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1 Introduction

Gaussian Processes (GPs)[1] are flexible non-parametric models that have shown promising results
across many applications, such as molecule optimization [2, 3] or uncertainty estimation in DNNs
[4, 5]. They are used as prior distributions over some target function f , i.e., f ∼ GP(µ(·),Kϕ(·, ·)),
where µ(·) and Kϕ(·, ·) are, respectively, the mean and covariance functions of the GP. Deep
Gaussian Processes (DGPs) [6] concatenate several GPs across a layered network, defining a
hierarchical structure that leads to a more flexible probabilistic model. This concatenation enlarges
the class of functions that can be modeled, allowing to capture complex patterns within the data.

Bayesian inference in DGPs is intractable. Thus, approximations using variational inducing points
such as Double Stochastic Variational Inference (DSVI) [7] must be employed. To alleviate optimiza-
tion difficulties, two main tools are often used: (i) a whitened representation of the process values at
the inducing points [8] to enhance the numerical stability of the model [9–11], and (ii) an identity
mean function in the inner layers of the model [7]. In [7], it is claimed that the identity mean function
is needed to avoid the pathologies outlined in [12]. However, the reality is that, in practice, this mean
function is used even in 2-layer DGPs, which are far from being similar models to those in [12].

Here, we show, via experiments in a toy dataset and a dataset from the UCI repository, that the need
for the identity mean function in DGPs is linked to the initial variational parameters and the usage
of the whitened representation. Specifically, we found that a zero mean DGP, with the variational
initialization used in [7, 9–11], can lead to mode collapse during the optimization process, which
is undesirable. Namely, the algorithm sets the variational mean and covariance to those of the GP
prior (a standard Gaussian in the whitened case). Then, a huge noise variance is set in the observation
model to explain the observed data, which is considered pure noise. This is not a desirable behavior.

Our main contributions are: 1) we explain why the whitened representation, beyond being designed to
enhance mixing in MCMC algorithms [8], provides numerical stability in the Variational’s Inference
optimization process; 2) we highlight why the identity mean function in DGPs avoids the mode
collapse effect that occurs when the zero mean function is used; 3) we provide a theoretical explanation
of the effect of whitening in the optimization process; and, 4) we propose a new initialization of the
variational parameters of the zero mean DGP that alleviates the mode collapse problem.

2 Mode collapse in variational DGPs

Consider the observed data D = {(xi, yi) | xi ∈ RD, yi ∈ R, i = 1, . . . , N} which is grouped
into a matrix X = (x1, · · · ,xN ) and a vector y = (y1, · · · , yN )T. Consider a single GP. The
process values at the training points are denoted by f = (f(x1), · · · , f(xN ))T. The set of M
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Figure 1: Example of a three layer DGP, with three units per layer.

inducing locations Z = (z1, · · · , zM ), with zi ∈ RD, have their corresponding inducing values u =
f(Z) = (u1, · · · ,uM )T. The posterior distribution is approximated using a variational distribution
q(f,u) = p(f | u)q(u), with q(u) = N (u | m,S) where m and S are the variational parameters
[13]. The prior over u is N (µZ ,KZZ). In the whitened representation, we rewrite u = LZZv+ µZ

where KZZ = LZZL
T
ZZ and p(v) = N (0, I). Then, we make inference about v instead of u and

learn q(v) = N (mv,Sv). Variational parameters are initialized as m = mv = 0, S = Sv = 10−5I.

DGPs concatenate layers of GPs as observed in Fig. 1. Adding the superscript l to denote the l-th
layer, the training objective for the DSVI algorithm, described in [7], is the ELBO:

L =
∑N

n=1 Eq(fLn )

[
log p(yn | fLn )

]
−

∑L
l=1 KL

(
q(ul) ∥ p(ul;Zl)

)
. (1)

Non-whitened GPs: In classic SVGPs, the mean of the marginal variational distribution q(f l=1) is1:

µqf = KXZK
−1
ZZm + µX −KXZK

−1
ZZµZ . (2)

The KL between prior and posterior is given by:

KL (q(u) ∥ p(u)) =
1

2

[
log(|KZZ ||S|−1)−M + Tr

(
K−1

ZZ(S + (m − µZ)(m − µZ)
T )

)]
. (3)

Whitened GPs: In the whitened representation we have:

µw
qf = KXZ [L

T
ZZ ]

−1mv + µX , (4)

KL (q(v) ∥ p(v)) =
1

2

[
− log|Sv| −M +mT

vmv + Tr(Sv)
]
. (5)

KL at initialization and mode collapse: In the whitened case, at initialization, the marginal
distribution’s variational mean for a zero mean DGP is zero and the KL is very close to zero . Thus,
the minimization of the objective will likely force mv = 0 and Sv = I (since it is the KL minimizer),
and will minimize the ELL, i.e., the data-dependent term in (1), by learning a huge observation
noise. However, when using an identity mean function it is simpler to optimize the ELL, since the
posterior mean at initialization is xi, the optimization forces mv to move away from its initial value
0 to learn a map from xi to the outputs y. This often avoids mode collapse. For the non-whitened
case, at initialization, the variational mean is also 0 in the zero mean DGP. However, we should
expect the model not to be so prone to mode collapse, since at initialization the KL depends on KZZ

via the prior, which can differ from the identity matrix (depending on the length-scale value). The
contrary may also be true, i.e., one may also expect mode collapse, since now we can freely adapt
both the non-whitened GP prior kernel hyper-parameters and Z, and the variational parameters m
and S to minimize KL. Therefore, in the non-whitened case, mode collapse depends not only on the
initialization of q, but on the initial kernel’s hyper-parameter as well. In any case, this model usually
suffers from optimization difficulties, so even though mode collapse can be controlled, the model is
not useful in practice as it is complicated to optimize.

Optimization difficulties: There is a different impact on the KL divergence depending on whether
the whitened representation is used or not. In the whitened representation one often observes that:
1) the KL at initialization is close to zero, providing a small learning signal to the objective; and

1When l > 2, X is replaced by points f l−1 sampled from q(f l−1) at the previous layer.
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2) the KL only depends on the variational parameters m and S. By contrast, in the non-whitened
representation, the KL divergence at initialization is far from zero, both for the zero mean and even
more for the identity mean function (due to the term m − µZ). Furthermore, the KL depends on
both the variational and the model parameters, e.g., Z, length-scales, etc. These two differences
complicate optimization and we hypothesize they are the reason why one observes oscillations in
the objective during optimization, making the whitened representation the standard one used both in
variational GPs and DGPs [9–11], see Fig. 6 in the Appendix. 2

2.1 Variational DGPs in practice

Understanding the implementation of DGPs is key to a comprehensive view of their optimization
process. In GPFLOW, the library used in our experiments, the whitened representation is imple-
mented as outlined above. However, the non-whitened representation is implemented using the
reparameterization m

′
= m − µZ , which changes the predictive mean and KL divergence to:

µqf = KXZK
−1
ZZm

′
+ µX ,

KL (q(u) ∥ p(u)) =
1

2

[
− log|S| −M + log|KZZ |+ Tr

(
K−1

ZZ(S +m
′
m

′T
)
)]

.
(6)

This reparameterization simplifies the implementation since both whitened and non-whitened models
require KL computation between q and a zero mean prior. Nevertheless, the optimization difficulties
outlined above persist due to the term KZZ in the KL. For the rest of the work, unless explicitly
mentioned, we will be using the aforementioned reparameterized version of the variational mean.

3 Avoiding mode collapse via data-driven initialization

We now present a novel initialization that mimics the effect of the identity mean function in DGPs
but uses a zero mean function. We achieve this by selecting appropriate values for m, mv and Z.

Inner layers: At initialization, in the inner layers (l = 1, · · · , L− 1), when using the identity mean
function, the mean of the posterior distribution takes the value µw

qf = µqf = x for any point x ∈ X.
We aim at selecting m and mv (in the whitening case) such that, at initialization, we obtain the same
posterior mean while using a zero mean DGP. Assuming a 1-dimensional input space (although this
can be generalized to arbitrary dimensions), this is achieved by solving the linear systems:

X = KXZK
−1
ZZm +

���������:0

µX −KXZK
−1
ZZµZ , and X = KXZ [L

T
ZZ ]

−1mv +��*0
µX . (7)

These are linear equations in m and mv, that depend on three independent variables (m,X,Z.).
To solve them, X,Z must be given some value, requiring dim(X) = dim(Z) to yield a solvable
system. We fix the inducing locations Z to a subset of the train data, i.e., Z ⊂ X. This choice gives
the solutions m = Z, and mv = L−1

ZZZ, and it guarantees that the initialization will predict identity
values at the inducing points, i.e., when X = Z. In both cases, we initialize S = 10−5I so that the
initial forwarded samples in DSVI do not differ from the mean.

Output layer: DGPs usually use a zero mean GP in its output layer with m,mv initialized to 0.
We propose to extend the idea of the inner layers to the output layer. However, in this case, we want
the posterior mean to resemble the target y values3. To this end, we replace X by y in both l.h.s. of
Eq. (7). This gives m = y, and mv = L−1

ZZy, when using whitening. By selecting the inducing
locations Z as a subset of X, we obtain precise posterior predictive means at those data points at
initialization. This leads to an initial good solution when using enough inducing points, see Fig. 2.

Let us remark the difference between our proposed initialization and that of standard DGP configura-
tions. Consider a non-whitened DGP with the aforementioned reparameterization of the variational
mean m

′
. Assume an identity mean function in the inner layers, a zero mean function in the output

2We have not explicitly found that these are the reasons why these libraries use whitening in practice, beyond
being recommended in its source code, as seen for example in [11] in this comment.

3In classification we would use a one-hot encoding of the class labels.
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(a) Standard initialization:
ml = 0,Sl = 10−5I.

(b) Proposed initialization
using random Z ⊂ X.

(c) Proposed initialization selecting
Z ⊂ X using Eq. (8).

Figure 2: Initialization predictions of whitened 2 layer DGPs. Yellow dots indicate the inducing
locations Z and red dots indicate predictive mean mv at the inducing locations.

layer, and that we initialize m
′
= 0. This is the typical setup considered in the literature for DGPs

[7]. The output of the inner layers of this model model at Z, is Z, i.e., the identity, as specified by the
prior mean µZ. See Eq. (6). However, since the identity mean function is not used in the last layer [7],
the predictive mean at the inducing points Z will be zero, unlike in the proposed method, described
in the previous paragraph. Something similar will happen in the case of the whitened representation,
when mv = 0. See Eq. (4). That is, the initial DGP predictive mean, without training the model,
will be zero for every input.

Inducing points: The initial inducing points may impact the initial solution. Selecting them at
random from the training set may lead to regions of the input space being unrepresented, leading to a
poor initial solution in those areas. See Fig. 2. To ensure a good initialization, we use a two-step
algorithm:

1. We compute M centroids C = {c1, · · · , cM} of Xtrain using k-means.
2. We select the inducing locations zj from Xtrain using the cosine distance:

zj = arg min
xj∈Xtrain

d(cj ,xj) = arg min
xj∈Xtrain

cj · xj/(∥cj∥∥xj∥), ∀cj ∈ C. (8)

Fig. 2 compares the predictive distribution (without training) of the standard initialization of a DGP
with that of the proposed initialization with a random selection of the inducing points among the
training points, and when selecting the inducing locations as described above. We observe that the
proposed initialization already explains quite well the observed data with no training of the objective.

Optimization difficulties: As mentioned, with the standard initialization, the KL in the whitened
case provides a more stable learning signal (Sec. 2). In the proposed initialization, in the whitened case
we have p(v) = N (0, I) and q(v) = N (L−1

ZZZ, 10−5 · I). In the non-whitened (reparameterized
version) we have p(u) = N (0,KZZ) and q(u) = N (Z, 10−5 · I). Therefore, the whitened
parameterization is expected to lead to a more stable optimization process since, although both KL
are different from 0 at initialization, the gradient of the KL for the non-whitened case depends on
both the model parameters (e.g., length-scales and inducing points) and the variational parameters.
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Figure 3: Left and middle: ELL and KL, respectively, during train of the 5 layer, zero mean function
DGP in the Yacht dataset. The mean and standard deviation across 20 splits are plotted. Right: Log
likelihood results (right is better) of the L = 2 and L = 5 layer DGPs in Yacht. The model with 5
layers and zero mean suffers from mode collapse, which is solved by the proposed initialization.
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(a) Lengthscale: 0.03 (b) Lengthscale: 0.07 (c) Lengthscale: 0.09

Figure 4: Predictive distribution of the proposed initialization when the length-scale varies. Proper
kernel initialization is key for the success of this initialization.

4 Experiments

To validate the proposed initialization, we compare it with the standard initialization. We perform an
extensive qualitative evaluation on the toy dataset presented in Fig. 2 and on the Yatch dataset. The
results show that the proposed initialization has two benefits: a) it leads to a faster convergence than
the standard initialized DGP; and b) the proposed initialization avoids mode collapse when using a
5-layer DGP. Fig. 5 in Appendix B.1 supports point a). The next paragraph supports point b).

We perform an extensive analysis of 8 different UCI datasets. See Appendix B.2. The most interesting
case is the Yacht dataset analyzed below. The data-dependent term of the objective (ELL), as a
function of the training epochs, is shown in Fig. 3 (left). The KL is also reported (center). We observe
a clear example of the mode collapse in the 5-layer DGP when using the zero mean function with
the standard initialization. Specifically, the test log-likelihood results displayed in Fig. 3 (right) are
significantly worse for the zero mean function with the standard initialization DGPs. We observe the
ELL and the KL (left and center of the figure). In the standard initialization, when using the zero
mean function, the KL quickly falls to zero when whitening is not used. Besides this, we also observe
that the KL has a high variance when the whitened representation is used. This indicates that there
are some data splits where mode collapse happens, even when using whitening. By contrast, the
proposed initialization solves the mode collapse problem, preventing the KL from falling to zero by
choosing a good initial solution. It also leads to an overall higher final KL. The ELL chart (left) shows
that, in the whitened case, our proposal exhibits a fast convergence and the final results pair up with
the DGP with identity mean function. The non-whitened case has a slower convergence because the
initial solution has a low ELL, caused by the initial value of the kernel’s length-scale4. We observe
this behavior in other datasets. Appendix B.2 has a figure with all the results of LL and RMSE.

4.1 Kernel invertibility dependency

As a limitation of the proposed initialization, we remark that the correct inversion of the kernel
evaluated at the inducing points highly influences the initial solution. The parameters of the kernel (in
our case, the length-scale ℓ of the RBF kernel) must be properly selected so that the covariance matrix
is not ill-conditioned, making the proposed initialization properly predict the corresponding inducing
value at the selected inducing locations. An example of this can be observed in Fig. 4. However, this
limitation can be surpassed by performing an initial evaluation of the model using different values of
the kernel length-scale and selecting the one with higher ELL or lower RMSE.

5 Conclusions
DGPs may suffer from mode collapse (i.e., convergence to the prior) as the number of layers grows.
Here, we have presented an initialization of SVGPs and DGPs that uses the training data. This initial-
ization fixes the inducing points and the variational parameters to predict an initial good solution of the
targets. The results obtained, when using this initialization, show that it has benefits both in the conver-
gence speed DGPs and in avoiding the mode collapse problem. A limitation is that it requires solving
a linear system that depends on the initial kernel parameters, which may be problem-dependent.

4In the UCI datasets we have not selected a good initial kernel length-scale for each dataset. Due to this, the
faster convergence is not appreciated in Fig. 3.
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A Background

We include an extended background section for a clearer understanding of the problem statement and
notation.

We tackle the standard regression problem, where the goal is to infer an unknown function f :
RD → R, using the observed data D = {(xi, yi) | xi ∈ RD, yi ∈ R, i = 1, . . . , N}. We
denote X = (x1, · · · ,xN ) and y = (y1, · · · , yN ) . Gaussian Processes [1] place a multivariate
Gaussian prior distribution over f , that is, f = (f(x1), · · · , f(xN )) ∼ N (µ(X),Kϕ(X,X)), where
µ : RD → R is the mean function, and Kϕ(X,X) is the covariance matrix determined by a
covariance function Kϕ : RD × RD → R. We write µx = µ(x) and Kxx = Kϕ(x,x) to shorten
notation. The exact posterior distribution p(f | D) is intractable since it scales cubically with N , so
we use sparse variational Gaussian Processes (SVGPs) [13] to scale to large datasets.

SVGPs use a set of inducing locations Z = (z1, · · · , zM ), with zi ∈ RD, and M ≪ N and their
corresponding inducing values u = f(Z) = (u1, · · · ,uM ), where p(u) = N (u | µ(Z),Kϕ(Z,Z)).
The posterior distribution is approximated using a variational distribution q(f,u) = p(f | u)q(u),
where q(u) = N (u | m,S) where m and S are the variational parameters. Using this variational
distribution, the posterior distribution is Gaussian q(f) = N (f | µqf ,Kqf ), where:

µqf = KXZK
−1
ZZm + µX −KXZK

−1
ZZµZ (9)

Kqf = KXX −KXZK
−1
ZZKZX + [KXZK

−1
ZZ ]S[KXZK

−1
ZZ ]

T (10)

The presented formulation is sometimes referred to as the unwhitened representation of a GP. Another
common form is the whitened prior GP representation [8, 14]. This consists of expressing u = LZZv
with LZZL

T
ZZ = KZZ and v = N (v | 0, I). The original variational parameters are recovered as

m = µZ + LZZmv and S = LZZSvL
T
ZZ , so the parameters to estimate are now mv,Sv. Using

this representation, the posterior qw(f) = N (f | µw
qf ,K

w
qf ) is computed as:

µw
qf = KXZ [L

T
ZZ ]

−1mv + µX, (11)

Kw
qf = KXX −KXXK−1

ZZKZX +KXZL
T
ZZ

−1
SvL

−1KZX. (12)

Whitening the GP prior leads to a much faster convergence in many cases [14].

Deep Gaussian Processes

Following the fashion of deep neural networks, DGPs concatenate layers of GPs to generalize them
and extend their flexibility. Formally, the output of the GP in layer l − 1 is used as the input of layer
l, defining a prior recursively on each layer F 1, · · · , FL. Each layer l is defined by its inducing
locations and values (Zl,ul), and the corresponding variational parameters (ml,Sl). The joint
distribution of the DGP factorizes as:

p(y | {Fl,ul}Ll=1) =

N∏
i=1

p(yi | fLi )︸ ︷︷ ︸
likelihood

L∏
l=1

p(Fl | ul; Fl−1,Zl−1)p(ul;Zl−1)︸ ︷︷ ︸
DGP Prior

. (13)

The exact posterior remains intractable in DGPs, so it is approximated using a variational distribution
that mimics the one in SVGPs and assumes layer independence:

q({Fl,ul}Ll=1) =

L∏
l=1

p(Fl | ul;Fl−1,Zl−1)q(ul). (14)

With these considerations, we obtain an ELBO that can be optimized using two sources of stochasticity
[7]:

L =

N∑
n=1

Eq(fLn )

[
log p(yn | fLn )

]
−

L∑
l=1

KL
(
q(ul) ∥ p(ul;Zl−1

)
(15)
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Standard Initialization

Mean: Zero.

Standard Initialization
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Mean: Zero.

Standard Initialization
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Standard Initialization
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Figure 5: Top row: Initialization of the DGP. Standard initialization for the Zero mean and identity
mean, and proposed initialization at the right. Bottom row: predictions of each of the models after
500 epochs.

B Further Experiments

Implementation details In the toy experiment, we generate 300 datapoints train the models using
a learning rate of λ = 10−3. For the UCI experiments, we use 20 different train-test splits. We use a
learning rate of λ = 10−2 and train for 20K iterations. In both cases, we run all our experiments in
CPU. For the implementation, we use GPFLOW 2.1.3, which builds upon Tensorflow. The used kernel
is the standard RBF kernel:

K(x,x′) = exp

(
−∥x− x′∥2

2ℓ2

)
, (16)

where ℓ is the kernel lengthscale.

B.1 Toy Dataset

During the experimentation in the toy dataset, we have found other significant results that further
show the benefits or limitations of using the proposed initialization. We present them in this section.

Convergence speed Due to the initial good solution, we found out that our initialization speeds up
the convergence of DGPs. This comes from the fact that, when the kernel parameters are properly
chosen, the initial predictions pose an already good solution, with a lower RMSE. An example of this
is shown in Fig. 5.

Whitening provides stability We have observed that for any initialization or mean function, using
the whitening representation of the DGP is key to optimization smoothness. Even in the case of the
Identity mean function, where the convergence is always faster than the Zero mean DGP, we have
observed in this toy dataset that not using the whitening representation may lead to a poor training of
the model. An example of this is shown in Fig. 6, where the KL of the 5 layer, Identity mean DGP
presents oscillations that hinder the optimization task and do not appear in the whitened case.

B.2 UCI Datasets

We compare our initialization with the standard one, using both whitened and non-whitened represen-
tations of the variational distribution. We also include the Identity mean DGP for further comparison.
We use L ∈ {2, 3, 4, 5} for each model.

The Log Likelihood results are shown in Fig. 7. The results show that DGPs with standard initialization
suffers from mode collapse when the number of layers is increased (which can be seen in Kin8nm,
Power, Redwine or Yatch). However, the proposed initialization prevents that mode collapse, obtaining
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Figure 6: Loss function values of the 5− layer DGP in the toy dataset. The convergence stability that
the whitened version of the model provides is clearly appreciated. Both the ELL and KL are much
harder to optimize in the non-whitened case.
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Figure 7: Log likelihood (right is better) results in the 8 UCI dataset, for 4 different number of layers.

results which are at least paired to the results obtained using the identity mean function in the inner
layers of the DGP.

In Fig. 8 we represent the results using the RMSE. The conclusions are similar to the ones obtained
from the LL results. Again, the poor solutions in terms of RMSE can be clearly seen in the case of a
zero mean DGP with standard initialization, with those cases being solved with our initialization.
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Figure 8: RMSE (left is better) results in the 8 UCI dataset, for 4 different number of layers.
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