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Abstract
With the rapid development of the Internet and the widespread
use of social media, the proliferation of multimodal misinformation
combining images and text poses serious risks to societal trust, in-
dividual well-being, and the integrity of AI models trained on such
data. Recently, the automatic detection multimodal misinforma-
tion has become an essential area of research. However, traditional
methods often rely on hierarchical neural networks that compress
and fuse modalities, potentially overlooking deeper interactions be-
tween modalities and reducing model interpretability. In this paper,
we present a novel Multimodal Taylor Series (MTS) network for
detecting multimodal misinformation. The MTS network leverages
Taylor series expansion to explicitly capture both low-order and
high-order interactions betweenmodalities, which also enhances in-
terpretability by decomposing the model’s processing into distinct
terms. Additionally, the proposed MTS network avoids exponential
parameter growth and maintains linear scalability, allowing the
model to effectively capture complex cross-modal correlations. Ex-
tensive experiments on three benchmark datasets demonstrate that
the MTS network significantly outperforms state-of-the-art models.
We will release our code after the final publication of the paper.
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• Computing methodologies→Machine learning.
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1 Introduction
With the rapid growth of the internet and social media, the pro-
liferation of multimodal content combining images and text has
significantly facilitated the spread of misinformation, posing sub-
stantial risks to both societal stability and individual well-being
[14, 30]. In the era of large language models, the use of harmful
information such as misinformation in training data can result in
biased and erroneous outputs, including hallucinations [11], se-
verely misleading users. Consequently, the detection of multimodal
misinformation have become critically important.

Traditional approaches [4, 15, 19, 33] to multimodal misinfor-
mation detection typically employ hierarchical neural networks
that progressively compress multimodal data. These methods often
process image and text features separately, followed by modality
fusion through simple feature concatenation or attention mecha-
nisms. However, they frequently struggle to effectively capture the
intricate, deep interactions between modalities [1]. Furthermore,
the data flow in such methods is implicit, making it unclear which
specific parameters are responsible for capturing relevant features,
thus limiting model interpretability.

To address these limitations, we propose the Multimodal Tay-
lor Series (MTS) network, which effectively handles the inherent
complexity of multimodal data. Our approach treats image and text
modalities as two variables and leverages a bivariate Taylor series

Figure 1: An illustration of the impact of gradually increasing
the order of the Taylor series on function approximation
accuracy.

expansion to approximate the mapping from network input to out-
put. As shown in Figure 1, using the sine function as an example,
the approximation becomes increasingly accurate as the order of
the Taylor series increases, capturing finer details of the function.

Utilizing a bivariate Taylor series expansion for multimodal mis-
information detection offers two key advantages. First, the Taylor
series, with its different orders, can explicitly model both shallow
and deep interactions between image and text modalities, from
low-order to high-order interactions. Second, it decomposes the
data flow into distinct terms, such as modality-independent terms
and cross-modal interaction terms, enabling clear identification
of the roles of different parameters and thereby enhancing model
interpretability.

To prevent the exponential growth of parameters typically asso-
ciated with increasing the order of the Taylor series, we simplify the
expansion by applying modality-wide partial derivations of the en-
coded features and generating expansion terms in an efficient way.
This optimization improves both the scalability and practicality of
the model, making it easy to implement and deploy in real-world
applications. In the experiments, we evaluate the proposed method
on benchmark datasets for fake news and sarcasm detection. The
results consistently show that the MTS network outperforms state-
of-the-art methods. Additionally, we also provide a detailed analysis
demonstrating the interpretability of the model.

2 Related Work
2.1 Misinformation Detection
With the widespread use of the Internet and social media, multi-
modal misinformation detection has recently emerged as an im-
portant research area. For instance, CAFE [4] combines unimodal
features with cross-modal correlations by applying cross-modal
fuzzy learning and modal fusion. FND-CLIP [33] employs CLIP to
perform normalized and weighted fusion, reducing redundant in-
formation in both image and text features. LogicDM [19] leverages
fine-grained word-level embeddings processed by an LSTM, incor-
porating additional predicate features to enhance interpretability
and performance. BMR [29] adapts image and text features using
consistency learning, followed by feature extraction and fusion
through a multi-expert network. FSRU [15] improves rumor detec-
tion by integrating spectral features from both modalities. These
methods are typically based on deep neural networks.
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In contrast, this paper introduces a novel network architecture
based on Taylor series expansion, which effectively captures inter-
actions between modalities at various orders while offering clearer
model interpretability.

2.2 Polynomial Networks
Research has demonstrated that polynomial methods can achieve
superior fitting with fewer parameters, even without activation
functions [5, 8, 20]. For example, Π-Nets [5], a new class of deep
convolutional neural networks (DCNNs), utilize polynomial neu-
ral networks for function approximation. These networks employ
unique jump connections to form higher-order polynomials, ex-
tending traditional compositional paradigms. Similarly, CAT [8]
uses a concept encoder alongside a polynomial network based on
Taylor expansions, delivering strong performance across various
single-modal tasks.

However, most prior work has focused on single-modal scenarios,
limiting its applicability to multimodal tasks. One major limitation
of previous methods is the exponential growth in the number of pa-
rameters with increasing polynomial degree, making it impractical
to model higher-order complex functions. Polynomial structures
of only 2-3 degrees struggle to capture intricate distributions of
multimodal data and deep interactions between modalities. In con-
trast, our method is specifically designed for multimodal scenarios,
ensuring that parameter growth remains linear with increasing
polynomial degree. This addresses the limitations of earlier meth-
ods, which suffer from reduced fitting capacity due to exponential
parameter growth.

3 Methodology
3.1 Overview
The overall framework is depicted in Figure 2. Given a multimodal
input sample, we first encode the image and text modalities into
their respective feature representations, 𝑒𝑖 for the image and 𝑒𝑡 for
the text. For the image modality, we utilize ResNet followed by a
linear layer to extract the encoded feature. For the text modality, we
input the text into BERT, and extract the CLS token, which is then
passed through a linear layer to obtain the encoded text feature.
These encoded features are then fed into the proposed Multimodal
Taylor Series (MTS) network to generate the final feature repre-
sentations, denoted as 𝑀𝑛 and 𝑁𝑛 . Subsequently, we perform an
element-wise addition of the two final feature representations, and
pass the result through a linear layer to produce the logits for final
classification.

The MTS network is derived from the Taylor series expansion
and consists of multiple layers. As the number of layers in the net-
work increases, the overall function represented by the network
becomes more expressive, capturing increasingly complex interac-
tions between the image and text modalities. In the next sections,
we elaborate how the MTS network is derived from the original
Taylor series expansion and adapted for practical implementation.
To maintain mathematical clarity, henceforth we use ®𝑥 to denote
the image feature 𝑒𝑖 , and ®𝑦 to denote the text feature 𝑒𝑡 .

3.2 Multimodal Taylor Series Network
In mathematics, Taylor’s theorem states that a polynomial function
of 𝑑 variables can be approximated using a Taylor series expansion,
as shown below:
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where ®𝑥 ∈ R𝑑 , and 𝑁 denotes the order of the Taylor series.
To adapt this for multimodal data, we extend the equation to a
bivariate form to better represent the interactions across multiple
modalities. For simplicity, we perform the Taylor series expansion
at the origin:
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When incorporating tensors, this can be written as:

𝑓 ( ®𝑥, ®𝑦) ≈ 𝑓 (®0, ®0) +
𝑁∑︁
𝑘=1

(
𝑊 [𝑘 ]
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where ®𝑥 ∈ R𝑑 and ®𝑦 ∈ R𝑑 are the feature representations of
the image and text modalities, respectively, and [®𝑥, ®𝑦] ∈ R2𝑑 de-
notes the concatenation of the two features.𝑊 [𝑘 ] ∈ R

∏𝑘
𝑛=2 ×(2𝑑 )

represents the 𝑘-th order derivative parameters of the function,
and ×̂𝑗 denotes the mode-𝑛 matrix product [13]. The term

∏𝑘+1
𝑖=2 ×̂𝑖

represents the operation of applying the 𝑘-th order derivative of the
parameter𝑊 [𝑘 ] and performing element-wise multiplication with
[®𝑥, ®𝑦]. The number of parameters required to fit the coefficients
𝑊 [𝑘 ] in the 𝑁 -th order polynomial is:

𝑂 (𝑓 ( ®𝑥, ®𝑦)) =
𝑁∑︁
𝑘=1

(2𝑑)𝑘 =
2𝑑 × (1 − (2𝑑)𝑁 )

1 − 2𝑑
, (4)

𝑂 (𝑓 ( ®𝑥, ®𝑦)) = (2𝑑)𝑁 . (5)
As shown in Eq. 5, the number of parameters grows exponentially

with the order 𝑁 . While this approach is feasible when 𝑁 is small,
it becomes impractical for larger values of 𝑁 , as it requires an
excessive number of parameters to capture the complex interactions
among different modalities. To address this scalability issue, we
propose reducing the parameter size in Eq. 3.

3.3 Modality-Wide Partial Derivation of
Encoded Features

To mitigate the exponential growth of parameters in Eq. 3 with
increasing order 𝑁 , we treat each modality’s encoded feature as a
whole for partial derivation, rather than treating each dimension
of the feature as a separate variable. For example, for the image
feature ®𝑥 ∈ R𝑑 , we compute 𝜕

𝜕 ®𝑥 instead of
{

𝜕
𝜕𝑥1

, 𝜕
𝜕𝑥2

, . . . , 𝜕
𝜕𝑥𝑑

}
. As

a result, Eq. 3 transforms into:

𝑓 ( ®𝑥, ®𝑦) ≈
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where the Hessian matrices𝑊 𝑘
®𝑥 and𝑊 𝑘

®𝑦 ∈ R𝑑×𝑑 represent the
𝑘-th order partial derivative matrix. The number of parameters
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Figure 2: The overview of the proposed framework. Note that all the linear layers are single-layer linear transformations
without activation functions, in order to preserve the original structure and properties of the Taylor series expansion.

required to fit this improved expression is:

𝑂 (𝑓 ( ®𝑥, ®𝑦)) =
𝑁∑︁
𝑘=1

(2𝑑)2 = 𝑁 × (2𝑑)2 . (7)

This reduces the parameter count from (2𝑑)𝑁 to 𝑁 × (2𝑑)2,
transforming the parameter growth from exponential to linear and
significantly improving scalability. As a result, the model is capable
of fitting higher-order, more complex functions.

Moreover, treating the modality-wide encoded feature as a whole
is well-founded in multimodal learning. The semantic integrity of
an encoded image or text feature should be preserved in the form
of a complete vector, which is crucial for modality representation
learning. If we treat each dimension separately, we risk breaking the
semantic integrity of the feature and ignoring the interconnections
between different dimensions, thereby weakening the expressive
power of the encoded features.

3.4 Efficient Generation of Taylor Series
Expansion Terms

Although Eq. 6 reduces the number of parameters, directly imple-
menting the network architecture based on this equation remains
suboptimal. In Eq. 6, the features of the two modalities are simply
linearly added, meaning they are immediately combined into a
single representation without preserving the distinct information
from each modality. However, in multimodal learning, due to the
semantic and modality gaps present in the encoded features of
different modalities [17], such an early combination can negatively
impact the representation learning of modality-specific features
and reduce the model’s ability to capture cross-modal interactions
effectively.

To address this, one straightforward solution is to transform Eq. 6
into its full expansion form. The expanded expression must include
terms of all orders from 0 to 𝑁 , covering both single-modality
features and cross-modal combination terms. Omitting coefficient
matrices for clarity, the cumulative sumof all terms can be expressed
as follows:

𝐴𝑁 =

𝑁∑︁
𝑘=0

𝑘∑︁
𝑖=0

(
𝑥𝑖 × 𝑦𝑘−𝑖

)
, (8)

The relationship between the total number of terms and the
order 𝑁 is given by:

𝑂term (𝑓 ( ®𝑥, ®𝑦)) ≈ 2𝑁 . (9)
As the order 𝑁 increases, the number of terms grows expo-

nentially, resulting in a proportional increase in the number of
parameters. Consequently, implementing the full expansion of Eq.
6 is impractical. Manually setting all single-modality and cross-
modal terms would be cumbersome, and the exponential growth in
parameters would severely limit the model’s scalability.

To solve this issue, we transform the process of generating all
terms in the full expansion of Eq. 6 into a simpler and more efficient
process for practical implementation. Specifically, we define two
bivariate functions, M(·, ·) and N(·, ·), as follows:

M(𝑎, 𝑏) = 𝑎 + 𝑎𝑏 + 𝑎2, N(𝑎, 𝑏) = 𝑏 + 𝑎𝑏 + 𝑏2, (10)
where 𝑎 and 𝑏 are two variables. We further define the initial

terms𝑀0 and 𝑁0 as:

𝑀0 = M(®𝑥, ®𝑦), 𝑁0 = N(®𝑥, ®𝑦). (11)
We can divide𝑀0 (and similarly 𝑁0) into three components for

finer analysis. The term ®𝑥 serves as a linear term that preserves low-
order features. The term ®𝑥 ®𝑦 acts as an interaction term, capturing
mutual information between modalities and elevating ®𝑥 and ®𝑦 to
higher-order terms. Lastly, ®𝑥2 functions as a squared term, focusing
on high-order feature extraction. We can further simplify this into
the following form:

𝑀0 = 𝑉𝑒𝑐𝑥 (𝐼 + ®𝑥 + ®𝑦) = ®𝑥𝐴1, 𝑁0 = ®𝑦 (𝐼 + ®𝑥 + ®𝑦) = ®𝑦𝐴1, (12)

We then define the next terms𝑀1 and 𝑁1 based on Eq. 12 as:

𝑀1 = M(𝑀0, 𝑁0) = ®𝑥𝐴1 (1 + ®𝑥 + ®𝑦 + 2®𝑥 ®𝑦 + ®𝑥2 + ®𝑦2) = ®𝑥𝐴3, (13)

𝑁1 = N(𝑀0, 𝑁0) = ®𝑦𝐴1 (1 + ®𝑥 + ®𝑦 + 2®𝑥 ®𝑦 + ®𝑥2 + ®𝑦2) = ®𝑦𝐴3 . (14)

By following this pattern, we generalize the expressions for𝑀𝑛

and 𝑁𝑛 as:

𝑀𝑛 = M(𝑀𝑛−1, 𝑁𝑛−1) = ®𝑥𝐴2𝑛−1 (1 + (®𝑥 + ®𝑦)𝐴2𝑛−1) = ®𝑥𝐴2𝑛+1−1,
(15)
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𝑁𝑛 = N(𝑀𝑛−1, 𝑁𝑛−1) = ®𝑦𝐴2𝑛−1 (1 + (®𝑥 + ®𝑦)𝐴2𝑛−1) = ®𝑦𝐴2𝑛+1−1,
(16)

𝑀𝑛 + 𝑁𝑛 = 𝐴2𝑛+1 . (17)
As shown in Eq. 17, if we set 𝑛 = log2 𝑁 − 1, we can use𝑀𝑛 +𝑁𝑛

to express all constituent terms in Eq. 8. In our method, we imple-
ment this progressive derivation process as a multi-layer network.
As shown in Figure 3, each layer corresponds to the iteration from
𝑀𝑛−1 to𝑀𝑛 . The original input to𝑀0 and𝑁0 are the encoded image
and text features. This network structure allows us to express all
constituent terms in Eq. 8 with only logarithmic growth in the num-
ber of terms, significantly reducing the number of parameters and
computational complexity while preserving the ability to capture
complex multimodal interactions.

In practice, each term is preceded by a corresponding coefficient
matrix (omitted in Eq. 8 for clarity). The final expression for 𝑀𝑛

(and similarly for 𝑁𝑛) is given in Eq. 18. The full formulation of the
proposed multimodal Taylor series network is presented in Eq. 19.

𝑀𝑛 =𝑊𝛾𝑀𝑛−1 + (𝑊𝛼1𝑀𝑛−1) ⊙ (𝑊𝛼2𝑁𝑛−1)
+(𝑊𝛽1𝑀𝑛−1) ⊙ (𝑊𝛽2𝑀𝑛−1),

(18)

𝑓 ( ®𝑥, ®𝑦) ≈ 𝑀𝑛 + 𝑁𝑛, where𝑛 = log2 𝑁 − 1, (19)
where𝑊𝛾 ,𝑊𝛼1 ,𝑊𝛼2 ,𝑊𝛽1 ,𝑊𝛽2 ∈ R𝑑×𝑑 are coefficient matrices,

and ⊙ denotes the Hadamard product. From Eq. 19, we see that
this approach preserves both low-order and high-order information
from different modalities while effectively capturing cross-modal
correlations.

To incorporate semantic meaning into the notations𝑀𝑛 and 𝑁𝑛 ,
in the experiments, we refer to them as the Text-Guided Image
Refinement (TIR) feature and the Image-Guided Text Refinement
(ITR) feature, respectively. In TIR, the text modality is dominant,
while the image serves as a supervisory signal to adjust inter-modal
correlations. Conversely, in ITR, the image modality is dominant
and influenced by the text.

3.5 Infinity Norm Scaling
To maintain the original structure and properties of the Taylor se-
ries, we avoid introducing nonlinear factors such as sigmoid, tanh,
or batch normalization for magnitude scaling within the network
architecture. However, without any form of scaling on the data
flow within the network, this can lead to a magnitude explosion
in the network output, as well as gradient explosion during back-
propagation. To address this, we propose an infinity norm scaling
strategy.

Specifically, for the 𝑛-th layer of the network, we first aggregate
a batch of 𝑀𝑛 ∈ R𝑑 and 𝑁𝑛 ∈ R𝑑 into 𝑀𝑏𝑎𝑡𝑐ℎ ∈ R𝑏𝑎𝑡𝑐ℎ×𝑑 and
𝑁𝑏𝑎𝑡𝑐ℎ ∈ R𝑏𝑎𝑡𝑐ℎ×𝑑 , respectively, where 𝑏𝑎𝑡𝑐ℎ represents the actual
batch size. We then apply the 𝐿∞ norm constraint to 𝑀𝑏𝑎𝑡𝑐ℎ and
𝑁𝑏𝑎𝑡𝑐ℎ , scaling the values in the batch data for each layer to the
range of -1 to 1, as shown in the following formula:

𝑀′
𝑏𝑎𝑡𝑐ℎ

=
𝑀𝑏𝑎𝑡𝑐ℎ

| |𝑀𝑏𝑎𝑡𝑐ℎ | |∞
, 𝑁 ′

𝑏𝑎𝑡𝑐ℎ
=

𝑁𝑏𝑎𝑡𝑐ℎ

| |𝑁𝑏𝑎𝑡𝑐ℎ | |∞
, (20)

where | | · | |∞ denotes the maximum absolute value within the
batch. This ensures that the data flow remains stable, preventing
magnitude and gradient explosions.

Linear
Term

Linear
Term

Square
Term

Interaction
Term
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Square
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Linear
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Square
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Interaction
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Figure 3: The architecture of an MTS layer. Here, 𝑚 and 𝑛

represent the feature vectors of the two modalities in the
current layer, while 𝛼 , 𝛽 , and 𝛾 are learnable parameters.

3.6 Low-Order Independent Initialization
In each layer of the proposed network, the parameters𝑊𝛼1 ,𝑊𝛼2 ,𝑊𝛽1 ,𝑊𝛽2
for the square and interaction terms in Eq. 18 are initialized using
Xavier uniform initialization [9]. For the linear term, we initialize
its coefficient matrix𝑊𝛾 with an additional identity matrix, i.e.,
𝐼 + 𝑥𝑎𝑣𝑖𝑒𝑟𝑖𝑛𝑖𝑡 , allowing it to act as a residual term as well.

It is crucial to choose an initialization method that ensures the
square and interaction terms are nearly zero at the beginning of
network training. Otherwise, it would impose a prior assumption
on the higher-order features of each modality and the interaction
between the two modalities, hindering comprehensive learning.
Furthermore, this would not align with the principle illustrated
in Figure 1, where the Taylor series progressively fits complex
functions by learning from low-order to high-order terms. Next,
we briefly demonstrate why our initialization method ensures this.

Assume the feature distribution for the image modality follows
𝑁Img (0, 1) and for the text modality follows 𝑁Text (0, 1), represent-
ing two independent normal distributions. After applying the co-
efficient matrix, the distributions remain unchanged because the
Xavier-initialized matrix ensures that the variance of the features
before and after input remains consistent.

After applying infinity norm scaling (Section 3.5), the distribu-
tion of the interaction term can be expressed as:

Inter =
𝑁Img (0, 1)

E(Max[𝑁Img (𝑋1,...,batch)])
· 𝑁Text (0, 1)
E(Max[𝑁Text (𝑌1,...,batch)])

,

(21)

where 𝑋1,...,𝑛 and 𝑌1,...,𝑛 represent a batch of independent sam-
ples from the𝑁Img and𝑁Text distributions, respectively, andE(Max[·])
is the expected value of the 𝐿∞ norm.

From a complex mathematical derivation (details omitted), we
know that for samples 𝑋1, . . . , 𝑋𝑛 ∼ 𝑁 (0, 1), the approximation of
the expected value of the 𝐿∞ norm is:

E(Max[𝑋1, . . . , 𝑋𝑛]) ≈
√︁
2 log𝑛. (22)
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Dataset Weibo Pheme Sarcasm
Language Chinese English English

Total Samples 7532 2018 22225
Misinformation 3749 590 9601

Non-Misinformation 3783 1428 12624
Table 1: Statistics of the Datasets.

Thus, the distribution function of the interaction term in Eq. 21
can be transformed as follows:

InterTerm ≈
𝑁Img, Text (0, 1)
2 log(batch × 𝑑) , (23)

where 𝑁Img, Text (0, 1) represents a bivariate normal distribution
with a mean of 0 and variance of 1, comprising both image and text
features. The expected mean of the distribution in Eq. 23 is 0, and
the corresponding variance is 1

(2 log(batch×𝑑 ) )2 .
Given the experimental settings where the batch size is 24 and

𝑑 = 768, the variance is approximately 0.0012, which is very close to
0. This indicates that, after initialization and without any training,
the values of the interaction and square terms fluctuate within a
narrow range around 0, effectively behaving as if these terms are
not included.

In this way, the network retains only the most basic low-order
features in the early stages of training. Since the initialization
method is applied to all layers, the entire network can initially be
viewed as a nearly linear combination of two independent variables,
i.e., 𝑓 ( ®𝑥, ®𝑦) = 𝑔( ®𝑥) + ℎ( ®𝑦). As training progresses, the learning of
higher-order coefficients gradually captures the higher-order func-
tion distribution. This process also implicitly learns the correlation
between the two modalities, achieving modality fusion within the
polynomial expression.

4 Experiments
4.1 Experimental Setup
4.1.1 Datasets. We evaluate the proposed method on three bench-
mark datasets for two tasks: Weibo [24] and Pheme [34] for multi-
modal fake news detection, and Sarcasm [2] for multimodal sarcasm
detection. For Weibo and Sarcasm, we use the partitioning strategy
from LogicDM [19], and for Pheme, we followMFAN’s [31] method.
Dataset statistics are shown in Table 1. Fake news and sarcasm are
treated as misinformation, while real news and non-sarcastic ex-
pressions are considered non-misinformation.

4.1.2 ComparedMethods. We compare the proposedMTS network
with three categories of baselines:

1) UnimodalModels. These methods operate on a single modal-
ity, either images or text. For text-based models, we include BERT
[6], while for image-based models, we use ViT [7].

2) Multimodal Models Using Only Original Samples. This
category includes methods such as EANN [25], MVAE [12], SAFE
[32], CAFE [4], SpotFake [23], SpotFake+ [22], FSRU [15], and MM-
CAN [10]. These models rely solely on the original image and text
content of the samples without incorporating external knowledge
or additional input data. Their primary objective is to enhance
feature fusion between different modalities, fully leveraging the
available information from both image and text modalities.

3) Multimodal Models Using Additional Information. This
category includes models such as MCNN [28], MCAN [26], BMR
[29], LogicDM [19], and MFAN [31]. These methods incorporate
additional knowledge or external input data to provide the model
with more context and information about the samples, thereby
improving the performance of the detection task.

Note that the proposed MTS network only utilizes the original
image and text data, without integrating any auxiliary information
like the third group of methods. We include these methods for
completeness and comparison, as it allows us to demonstrate that
even without the use of external knowledge, our approach achieves
superior results. This highlights the effectiveness of the proposed
MTS network in capturing and utilizing multimodal interactions.

4.1.3 Implementation Details. For the text modality, we utilize the
BERT-base-chinese model 1 to encode the text data in the Weibo
dataset, which is in Chinese. For the English datasets, including
Pheme and Sarcasm, we employ the BERT-base-uncased model 2,
setting the maximum number of input text tokens to 200. For the
image modality, we use ResNet34 3 as the image encoder. Input
images are resized to 224x224 pixels before being fed into the net-
work. The output features from both the image and text encoders
are subsequently projected into 768-dimensional vectors using a
linear layer, before being input into the proposed MTS network.
The model is trained using the cross-entropy loss function, and we
optimize it with the AdamW optimizer, setting the learning rate to
2 × 10−5. We use a batch size of 24 in all experiments.

4.1.4 Evaluation Metrics. To evaluate our method and compare it
with baseline models, we use standard performance metrics includ-
ing accuracy (Acc), precision (P), recall (R), and F1 score (F1).

4.2 Comparison Results
Multimodal Fake News Detection. As shown in Table 2, the
proposed MTS network consistently delivers superior performance
across both the Weibo and Pheme datasets, outperforming all base-
line methods on the majority of metrics. Compared to baselines that
do not utilize external information, MTS demonstrates significant
improvements. For instance, compared to the competitive baseline
MMCAN-Res, on the Weibo dataset, MTS improves the F1-Score for
fake news and real news by 1.6% and 0.9%, respectively. Similarly,
on the Pheme dataset, MTS improves the F1-Score for fake news
by 4.8% and for real news by 1.7%.

Even when compared to methods that leverage external knowl-
edge, such as MFAN, MTS still outperforms them across most met-
rics. For example, MTS improves accuracy by 2.8% on Weibo and
by 2.6% on Pheme, further underscoring its effectiveness without
relying on additional external data.

Multimodal Sarcasm Detection. As shown in Table 3, the
MTS network significantly outperforms all baseline methods in
the sarcasm detection task. Notably, compared to the competitive
LogicDM model, MTS improves accuracy by 1.4% and F1-Score
by 3.9%, illustrating the model’s capacity for handling nuanced
multimodal content.

1https://huggingface.co/bert-base-chinese
2https://huggingface.co/bert-base-uncased
3https://pytorch.org/vision/main/models/generated/torchvision.models.resnet34

https://huggingface.co/bert-base-chinese
https://huggingface.co/bert-base-uncased
https://pytorch.org/vision/main/models/generated/torchvision.models.resnet34
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Dataset Methods Accuracy Fake News Real News
Precision Recall F1-Score Precision Recall F1-Score

Weibo

EANN [25] 78.2 82.7 69.7 75.6 75.2 86.3 80.4
MVAE [12] 82.4 85.4 76.9 80.9 80.2 87.5 83.7
SAFE [32] 76.3 83.3 65.9 73.6 71.7 86.8 78.5
CAFE [4] 84.0 85.5 83.0 84.2 82.5 85.1 83.7

SpotFake [23] 86.9 87.7 85.9 86.8 86.1 87.9 87.0
SpotFake+ [22] 87.0 88.7 84.9 86.8 85.5 89.2 87.3

FSRU [15] 90.1 92.2 89.2 90.6 87.9 91.3 89.5
MMCAN-Res [10] 90.6 91.6 89.7 90.6 89.8 91.6 90.7

MCNN* [28] 84.6 80.9 85.7 83.2 87.9 83.7 85.8
MCAN* [26] 87.8 90.1 86.2 88.1 87.0 90.3 88.6
BMR* [29] 88.4 87.5 88.6 88.0 87.4 88.1 87.7

LogicDM* [19] 85.2 86.2 84.5 85.3 84.3 85.9 85.1
MFAN* [31] 89.1 94.2 83.5 88.5 85.0 94.8 89.6
MTS (Ours) 91.9 93.7 90.7 92.2 90.1 93.3 91.6

Pheme

EANN [25] 68.1 68.5 66.4 69.4 70.1 75.0 74.7
MVAE [12] 85.2 80.6 71.9 76.0 89.1 91.7 89.3
SAFE [32] 81.1 82.7 55.9 66.7 80.6 94.0 86.6
CAFE [4] 86.1 81.2 64.5 71.9 87.5 94.3 90.8

SpotFake [23] 82.3 74.3 74.5 74.4 86.4 86.6 86.3
SpotFake+ [22] 80.0 73.0 66.8 69.7 83.2 86.9 85.0

MMCAN-Res [10] 89.0 80.3 79.4 79.9 92.2 92.6 92.4
MCNN* [28] 82.4 80.9 77.9 79.5 83.9 87.0 85.4
MCAN* [26] 86.7 81.9 82.1 82.0 88.7 88.5 88.6
MFAN* [31] 88.8 77.1 84.6 80.7 93.9 90.5 92.2
MTS (Ours) 91.4 89.2 80.5 84.7 92.2 96.0 94.1

Table 2: Performance (%) on the multimodal fake news detection task across the Weibo and Pheme datasets. Methods marked
with * incorporate external knowledge or auxiliary information. The best results for each metric are highlighted in bold, and
the second-best results are underlined. Some baselines are excluded from the Pheme comparison due to unavailable results.

Model Acc P R F1

Unimodal Bert [6] 83.9 78.7 82.3 80.2
ViT [7] 67.8 57.9 70.1 63.4

Multimodal

HFM [3] 83.4 76.6 84.3 80.2
D&R Net [27] 84.0 78.0 83.4 80.6
Att-Bert [21] 86.1 80.9 85.1 82.9

InCrossMGs [16] 86.1 81.4 84.4 82.8
HCM [18] 87.4 81.8 86.5 84.1

LogicDM* [19] 88.1 85.7 85.0 85.3
Ours 89.5 89.0 89.4 89.2

Table 3: Performance (%) on multimodal sarcasm detection.

These results strongly demonstrate the effectiveness of the pro-
posed MTS network in capturing deep interactions between dif-
ferent modalities. The consistent improvements across both fake
news and sarcasm detection tasks highlight the model’s versatility,
making it a promising solution for a wide range of multimodal
classification problems.

4.3 Ablation Study
As shown in Table 4, the ablation study investigates the contribu-
tions of different components in the proposed model. First, com-
paring Row 5 with Row 1, we observe a significant performance
drop on the Sarcasm dataset when the interaction term is removed.

This highlights the importance of the interaction term in capturing
cross-modal correlations between text and image. Second, compar-
ing Row 5 with Row 2, we find that removing the square term has
minimal impact, likely because high-order polynomial information,
which the square term captures, can also be learned through the
interaction term. Lastly, comparing Row 5 with Rows 3 and 4, we
see that the absence of either the ITR or TIR feature leads to reduced
performance, demonstrating the necessity of both features in the
proposed network for optimal performance.

4.4 Analysis of Feature Space Distribution
As shown in Figure 5 (a), we observe a clear trend of decreasing vari-
ance as the number of layers increases. Variance in a feature vector
typically reflects data dispersion, with higher variance indicating
more scattered data points. Initially, the features are dispersed in
a high-dimensional space, but as the MTS network deepens and
becomes more complex, the features gradually concentrate into a
lower-dimensional subspace, eventually converging into a highly-
compressed representation for final classification. This behavior is
consistent with deep learning models, where features are progres-
sively refined and information becomes more concentrated with
each layer.

We also conduct a qualitative analysis of the feature distribution.
As illustrated in Figure 4, we visualize the sample features from the
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Figure 4: Feature visualization on a two-dimensional plane. Red and green points represent samples from two different classes.
"Image Features" and "Text Features" refer to the original image and text features, 𝑒𝑖 and 𝑒𝑡 , before being input into the MTS
network. "ITR Features" and "TIR Features" represent the corresponding output features from the MTS network. The notation
"-w/o Inter" indicates that the interaction term has been removed from the features.

(b) Change Magnitude Between Layers (c) Cumulative Change Magnitude of Layers(a) Different Layers Varance

Figure 5: Change curves of various average values across all samples in the Weibo test set: (a) shows the variance of the ITR and
TIR features at each layer of the MTS network; (b) depicts the L2 norm difference of features between consecutive layers, where
the vertical value at 𝑙𝑛 represents the L2 norm difference between features at layers 𝑙𝑛 and 𝑙𝑛−1; (c) illustrates the cumulative L2
norm change of features from the first layer to the current layer, where the value at 𝑙𝑛 represents the cumulative L2 norm
difference between features at layer 𝑙𝑛 and the first layer.

Weibo test set by projecting the first two dimensions of each feature
onto a 2D plane. Comparing the original features in the first column
with the TIR and ITR features processed by the MTS network in the
second column, we observe a much clearer separation between the
two classes after the MTS processing, highlighting the model’s abil-
ity to improve classification performance. Furthermore, removing
the interaction terms from the ITR features significantly reduces
the separability between the classes, underscoring the critical role
of interaction terms in capturing cross-modal correlations within

the MTS network. For the TIR features, the difference between
retaining and removing the interaction terms is less pronounced.
We hypothesize that in the Weibo dataset, the signal from the text
modality is already strong enough to dominate the classification,
reducing the observable impact of the interaction terms.
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Row Method Weibo Sarcasm
Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

1 -w/o Inter 91.5 91.6 91.3 91.4 84.6 84.1 84.0 84.0
2 -w/o Square 91.4 91.4 91.3 91.3 89.5 89.1 89.4 89.2
3 -w/o ITR 90.7 90.7 90.7 90.7 87.6 87.0 87.4 87.2
4 -w/o TIR 89.6 90.1 89.3 89.5 89.4 89.0 89.1 89.1
5 MTS 91.5 91.6 91.4 91.5 89.5 89.1 89.2 89.2

Table 4: Ablation studies on the different components of the proposed method. "Inter" denotes the interaction term. "Square"
denotes the square term.

Used Layers Accuracy Precision Recall F1-Score
None 62.0 62.4 62.3 61.9
2 88.5 88.5 88.5 88.5
4 91.6 91.7 91.5 91.5
6 91.4 91.5 91.3 91.4
All 91.5 91.6 91.4 91.5

Table 5: Performance (%) of an 8-layer MTS network on the
Weibo dataset using different number of subsets of layers for
inference: "None" (no layers), ’2’, ’4’, ’6’, and ’All’ (all layers).

4.5 Model Interpretability from the Perspective
of Taylor Series

As shown in Figure 5 (b), we observe that the magnitude of feature
changes is substantial in the initial layers but diminishes as the
model deepens. In Figure 5 (c), the cumulative change increases
rapidly at first before stabilizing. These patterns align with the the-
ory of Taylor series expansion, where lower-order terms dominate
the capture of core feature interactions, while higher-order terms
have diminishing influence and serve primarily as fine-tuners for
refining the complex function representation.

To further support this view, we train an 8-layer MTS network
and evaluate the impact of using different numbers of layers during
testing (see Table 5). The results show that performance improves
progressively with the first four layers, while the latter four layers
contribute minimally to further enhancement. This observation
is also consistent with the Taylor series expansion theory, where
lower-order terms are more critical for the model’s success, and
higher-order terms provide finer adjustments to the overall repre-
sentation.

4.6 Analysis of Layer Number Selection
We investigate the effect of varying layer numbers on the perfor-
mance of the MTS network, as illustrated in Figure 6, using the
Weibo test set. First, we can see that the MTS network consistently
outperforms the SOTA baseline in both accuracy and F1-Score,
underscoring its robustness across different layer configurations.
Second, the network achieves its best performance with a moder-
ate layer count of 5. Performance is notably lower when the layer
count is either too small (e.g., 2) or too large (e.g., 8). This suggests
that choosing a balanced layer number is essential for optimizing
performance and avoiding suboptimal extremes.

In terms of performance trends, we observe that as the number
of layers increases from 2 to 5, there is a clear upward trend. This

Figure 6: Performance (%) trend on the Weibo dataset with
different layer numbers in the MTS network. The horizontal
axis shows the number of layers in the network, and the verti-
cal axis represents the performance metrics. For comparison,
we also include the Macro F1-Score and accuracy from the
competitive baseline MMCAN-Res, labeled as "SOTA F1" and
"SOTA ACC."

suggests that higher-order terms in the Taylor series expansion en-
hance the MTS network’s expressiveness, allowing it to model more
complex single-modal features and capture deeper cross-modal in-
teractions, leading to improved performance. However, beyond 5
layers, performance begins to decline, indicating that an overly
complex Taylor series introduces higher-order terms that overfit
the training data, reducing generalization and leading to overfitting.

5 Conclusion
In this paper, we propose a novel multimodal Taylor series network
for multimodal misinformation detection. Our approach utilizes the
polynomial modeling capabilities of the Taylor series to effectively
capture the intricate interactions between text and imagemodalities,
while ensuring high interpretability. Additionally, through carefully
designed network architecture, we address the challenge of expo-
nential parameter growth and enhance model scalability. Extensive
experiments on multiple datasets demonstrate that our method
outperforms existing state-of-the-art approaches in both fake news
detection and sarcasm detection tasks, even surpassing methods
that utilize auxiliary information. Furthermore, our analysis of the
different-layer features validate the model’s interpretability, while
the layer number analysis reveal consistent superiority and robust-
ness. In the future, we hope to extend the proposed method to
broader applications in multimodal tasks.
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