ) = µ({M ∈M : ψ(M) = ψ}), we have

o-decDγ (M, µ) = inf
p∈∆(Π)

sup
M∈M

Eπ∼p Eψ∼ν
[
fψ(πψ)− fM(π)− γ ·Dπ(ψ ‖M)

]
.

In this case, by overloading notation slightly, we may write o-decDγ (M) =

supν∈∆(Ψ) o-decDγ (M, ν). /

Main result. Our main result shows that the regret of Optimistic Estimation-to-Decisions is
controlled by the Optimistic DEC and the optimistic estimation error for the oracle AlgEst.

Theorem 2.1. For any δ > 0, Algorithm 2 ensures that with probability at least 1− δ,

RegDM ≤ o-decDγ (M) · T + γ ·OptEstDγ (T, δ). (7)

This regret bound has the same structure as Theorem 1.1, with the DEC and estimation error
replaced by their optimistic counterparts. In the remainder of the paper, we show that 1) by adopting
asymmetric divergences specialized to reinforcement learning, this result leads to the first guarantees
for model-free RL with E2D, but 2) for symmetric divergences such as Hellinger distance, the result
never improves upon Theorem 1.1.

Estimation with batching. For our application to reinforcement learning, we generalize the results
above to accomodate estimation algorithms that draw batches of multiple samples from each distribu-
tion pt. Given a batch size n, we break the T rounds of the decision making protocol into K := T/n
contiguous epochs (or, “iterations”). Within each epoch, the learner’s distribution pk is unchanged
(we index by k rather than t to reflect this), and we create a batch Bk = {(πk,l, rk,l, ok,l)}nl=1 by
sampling πk,l ∼ pk independently and observing (rk,l, ok,l) ∼ M?(πk,l) for each l ∈ [n]. We can
then appeal to estimation algorithms of the form µk = Algk

Est

(
{Bk}k−1

i=1

)
. Regret bounds for a

variant of E2D.Opt with batching are given in Appendix B.1.

2.3 Application to Model-Free Reinforcement Learning
In this section, we use Optimistic Estimation-to-Decisions to provide sample-efficient guarantees for
model-free reinforcement learning with bilinear classes [11], a general class of tractable reinforcement
learning problems which encompasses many settings [17, 26, 7, 29, 18, 23, 3, 20, 10, 22, 9, 33].

Reinforcement learning preliminaries. To state our results, let us recall how reinforcement learning
fits into the DMSO framework. We consider an episodic, finite-horizon reinforcement learning
setting. With H denoting the horizon, each model M ∈ M specifies a non-stationary Markov
decision process M =

{
S,A, {PM

h }Hh=1, {RM

h }Hh=1, d1

}
, where S is the state space, A is the action

space, PM

h : S ×A → ∆(S) is the probability transition distribution at step h, RM

h : S ×A → ∆(R)
is the reward distribution, and d1 ∈ ∆(S1) is the initial state distribution. We allow the reward
distribution and transition kernel to vary across models in M, but assume that the initial state
distribution is fixed.
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For a fixed MDP M ∈ M, each episode proceeds under the following protocol. At the beginning
of the episode, the learner selects a randomized, non-stationary policy π = (π1, . . . , πH), where
πh : S → ∆(A); we let ΠRNS (for “randomized, non-stationary”) denote the set of all such policies.
The episode then evolves through the following process, beginning from s1 ∼ d1: For h = 1, . . . ,H:
ah ∼ πh(sh), rh ∼ RM

h (sh, ah), and sh+1 ∼ PM

h (· | sh, ah). For notational convenience, we
take sH+1 to be a deterministic terminal state. We assume for simplicity that R ⊆ [0, 1] (that
is,
∑H
h=1 rh ∈ [0, 1] almost surely). Within the DMSO framework, at each time t, the learning

agent chooses πt ∈ ΠRNS, then observes the cumulative reward rt =
∑H
h=1 r

t

h and trajectory
ot := (st1, a

t
1, r

t
1), . . . , (stH , a

t

H , r
t

H) that results from executing πt.

Value functions. The value for a policy π under M is given by fM(π) := EM,π
[∑H

h=1 rh
]
, where

EM,π[·] denotes expectation under the process above. For a given model M and policy π, we define
the state-action value function and state value functions via QM,π

h (s, a) = EM,π
[∑H

h′=h rh′ | sh =

s, ah = a
]
, and V M,π

h (s) = EM,π
[∑H

h′=h rh′ | sh = s
]
. We define πM as the optimal policy,

which maximizes QM,πM

h (s, a) for all states simultaneously. We abbreviate QM,? ≡ QM,πM .

Value function approximation. To apply our results to reinforcement learning, we take a model-free
(or, value function approximation) approach, and estimate value functions for the underlying MDP
M?; this contrasts with model-based methods, such as those considered in Foster et al. [12], which
estimate transition probabilities for M? directly. We assume access to a class Q of value functions of
the form Q = (Q1, . . . , QH).

Assumption 2.2. The value function class Q has QM?,? ∈ Q, where M? is the underlying model.

For Q = (Q1, . . . , QH) ∈ Q, we define πQ = (πQ,1, . . . , πQ,H) via πQ,h(s) =
arg maxa∈AQh(s, a). We define ΠQ = {πQ | Q ∈ Q} as the induced policy class. While
is not necessary for our results, we mention in passing that the class Q, under Assumption 2.2,
implicitly induces a model class viaMQ := {M | QM,? ∈ Q}.

Bilinear classes. The bilinear class framework [11] gives structural conditions for sample-efficient
reinforcement learning that capture most known settings where tractable guarantees are possible. The
following is an adaptation of the definition from Du et al. [11].4

Definition 2.1 (Bilinear class). An MDP M is said to be bilinear with dimension d relative to a class
Q if:

(i) There exist functions Wh(· ;M) : Q → Rd, Xh(· ;M) : Q → Rd such that for all Q ∈ Q
and h ∈ [H],∣∣∣∣EM,πQ

[
Qh(sh, ah)− rh −max

a′∈A
Qh+1(sh+1, a

′)

]∣∣∣∣ ≤ |〈Xh(Q;M),Wh(Q;M)〉|. (8)

(ii) Let zh := (sh, ah, rh, sh+1). There exists a collection of estimation policies
{
πest
Q

}
Q∈Q and

a discrepancy function `est
h (·; ·) : Q×Z → R such that for all Q,Q′ ∈ Q and h ∈ [H],5

|〈Xh(Q;M),Wh(Q′;M)〉| =
∣∣∣EM,πQ◦hπ

est
Q
[
`est
h (Q′; zh)

]∣∣∣. (9)

If πest
Q = πQ, we say that estimation is on-policy. We assume |EM,π[`est

h (QM,?; zh)]| = 0
for all π.

We let dbi(Q ;M) denote the minimal dimension d for which the bilinear property holds for M . For a
model classM, we define dbi(Q;M) = supM∈M dbi(Q ;M). We let Lbi(Q;M) ≥ 1 denote any
almost sure upper bound on |`est

h (Q; zh)| under M .

4For the sake of simplicity, we adopt a less general definition than Du et al. [11]: We 1) assume that the
“hypothesis class” is parameterized by the Q-function classQ, and 2) limit to discrepancy functions that do not
explicitly depend on the function Q indexing the factor Xh(Q;M). The results here readily extend to the full
definition.

5For π and π′, π ◦h π′ denotes the policy that follows π for layers 1, . . . , h− 1 and follows π′ for layers
h, . . . ,H .
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2.4 Guarantees for Bilinear Classes
We now apply our main results to derive regret bounds for bilinear classes. We first provide optimistic
estimation guarantees, then bound the Optimistic DEC, and conclude by applying E2D.Opt.

We take Ψ = Q as the sufficient statistic space, with ψ(M) := QM,?, and define fQ(πQ) :=
Es1∼d1 [Q1(s1, πQ(s1))]. For the divergence D, we appeal to squared discrepancy, in the vein of
Jiang et al. [17], Du et al. [11]:

Dπ
bi(Q ‖M) =

H∑
h=1

(
EM,π

[
`est
h (Q; zh)

])2
. (10)

We abbreviate OptEstbiγ = OptEstDbi
γ and o-decbiγ (M, µ) = o-decDbi

γ (M, µ).

Estimation. To perform estimation, we approximate the average discrepancy in (14) from samples
(drawing a batch of n samples at each step; cf. Algorithm 3), then appeal to the exponential
weights method for online learning, with a bonus to enforce optimism. See Algorithm 6 (deferred to
Appendix D for space).

Proposition 2.1. For any batch size n (with K := T/n) and parameter γ ≥ 1, Algorithm 6, with an
appropriate learning rate, ensures that with probability at least 1− δ,

OptEstbiγ .

√
K log|Q|
γ

+HL2
bi(Q;M?) log(|Q|KH/δ)

(
1 +

K

n

)
, (11)

whenever M? is bilinear relative to Q and Assumption 2.2 is satisfied.

This result does not actually use the bilinear class structure, and gives a bound on (14) for any
choice of `est

h . Similar to the optimistic estimation result given by Zhang [31] for contextual

bandits, this guarantee consists of “slow” term
√
K log|Q|
γ resulting from optimism (which decays

as γ grows), and a “fast” term. However, compared to the contextual bandit setting, the fast term,
log(|Q|KH/δ)

(
1 + K

n

)
, scales with the ratio K

n , which reflects sampling error in the estimated
discrepancy, and necessitates a large batch size. Previous algorithms for bilinear classes [17, 11]
require large batch sizes for similar reasons (specifically, because the expectation in (14) appears
inside the square, it is not possible to form an unbiased estimate for Dbi directly).

Bounding the DEC. A bound on the Optimistic DEC follows by adapting arguments in Foster et al.
[12]; our result has slightly improved dependence on H compared to the bounds in that work.

Proposition 2.2. LetM be any model class for which the bilinear class property holds relative to Q.
(1) In the on-policy case where πest

Q = πQ, we have that for all γ > 0, o-decbiγ (M) . H·dbi(Q;M)
γ .

(2) In the general case (πest
Q 6= πQ), we have that for all γ ≥ H2dbi(Q;M), o-decbiγ (M) .√

H2·dbi(Q;M)
γ .

Combining Theorem B.1, Proposition 2.1, and Proposition 2.2, we obtain the following result.

Corollary 2.1 (Regret bound for bilinear classes). Let Q be given. Assume that M? ∈M, where
M is bilinear relative to Q, and that Assumption 2.2 holds. Abbreviate d ≡ dbi(Q;M) and
L ≡ Lbi(Q;M) := supM∈M Lbi(Q;M). For an appropriate choice of n and γ, Algorithm 3, using
the algorithm from Proposition 2.1 as an oracle, enjoys the following guarantees with probability at
least 1− δ:
(1) In the on-policy case where πest

Q = πQ: RegDM . (H2dL2 log(|Q|TH/δ))1/2T 3/4.
(2) In the general case where πest

Q 6= πQ: RegDM . (H6d2L4 log3(|Q|TH/δ))1/6T 5/6.

This is the first regret bound for model-free reinforcement learning with the Estimation-to-Decisions
meta-algorithm. Importantly, the result scales only with the horizon, the dimension d, and the capacity
log|Q|. Improving the dependence on T in Corollary 2.1 is an interesting question: currently, there
are no algorithms for general bilinear classes that achieve

√
T regret without additional assumptions.

Let us emphasize that regret bounds for bilinear classes can already be achieved by a number of
existing methods [11, 19]. The contribution here is to show that such guarantees can be achieved
through the general DEC framework, thereby placing this line of research on stronger foundations.
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Tighter guarantees under Bellman completeness. In Appendix B.2 (deferred for space), we adapt
techniques from Agarwal and Zhang [2] to derive tighter estimation guarantees when Q satisfies
a Bellman completeness property (e.g., Zanette et al. [30], Jin et al. [19]), by appealing to refined
algorithms tailored to squared Bellman error. We use this to derive tighter regret bounds for bilinear
classes (T 2/3 instead of T 3/4).

3 Understanding the Role of Optimistic Estimation
We close with discussion and interpretation of our results.

When does optimistic estimation help? Perhaps the most pressing question at this point is to
understand when the regret bound for E2D.Opt (Theorem 2.1) improves upon the corresponding
regret bound for vanilla E2D (Theorem 1.1). In what follows, we show that: (1) For any divergence
D, the Optimistic DEC is equivalent to a variant of the original DEC which incorporates randomized
estimators [12], but with the arguments to the divergence flipped; (2) For divergences D that satisfy
a triangle inequality, this randomized DEC is equivalent to the original DEC itself. Together these
results show that the improvement given by the Optimistic DEC is limited to asymmetric divergences
such as the bilinear divergence in Section 2.3; for more traditional divergences such as Hellinger
distance and squared error, the optimistic approach offers no improvement. Our results use the
following regularity assumption, satisfied by all standard divergences.

Assumption 3.1. For all M,M ∈ co(M), (fM(π)− fM(π))2 ≤ L2
lip ·Dπ

(
M ‖M

)
for a constant

Llip > 0.

Given a divergence D, we define the flipped divergence, which swaps the first and second
arguments, by qDπ

(
M ‖M

)
:= Dπ

(
M ‖M

)
. We define the Decision-Estimation Coefficient for

randomized estimators [12, 5] as decDγ (M, µ) = infp∈∆(Π) supM∈M Eπ∼p
[
fM(πM)−fM(π)−γ ·

EM∼µ
[
Dπ
(
M ‖M

)]]
, with decDγ (M) := supµ∈∆(M) dec

D
γ (M, µ). This definition is identical

to (2), but allows M to be randomized.

Proposition 3.1. Whenever Assumption 3.1 holds, we have that for all γ > 0,

dec
qD
3γ/2(M)−

L2
lip

2γ
≤ o-decDγ (M) ≤ dec

qD
γ/2(M) +

L2
lip

2γ
. (12)

For settings in which there exists an estimation oracle for which the flipped estimation error
Est

qD =
∑T
t=1 Eπ∼pt EM̂t∼µt

[
Dπt

(
M? ‖ M̂ t

)]
is controlled, this result shows that to match the

guarantee in Theorem 2.1, optimism is not required, and it suffices to run a variant of vanilla E2D
that incorporates randomized estimators (cf. Foster et al. [12], Section 4.3).

We now turn to the role of randomization. When D is convex in the first argument, we have
decDγ (M) ≤ supM∈co(M) dec

D
γ (M,M) = decDγ (M), but it is not immediately apparent whether

the opposite direction of this inequality holds, and one might hope that working with the randomized
DEC in Proposition 3.1 would lead to improvements over the non-randomized counterpart in
Theorem 1.1. The next result shows that this is not the case: Under mild assumptions on the
divergence D, randomization offers no improvement.

Proposition 3.2. Let D be any bounded divergence such that for all M,M ′,M and π ∈ Π,
Dπ(M ‖M ′) ≤ C

(
Dπ
(
M ‖M

)
+Dπ

(
M ‖M ′

))
. Then for all γ > 0, supM decDγ (M,M) ≤

decDγ/(2C)(M).

Implication for Hellinger distance. Squared Hellinger distance is symmetric, satisfies Assumption
3.1 with Llip = 1 whenever R ⊆ [0, 1], and satisfies the condition in Proposition 3.2 with C = 2.
Hence, by combining Proposition 3.1 with Proposition 3.2, we obtain the following corollary.

Corollary 3.1. If R ⊆ [0, 1], then o-decH2γ(M) − 1
γ ≤ supM decHγ (M,M) ≤ o-decHγ/6(M) +

3
γ ∀γ > 0.

This shows that for Hellinger distance—at least from a statistical perspective—there is no benefit to
using the Optimistic DEC or randomized DEC compared to the original version. In particular, this
implies that regret bounds based on the randomized DEC with Hellinger distance (such as those found
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in recent work of Chen et al. [5]) do not offer improvement over the guarantees for vanilla E2D in
Foster et al. [12]. One caveat, though, is that working with the Optimistic DEC, as well as randomized
estimators, has potential to give computational improvement, as computing a distribution p ∈ ∆(Π)
that minimizes o-decHγ (M, µ) might be simpler than computing a corresponding distribution for
decHγ (M,M) with M ∈ co(M). We are not currently aware of any examples where such an
improvement occurs, as even maintaining a distribution µ ∈ ∆(M) requires intractably large
memory for most classes of interest.

Implication for model-free RL. The bilinear divergence Dπ
bi(Q ‖M) =∑H

h=1(EM,π[`est
h (Q; zh)])

2 that we adopt in Section 2.3 is asymmetric, as are closely re-
lated divergences such as squared Bellman error. Here, there are two reasons why optimistic
estimation offers meaningful advantages.

(1) By Proposition 3.1 (Dbi satisfies Assumption 3.1 with Llip = O(H)), a natural alternative
to optimistic estimation is to estimate with respect to the flipped divergence qDbi, then appeal to
Algorithm 3 of Foster et al. [12]. The issue with this approach is that minimizing the flipped estimation
error, which takes the form

Est
qDbi =

T∑
t=1

Eπ∼pt EM̂t∼µt

[
Dπt

bi

(
QM?,? ‖ M̂ t

)]
=

T∑
t=1

Eπ∼pt EM̂t∼µt

[
H∑
h=1

(
EM̂t,πt[

`est
h (QM?,?; zh)

])2
]
,

is challenging in model-free settings; we are not aware of any algorithms that accomplish this.6

(2) Alternatively, a second choice is to perform estimation with respect to the un-flipped divergence
Dbi (which can be accomplished with Proposition 2.1 by taking γ →∞), and appeal to vanilla E2D
(either Algorithm 1, or Algorithm 3 of Foster et al. [12] if one wishes to incorporate randomized
estimators). However, the following result shows that unlike the Optimistic DEC, the original DEC
with the divergence Dbi does not admit a favorable bound, even for tabular reinforcement learning.

Proposition 3.3. LetM be the class of all horizon-H tabular MDPs with |S| = 2 and |A| = 2.
Consider the discrepancy function `est

h (Q; zh) = (Qh(sh, ah) − rh − maxa′∈AQh+1(sh+1, a
′)).

Then we have o-decbiγ (M) . H
γ , yet there exists M ∈M for which decbiγ (M,M) & 2H

γ ∧ 1.

Insufficiency of posterior sampling. For contextual bandits, where o-decbiγ (M) . |A|
γ [31], and

bilinear classes, where o-decbiγ (M) . H·dbi(M)
γ (Proposition 2.2), a strategy that achieves the bound

on the Optimistic DEC is posterior sampling (this is also the approach taken in Agarwal and Zhang
[1, 2], Zhong et al. [32]). That is, given a distribution µ ∈ ∆(M), choosing p(π) = µ({M ∈
M | πM = π}) in (6) certifies the desired bound on o-decDγ (M, µ) for these examples. Optimistic
Estimation-to-Decisions subsumes and generalizes posterior sampling, but in light of the fact that
this simple strategy succeeds for large classes of problems, it is reasonable to ask if there is a sense in
which posterior sampling is universal, and whether it can achieve the value of the Optimistic DEC for
any model class. This would be desirable, since it would indicate that solving the minimax problem
in Algorithm 2 is not necessary. The following sample shows that this is not the case: there are
model classes (specifically, MDPs with a constant number of actions) for which the regret of posterior
sampling is exponentially large compared to the regret of Algorithm 2.

Proposition 3.4. Consider the divergence Dπ
H(·, ·). For any S ∈ N and H ≥ log2(S), there exists a

class of horizon-H MDPsM with |S| = S and |A| = 3 that satisfies the following properties:
• There exists an estimation oracle with OptEstHγ . log(S/δ) w.p. at least 1− δ for all γ > 0.
• Posterior sampling, which sets pt(π) = µt({M | πM = π}), has E[RegDM] & S ∧ 2Ω(H).
• Algorithm 2 with divergence D = Dπ

H(·, ·) has E[RegDM] ≤ Õ
(√

T log(S)
)
.

This shows that posterior sampling does not provide a universal mechanism for exploration, and
highlights the need for deliberate strategies such as E2D.

6While Foster et al. [12] do give regret bounds for model-free RL using this divergence, they only bound
Bayesian regret, and do not provide an explicit algorithm for the frequentist setting.
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A Additional Related Work
In this section we discuss additional related work not already covered.

Chen et al. [5] build on the DEC framework by giving regret bounds for a E2D that incorporates
randomized estimators, but not optimism. For the case of finite classes, their guarantees scale as
roughly

RegDM . decDH
γ (M) · T + γ · log(|M|/δ),

where decDH
γ (M) is the DEC for randomized estimators defined in Section 3. As discussed in

Section 3, this regret bound cannot improve upon the guarantees for the original E2D method in
Foster et al. [12] beyond constants, as we have supM decH4γ(M,M) ≤ decDH

γ (M). In addition, since
the algorithm does not incorporate optimism, it cannot be directly applied to model-free reinforcement
learning settings.

Foster et al. [15] give upper and lower bounds on optimal regret based on a variant of the DEC called
the constrained Decision-Estimation Coefficient. These results tighten the original regret bounds in
Foster et al. [12], but the upper bounds still scale with EstH(T, δ) = log(|M|/δ), rendering them
unsuitable for model-free RL. Nonetheless it would be interesting to explore whether the techniques
in this work can be combined with optimistic estimation.

B Additional Results
B.1 Optimistic Estimation-to-Decisions with Batching

Algorithm 3 Optimistic Estimation-to-Decisions (E2D.Opt) with Batching
1: parameters:

Online estimation oracle AlgEst with batch size n.
Exploration parameter γ > 0.
Divergence D(· ‖ ·) with sufficient statistic space Ψ.

2: Let K := T/n.
3: for k = 1, 2, · · · ,K do
4: Receive randomized estimator µk ∈ ∆(Ψ) = Algt

Est

(
(Bi)k−1

i=1

)
.

5: Get pk ← arg minp∈∆(Π) supM∈M Eπ∼p Eψ̂∼µk

[
f ψ̂(πψ̂)− fM(π)− γ ·Dπ

(
ψ̂ ‖M

)]
. // Eq. (6).

6: Sample batch Bk = {(πk,l, rk,l, ok,l)}nl=1 where πk,l ∼ pk and (rk,l, ok,l) ∼M?(πk.l), and
update estimation oracle with Bk.

For our application to reinforcement learning, it will be useful to generalize E2D.Opt to accomodate
estimation algorithms that draw batches of multiple samples from each distribution pt. Given a batch
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size n, we break the T rounds of the decision making protocol into K := T/n contiguous epochs
(or, “iterations”). Within each epoch, the learner’s distribution pk is unchanged (we index by k
rather than t to reflect this), and we create a batch Bk = {(πk,l, rk,l, ok,l)}nl=1 by sampling πk,l ∼ pk

independently and observing (rk,l, ok,l) ∼M?(πk,l) for each l ∈ [n]. We consider estimation oracles
of the form µk = Algk

Est

(
{Bk}k−1

i=1

)
, and measure estimation error via

OptEstDγ :=

K∑
k=1

Eπk∼pk EM̂k∼µk

[
Dπ
(
M̂k ‖M?

)
+ γ−1(fM?

(πM?)− f M̂t
(πM̂k))

]
. (13)

We assume that the estimation oracle ensures that with probability at least 1 − δ, OptEstDγ ≤
OptEstDγ (K,n, δ), where OptEstDγ (K,n, δ) is a known upper bound.

Algorithm 3 is a variant of E2D.Opt that incorporates batching. The algorithm updates the distribution
pk in the same fashion as its non-batched counterpart, but does so only at the beginning of each epoch.
The main guarantee for this method as follows.

Theorem B.1. Let T ∈ N be given, and let n be the batch size. For any δ > 0, Algorithm 3 ensures
that with probability at least 1− δ, RegDM ≤ o-decDγ (M) · T + γn ·OptEstDγ (T/n, n, δ).

See Appendix D.1 for the proof. When working with divergences for which unbiased estimates are
unavailable, this approach can lead to stronger guarantees than Theorem 2.1. We refer to the proof of
Proposition 2.1 for a concrete example.

B.2 Model-Free RL: Tighter Guarantees under Bellman Completeness
In this section, we show how to derive tighter estimation guarantees (and consequently tighter
regret bounds) when Q satisfies a Bellman completeness assumption [30, 19]. For a given MDP M ,
let T M

h [f ](s, a) := EM [rh + maxa′ f(sh+1, a
′) | sh = s, ah = a] denote the Bellman operator for

layer h.

Assumption B.1 (Completeness). We assume that Q = Q1 × · · · × QH is a product class, and that
for all h and Qh+1 ∈ Qh+1, [T M?

h Qh+1] ∈ Qh.

As before, we take Ψ = Q, ψ(M) := QM,?, and fQ(πQ) := Es1∼d1 [Q1(s1, πQ(s1))]. For the
divergence D, we now appeal to squared Bellman error (e.g., [19, 28]):

Dπ
sbe(Q ‖M) =

H∑
h=1

EM,π
[
(Qh(sh, ah)− [T M

h Qh+1](sh, ah))
2
]
. (14)

We abbreviate OptEstsbeγ = OptEstDsbe
γ and o-decsbeγ (M, µ) = o-decDsbe

γ (M, µ).

Estimation. Algorithm 4 performs optimistic online estimation with squared Bellman error. The
algorithm is an adaptation of a two-timescale exponential weights strategy originally introduced by
Agarwal and Zhang [2] within an optimistic posterior sampling algorithm referred to as TS3. We
show that this technique leads to a self-contained online estimation guarantee outside the context of
the TS3 algorithm.

Proposition B.1 (Estimation for square Bellman error). Assume thatQ satisfies completeness relative
to M?. Moreover assume

∑H
h=1 sups,a rh(s, a) ≤ 1 and supQ,h,s,aQh(s, a) ≤ 1. Then for any

γ ≥ 1 and η ≤ 1/(216(log(|Q|K/δ) + 1)) , with batch size n = H (K := T/n), λ = 1/8,
β = (12γH)−1 and δ > 0, Algorithm 4 ensures that with probability at least 1− δ,

OptEstsbeγ .
H log|Q|

η
+
η log(|Q|K/δ)K

γ
+

K

γ2H
. (15)

whenever Q satisfies completeness relative to M?.7

Note that Proposition B.1 does not make use of the bilinear class assumption, and only requires that
Q satisfies completeness. As such, we expect that this result will find use more broadly.

7Agarwal and Zhang [2] give a tighter estimation error bound of roughly OptEstsbeγ . log2(|Q|HK) + K
γ2

,
but this result takes advantage of a Bellman rank assumption on the underlying MDP. The estimation error bound
we state here does not require any structural assumptions on the MDP under consideration, but gives a worse
rate.
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Algorithm 4 Two-Timescale Exponential Weights for Bellman Complete Value Function Classes
1: Initialize S0 = ∅.
2: for k = 1, . . . ,K do
3: For any Q,Q′ ∈ Q and h ∈ [H], define

∆k

h(Q′, Q) := Q′(sk,h

h , ak,h

h )− rk,h

h −Q(sk,h

h+1),

qk(Q′|Q) := qk(Q′|Q,Sk−1) ∝ exp

(
−λ · 1

H

k−1∑
s=1

H∑
h=1

∆s

h(Q′, Q)2

)
,

Lk(Q) :=
1

H

H∑
h=1

∆k

h(Q,Q)2 +
1

λ
logEQ′∼qk(·|Q)

[
exp

(
−λ · 1

H

H∑
h=1

∆k

h(Q′, Q)2

)]
,

µk(Q) := µk(Q|Sk−1) ∝ exp

(
−η

k−1∑
s=1

(
Ls(Q)− β · 1

H

H∑
h=1

max
a

Q(ss,h1 , a)

))
.

4: Predict µk.
5: for l = 1, . . . ,H do
6: Play πk,l ∼ pk and obtain the trajectory ok,l = (sk,l

1 , ak,l

1 , rk,l

1 ), . . . , (sk,l

H , a
k,l

H , r
k,l

H ), where
pk ∈ ∆(Π) is a decision distribution produced by any batched algorithm (e.g., Algorithm 3)
that selects a decision adaptively based on µk.

7: Update Sk ← Sk−1 ∪
⋃H
l=1{s

k,l

l , a
k,l

l , r
k,l

l , s
k,l

l+1} ∪
⋃H
l=1{s

k,l

1 }.

Regret bound for bilinear classes. To provide regret bounds, we assume that M? satisfies the
bilinear class property relative to Q as in Section 2.3. In addition to assuming that M? is bilinear,
we make the following restrictions: (1) πest

Q = πQ, i.e. estimation is on policy, (2) `est
h (Q; zh) =

Qh(sh, ah) − rh −maxa′ Qh+1(sh+1, a
′), so that EM,π[`est

h (Q; zh)] is the average Bellman error
for Q under M .8 With this discrepancy function, Jensen’s inequality implies that o-decsbeγ (M) ≤
o-decbiγ (M), so combining Theorem B.1, Proposition B.1, and Proposition 2.2, we obtain the
following result.

Corollary B.1 (Regret bound under completeness). Let Q be given. Assume that M? ∈M, where
M is bilinear relative toQ, and that completeness holds. Moreover assume

∑H
h=1 sups,a rh(s, a) ≤ 1

and supQ,h,s,aQh(s, a) ≤ 1. Abbreviate d ≡ dbi(Q;M). For an appropriate choice of n and γ,
Algorithm 3, using Algorithm 4 (with appropriate parameter choice) as an oracle, enjoys the following
guarantees with probability at least 1− δ:

RegDM . Hd1/3(log(|Q|K/δ))4/5T 2/3. (16)

This improves upon the T 3/4-type rate in Corollary 2.1.

B.3 Proofs from Appendix B.2
Proposition B.1 is an application of more general results given in Appendix C.3, which analyze a
generalization of Algorithm 4 for a more general online learning setting. To Proposition B.1, we
simply apply these results to the reinforcement learning framework.

Proof of Proposition B.1. Let the batch size n = H be fixed, and let K := T/n be the number of
epochs. Recall that for each step k ∈ [K], the estimation oracle is given a batch of examples Bk =
{(πk,l, rk,l, ok,l)}nl=1 where πk,l ∼ pk and (rk,l, ok,l) ∼ M?(πk,l). Each observation (trajectory)
takes the form ok,l = (sk,l

1 , ak,l

1 , rk,l

1 ), . . . , (sk,l

H , a
k,l

H , r
k,l

H ). We abbreviate Q? = QM?,?.

Estimation algorithm. For each step k, the randomized estimator µk selected as described in
Algorithm 4. This algorithm is an instantiation of Algorithm 5 in the general online learning setting
described in Appendix C.3, with G = Q and for all h ∈ [H], Xh = S × A, Yh = R × S and

8These restrictions correspond to restricting attention to Q-type Bellman rank, a special case of the bilinear
class property [19, 12].
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W = SH . The unknown kernels are the transition distributions for the corresponding layers of the
MDP M?, and the loss functions are

`h,1((sh, ah), Q) := Qh(sh, ah),

`h,2((rh, sh+1), Q) := rh + max
a

Qh(sh+1, a),

`3({sl1}l∈[H]) := − 1

H

H∑
l=1

max
a

Q1(sl1, a)

Finally, take xk

h = (sk,h

h , ak,h

h ), yk

h = (rk,h

h , sk,h

h+1) and wk = {sk,h

1 }h∈[H]. It is important to note that
sk,h

h , ak,h

h , rk,h

h , sk,h

h+1 are taken from different trajectories for h ∈ [H], so yk

h | xk

h are independent
from one other for h ∈ [H]. Moreover, note that the distributions pk ∈ ∆(Π) play the role of nature:
the distribution of the tuple (xk

h, y
k

h, w
k) for h ∈ [H] is determined by running a policy πk ∼ pk in

the ground-truth MDP M?. With this configuration, observe that in the notation of Appendix C.3, we
have, for any Q,

Exk
1:H
E(Q,Q, xk

1:H)2 =
1

H

H∑
h=1

Exk
h
(`h,1(xk

h, Q)− E[`h,2(yh, Q)|xk

h])2

=
1

H

H∑
h=1

Eπk,h∼pk EM?,πk,h
[(
Qh(sh, ah)− [T M?

h Qh+1](sh, ah)
)2]

=
1

H
Eπ∼pk EM?,π

[
H∑
h=1

(
Qh(sh, ah)− [T M?

h Qh+1](sh, ah)
)2]

=
1

H
Eπ∼pk Dπ

sbe(Q ‖M?).

and

Exk
1:H ,w

k ιk(Q) =
1

H

H∑
l=1

Eπk,h∼pk EM?,πk,h
[
max
a

Q∗1(sk,l

1 , a)−max
a

Q1(sk,l

1 , a)
]

= fM?
(πM?)− fQ(πQ).

Estimation error bound. We take α = 12β, so that Theorem C.1 implies that with probability at
least 1− δ,

K∑
k=1

EQ∼µk

(
1

H
Eπ∼pk Dπ

sbe(Q ‖M?) + α(fM?
(πM?)− fQ(πQ))

)
. ηα log(|Q|K/δ)K + log|Q|/η + α2K.

Then by taking α = 1
γH , this further implies that with probability at least 1− δ,

OptEstsbeγ =

K∑
k=1

Eπ∼pk EQ∼µk

(
Dπ

sbe(Q ‖M?) +
1

γ
(fM?

(πM?)− fQ(πQ))

)
. H(ηα log(|Q|K/δ)K + log|Q|/η + α2K)

.
H log|Q|

η
+
η log(|Q|K/δ)K

γ
+

K

γ2H
.

Proof of Corollary B.1. We choose n = H and apply Algorithm 4 as the estimation ora-
cle. We first consider the “trivial” parameter regime in which Hd1/3(log(|Q|K/δ))−1/5T−1/3 ≥
1/(216(log(|Q|K/δ) + 1)). Here, T . Hd1/3(log(|Q|K/δ))4/5T 2/3, and thus

RegDM . Hd1/3(log(|Q|K/δ))4/5T 2/3.

16



When the case above, does not hold, we proceed as in the theorem statement, choosing η =
Hd1/3(log(|Q|K/δ))−1/5T−1/3 ≤ 1/(216(log(|Q|K/δ)+1)). Combining Theorem B.1 and Propo-
sition B.1 then gives

RegDM . o-decsbeγ (M) · T + γ
H2 log|Q|

η
+ η log(|Q|K/δ)T +

K

γ2

with probability at least 1 − δ. Next, using Proposition 2.2 to bound o-decsbeγ (M) in the above
display, it follows that

RegDM .
HdT

γ
+ γ

H2 log|Q|
η

+ η log(|Q|K/δ)T +
K

γ2
.

We choose γ = d2/3(log(|Q|K/δ))−2/5T 1/3 to obtain

RegDM . Hd1/3(log(|Q|K/δ))4/5T 2/3

with probability at least 1− δ.

C Technical Tools
C.1 Preliminaries

Lemma C.1. For all x ∈ [0, 1], we have

e−x ≤ 1− (1− 1/e)x ≤ 1− x/2, and ex ≤ 1 + (e− 1)x ≤ 1 + 2x.

Lemma C.2. For all x ≥ −1/8, we have e−x ≤ 1− x+ x2.

Proof of Lemma C.2. Let f(x) = e−x−1 +x−x2. We have f ′′(x) = e−x−2 < 0 for x ≥ −1/8.
Thus, f ′ is monotonically decreasing on x ≥ −1/8, so for x ∈ [−1/8, 0], f ′(x) ≥ f ′(0) = 0.
Hence, f(x) is non-decreasing on x ∈ [−1/8, 0]. Furthermore, f ′(x) = −e−x + 1 − 2x ≤ 0 for
x ≥ 0. Thus f(x) obtains maximum value at x = 0, and f(x) ≤ f(0) = 0.

C.2 Basic Online Learning Results
In this section we state a technical lemma regarding the performance of the exponential weights
algorithm for online learning. Let G be an abstract set of hypotheses. We consider the following
online learning process.

For t = 1, . . . , T :

• Learner predicts a (random) hypothesis gt ∈ G.

• Nature reveals `t ∈ L := (G → R) and learner suffers loss `t(gt).

We define regret to the class G via

RegOL =

T∑
t=1

Egt∼µt [`t(gt)]− inf
g∈G

T∑
t=1

`t(g), (17)

where µt ∈ ∆(G) is the learner’s randomization distribution for step t.

Lemma C.3. Consider the exponential weights update method with learning rate η > 0, which sets

µt(g) ∝ exp

(
−η
∑
i<t

`i(g)

)
.

For any sequence of non-negative loss functions `1, . . . , `T , this algorithm satisfies

RegOL ≤
η

2

T∑
t=1

Egt∼µt

[
(`t(gt))2

]
+

log|G|
η

. (18)

17



In addition, for any sequence of loss functions `1, . . . , `T with `t(g) ∈ [−L,L] for all g ∈ G, if
η ≤ (2L)−1, then

RegOL ≤ 2η

T∑
t=1

Egt∼µt

[
(`t(gt)− Eg′∼µt [`t(g′)])2

]
+

log|G|
η
≤ 4η

T∑
t=1

Egt∼µt

[
(`t(gt))2

]
+

log|G|
η

(19)

Proof of Lemma C.3. A standard telescoping argument combined with the fact that
− infg∈G

∑T
t=1 `

t(g) ≤ 1
η log

(
exp

(∑
g∈G −η

∑T
t=1 `

t(g)
))

(e.g., Cesa-Bianchi and Lugosi [4])
gives that for any choice η > 0 and any sequence of loss functions, exponential weights has

RegOL ≤
T∑
t=1

Eg∼µt [`t(g)] +
1

η

T∑
t=1

log

∑
g∈G

µt(g) exp(−η`t(g))

+
log|G|
η

(20)

=
1

η

T∑
t=1

log

∑
g∈G

µt(g) exp(−η(`t(g)− Eg′∼µt [`t(g′)]))

+
log|G|
η

. (21)

We first prove (18). Using that log(x) ≤ x− 1 for x ≥ 0 and exp(−x) ≤ 1− x+ x2

2 for x ≥ 0, we
have

log

∑
g∈G

µt(g) exp(−η`t(g))

 ≤ − η Eg∼µt [`t(g)] +
η2

2
Eg∼µt

[
(`t(g))2

]
,

so that

RegOL ≤
η

2

T∑
t=1

Eg∼µt

[
(`t(g))2

]
+

log|G|
η

.

To prove (19), we use that log(x) ≤ x− 1 for x ≥ 0 and exp(−x) ≤ 1− x+ 2x2 whenever |x| ≤ 1
to get

log

∑
g∈G

µt(g) exp(−η(`t(g)− Eg′∼µt [`t(g′)]))

 ≤ 2η2 Eg∼µt

[
(`t(g)− Eg′∼µt [`t(g′)])

2
]
,

so that

RegOL ≤ 2η

T∑
t=1

Eg∼µt

[
(`t(g)− Eg′∼µt [`t(g′)])2

]
+

log|G|
η

.

C.3 Online Learning with Completeness
In this section, we give guarantees for an online learning algorithm Algorithm 5, which generalizes
the two-timescale exponential weights algorithm (Algorithm 4) of Agarwal and Zhang [2]. We
describe and analyze the algorithm in a general online learning framework, which abstracts away
the core problem solved by Algorithm 4: value function estimation using a Bellman complete value
function class.

Let G be an abstract set of hypotheses. We consider and online learning process parameterized by a
positive integer H and α ∈ [0, 1].

• There are 2H + 1 outcome spaces, {Xh}h∈[H], {Yh}h∈[H], andW .

• There are H unknown probability kernels {Kh : Xh → Yh}h∈[H].

• There are 2H + 1 known loss functions {`h,1 : Xh × G → [0, 1]}h∈[H], {`h,2 : Yh × G →
[0, 1]}h∈H , and l3 :W × G → [0, 1].

Define S0 = ∅. We consider the following process. For t = 1, . . . , T :
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• Learner predicts a (randomized) hypothesis f t ∈ G.

• Nature reveals {xt

h, y
t

h}h∈[H] and wt. The outcomes {xt

h}h∈[H] can be chosen adaptively,
but they are mutually independent given St−1. The outcome wt can be chosen adaptively
based on St−1 and {xt

h}h∈[H]. Each outcome yt

h ∼ Kh(xt

h) is drawn independently for
each h ∈ [H].

• The history is updated via St ← St−1
⋃
{xt

h, y
t

h}h∈[H]

⋃
{wt}.

• The learner suffers loss

1

H

H∑
h=1

(`h,1(xt

h, f
t)− E[`h,2(yh, f

t) | xt

h])2 + αl3(wt, f t). (22)

The learner’s goal is to minimize a form of regret for the cumulative loss given in (22). This
loss function reflects two objective . The first objective involves the H losses {`1,h}h∈[H] with
corresponding outcomes {xh}h∈[H], as well as the H losses {`2,h}h∈[H] tied to outcomes {yh}h∈[H],
which are generated stochastically based on {xh}h∈[H]. The primary objective is to minimize the
primary error

1

H

T∑
t=1

H∑
h=1

(`h,1(xt

h, f
t)− E[`h,2(yh, f

t) | xt

h])2

The secondary objective is to minimize
T∑
t=1

l3(wt, f t), and the ultimate goal is to minimize a weighted

sum of the two objectives.

This online learning setup, adapted from Agarwal and Zhang [2], generalizes the reinforcement
learning setting in which Algorithm 4 operates. The adaptively chosen outcome xt

h corresponds
to the state-action pair at the h-th step, (sth, a

t

h), with the policy at time t chosen in an adaptive,
potentially adversarial fashion. The conditionally stochastic outcome yt

h corresponds to the reward
and the next state (rt

h, s
t

h+1), which is sampled independently from the MDP’s reward distribution
and transition distribution at step h, and is conditionally independent given (sth, a

t

h). The learner’s
objective in the RL framework is to predict a value function f t = Qt that minimizes the squared
Bellman error, realized by selecting the losses `1,h(xt

h, f
t) = Qt

h(sth, a
t

h) and `2,h(yt

h, f
t) = rt

h +
maxaQ

t

h+1(sth+1, a). The secondary objective is to predict the value function optimistically, with
`3(wt, f t) = −maxaQ(st1, a) and wt = st1.

Algorithm 5 Two-Timescale Exponential Weights (adapted from Agarwal and Zhang [2])
1: Initialize S0 ← ∅.
2: for t = 1, 2, . . . , T do
3: For all f, g ∈ G, define

∆t

h(g, f) := `h,1(xt

h, g)− `h,2(yt

h, f),

qt(g | f) := qt(g | f, St−1) ∝ exp

(
−λ · 1

H

t−1∑
s=1

H∑
h=1

∆s

h(g, f)2

)
,

Lt(f) :=
1

H

H∑
h=1

∆t

h(f, f)2 +
1

λ
log

(
Eg∼qt(·|f)

[
exp

(
−λ · 1

H

H∑
h=1

∆t

h(g, f)2

)])
,

pt(f) := pt(f | St−1) ∝ exp

(
−η

t−1∑
s=1

(βl3(ws, f) + Ls(f))

)
.

4: Sample and predict f t ∼ pt.
5: Observe {xt

h, y
t

h}h∈[H], wt. and update St ← St−1

⋃
{xt

h, y
t

h}h∈[H]

⋃
{wt}.

To analyze Algorithm 5, we make a generalized realizability assumption and a generalized complete-
ness assumption; these assumptions abstract away the notions of realizability and completeness in
RL.
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Assumption C.1 (Realizability for online learning). There exists f∗ ∈ G such that for all h ∈ [H]
and xh ∈ Xh, we have

`h,1(xh, f
∗) = E[`h,2(yh, f

∗) | xh].

Assumption C.2 (Completeness for online learning). For any f ∈ G, there exists g ∈ G such that for
all h ∈ [H] and xh ∈ Xh, we have

`h,1(xh, g) = E[`h,2(yh, f) | xh].

For any f ∈ G, we denote the corresponding g ∈ G satisfying this property by g = T f .

For functions g and f and outcome xh, define

Eh(g, f, xh) := `h,1(xh, g)− E[`h,2(yh, f) | xh];

this quantity generalizes the notion of Bellman error for reinforcement learning. Recalling that
∆t

h(f, g) := `h,1(xt

h, f)− `h,2(yt

h, g), it follows immediately

E[∆t

h(g, f) | xt

h] = E[(`h,1(xt

h, g)− `h,2(yt

h, f)) | xt

h] = Eh(g, f, xt

h).

In addition, let us define

E(g, f, x1:H)2 :=
1

H

H∑
h=1

(Eh(g, f, xh))
2
,

and

ιt(f) := l3(wt, f)− l3(wt, f∗).

The following result is the main theorem concerning the performance of Algorithm 5.

Theorem C.1. Let λ = 1/8, η < 1/(216(log(|G|T/δ) + 1)), and 0 < β < 1. Under Assumption
C.1 and Assumption C.2, for any δ ∈ (0, 1), with probability at least 1− δ,

1

H

T∑
t=1

H∑
h=1

Et−1

[
Ef∼pt

[
(`h,1(xt

h, f)− E[`h,2(yh, f) | xt

h])2 + 12βl3(wt, f)
]
| xt

h

]
−

(
1

H

T∑
t=1

H∑
h=1

(`h,1(xt

h, f
∗)− E[`h,2(yh, f

∗) | xt

h])2 + 12βl3(wt, f∗)

)

=

T∑
t=1

Et−1

[
Ef∼pt

[
E(f, f, xt

1:H)2 + 12βιt(f)
]
| xt

1:H

]
≤ 216(ηβ log(|G|T/δ)T + log(|G|)/η + β2T ).

C.3.1 Proof of Theorem C.1
For our analysis, it will be useful to consider the following offset version of the loss:

δt

h(g, f) := ∆t

h(g, f)2 − (E[`h,2(yh, f) | xt

h]− `h,2(yt

h, f))2.

We use x1:H as a shorthand for {xh}h∈[H] and further define

δt(g, f) :=
1

H

H∑
h=1

δt

h(g, f),

δt(f) := Eg∼qt(·|f) δ
t(g, f),

Zt(f) := − 1

λ
logEg∼qt(·|f) exp(−λδt(g, f)),

Zt = −1

η
logEf∼pt exp (−η · [βιt(f) + δt(f, f)− Zt(f)]) .
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Recall from Algorithm 5 that

qt(g | f) := qt(g | f, St−1) ∝ exp

(
−λ · 1

H

t−1∑
s=1

H∑
h=1

∆s

h(g, f)2

)
,

pt(f) := pt(f | St−1) ∝ exp

(
−η

t−1∑
s=1

(βl3(ws, f) + Ls(f))

)
.

Thus, we can verify the following relationships:

qt(g | f) =

exp

(
−λ

t−1∑
s=1

δs(g, f)

)
∑
g′∈G

exp

(
−λ

t−1∑
s=1

δs(g′, f)

) ,

pt(f) =

exp

(
−η

t−1∑
s=1

[βιs(f) + δs(f, f)− Zs(f)]

)
∑
f ′∈G

exp

(
−η

t−1∑
s=1

[βιs(f ′) + δs(f ′, f ′)− Zs(f ′)]

) , (23)

qt+1(g | f) = qt(g | f) · e−λ[δt(g,f)−Zt(f)],

pt+1(f) = pt(f) · e−η[βιt(f)+δt(f,f)−Zt(f)−Zt].

In what follows, we use Et−1[·] to abbreviate E[· | Ft−1], where Ft−1 := σ(St−1).

Proof of Theorem C.1. Under Assumption C.1, (`h,1(xt

h, f
∗)− E[`h,2(yh, f

∗) | xt

h])2 = 0. Thus,
the first equality holds by definition as

1

H

T∑
t=1

H∑
h=1

Et−1

[
Ef∼pt

[
(`h,1(xt

h, f)− E[`h,2(yh, f) | xt

h])2 + 12βl3(wt, f)
]
| xt

h

]
−

(
1

H

T∑
t=1

H∑
h=1

(`h,1(xt

h, f
∗)− E[`h,2(yh, f

∗) | xt

h])2 + 12βl3(wt, f∗)

)

=

T∑
t=1

Et−1

[
Ef∼pt

(
E(f, f, xt

1:H)2 + 12βιt(f)
)
| xt

1:H

]
.

To prove the result, we appeal to two technical lemmas, Lemma C.4 and Lemma C.5, stated below.
Plugging the bound from Lemma C.5 into Lemma C.4, we have

T∑
t=1

Et−1

[
Ef∼pt E(f, f, xt

1:H)2 | xt

1:H

]
+ 6β

T∑
t=1

Et−1[Ef∼pt ι(f) | xt

1:H ]

≤ 64

(
1

128

T∑
t=1

Et−1

[
Ef∼pt

[
E(f, f, xt

1:H)2
]
| xt

1:H

]
+ (48η2β2 + 8ηβ) log(|G|T/δ)T + 8ηβ2T + 16 log|G|

)

+
6

η
log |G|+ 18β2T.

Rearranging, we obtain

T∑
t=1

Et−1

[
Ef∼pt

(
E(f, f, xt

1:H)2 + 12βιt(f)
)
| xt

1:H

]
≤ 216(ηβ log(|G|T/δ)T + log(|G|)/η + β2T ).

We now state the technical lemmas, Lemma C.4 and Lemma C.5, used in the proof above
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Lemma C.4. Under Assumption C.1, for any 0 ≤ η ≤ 1/24 and 0 < β < 1, we have

T∑
t=1

Et−1

[
Ef∼pt E(f, f, xt

1:H)2 | xt

1:H

]
+ 6β

T∑
t=1

Et−1[Ef∼pt ιt(f) | xt

1:H ]

≤ 64

T∑
t=1

Et−1[Ef∼pt Zt(f) | xt

1:H ] + 18ηβ2T +
6

η
log |G|.

Lemma C.5. Let λ = 1/8 and η < 1/(216(log(|G|T/δ) + 1)). Under Assumption C.2, for any
0 < δ < 1, with probability at least 1− δ, we have

T∑
t=1

Et−1[Ef∼pt Zt(f) | xt

1:H ] ≤ 1

128

T∑
t=1

Et−1

[
Ef∼pt E(f, f, xt

1:H)2 | xt

1:H

]
+ (48η2β2 + 8ηβ) log(|G|T/δ)T
+ 8ηβ2T + 16 log|G|.

The remainder of the proof is organized as follows.

• Appendix C.3.2 presents basic technical lemmas.

• Appendix C.3.3 presents the proof of Lemma C.4.

• Appendix C.3.4 presents the proof of Lemma C.5.

• Appendices C.3.6 and C.3.7 contain additional technical lemmas used in the proof of
Lemma C.5.

C.3.2 Basic properties
In this section, we present basic technical results that will be used within the proof of Lemma C.5
and Lemma C.4.

In this section, we will present some basic properties of δt(g, f), E(g, f, xt

1:H)2 and Zt(f) for any
t ∈ [T ], g, f ∈ G, xt

1:H ∈
⋃
h∈[H] Xh. These properties are mainly due to a sub-Gaussian term in the

definition of δt(g, f). Recall

δt(g, f) =
1

H

H∑
h=1

(`h,1(xt

h, g)− `h,2(yt

h, f))2 − (E[`h,2(yh, f) | xt

h]− `h,2(yt

h, f))2

=
1

H

H∑
h=1

((`h,1(xt

h, g)− E[`h,2(yh, f) | xt

h])2

+ 2(E[`h,2(yh, f) | xt

h]− `h,2(yt

h, f))(`h,1(xt

h, g)− E[`h,2(yh, f) | xt

h]))

= E(g, f, xt

1:H)2 +
1

H

H∑
h=1

2(E[`h,2(yh, f) | xt

h]− `h,2(yt

h, f))Eh(g, f, xt

h).

Note that the quantity E[`h,2(yh, f) | xt

h] − `h,2(yt

h, f), conditioned on xt

h, is a mean 0 random
variable bounded by [−1, 1]. Thus, we have

E[δt(g, f) | xt

1:H ] = E
[
E(g, f, xt

1:H)2 | xt

1:H

]
. (24)

Furthermore, since E[`h,2(yh, f) | xt

h] − `h,2(yt

h, f) is sub-Gaussian with variance proxy 1/2 by
Hoeffding’s inequality, we have the following three lemmas.

Lemma C.6. For any t ≤ T , g, f ∈ G and c ∈ R, we have

E[exp(−cδt(g, f)) | xt

1:H ] ≤ E
[
exp
(
−c(1− 2c)E(g, f, xt

1:H)2
)
| xt

1:H

]
.

In addition, for any 0 < c < 1
2 , we have E[exp(−cδt(g, f)) | xt

1:H ] ≤ 1.
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Proof of Lemma C.6. By the 1/2-sub-Gaussianity of E[`h,2(yh, f) | xt

h]− `h,2(yt

h, f), we have

E[exp(−cδt(g, f)) | xt

1:H ]

= E
[
exp(−cE(g, f, xt

1:H)2) | xt

1:H

]
E

[
exp

(
−2c

H

H∑
h=1

(E[`h,2(yh, f) | xt

h]− `h,2(yt

h, f))Eh(g, f, xt

h)

)
| xt

1:H

]
≤ E

[
exp
(
−c(1− 2c/H)E(g, f, xt

1:H)2
)
| xt

1:H

]
≤ E

[
exp
(
−c(1− 2c)E(g, f, xt

1:H)2
)
| xt

1:H

]
.

Lemma C.7. For any t ≤ T , g, f and xt

1:H , we have E
[
δt(g, f)2 | xt

1:H

]
≤

5E
[
E(g, f, xt

1:H)2 | xt

1:H

]
.

Proof of Lemma C.7. The result follows by writing

E
[
δt(g, f)2 | xt

1:H

]
= E

(E(g, f, xt

1:H)2 +
1

H

H∑
h=1

2(E[`h,2(yh, f) | xt

h]− `h,2(yt

h, f))Eh(g, f, xt

h)

)2

| xt

1:H


= E

E(g, f, xt

1:H)4 +
4

H2

(
H∑
h=1

(E[`h,2(yh, f) | xt

h]− `h,2(yt

h, f))Eh(g, f, xt

h)

)2

| xt

1:H


≤ E

[
E(g, f, xt

1:H)2 +
4

H2

H∑
h=1

((E[`h,2(yh, f) | xt

h]− `h,2(yt

h, f))Eh(g, f, xt

h))
2 | xt

1:H

]
≤ 5E

[
E(g, f, xt

1:H)2 | xt

1:H

]
,

where the first equality is by defintion, the second equality is by expanding the terms and notice that
the cross terms have zero mean, the first inequality is obtained using the fact that |Eh(g, f, xh)| ≤ 1
and that the cross terms of the expansion of the second term have zero mean and the final inequality
is by |E[`h,2(yh, f) | xt

h]− `h,2(yt

h, f)| ≤ 1.

Lemma C.8. For all t ≤ T , as long as 0 ≤ λ ≤ 1/8, we have that for all f ,

4Et−1[Zt(f) | xt

1:H ] ≥ Eg∼qt(·|f,St−1)

[
E(g, f, xt

1:H)2
]
≥ 0

almost surely. In particular, Et−1[(Zt(f∗)) | xt

1:H ] ≥ 0.

Proof of Lemma C.8. Recall Zt(f) = − 1
λ logEg∼qt(·|f) exp(−λδt(g, f)), thus we have

−λEt−1[Zt(f) | xt

1:H ] = Et−1[logEg∼qt(·|f) exp(−λδt(g, f)) | xt

1:H ]

≤ logEt−1[Eg∼qt(·|f) exp(−λδt(g, f)) | xt

1:H ] (Jensen)

≤ logEt−1

[
Eg∼qt(·|f) exp

(
−λ(1− 2λ)E(g, f, xt

1:H)2
)
| xt

1:H

]
(Lemma C.6)

≤ logEt−1

[
Eg∼qt(·|f)

(
1− 1

2
λ(1− 2λ)E(g, f, xt

1:H)2

)
| xt

1:H

]
(Lemma C.1)

≤ −λ
4
Et−1

[
Eg∼qt(·|f) E(g, f, xt

1:H)2 | xt

1:H

]
= −λ

4
Eg∼qt(·|f) E(g, f, xt

1:H)2.

Recalling that Zt(f) = − 1
λ logEg∼qt(·|f) exp(−λδt(g, f)) and δt(f) = Eg∼qt(·|f) δ

t(g, f), we
obtain the following relationship via Jensen’s inequality and second order expansion of the exponential
function.

Lemma C.9. For any t ≤ T and realization of St−1, we have that as long as λ < 1/8, Zt(f) ≤ δt(f)
and |Zt(f)| ≤ 9

8 Eg∼qt(·|f)|δt(g, f)| for all g, f ∈ G.
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Proof of Lemma C.9. By Jensen’s inequality,

Zt(f) = − 1

λ
logEg∼qt(·|f) exp(−λδt(g, f)) ≤ Eg∼qt(·|f) δ

t(g, f) = δt(f).

On the other hand, applying Lemma C.2, we have
−λZt(f) = logEg∼qt(·|f) exp(−λδt(g, f))

≤ Eg∼qt(·|f)

(
−λδt(g, f) + λ2δt(g, f)2

)
.

Thus

|Zt(f)| ≤ |δt(f)|+ λEg∼qt(·|f) δ
t(g, f)2 ≤ 9

8
Eg∼qt(·|f)|δt(g, f)|.

Another important fact we will use is that f∗ satisfies δt(f∗, f∗) = 0. Furthermore, for any f ∈ G,
the pair T f, f always has δt(T f, f) = 0 for all t ∈ [T ].

Lemma C.10. For any t ≤ T , under Assumption C.1 we have δt(f∗, f∗) = 0. In addition, if
Assumption C.2 is satisfied, then for any f , δt(T f, f) = 0.

Proof of Lemma C.10. By the definition of f∗,

δt(f∗, f∗) =
1

H

H∑
h=1

(`h,1(xt

h, f
∗)− `h,2(yt

h, f
∗))2 − (E[`h,2(yh, f

∗) | xt

h]− `h,2(yt

h, f
∗))2 = 0.

Likewise, by the definition of T f ,

δt(T f, f) =
1

H

H∑
h=1

(`h,1(xt

h, T f)− `h,2(yt

h, f))2 − (E[`h,2(yh, f) | xt

h]− `h,2(yt

h, f))2 = 0.

C.3.3 Proof of Lemma C.4
In this section, we prove Lemma C.4, which gives a guarantee for the outer exponential weights
update used within Algorithm 5.

Proof of Lemma C.4. The definition of the exponential weights update (in particular, (23)) implies
that

− η ·min
f

(
T∑
t=1

βιt(f) + δt(f, f)− Zt(f)

)
− log |G|

≤
T∑
t=1

log(Ef∼pt exp(−η(βιt(f) + δt(f, f)− Zt(f))))

≤ 1

3

T∑
t=1

log(Ef∼pt exp(−3ηβιt(f))) +
1

3

T∑
t=1

log(Ef∼pt exp(−3ηδt(f, f)))

+
1

3

T∑
t=1

log(Ef∼pt exp(3ηZt(f))),

where the final inequality holds due to the fact that E[XY Z] ≤ 3
√

E[X3]E[Y 3]E[Z3] for positive
random variables X,Y, Z (which in turn can be shown via a repeated application of Hölder’s
inequality). We further have

Et−1[log(Ef∼pt exp(−3ηδt(f, f))) | xt

1:H ]

≤ log(Et−1[Ef∼pt exp(−3ηδt(f, f)) | xt

1:H ]) (Jensen)

≤ log
(
Et−1

[
Ef∼pt exp(−η(1− 6η)E(f, f, xt

1:H)2) | xt

1:H

])
(Lemma C.6)

≤ log
(
Et−1

[
Ef∼pt(1− η(1− 6η)E(f, f, xt

1:H)2) | xt

1:H

])
(Lemma C.1)

≤ −η
2
Et−1

[
Ef∼pt E(f, f, xt

1:H)2 | xt

1:H

]
.
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Meanwhile, using Lemma C.2, we get

log(Et−1[Ef∼pt exp(−3ηβιt(f)) | xt

1:H ]) ≤ Et−1

[
Ef∼pt(−3ηβιt(f) + 9η2β2(ιt(f))2) | xt

1:H

]
.

Moreover, under Assumption C.1, the benchmark term is negative by

Et−1

[
min
f

(
T∑
t=1

δt(f, f)− Zt(f) + βιt(f)

)
| xt

1:H

]

≤ Et−1

[
T∑
t=1

δt(f∗, f∗)− Zt(f∗) + βιt(f∗) | xt

1:H

]

= −
T∑
t=1

Et−1[Zt(f∗) | xt

1:H ] (Lemma C.10 and the definition of ιt)

≤ 0. (Lemma C.8)

Furthermore, the log-exponential term is—up to a constant—bounded by its first order expansion:

T∑
t=1

log(Et−1[Ef∼pt exp(3ηZt(f)) | xt

1:H ])

≤
T∑
t=1

log(Et−1[Ef∼pt exp(3ηδt(f)) | xt

1:H ]) (Lemma C.9)

=

T∑
t=1

log
(
Et−1

[
Ef∼pt exp

(
3η Eg∼qt(·|f) δ

t(g, f)
)
| xt

1:H

])
≤

T∑
t=1

log
(
Et−1

[
Ef∼pt Eg∼qt(·|f) exp(3ηδt(g, f)) | xt

1:H

])
(by Jensen)

≤
T∑
t=1

log
(
Et−1

[
Ef∼pt Eg∼qt(·|f) exp

(
3η(1 + 6η)E(g, f, xt

1:H)2
)
| xt

1:H

])
(Lemma C.6)

≤
T∑
t=1

Et−1

[
Ef∼pt Eg∼qt(·|f) 6η(1 + 6η)E(g, f, xt

1:H)2 | xt

1:H

]
(Lemma C.1)

≤ 32η

T∑
t=1

Et−1[Ef∼pt Zt(f) | xt

1:H ]. (Lemma C.8)

By using the fact that |ιt(f)| ≤ 1 and combining the above displays, we obtain that

− log |G| ≤ − η

6
Et−1

[
Ef∼pt E(f, f, xt

1:H)2 | xt

1:H

]
+

32η

3

T∑
t=1

Et−1[Ef∼ptZt(f) | xt

1:H ]

+ 3η2β2 − Et−1[Ef∼pt [ηβιt(f)]].

Rearranging yields the desired statement.

C.3.4 Proof of Lemma C.5
We state three technical lemmas, Lemmas C.11 to C.13, which are proven in subsequent subsections,
then prove Lemma C.5 as a consequence.
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Lemma C.11. Almost surely with respect to the draw of ST , we have
T∑
t=1

Et−1

[
Ef∼pt(·|St−1) Z

t(f) | xt

1:H

]
≤ 1

λ

T∑
t=1

Et−1

[
Ept
[(
e−η[βιt(f)+δt(f,f)−Zt(f)−Zt] − 1

)
log

1

qt(T f | f)

]
| xt

1:H

]
︸ ︷︷ ︸

Term I

−
T∑
t=1

Et−1

[
Ept
[(
e−η[βιt(f)+δt(f,f)−Zt(f)−Zt] − 1

)
Zt(f)

]
| xt

1:H

]
︸ ︷︷ ︸

Term II

+
1

λ
log|G|.

Lemma C.12. Under Assumption C.2, for any 0 < δ < 1, with probability at least 1− δ over the
draw of ST , we have for all t ≤ T ,

Et−1

[
Ef∼pt

(
e−η[βι

t(f)+δt(f,f)−Zt(f)−Zt] − 1
)

log
1

qt(T f | f)
| xt

1:H

]
≤ 32η Et−1

[
Ef∼pt

[(
Zt(f) + E(f, f, xt

1:H)2
)

log(|G|T/δ)
]
| xt

1:H

]
+ (24η2β2 + 4ηβ) log(|G|T/δ).

Lemma C.13. For any t ≤ T , the following bound holds almost surely with respect to the draw of
St:

Et−1

[
Ef∼pt

[(
e−η[βι

t(f)+δt(f,f)−Zt(f)−Zt] − 1
)
Zt(f)

]
| xt

1:H

]
≤ η Et−1

[
Ef∼pt

[
15E(f, f, xt

1:H)2 + 280Zt(f)
]
| xt

1:H

]
+ 4ηβ2.

Proof of Lemma C.5. By Lemma C.11, we have
T∑
t=1

Et−1[Ef∼pt Zt(f) | xt

1:H ] ≤ 1

λ
· (Term I)− (Term II) +

1

λ
log|G|.

Thus under Assumption C.2, using the bound in Lemma C.12 for Term I and using the bound in
Lemma C.13 for Term II, we have with probability at least 1− δ,

T∑
t=1

Et−1[Ef∼pt Zt(f) | xt

1:H ]

≤ 1

λ
·
T∑
t=1

32η Et−1

[
Ef∼pt

[(
Zt(f) + E(f, f, xt

1:H)2
)

log(|G|T/δ)
]
| xt

1:H

]
+ (24η2β2 + 4ηβ) log(|G|T/δ)T

+ η

T∑
t=1

Et−1

[
Ef∼pt

[
15|E(f, f, xt

1:H)|2 + 280Zt(f)
]
| xt

1:H

]
+ 4ηβ2T +

1

λ
log|G|.

Reorganizing the terms, we have(
1− 32η

λ
log(|G|T/δ)− 280η

) T∑
t=1

Et−1[Ef∼pt Zt(f) | xt

1:H ]

≤
(

32η

λ
log(|G|T/δ) + 15η

) T∑
t=1

Et−1

[
Ef∼pt E(f, f, xt

1:H)2 | xt

1:H

]
+ (24η2β2 + 4ηβ) log(|G|T/δ)T + 4ηβ2T +

1

λ
log|G|.
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Using the assumed bound on η and λ gives

1

2

T∑
t=1

Et−1[Ef∼pt Zt(f) | xt

1:H ] ≤ 1

28

T∑
t=1

Et−1

[
Ef∼pt

[
E(f, f, xt

1:H)2
]
| xt

1:H

]
+ (24η2β2 + 4ηβ) log(|G|T/δ)T + 4ηβ2T + 8 log|G|.

C.3.5 Proof of Lemma C.11 (Error Decomposition)
Proof of Lemma C.11. Recalling the relationships qt+1(g | f) = qt(g | f) · e−λ[δt(g,f)−Zt(f)] and
pt+1(f) = pt(f) · e−η[βιt(f)+δt(f,f)−Zt(f)−Zt], the proof begins with the following manipulation:

Ef∼pt+1(·|St)

[
log

1

qt+1(T f | f)

]
− Ef∼pt(·|St−1)

[
log

1

qt(T f | f)

]
= Ept+1−pt

[
log

1

qt(T f | f)

]
+ Ept+1−pt

[
log

qt(T f | f)

qt+1(T f | f)

]
+ Ept

[
log

qt(T f | f)

qt+1(T f | f)

]
= Ept

[(
e−η[βι

t(f)+δt(f,f)−Zt(f)−Zt] − 1
)

log
1

qt(T f | f)

]
+ Ept

[(
e−η[βι

t(f)+δt(f,f)−Zt(f)−Zt] − 1
)
· λ · (δt(T f, f)− Zt(f))

]
+ λ · Ept [δt(T f, f)− Zt(f)].

Thus, taking expectation with respect to Et−1[·], dividing by λ, rearranging, summing over t on both
sides, and taking advatnage of telescoping, we obtain

T∑
t=1

Et−1

[
Ef∼pt(·|St−1) Z

t(f) | xt

1:H

]
≤ 1

λ

T∑
t=1

Et−1

[
Ept
[(
e−η[βιt(f)+δt(f,f)−Zt(f)−Zt] − 1

)
log

1

qt(T f | f)

]
| xt

1:H

]

+

T∑
t=1

Et−1

[
Ept
[(
e−η[βι

t(f)+δt(f,f)−Zt(f)−Zt] − 1
)
· (δt(T f, f)− Zt(f))

]
| xt

1:H

]
+

T∑
t=1

Et−1[Ept [δt(T f, f)] | xt

1:H ]

+
1

λ

(
E0

[
Ef∼p1 log

1

q1(T f | f)
| x1

1:H

]
− ET

[
Ef∼pT+1 log

1

qT+1(T f | f)
| xT+1

1:H

])
.

Finally, we use that δt(T f, f) = 0, log 1
qT+1(T f |f) ≥ 0, and log 1

q1(T f |f) = log|G|.

C.3.6 Proof of Lemma C.12 (Bound on Term I)
Toward proving Lemma C.12, we state and prove a series of technical lemmas, Lemmas C.14 to C.17.

Lemma C.14. Under Assumption C.2, for any 0 < δ < 1, the event At defined below holds
simultaneously for all t ≤ T with probability at least 1− δ over the draw of ST :

At =

{
sup
f∈G

log
1

qt+1(T f | f)
≤ 2 log(|G|T/δ)

}
.
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Proof of Lemma C.14. Recalling that qt+1(g | f) =
exp

(
−λ

t∑
s=1

δs(g,f)

)
∑

g′∈G
exp

(
−λ

t∑
s=1

δs(g′,f)

) , we have

log

(
ESt

[
sup
f

1

qt+1(T f | f)

])
= log

(
ESt

[
sup
f

∑
g

exp

(
−λ

t∑
s=1

δs(g, f)

)])
(Lemma C.10)

≤ log

ESt

∑
f,g

exp

(
−λ

t∑
s=1

δs(g, f)

)
= log

∑
f,g

ESt

[
exp

(
−λ

t∑
s=1

δs(g, f)

)]
≤ 2 log|G|, (Lemma C.6)

where the final inequality uses 0 < λ < 1/2 as well as the fact that for any fixed choice of f, g,
conditioned on xs

1:H , s ≤ t, the random variables δs(g, f) (for s ≤ t) are independent. Then, by
Markov’s inequality and the union bound, we have the desired result.

Lemma C.15. For any t ≤ T , 0 ≤ λ ≤ 1/8, f , almost surely with respect to the draw of St and
xt

1:H , we have
Et−1

[
|Zt(f)|2 | xt

1:H

]
≤ 40 · Et−1[Zt(f) | xt

1:H ].

Proof of Lemma C.15. Using Lemma C.9, we get

Et−1

[
|Zt(f)|2 | xt

1:H

]
≤ 2Et−1

[(
Eg∼qt(·|f)|δt(g, f)|

)2 | xt

1:H

]
≤ 2Et−1

[
Eg∼qt(·|f)|δt(g, f)|2 | xt

1:H

]
(by Jensen)

≤ 10Et−1

[
Eg∼qt(·|f) E(g, f, xt

1:H)2 | xt

1:H

]
(Lemma C.7)

≤ 40Et−1[Zt(f) | xt

1:H ]. (Lemma C.8)

Lemma C.16. For any t ≤ T , almost surely with respect to the draw of St and xt

1:H , we have

Et−1

[
|Zt|2 | xt

1:H

]
≤ Et−1

[
Ef∼pt(·|St−1)[10E(f, f, xt

1:H)2 + 80Zt(f)] | xt

1:H

]
+ 3β2.

Proof of Lemma C.16. Using Jensen’s inequality, we have

|Zt| =
∣∣∣∣−1

η
log(Ef∼pt exp(−η[βιt(f) + δt(f, f)− Zt(f)]))

∣∣∣∣
≤ Ef∼pt [|βιt(f)|+ |δt(f, f)|+ |Zt(f)|].

Thus by Lemma C.7 and Lemma C.15, we have

Et−1

[
|Zt|2 | xt

1:H

]
≤ 3Et−1

[
Ef∼pt

[
|βιt(f)|2 + |δt(f, f)|2 + |Zt(f)|2

]
| xt

1:H

]
≤ Et−1

[
Ef∼pt

[
10E(f, f, xt

1:H)2 + 80Zt(f)
]
| xt

1:H

]
+ 3β2.

Lemma C.17. For any 0 ≤ η ≤ 1/240, f , almost surely with respect to the draw of St and xt

1:H , we
have

Et−1

[
e−η[βι

t(f)+δt(f,f)−Zt(f)−Zt] − 1 | xt

1:H

]
≤ Et−1

[
16ηZt(f) + 4η Ef ′∼pt(·|St−1) E(f ′, f ′, xt

1:H)2 | xt

1:H

]
+ 12η2β2 + 2ηβ.
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Proof of Lemma C.17. Jensen’s inequality gives that

Zt ≤ Ef ′∼pt [βιt(f ′) + δt(f ′, f ′)− Zt(f ′)]

Zt(f) ≤ Eg∼qt(·|f) [δt(g, f)] = δt(f).

We may then write

Et−1

[
e−η[βι

t(f)+δt(f,f)−Zt(f)−Zt] − 1 | xt

1:H

]
≤ Et−1

[
e−ηβι

t(f)−ηδt(f,f)+ηδt(f)+η Ef′∼pt [βιt(f ′)+δt(f ′,f ′)−Zt(f ′)] − 1 | xt

1:H

]
≤ 1

6
Et−1

[
Ef ′∼pt

[
e−6ηβιt(f) + e−6ηδt(f,f) + e6ηδt(f) + e6ηβιt(f ′) + e6ηδt(f ′,f ′) + e−6ηZt(f ′) − 6

]
| xt

1:H

]
,

where the second equality uses Jensen’s inequality to pull the Ef ′∼pt [·] outside of the exponential
and then the fact that a1 · · · a6 ≤ 1

6

∑6
i=1 a

6
i for real numbers a1, . . . , a6. We control the six terms

on the right hand side separately as follows:

• Term (a): Using Lemma C.2 we get

Et−1

[
e−6ηβιt(f) | xt

1:H

]
≤ 1 + 6ηβ + 36η2β2.

• Term (b): Using Lemma C.6 we get

Et−1

[
e−6ηδt(f,f) | xt

1:H

]
≤ 1.

• Term (c):

Et−1

[
e6ηδt(f) | xt

1:H

]
= Et−1

[
exp(6η Eg∼qt(·|f) δ

t(g, f)) | xt

1:H

]
≤ Et−1

[
Eg∼qt(·|f) exp(6ηδt(g, f)) | xt

1:H

]
≤ Et−1

[
Eg∼qt(·|f) exp

(
6η(1 + 12η)E(g, f, xt

1:H)2
)
| xt

1:H

]
(Lemma C.6)

≤ 1 + 16η Et−1

[
Eg∼qt(·|f) E(g, f, xt

1:H)2 | xt

1:H

]
(Lemma C.1)

≤ 1 + 64η Et−1[Zt(f) | xt

1:H ]. (Lemma C.8)

• Term (d): Using Lemma C.2, we have

Et−1

[
Ef ′∼pt e6ηβιt(f ′) | xt

1:H

]
≤ 1 + 6ηβ + 36η2β2.

• Term (e):

Et−1

[
Ef ′∼pt e6ηδt(f ′,f ′) | xt

1:H

]
≤ Et−1

[
Ef ′∼pt exp

(
6η(1 + 12η)E(f ′, f ′, xt

1:H)2
)
| xt

1:H

]
(Lemma C.6)

≤ 1 + 16η Et−1

[
Ef ′∼pt E(f ′, f ′, xt

1:H)2 | xt

1:H

]
. (Lemma C.1)

• Term (f):

Et−1

[
Ef ′∼pt e−6ηZt(f ′) | xt

1:H

]
≤ Et−1

[
Ef ′∼pt 1− 6ηZt(f ′) + 36η2(Zt(f ′))2 | xt

1:H

]
(Lemma C.2)

≤ 1 + (−6η + 1440η2)Et−1[Ef ′∼pt Zt(f ′) | xt

1:H ] (Lemma C.15)
≤ 1. (Lemma C.8)
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Proof of Lemma C.12. Combining the preceding lemmas, we have with probability at least 1− δ
over the draw of ST , the event At defined in Lemma C.14 holds for all t ≤ T simultaneously, and
thus

Et−1

[
Ef∼pt

(
e−η[βι

t(f)+δt(f,f)−Zt(f)−Zt] − 1
)

log
1

qt(T f | f)
| xt

1:H

]
≤ Ef∼pt

[(
16η Et−1

[
Zt(f) + Ef ′∼pt E(f ′, f ′, xt

1:H)2 | xt

1:H

]
+ 12η2β2 + 2ηβ

)
log

1

qt(T f | f)

]
≤ 16η Et−1

[
Ef∼pt

[(
Zt(f) + E(f, f, xt

1:H)2
)
· 2 log(|G|T/δ)

]
| xt

1:H

]
+ (24η2β2 + 4ηβ) log(|G|T/δ),

where the first inequality is derived from Lemma C.17, and the second inequality follows from
Lemma C.8 and Lemma C.14.

C.3.7 Proof of Lemma C.13 (Bound on Term II)
Proof of Lemma C.13. We compute

Et−1

[
Ef∼pt

[(
e−η[βι

t(f)+δt(f,f)−Zt(f)−Zt] − 1
)
Zt(f)

]
| xt

1:H

]
≤ Et−1

[
Ef∼pt

[(
eη(β|ι

t(f)|+|δt(f,f)|+|Zt(f)|+|Zt|) − 1
)
|Zt(f)|

]
| xt

1:H

]
≤ 2η Et−1[Ef∼pt [[β|ιt(f)|+ |δt(f, f)|+ |Zt(f)|+ |Zt|]|Zt(f)|] | xt

1:H ]

≤ η Et−1

[
Ef∼pt

[
|δt(f, f)|2 + 5|Zt(f)|2 + |Zt|2

]
| xt

1:H

]
+ ηβ2

≤ η Et−1

[
Ef∼pt

[
15E(f, f, xt

1:H)2 + 280Zt(f)
]
| xt

1:H

]
+ 4ηβ2,

where the second inequality applies Lemma C.1 (together with the fact that η ∈ (0, 1/240)), the third
inequality uses Young’s inequality and the fact that |ιt(f)| ≤ 1 for all f , and the final inequality
applies Lemma C.15 (to bound Et−1[|Zt(f)|2]), Lemma C.16 (to bound Et−1[|Zt|2]), and Lemma C.7
(to bound Et−1[δt(f, f) | xt

1:H ]) .

D Proofs from Section 2 and Section 3
D.1 Proofs from Section 2
Proof of Theorem 2.1 and Theorem B.1. We prove Theorem B.1; Theorem 2.1 is the special case
of this result in which n = 1. Observe that for Algorithm 3, we have

RegDM = n ·
K∑
k=1

Eπk∼pk
[
fM?

(πM?)− fM?
(πk)

]
.

We can rewrite this sum as
K∑
k=1

Eπk∼pk
[
fM?

(πM?)− fM?
(πk)

]
=

K∑
k=1

Eπk∼pk Eψ̂k∼µk

[
f ψ̂

k

(πψ̂k)− fM?
(πk)

]
+ Eψ̂k∼µk

[
(fM?

(πM?)− f ψ̂
k

(πψ̂k))
]

=

K∑
k=1

Eπk∼pk Eψ̂k∼µk

[
f ψ̂

k

(πψ̂k)− fM?
(πk)− γ ·Dπk

(
ψ̂k ‖M?

)]
+ Eψ̂k∼µk

[
γ ·Dπk

(
ψ̂k ‖M?

)
+ (fM?

(πM?)− f ψ̂
k

(πψ̂k))
]

=

K∑
k=1

Eπk∼pk Eψ̂k∼µk

[
f ψ̂

k

(πψ̂k)− fM?
(πk)− γ ·Dπk

(
ψ̂k ‖M?

)]
+ γ ·OptEstDγ .

30



For each step k, by the choice of pk, we have

Eπk∼pk Eψ̂k∼µk

[
f ψ̂

k

(πψ̂k)− fM?
(πk)− γ ·Dπk

(
ψ̂k ‖M?

)]
≤ sup
M∈M

Eπk∼pk Eψ̂k∼µk

[
f ψ̂

k

(πψ̂k)− fM(πk)− γ ·Dπk
(
ψ̂k ‖M

)]
= inf
p∈∆(Π)

sup
M∈M

Eπ∼p Eψ̂∼µk

[
f ψ̂(πψ̂)− fM(π)− γ ·Dπ

(
ψ̂ ‖M

)]
= o-decDγ (M, µk) ≤ o-decDγ (M).

Finally, we use that probability at least 1− δ, OptEstDγ ≤ OptEstDγ (K,n, δ).

We next prove Proposition 2.1, which gives a bound on

OptEstbiγ =

K∑
k=1

Eπk∼pk EM̂k∼µk

[
H∑
h=1

(
EM?,π

[
`est
h (Q̂k; zh)

])2

+ γ−1(fM?
(πM?)− f M̂t

(πM̂k))

]
.

Algorithm 6 Optimistic Estimation for Bilinear Classes
1: parameters:

• Number of rounds T , Batch size n
• Learning rate η > 0.
• Discrepancy function `est

h (Q; zk,l

h ) Exploration parameter γ > 0.
2: Let K = T/n and B0 := ∅.
3: for k = 1, 2, · · · ,K do
4: Form the randomized estimator µk via µk(Q) ∝ exp

(
−η
∑
i<k `

i(Q)
)
, where

`i(Q) :=

H∑
h=1

(
1

n

n∑
l=1

`est
h (Q; zi,l

h )

)2

− 1

8γ
· fQ(πQ)

5: Receive batch of samples Bk = {(πk,l, rk,l, ok,l)}nl=1 where πk,l ∼ pk and (rk,l, ok,l) ∼
M?(πk,l).

// pk is the decision distribution produced by E2D.Opt (cf. Algorithm 3).

6: Let zk,l

h = (sk,l

h , a
k,l

h , r
k,l

h , s
k,l

h+1), where we recall ok,l = (sk,l

1 , ak,1

1 , rk,l

1 ), . . . , (sk,l

H , a
k,1

H , rk,l

H ).

Proof of Proposition 2.1. Throughout this proof, we use the batched estimation notation from
Appendix B.1. Let n be fixed, and let K := T/n be the number of epochs. Recall that for
each step k ∈ [K], the estimation oracle is given a batch of examples Bk = {(πk,l, rk,l, ok,l)}nl=1
where πk,l ∼ pk and (rk,l, ok,l) ∼ M?(πk,l). Each observation (trajectory) takes the form ok,l =
(sk,l

1 , ak,l

1 , rk,l

1 ), . . . , (sk,l

H , a
k,l

H , r
k,l

H ). Throughout the proof, we use the notation

Ek

h(Q) = EM?,πk[
`est
h (Q; zh)

]
,

and abbreviate Q? = QM?,?.

Estimation algorithm. Define

Êk

h(Q) =
1

n

n∑
l=1

`est
h (Q; zk,l

h ),

where zk,l

h := (sk,l

h , a
k,l

h , r
k,l

h , s
k,l

h+1). Let η > 0 and α > 0 be parameters whose values will be chosen
at the end of the proof. Defining

`k(Q) :=

H∑
h=1

(Êk

h(Q))2 − αfQ(πQ),
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Algorithm 6 chooses

µk(Q) ∝ exp

(
−η
∑
i<k

`i(Q)

)
as the randomized estimator for epoch k.

Estimation error bound. Let us abbreviate L = Lbi(Q;M?). Observe that for all k, |`k(Q)| ≤
R := HL2 + α almost surely. Hence, Lemma C.3 implies that as long as η ≤ 1/2R, we have

K∑
k=1

EQ∼µk [`k(Q)]−
K∑
k=1

`k(Q?) ≤ 4η

K∑
k=1

EQ∼µk

[
(`k(Q))2

]
+

log|Q|
η

(25)

For each k ∈ [K], we have that for all Q ∈ Q,

(`k(Q))2 ≤ 2

(
H∑
h=1

(Êk

h(Q))2

)2

+ 2α2 ≤ 2HL2
H∑
h=1

(Êk

h(Q))2 + 2α2.

As a result, (25) implies that

K∑
k=1

H∑
h=1

EQ∼µk

[(
Êk

h(Q)
)2
]

+ α

K∑
k=1

EQ∼µk

[
(fM?

(πM?)− fQ(πQ)
]

(26)

≤
K∑
k=1

H∑
h=1

(
Êk

h(Q?)
)2

+ 8ηHL2
K∑
k=1

H∑
h=1

EQ∼µk

[(
Êk

h(Q)
)2
]

+ 8ηα2K +
log|Q|
η

. (27)

Whenever η ≤ 1
16HL2 , rearranging gives

1

2

K∑
k=1

H∑
h=1

EQ∼µk

[(
Êk

h(Q)
)2
]

+ α

K∑
k=1

EQ∼µk

[
(fM?

(πM?)− fQ(πQ)
]

(28)

≤
K∑
k=1

H∑
h=1

(
Êk

h(Q?)
)2

+ 8ηα2K +
log|Q|
η

. (29)

We now appeal to the following lemma.

Lemma D.1. With probability at least 1− δ, it holds that for all k ∈ [K], h ∈ [H], and Q ∈ Q,

1

2
(Ek

h(Q))2 − ε2
conc(n) ≤ (Êk

h(Q))2 ≤ 2(Ek

h(Q))2 + 2ε2
conc(n), (30)

where εconc(n) := L
√

2 log(|Q|KH/δ)
n .

Going forward, we condition on the event in Lemma D.1. Applying the inequality (30) within (29),
we have

1

4

K∑
k=1

H∑
h=1

EQ∼µk

[
(Ek

h(Q))
2
]

+ α

K∑
k=1

EQ∼µk

[
(fM?

(πM?)− fQ(πQ)
]

(31)

≤ 2

K∑
k=1

H∑
h=1

(Ek

h(Q?))
2

+ 8ηα2K +
log|Q|
η

+ 3HKε2
conc(n)

= 8ηα2K +
log|Q|
η

+ 3HKε2
conc(n), (32)

where the last equality uses that Ek

h(Q?) = 0 for all h ∈ [H], and k ∈ [K], which is a consequence
of Definition 2.1. Next, we recall that

K∑
k=1

H∑
h=1

EQ∼µk

[
(Ek

h(Q))
2
]

=

K∑
k=1

EQ∼µk

[
Dπk

bi (Q ‖M?)
]
.
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A standard application of Freedman’s inequality (c.f Lemma A.3 in Foster et al. [12]) implies that
with probability at least 1− δ,

K∑
k=1

EQ∼µk

[
Dπk

bi (Q ‖M?)
]
≥ 1

2

K∑
k=1

Eπ∼pk EQ∼µk

[
Dπk

bi (Q ‖M?)
]
−O(HL2 log(H/δ)).

Putting everything together, we have that

1

8

K∑
k=1

Eπk∼pk EQ∼µk

[
Dπk

bi (Q ‖M?) + 8α(fM?
(πM?)− fQ(πQ))

]
. ηα2K +

log|Q|
η

+HKε2
conc(n) +HL2 log(H/δ).

Choosing α = 1
8γ , this gives

OptEstbiγ . ηα2K +
log|Q|
η

+HKε2
conc(n) +HL2 log(H/δ)

. ηα2K +
log|Q|
η

+HL2 log(|Q|KH/δ)
(

1 +
K

n

)
We choose η =

√
log|Q|
α2K ∧

1
16R , which satisfies the constraints described earlier in the proof, and

gives

OptEstbiγ .

√
K log|Q|
γ

+R log|Q|+HL2 log(|Q|KH/δ)
(

1 +
K

n

)
.

√
K log|Q|
γ

+HL2 log(|Q|KH/δ)
(

1 +
1

γ
+
K

n

)
.

Proof of Lemma D.1. For any fixed k ∈ [K] and Q ∈ Q, Hoeffding’s inequality implies that with
probability at least 1− δ, ∣∣∣Ek

h(Q)− Êk

h(Q)
∣∣∣ ≤ L√2 log(1/δ)

n
.

By a standard union bound it follows that with probability at least 1− δ, for all k ∈ [K], h ∈ [H],
and Q ∈ Q simultaneously,∣∣∣Ek

h(Q)− Êk

h(Q)
∣∣∣ ≤ L√2 log(|Q|KH/δ)

n
=: εconc(n).

Whenever this event occurs, the AM-GM inequality implies that

(Ek

h(Q))2 ≤ 2(Êk

h(Q))2 + 2ε2
conc(n)

and likewise (Êk

h(Q))2 ≤ 2(Ek

h(Q))2 + 2ε2
conc(n).

Proof of Proposition 2.2. Let µ ∈ ∆(Q) be fixed. Fix α ∈ (0, 1), and let παQ be the randomized pol-
icy that—for each h—independently plays πQ,h with probability 1− α/H and πest

Q,h with probability
α/H . Let p ∈ ∆(Π) be the distribution induced by sampling Q ∈ µ and playing παQ. Translated to
our notation, Foster et al. [12] (cf. Proof of Theorem 7.1, Eq. (152)) shows that for all MDPs M , this
strategy guarantees that for all η > 0,

Eπ∼p EQ∼µ
[
fQ(πQ)− fM(π)

]
≤ α+

H · dbi(Q;M)

2η
+
η

2

H∑
h=1

EQ,Q′∼µ
[
〈Xh(Q;M),Wh(Q′;M)〉2

]
= α+

H · dbi(Q;M)

2η
+
η

2

H∑
h=1

EQ,Q′∼µ
[(

EM,πQ◦hπ
est
Q
[
`est
h (Q′; zh)

])2
]
.

33



In the on-policy case in which πest
Q = πQ, it suffices to set α = 0, which gives

H∑
h=1

EQ,Q′∼µ
[(

EM,πQ◦hπ
est
Q
[
`est
h (Q′; zh)

])2
]

=

H∑
h=1

EQ,Q′∼µ
[(
EM,πQ

[
`est
h (Q′; zh)

])2]
=

H∑
h=1

Eπ∼p EQ′∼µ
[(
EM,π

[
`est
h (Q′; zh)

])2]
= Eπ∼p EQ∼µ[Dπ

bi(Q ‖M)],

where the last equality relabels Q′ ← Q. Setting η = 2γ yields the result.

In the general case where πest
Q 6= πQ, we have that for all Q′ ∈ Q,9

Eπ∼p
[(
EM,π

[
`est
h (Q′; zh)

])2] ≥ α

H
(1− α/H)H−1 EQ∼µ

[(
EM,πQ◦hπ

est
Q
[
`est
h (Q′; zh)

])2
]
.

We have α
H (1− α/H)H−1 ≥ α

2H whenever α ≤ 1/2, which gives

Eπ∼p EQ∼µ
[
fQ(πQ)− fM(π)

]
≤ α+

H · dbi(Q;M)

2η
+
ηH

α
· Eπ∼p EQ∼µ[Dπ

bi(Q ‖M)]

= α+
H2 · dbi(Q;M)

2γα
+ γ · Eπ∼p EQ∼µ[Dπ

bi(Q ‖M)],

where the last line chooses η = γα/H . To conclude, we set α =
√
H2dbi(Q;M)/4γ, which is

admissible whenever γ ≥ H2dbi(Q;M).

Proof of Corollary 2.1. In both of the cases in the theorem statement (on-policy and off-policy),
whenever γ ≥ 1 and n ≤

√
T (to ensure that K/n ≥ 1), combining Theorem B.1 and Proposition 2.1

gives

RegDM . o-decbiγ (M) · T + γHL2 log(|Q|KH/δ) · T
n

+
√
nT log|Q|.

We choose n =
√
T , which is admissible whenever T is sufficiently large, and gives

RegDM . o-decbiγ (M) · T + γHL2 log(|Q|KH/δ)
√
T +

√
log|Q| · T 3/4.

In the on-policy case, we have, from Proposition 2.2, that

RegDM .
HdT

γ
+ γHL2 log(|Q|KH/δ)

√
T +

√
log|Q| · T 3/4,

and in the off-policy case, we have

RegDM .

√
H2d

γ
T + γHL2 log(|Q|KH/δ)

√
T +

√
log|Q| · T 3/4.

Choosing γ to balance yields the result.

9Note that this result uses that the quantity EM,π
[
`esth (Q′; zh)

]
only depends on the policy π through

a1, . . . , ah.
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D.2 Proofs from Section 3
Proof of Proposition 3.1. We begin with the upper bound. First, note that by Assumption 3.1 and
the AM-GM inequality, we have

o-decDγ (M) = sup
µ∈∆(M)

inf
p∈∆(Π)

sup
M∈M

Eπ∼p EM∼µ
[
fM(πM)− fM(π)− γ ·Dπ

(
M ‖M

)]
≤ sup

µ∈∆(M)

inf
p∈∆(Π)

sup
M∈M

Eπ∼p EM∼µ
[
fM(πM)− fM(π)− γ

2
·Dπ

(
M ‖M

)]
+
L2

lip

2γ
.

(33)

Consider any fixed choice for µ ∈ ∆(M). By Sion’s minimax theorem (see Foster et al. [12] for
details), we have

inf
p∈∆(Π)

sup
M∈M

Eπ∼p EM∼µ
[
fM(πM)− fM(π)− γ

2
·Dπ

(
M ‖M

)]
= inf
p∈∆(Π)

sup
ν∈∆(M)

Eπ∼p EM∼µ EM∼ν
[
fM(πM)− fM(π)− γ

2
·Dπ

(
M ‖M

)]
= sup
ν∈∆(M)

inf
p∈∆(Π)

Eπ∼p EM∼µ EM∼ν
[
fM(πM)− fM(π)− γ

2
·Dπ

(
M ‖M

)]
,

so that the main term in (33) is equal to

sup
µ∈∆(M)

sup
ν∈∆(M)

inf
p∈∆(Π)

Eπ∼p EM∼µ EM∼ν
[
fM(πM)− fM(π)− γ

2
·Dπ

(
M ‖M

)]
≤ sup

ν∈∆(M)

inf
p∈∆(Π)

sup
µ∈∆(M)

Eπ∼p EM∼µ EM∼ν
[
fM(πM)− fM(π)− γ

2
·Dπ

(
M ‖M

)]
= sup
ν∈∆(M)

inf
p∈∆(Π)

sup
M∈M

Eπ∼p EM∼ν
[
fM(πM)− fM(π)− γ

2
·Dπ

(
M ‖M

)]
.

Relabeling, this is equal to

sup
µ∈∆(M)

inf
p∈∆(Π)

sup
M∈M

Eπ∼p EM∼µ
[
fM(πM)− fM(π)− γ

2
·Dπ

(
M ‖M

)]
= sup
µ∈∆(M)

dec
qD
γ/2(M, µ).

We now prove the lower bound. Using Assumption 3.1 and the AM-GM inequality once more, we
have

o-decDγ (M) = sup
µ∈∆(M)

inf
p∈∆(Π)

sup
M∈M

Eπ∼p EM∼µ
[
fM(πM)− fM(π)− γ ·Dπ

(
M ‖M

)]
≥ sup

µ∈∆(M)

inf
p∈∆(Π)

sup
M∈M

Eπ∼p EM∼µ

[
fM(πM)− fM(π)− 3γ

2
·Dπ

(
M ‖M

)]
−
L2

lip

2γ
.

≥ sup
µ∈∆(M)

sup
ν∈∆(M)

inf
p∈∆(Π)

Eπ∼p EM∼µ EM∼ν
[
fM(πM)− fM(π)− 3γ

2
·Dπ

(
M ‖M

)]
−
L2

lip

2γ
.

(34)

Using the minimax theorem in the same fashion as before, the main term in (34) is equal to

sup
ν∈∆(M)

sup
µ∈∆(M)

inf
p∈∆(Π)

Eπ∼p EM∼µ EM∼ν
[
fM(πM)− fM(π)− 3γ

2
·Dπ

(
M ‖M

)]
= sup
ν∈∆(M)

inf
p∈∆(Π)

sup
µ∈∆(M)

Eπ∼p EM∼µ EM∼ν
[
fM(πM)− fM(π)− 3γ

2
·Dπ

(
M ‖M

)]
= sup
ν∈∆(M)

inf
p∈∆(Π)

sup
M∈M

Eπ∼p EM∼ν
[
fM(πM)− fM(π)− 3γ

2
·Dπ

(
M ‖M

)]
.

Relabeling, this is equal to

sup
µ∈∆(M)

inf
p∈∆(Π)

sup
M∈M

Eπ∼p EM∼µ

[
fM(πM)− fM(π)− 3γ

2
·Dπ

(
M ‖M

)]
= sup
µ∈∆(M)

dec
qD
3γ/2(M, µ).
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Proof of Proposition 3.2. Let M be arbitrary. By Sion’s minimax theorem (see Foster et al. [12] for
details), we have

decDγ (M,M) = sup
µ∈∆(M)

inf
p∈∆(Π)

Eπ∼p,M∼µ
[
fM(πM)− fM(π)− γ ·Dπ

(
M ‖M

)]
.

By the assumed triangle inequality for D, we have that for all π ∈ Π,

EM,M ′∼µ[Dπ(M ‖M ′)] ≤ C EM∼µ
[
Dπ
(
M ‖M

)]
+ C EM ′∼µ

[
Dπ
(
M ‖M ′

)]
= 2C EM∼µ

[
Dπ
(
M ‖M

)]
.

Applying this bound above, we have that

decDγ (M,M) ≤ sup
µ∈∆(M)

inf
p∈∆(Π)

Eπ∼p,M∼µ
[
fM(πM)− fM(π)− γ

2C
· EM ′∼µ[Dπ(M ′ ‖M)]

]
≤ sup

ν∈∆(M)

sup
µ∈∆(M)

inf
p∈∆(Π)

Eπ∼p,M∼µ
[
fM(πM)− fM(π)− γ

2C
· EM ′∼ν [Dπ(M ′ ‖M)]

]
≤ sup

ν∈∆(M)

inf
p∈∆(Π)

sup
M∈M

Eπ∼p
[
fM(πM)− fM(π)− γ

2C
· EM ′∼ν [Dπ(M ′ ‖M)]

]
= sup
ν∈∆(M)

decDγ/(2C)(M, ν).

Proof of Proposition 3.3. The upper bound on o-decbiγ (M) follows from Proposition 2.2, so it
remains to prove the lower bound on decbiγ (M).

For a model M , define the Bellman operator T M

h via

[T M

h Q](s, a) = Esh+1∼PM
h (·|s,a),rh∼RM

h (·|s,a)

[
rh + max

a′∈A
Q(sh+1, a

′)

]
. (35)

Let

Dπ
sbe(Q ‖M) :=

H∑
h=1

EM,π
[
(Qh(sh, ah)− [T M

h Qh+1](sh, ah))
2
]

and Dπ
sbe

(
M ‖M

)
:= Dπ

sbe

(
QM,? ‖M

)
. By Jensen’s inequality, it suffices to lower bound

decDsbe
γ (M).

Let S = {s, t} and A = {a, b}. We consider a sub-familyM′ ⊂M of deterministic combination
lock MDPs parameterized by ~a = (~a1, . . . ,~aH) ∈ AH , with M~a defined as follows.

• The initial state is s1 = s.

• For each h = 1, . . . ,H − 1, if sh = s, then selecting ah = ~ah transitions to sh+1 = s, and
selecting ah 6= ~ah transitions to sh+1 = t. t is a self-looping terminal state: if sh = t, then
sh+1 = t regardless of the action taken.

• If sH = s and aH = ~aH , then rH = ∆ > 0; all other state-action tuples have zero reward.

We choose M such that QM,?
h (s, a) = 0 for all (h, s, a). We calculate that for all ~a ∈ AH , and all

policies π ∈ ΠRNS,

• fM~a(πM~a
)− fM~a(π) = ∆ · PM~a,π(a1:H 6= ~a).

• Dπ
sbe

(
QM,? ‖M~a

)
= ∆2 · PM~a,π(a1:H = ~a).

It follows that

decDsbe
γ (M,M) ≥ inf

p∈∆(Π)
max
~a∈AH

Eπ∼p
[
∆ · PM~a,π(a1:H 6= ~a)− γ ·∆2 · PM~a,π(a1:H = ~a)

]
≥ inf

p∈∆(Π)
E~a∼Unif(AH) Eπ∼p

[
∆ · PM~a,π(a1:H 6= ~a)− γ ·∆2 · PM~a,π(a1:H = ~a)

]
.

36



It is straightforward to see by induction that for all π ∈ ΠRNS, E~a∼Unif(AH)[PM~a,π(a1:H = ~a)] ≤
2−H and E~a∼Unif(AH)[PM~a,π(a1:H 6= ~a)] ≥ 1

2 , so we have

decDsbe
γ (M,M) ≥ ∆

2
− γ∆2

2H
.

The result follows by choosing ∆ appropriately.

Proof of Proposition 3.4. Let H be given, and assume without loss of generality that S =
2H−1 + 2H−2. Let N := 2H−2. We construct a family of MDPs M = {M1, . . . ,MN} with
deterministic rewards and transitions as follows.

• A = {a, b}.
• The state space is S = T ∪ E ∪ {s}. s is a deterministic initial state which appears only

in layer 1. T represents a depth H − 2 binary tree (with the root at layer h = 2), which
has N = 2H−2 leaf states in layer H , labeled by {1, . . . , N}, and 2H−1 − 1 states in total.
E = {N + 1, . . . , 2N} is an auxiliary collection of self-looping terminal states, each of
which can appears in layers h = 2, . . . ,H . In total, we have |S| = 2H−1 + 2H−2.

The dynamics and rewards for MDP Mi are as follows.

• At layer h = 1, s1 = s deterministically.

• If a1 = a, we transition to s2 = N + i ∈ E , and if a1 = b, we transition to the root state for
the tree T . We receive no reward.

• For h ≥ 2, all states s ∈ E are self-looping and have no reward (i.e. sh+1 = sh if sh ∈ E
for h > 1).

• For h ≥ 2, states in T follow a standard deterministic binary tree structure (e.g., [24, 8]).
Beginning from the root node at h = 2, action a transitions to the left successor, while
action b transitions to the right successor. For Mi, we receive reward 1 for reaching the leaf
node i ∈ T at layer H , and receive zero reward for all other states. Note that the transition
probabilities for this portion of the MDP do not depend on i.

Online estimation. We first construct an online estimation algorithm for the classM. Recall that
we adopt Hellinger distance, given by Dπ

H

(
M̂,M

)
= D2

H

(
M̂(π),M(π)

)
.

We first note that since all M ∈M have fM(πM) = 1, the optimistic estimation error is equal to the
(non-optimistic) estimation error

EstH =

T∑
t=1

Eπt∼pt EM̂t∼µt

[
D2

H

(
M̂ t(πt),M?(πt)

)]
.

Observe that since all MDPs M ∈ M have deterministic rewards and transitions, there exists a
function oM(π) such that o ∼M(π) has o = oM(π) almost surely. It follows that

D2
H(M(π),M ′(π)) = 2I{oM(π) 6= oM′(π)}

for all M,M ′ ∈M, so we have

EstH =

T∑
t=1

Eπt∼pt EM̂t∼µt

[
D2

H

(
M̂ t(πt),M?(πt)

)]
= 2

T∑
t=1

Eπt∼pt EM̂t∼µt

[
I{oM̂t

(πt) 6= oM?
(πt)}

]
.

For the estimation algorithm, we choose

µt(M) ∝ exp

(
−
∑
i<t

I{oM(πi) 6= oi}

)
.

Lemma C.3 implies that with probability 1, the sequence π1, . . . , πT satisfies
T∑
t=1

E
M̂t∼µt

[
I{oM̂t

(πt) 6= ot}
]
−

T∑
t=1

I{oM?
(πt) 6= ot} ≤ 1

2

T∑
t=1

E
M̂t∼µt

[
I{oM̂t

(πt) 6= ot}
]

+ log|M|.
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Since oM?
(πt) = ot, rearranging yields

T∑
t=1

E
M̂t∼µt

[
I{oM̂t

(πt) 6= ot}
]
≤ 2 log|M|.

From here, a standard application of Freedman’s inequality [16] implies that with probability at least
1− δ,

∑T
t=1 Eπt∼pt EM̂t∼µt

[
I{oM̂t

(πt) 6= ot}
]
. log(|M|/δ) . log(S/δ).

Lower bound for posterior sampling. Observe that for all Mi ∈M, the unique optimal policy
has πMi

(s) = b at h = 1. Thus, the posterior sampling algorithm, which chooses pt(π) =
µt({M ∈M | πM = π}), will never play a1 = a, and will never encounter states in E . As a result,
the problem is equivalent (for this algorithm) to a multi-armed bandit problem with N arms and
noiseless binary rewards, which requires E[RegDM] & N & S in the worst-case [21].

Upper bound for Algorithm 2. We first bound the Optimistic DEC forM. For any µ ∈ ∆(M),
we can write

o-decHγ (M, µ) = inf
p∈∆(Π)

sup
M∈M

Eπ∼p EM∼µ
[
fM(πM)− fM(π)− γ ·D

(
M(π) ‖M(π)

)]
= inf
p∈∆(Π)

sup
M∈M

Eπ∼p EM∼µ
[
fM(πM)− fM(π)− 2γ · I{oM(π) 6= oM(π)}

]
= inf
p∈∆(Π)

sup
M∈M

Eπ∼p EM∼µ
[
fM(πM)− fM(π)− 2γ · I{oM(π) 6= oM(π)}

]
,

where the last equality uses that fM(πM) = 1 for all M ∈ M. We choose p = (1 −
ε)µ({M ∈M | πM = ·}) + επa, where πa is the policy that plays action a deterministically.

Now, let M ∈M be fixed. Since each model Mi transitions to s2 = N + i deterministically when
a1 = a, we

Eπ∼p I{oM(π) 6= oM(π)} ≥ ε · I{oM(πa) 6= oM(πa)} = ε · I{M 6= M}

and
EM∼µ Eπ∼p I{o

M(π) 6= oM(π)} ≥ εµ(M\ {M}).
Similarly, we have

Eπ∼p[fM(πM)− fM(π)] = ε+ (1− ε)µ(M\ {M}).

By choosing ε = γ−1, which is admissible whenever γ ≥ 1, we have

Eπ∼p EM∼µ
[
fM(πM)− fM(π)− 2γ · I{oM(π) 6= oM(π)}

]
≤ ε+ µ(M\ {M})− 2γεµ(M\ {M}) ≤ 1

γ
.

This establishes that
o-decHγ (M) ≤ 1

γ

for all γ ≥ 1. A regret bound of the form E[RegDM] ≤ Õ(
√
T log(S)) now follows by invoking

Theorem 2.1 with the estimation guarantee in the prequel and choosing γ appropriately.
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