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Abstract

Metaphor comprehension is a complex cog-001
nitive task in language acquisition that re-002
quires reasoning between surface structures003
and deeper semantic representations. Prior re-004
search has predominantly treated metaphor ac-005
quisition and automatic metaphor detection as006
separate topics, lacking a direct comparative007
analysis. This paper systematically reviews008
studies on metaphor acquisition in linguistics009
and identifies four cognitive aspects that align010
with the capabilities of large language mod-011
els: aptness, language proficiency, transferable012
comprehension, and literal salience hypothe-013
sis. Experimental results reveal significant par-014
allels between large model performance and015
human metaphor learning. Specifically, large016
models achieve higher accuracy on highly apt-017
ness metaphor samples. Language proficiency018
is reflected in their capacity for metaphor com-019
prehension, which benefits from richer corpora,020
larger parameter scales, and more efficient ar-021
chitectures. Furthermore, large models exhibit022
sensitivity to transferable comprehension, as023
demonstrated by the substantial influence of024
cross-linguistic knowledge on metaphor pro-025
cessing. Similarly, they align with the literal026
salience hypothesis, prioritizing literal mean-027
ings over metaphorical ones, a pattern evident028
in their higher accuracy in metaphor detection.029

1 Introduction030

Metaphor is not merely a linguistic device or an in-031

trinsic reflection of an individual’s cognitive struc-032

ture but also an adaptive behavior shaped by per-033

ceptual and cultural influences (Gibbs Jr, 1999).034

Traditional research on metaphor acquisition pri-035

marily focuses on cognitive modeling, the develop-036

mental process of metaphor comprehension, and037

cross-linguistic metaphor acquisition.038

Cognitive models seek to elucidate the cogni-039

tive mechanisms underlying metaphor understand-040

ing. For instance, conceptual metaphor theory041

posits that the mapping between source and tar- 042

get domains conveys meanings beyond the literal 043

level through structured associations (Gibbs Jr, 044

1999; Lakoff and Johnson, 2008). Additionally, 045

metaphorical aptness refers to the extent to which a 046

metaphor encapsulates the core attributes of a given 047

concept (Chiappe and Kennedy, 1999; Gibbs Jr, 048

1993). For example, the metaphorical expressions 049

“Time is money” and “The clouds are old newspa- 050

pers” differ significantly in aptness. The former 051

draws on a well-established conceptual analogy, 052

where “time” is commonly perceived as valuable, 053

akin to “money,” reinforcing the notion that wast- 054

ing time equates to financial loss. Consequently, 055

its metaphorical relevance is high. In contrast, the 056

latter lacks an intuitive conceptual bridge between 057

“clouds” and “old newspapers.” While clouds may 058

appear fragmented or darkened, “old newspapers” 059

is not a conventional metaphorical mapping for 060

this phenomenon, resulting in lower metaphorical 061

relevance. The absence of conceptual connection 062

further diminishes its interpretability. Investigating 063

aptness effects can provide insights into improving 064

model performance on low-aptness metaphors. 065

The literal salience hypothesis posits that lit- 066

eral interpretations are typically activated prefer- 067

entially during semantic processing, as evidenced 068

by faster response times to literally meaningful 069

phrases (López et al., 2017; Citron et al., 2020) 070

and the preferential activation of literal meanings 071

(Yang et al., 2023; Giora, 1999). Large-scale mod- 072

els generally prioritize learning literal semantics 073

when processing metaphors, resulting in a cogni- 074

tive bias in metaphor comprehension. Understand- 075

ing this hypothesis is crucial for optimizing model 076

performance in handling metaphorical expressions. 077

Research on metaphor comprehension acquisi- 078

tion investigates how language learners process 079

and use metaphors. Prior studies indicate that 080

metaphor acquisition improves progressively with 081

age (Willinger et al., 2019). Language proficiency 082
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refers to an individual’s ability to comprehend,083

express, utilize, and adapt to a language, as re-084

flected in their linguistic performance. Learners085

with higher language proficiency typically exhibit086

stronger metaphor comprehension (Aleshtar and087

Dowlatabadi, 2014; Fabry, 2021) and lower cogni-088

tive processing costs when interpreting metaphors089

(Carrol et al., 2016; Jankowiak et al., 2021). In090

large models, language proficiency emerges from091

enriched training data, increased parameters, and092

optimized architectures. Enhancing metaphor pro-093

cessing through corpus expansion, parameter scal-094

ing, or architectural refinement is of significant095

theoretical and practical importance.096

Cross-linguistic metaphor acquisition studies ex-097

amine how cultural differences impact metaphor098

comprehension, particularly in second language099

(L2) learners. Research on transferable compre-100

hension highlights the influence of a speaker’s na-101

tive language (L1) on L2 metaphor understanding,102

demonstrating that L1 metaphorical competence103

is a strong predictor of L2 comprehension (Wang104

and Sun, 2020). Furthermore, L1 knowledge is of-105

ten automatically applied in L2 metaphor learning106

(Carrol et al., 2016; Cieślicka, 2015). Investigating107

transferable comprehension enhances large models’108

multilingual metaphor processing capabilities.109

The above studies are essential for enhancing110

large models in metaphor detection and cross-111

linguistic metaphor comprehension. This paper112

conducts a comprehensive comparison between lan-113

guage technology and human language learning, in-114

vestigating whether aptness, language proficiency,115

transferable comprehension, and literal salience in-116

fluence the metaphor detection capability of large117

models. For aptness estimation, we first employ118

MetaPro2.0 (Mao et al., 2024) to extract source119

and target domain information from metaphorical120

texts. We then utilize WordNet’s (Miller, 1995;121

Christiane, 1998) superordinate word relations to122

compute the semantic similarity between source123

and target domains, thereby quantifying metaphor124

aptness. Regarding language proficiency, we de-125

fine it in large models based on the richness of their126

training corpus and the scale of model parameters.127

For transferable comprehension, we evaluate the128

model’s ability to detect metaphors across different129

linguistic contexts. Lastly, to examine the literal130

salience hypothesis, we compare classification ac-131

curacies between literal and metaphorical samples132

across multiple linguistic metaphor datasets.133

In summary, this paper makes the following key 134

contributions: 135

1. We systematically reviews studies on 136

metaphor acquisition in linguistics, syn- 137

thesizing prior work and summarizing key 138

advancements. 139

2. We conduct the first systematic investigation 140

of the similarities and differences between lan- 141

guage technology and human language learn- 142

ing, offering theoretical insights and practical 143

guidance for metaphor understanding. 144

3. We design and implement four experimen- 145

tal frameworks to examine metaphor aptness, 146

language proficiency, transferable comprehen- 147

sion, and literal salience, analyzing their im- 148

pact on metaphor processing in large models. 149

2 Related Work 150

2.1 Aptness 151

Metaphor comprehension involves both inter- 152

domain and intra-domain similarity, which together 153

determine aptness. Studies have shown that aptness 154

is positively correlated with inter-domain distance 155

and negatively correlated with intra-domain dis- 156

tance (Tourangeau and Sternberg, 1981). Aptness 157

is a more decisive factor than conventionality, as 158

highly aptness metaphors are easier to understand 159

and accept, whereas conventionality has a weaker 160

influence. This finding supports the categorization- 161

based model of metaphor comprehension, which 162

posits that metaphor understanding depends on its 163

relevance to an ontological framework (Jones and 164

Estes, 2006). Although conventionality and aptness 165

are closely related—both influenced by metaphor 166

frequency in corpora—aptness scores may be af- 167

fected by processing fluency, making independent 168

measurement challenging (Thibodeau and Durgin, 169

2011). Individual cognitive abilities also play a 170

role in metaphor comprehension, with crystallized 171

intelligence being more influential in processing 172

high-aptness metaphors, while fluid intelligence 173

serves a compensatory function in understanding 174

low-aptness metaphors (Stamenković et al., 2023). 175

The aptness of a metaphor is crucial for com- 176

prehension, choice of expression, and the distinc- 177

tion between metaphorical and explicit compar- 178

isons. Research indicates that comparisons with 179

high aptness are more likely to be expressed as 180
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metaphors, while those with low aptness tend to ap-181

pear as explicit comparisons. Additionally, aptness182

affects memory bias—high-aptness metaphors are183

more likely to be recalled as metaphors, whereas184

low-aptness ones are often remembered as explicit185

comparisons (Chiappe and Kennedy, 1999; Chi-186

appe et al., 2003). Cultural context also influences187

metaphor aptness. Cross-cultural studies reveal sig-188

nificant differences in aptness ratings of the same189

metaphors across linguistic groups. For example,190

certain metaphors receive different ratings from191

native English and Persian speakers, suggesting192

that cultural experience and linguistic conventions193

shape metaphor acceptance (Eskandari and Khosh-194

sima, 2021).195

2.2 Language Proficiency196

Research on language proficiency and metaphorical197

competence suggests that higher proficiency corre-198

lates with improved metaphor comprehension and199

usage (Aleshtar and Dowlatabadi, 2014; Willinger200

et al., 2019; Fabry, 2021). L2 learners generally201

require greater cognitive effort for metaphor collo-202

cation processing, whereas increased proficiency203

reduces processing costs (Willinger et al., 2019).204

Additionally, bilinguals demonstrate a higher initial205

cognitive load when processing novel metaphors206

in L2, but their cognitive processing aligns with207

L1 during the late-stage meaning integration (Car-208

rol et al., 2016). Moreover, metaphor production209

ability improves with language development, high-210

lighting the role of linguistic resources in metaphor211

acquisition (Jankowiak et al., 2021). However, in212

L2 metaphor comprehension, executive control ex-213

erts less influence on familiar metaphors, while the214

processing of unfamiliar metaphors is constrained215

by the conceptual similarity between languages216

(Lü et al., 2019). These findings underscore the217

pivotal role of language proficiency in metaphor218

processing.219

2.3 Transferable Comprehension220

Studies highlight the critical role of L1 knowledge221

in L2 metaphor and idiom acquisition. Multilin-222

guals outperform monolinguals in novel metaphor223

comprehension, attributed to their greater cogni-224

tive flexibility (Horvat et al., 2022). Furthermore,225

advanced non-native speakers exhibit native-like226

formulaic processing in L2 idiom comprehension,227

suggesting automatic activation of L1 knowledge228

(Carrol et al., 2016). L1 metaphorical competence229

not only surpasses L2 competence but also serves230

as a strong predictor of L2 metaphor processing 231

ability, supporting the cross-linguistic transfer hy- 232

pothesis (Wang and Sun, 2020). During the early 233

stages of L2 idiom acquisition, learners rely on L1 234

vocabulary and conceptual structures, with direct 235

L2 connections forming as proficiency increases 236

(Cieślicka, 2015). Transparency, context, and L1- 237

L2 similarity all influence L2 idiom comprehen- 238

sion; context, in particular, facilitates L2 metaphor 239

processing while mitigating L1 interference (Wang 240

et al., 2021). 241

2.4 Literal Salience Hypothesis 242

The Literal Salience Hypothesis posits that literal 243

meanings are generally more readily activated and 244

processed than non-literal meanings, particularly 245

in the early stages of cognitive processing. Em- 246

pirical research supports this claim, demonstrating 247

that bilinguals make faster and more accurate judg- 248

ments on literal phrases, regardless of their experi- 249

ence with language mediation (López et al., 2017). 250

Additionally, bilinguals struggle to suppress literal 251

meanings when interpreting metaphorical expres- 252

sions in L2, indicating that highly salient meanings 253

are preferentially activated even in metaphor-biased 254

contexts (Yang et al., 2023). Further evidence 255

for literal salience comes from studies showing 256

that familiar expressions activate both literal and 257

metaphorical meanings in idiomatic and metaphor 258

comprehension, whereas less familiar expressions 259

primarily activate literal meanings (Giora, 1999). 260

L2 learners also exhibit distinct processing patterns 261

compared to L1 speakers when interpreting con- 262

ventional metaphors, with metaphorical meanings 263

being less semantically integrated in the L2 mental 264

lexicon—further reinforcing the dominance of lit- 265

eral meanings (Werkmann Horvat et al., 2021). Col- 266

lectively, these findings suggest that literal mean- 267

ings typically hold greater salience than non-literal 268

meanings in bilingual language processing. 269

3 Method 270

This paper aims to comprehensively compare the 271

similarities and differences between language tech- 272

nology and human language learning. We exten- 273

sively review the literature related to metaphors in 274

the field of linguistics and summarize four aspects 275

that are representative and similar to the capabil- 276

ities of the larger model, i.e., aptness, language 277

proficiency, transferable comprehension, and lit- 278

eral salience hypothesis. 279
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Aptness. Metaphorical Aptness quantifies the ex-280

tent to which a metaphor encapsulates the core281

attributes of the target concept (Chiappe and282

Kennedy, 1999; Gibbs Jr, 1993).. This study in-283

vestigates the categorization performance of large284

models on metaphors with varying levels of aptness,285

which is formalized based on the theory of dou-286

ble similarity (Tourangeau and Sternberg, 1981).287

According to this theory, metaphor comprehen-288

sion is governed by both intra-domain and inter-289

domain similarity: aptness positively correlates290

with inter-domain distance and negatively corre-291

lates with intra-domain distance. Inter-domain dis-292

tance reflects the conceptual disparity between do-293

mains (e.g., "animal" and "political leader" belong294

to biology and social organization, respectively,295

exhibiting a large inter-domain distance), while296

intra-domain distance captures similarity within a297

domain (e.g., "lion" and "eagle" share high similar-298

ity in "power" and "aggressiveness," resulting in a299

small intra-domain distance). The study of aptness300

aims to: (1) enhance large models’ comprehension301

of low-aptness metaphors and (2) integrate aptness302

into metaphor evaluation frameworks to refine and303

extend the assessment of metaphor understanding304

in large models.305

Language Proficiency. Linguistic proficiency, de-306

fined as an individual’s ability to comprehend, ex-307

press, and adapt to language, is positively corre-308

lated with metaphor comprehension (Aleshtar and309

Dowlatabadi, 2014; Fabry, 2021). Analogously,310

a large model’s performance in a given language311

reflects its language proficiency, which is primarily312

influenced by corpus richness, parameter scale, and313

structural optimization. Corpus richness, akin to314

human language exposure, enables models to cap-315

ture diverse linguistic patterns, improving compre-316

hension and generation. Parameter scale, reflecting317

cognitive capacity, allows models to learn complex318

patterns, boosting metaphor understanding and pro-319

duction. Structural optimization, resembling cogni-320

tive strategy refinement, enhances model efficiency321

and accuracy in metaphor processing. Investigat-322

ing the role of large model language proficiency in323

metaphor comprehension serves two purposes: (1)324

assessing whether corpus size, parameter scale, and325

structural optimization jointly enhance metaphor326

understanding, thereby informing model develop-327

ment, and (2) identifying key factors influencing328

metaphor processing to refine baseline settings and329

improve evaluation frameworks.330

Transferable Comprehension. This concept ex- 331

amines the extent to which native language (L1) 332

semantic and conceptual frameworks facilitate sec- 333

ond language (L2) metaphor processing. Prior 334

research has demonstrated the significant influ- 335

ence of L1 knowledge on L2 acquisition (Horvat 336

et al., 2022; Wang and Sun, 2020). Analogously, 337

in natural language processing, cross-linguistic 338

transfer emerges as a key phenomenon, where L1 339

knowledge may enhance a model’s ability to de- 340

tect metaphors in L2, potentially conferring ad- 341

vantages over monolingual models. Investigat- 342

ing whether large models exhibit transferability in 343

metaphor comprehension serves two objectives: (1) 344

improving metaphor recognition in low-resource 345

languages by leveraging shared cognitive founda- 346

tions across languages and (2) enhancing cross- 347

linguistic metaphor detection by incorporating lin- 348

guistic resources with similar cognitive and cultural 349

structures. 350

Literal Salience Hypothesis. The literal salience 351

hypothesis posits that literal meanings are cogni- 352

tively prioritized over metaphorical meanings dur- 353

ing language processing, with literal interpreta- 354

tions being activated first in semantic comprehen- 355

sion (Citron et al., 2020; Yang et al., 2023; Giora, 356

1999). In natural language processing, large lan- 357

guage models similarly exhibit a bias toward lit- 358

eral semantics, often achieving higher accuracy 359

on non-metaphorical samples than on metaphori- 360

cal ones. This pattern parallels human language 361

acquisition, where learners typically grasp literal 362

meanings and conventional metaphorical expres- 363

sions before acquiring novel metaphors in both L1 364

and L2. Investigating whether large models align 365

with the literal salience hypothesis has two primary 366

goals: (1) analyzing cross-linguistic commonalities 367

in metaphor construction through the lens of literal 368

salience, thereby providing a unified framework 369

for metaphor comprehension, and (2) establishing 370

a theoretical foundation for improving contextual 371

modeling approaches in metaphor processing. 372

4 Aptness Experiment 373

4.1 Experimental Design 374

Aptness experiment investigates the impact of 375

metaphor aptness on the metaphor detection per- 376

formance of large language models. Due to re- 377

source constraints, the study is conducted exclu- 378

sively on English data. We employ the MetaPro2.0 379

(Mao et al., 2024) to preprocess the VUA20 cor- 380
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Figure 1: Aptness experiment results. The Sample Count Ratio represents the proportion of samples in each
suitability interval relative to the maximum interval. Accuracy denotes the classification accuracy of metaphor
samples.

pus (Leong et al., 2020), extracting the source and381

target domains of metaphorical expressions. The382

aptness of metaphor samples are computed based383

on the hypernym structure of the WordNet (Miller,384

1995; Christiane, 1998) semantic hierarchy.385

To quantify inter-domain and intra-domain dis-386

tances more efficiently, we introduce the concept387

similarity ratio as a metric for metaphor aptness,388

formulated as follows:389

S(c1, c2) =
DL

DL + d1 + d2
(1)390

where c1 and c2 represent the source and target do-391

main concepts, respectively, and L denotes Lowest392

Common Subsumer (LCS). DL is the depth of the393

LCS, reflecting the semantic hierarchical distance394

between the two domains; a larger DL corresponds395

to greater inter-domain distance and, consequently,396

a higher aptness. d1 and d2 represent the shortest397

path lengths from c1 and c2 to L, respectively; a398

smaller d1 + d2 indicates lower intra-domain dis-399

tance, implying higher aptness.400

After computing the aptness for each metaphor401

sample in VUA20 using Eq. (1), we partitioned402

the samples into 10 intervals within the range403

[0, 1], each with a step size of 0.1. Lower indices404

correspond to lower aptness. To examine differ- 405

ences in classification performance between high- 406

aptness and low-aptness metaphors, we evaluate 407

both closed-source and open-source models (See 408

Appendix 11.1 for details). 409

4.2 Experimental Analysis 410

Figure 1 presents the association between sam- 411

ple distribution and model performance using a 412

dual-coordinate statistical system. The left vertical 413

axis (blue bars) represents the sample size ratio, 414

defined as the ratio of the number of samples in 415

each metaphor aptness interval to the number in the 416

largest interval. The right vertical axis (red line) 417

denotes the metaphor detection accuracy of the 418

models across intervals. 419

Experimental results indicate an overall upward 420

trend in detection accuracy as metaphor aptness 421

increases; however, model-specific variations exist. 422

The GPT-4o-mini accuracy curve remains relatively 423

stable, fluctuating within 1.5% across intervals 1 to 424

7, followed by a slight increase in the higher apt- 425

ness intervals (>7). Spearman correlation analysis 426

suggests that its positive correlation is not statisti- 427

cally significant (ρs = 0.345, p = 0.328). 428

In contrast, GPT-4o and LLaMA3 exhibit greater 429
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sensitivity to interval variation, showing a fluctu-430

ating yet generally increasing trend as aptness in-431

creases (ρs = 0.515, p = 0.328). Notably, both432

models display a consistent rise in accuracy in high-433

aptness intervals (>7). Although LLaMA3 expe-434

riences a slight decline at the highest interval, this435

drop carries limited statistical weight due to the436

small sample size in that range.437

Despite the overall positive correlation observed438

in all models, statistical significance remains insuf-439

ficient. This may be attributed to two key factors:440

(1) the long-tail effect in sample distribution, where441

high-aptness samples constitute less than 20% of442

the dataset; and (2) labeling noise, arising from the443

inherent ambiguity in defining metaphor aptness444

boundaries.445

5 Language Proficiency Experiment446

5.1 Experimental Design447

Language proficiency experiment investigates the448

impact of language proficiency on metaphor detec-449

tion by evaluating three multilingual pre-trained450

models: mBERT, XLM-RoBERTa, and mDe-451

BERTa (See Appendix 11.1 for details). To system-452

atically evaluate model performance on metaphor453

detection, we analyze three key dimensions:454

1. Corpus Coverage: We compare models455

trained on Wikipedia and CC100, noting that456

while both cover 100 languages, CC100 pro-457

vides a larger and more balanced dataset.458

2. Model Size: We assess the impact of model459

capacity by comparing the base (mRoB-r) and460

large (mRoB-l) versions of XLM-RoBERTa.461

3. Architectural Enhancements: We examine462

improvements in DeBERTa and its multilin-463

gual variant (mDeBERTa) over mBERT and464

XLM-RoBERTa in metaphor detection.465

For dataset selection, we integrate multiple pub-466

licly available metaphor corpora to ensure broad467

applicability (See Appendix 11.2 for details). Table468

4 provides data statistics.469

5.2 Experimental Analysis470

The experimental results, presented in Table 1, of-471

fer the following key insights derived from com-472

parative analysis of different models across multi-473

source datasets:474

Impact of Pre-trained Corpus Diversity on475

Metaphor Comprehension. Models trained on 476

the CC100 corpus outperform mBERT, which 477

was trained on the Wikipedia monolingual cor- 478

pus, in the metaphor detection task. For instance, 479

on the VUA20 dataset, mRob-b, mRob-l, and 480

mDeb-b achieved F1 score improvements of 0.5%, 481

1.9%, and 3.1%, respectively, over the bench- 482

mark mBERT (F1 = 0.756). These results indi- 483

cate that a more diverse pre-training corpus fos- 484

ters broader conceptual mappings, thus enhancing 485

the model’s capacity to capture cross-domain rela- 486

tions in metaphorical expressions. This aligns with 487

the human language acquisition process, where 488

the richness of linguistic input directly influences 489

metaphor comprehension. 490

Effect of Model Parameter Scale Expansion. 491

The experiments further demonstrate the signifi- 492

cant positive impact of model capacity expansion 493

on metaphor detection. For example, expanding 494

the parameter scale from mRob-b (L = 12, H = 495

768, A = 12, 270M params) to mRob-l (L = 24, 496

H = 1024, A = 16, 550M params) resulted in F1 497

score improvements of 1.4%, 0.7%, 3.9%, and 498

0.6% across four benchmark datasets. Notably, 499

on the CoMeta dataset, which has a sparse distri- 500

bution of metaphors, the model’s parameter expan- 501

sion caused a significant F1 improvement, from 502

0.505 to 0.544. This highlights the advantages of 503

large models in addressing long-distance dependen- 504

cies and metaphorical inference, further enhancing 505

cross-linguistic generalization. 506

Gains from DeBERTa Structural Optimization. 507

DeBERTa outperforms RoBERTa in metaphor de- 508

tection through its decoupled attention mechanism, 509

enhanced mask decoder, and virtual adversarial 510

training. For instance, compared to mRob-b, mDeb- 511

b achieved an 11.8% increase in F1 score on the 512

CoMeta dataset (from 0.505 to 0.623), and sur- 513

passed the larger RoBERTa model on other datasets. 514

These results suggest that architectural optimiza- 515

tion not only improves the model’s capacity to han- 516

dle long texts and complex syntactic structures, but 517

also enhances its ability to perform metaphorical 518

reasoning tasks. 519

From a cognitive perspective, corpus richness par- 520

allels linguistic input in human learning, model 521

scale reflects cognitive resources, and architec- 522

tural optimization mirrors cognitive strategy adap- 523

tation. This aligns with findings in cognitive sci- 524

ence, where metaphor ability is strongly related 525

to cognitive resources and linguistic input (Gask- 526
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Table 1: Language proficiency experiment results. Metrics include Precision (Pre), Recall (Rec), and F1 score (F1).

Model
VUA20 PSUCMC CoMeta KOMET

Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

mbert 0.785 0.730 0.756 0.753 0.720 0.736 0.430 0.560 0.487 0.710 0.703 0.706
mRob-b 0.754 0.767 0.761 0.803 0.692 0.744 0.609 0.431 0.505 0.741 0.682 0.710
mRob-l 0.798 0.754 0.775 0.767 0.735 0.751 0.562 0.526 0.544 0.752 0.684 0.716
mDeb-b 0.789 0.784 0.787 0.791 0.735 0.762 0.635 0.612 0.623 0.736 0.730 0.733

VUA20 PSUCMC CoMeta KOMET

en
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sl

0.80 0.83 0.81 0.81
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Figure 2: Transferability experiment results. The left and right figures show detection accuracy for literal and
metaphorical target words, respectively. The vertical axis represents the inquiry language (L1), and the horizontal
axis denotes the target language.

ins and Rundblad, 2023), with most studies high-527

lighting language proficiency as a key factor in-528

fluencing metaphor comprehension (Aleshtar and529

Dowlatabadi, 2014; Carrol et al., 2016; Fabry,530

2021; Jankowiak et al., 2021).531

6 Transferability Experiment532

6.1 Experimental Design533

Transferability experiment was designed as a se-534

ries of 4×4 cross-language metaphor recognition535

tasks to investigate the impact of the question-536

ing language (L1) on metaphor comprehension537

in the target language (L2). The study involved538

four languages—English, Chinese, Spanish, and539

Slovenian—resulting in 16 distinct test sets. Each540

set utilized GPT-4o-mini for metaphor detection.541

Specifically, the model processed a text in the target542

language and identified metaphorical expressions543

using a fixed-format prompt. Below is an example 544

of the prompt (in the case of an English question): 545

The experimental results are shown in Figure 546

2. In the literal condition (Fig. 3(a)), the model 547

demonstrates high stability across the multilin- 548

gual questioning conditions. For example, in the 549

VUA20 dataset, the accuracy difference between 550

the best-performing model (0.85) and the lowest 551

(0.78) is only 6 percentage points, while the dif- 552

ference in the PSUCMC dataset is similarly small 553

(0.83 vs. 0.76, a 7% variation). This stability sug- 554

gests that literal semantic comprehension remains 555

largely unaffected by cross-linguistic conditions, 556

likely due to the task’s reliance on lexical match- 557

ing and basic grammatical structures rather than 558

higher-order cognitive processing. 559

In contrast, the metaphorical part (Fig. 3(b)) 560

reveals substantial variations in the model’s cross- 561

linguistic performance. In the VUA20 dataset, the 562
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Table 2: Literal saliency experiment results. Lit. and Met. denote detection accuracy for literal and metaphorical
samples, respectively, while ALL represents overall accuracy.

Model
VUA20 PSUCMC CoMeta KOMET

Lit. Met. All Lit. Met. All Lit. Met. All Lit. Met. All

mbert 0.964 0.767 0.939 0.978 0.721 0.957 0.995 0.431 0.985 0.981 0.703 0.964
mRob-b 0.971 0.730 0.941 0.984 0.692 0.960 0.993 0.526 0.984 0.985 0.684 0.967
mRob-l 0.973 0.754 0.945 0.980 0.735 0.959 0.987 0.560 0.979 0.984 0.682 0.966
mDeb-b 0.970 0.784 0.946 0.982 0.735 0.961 0.994 0.612 0.987 0.983 0.730 0.967

accuracy fluctuated by as much as 49% (0.72 vs.563

0.23) across different linguistic conditions, while564

the PSUCMC dataset showed a 37% variation (0.58565

vs. 0.21). These significant fluctuations highlight566

the strong dependence of metaphor comprehension567

on L1 knowledge, a phenomenon consistent with568

the cognitive characteristics of metaphors in human569

L2 learning. For instance, L2 learners’ understand-570

ing of metaphorical expressions is influenced by571

the lexical and conceptual similarities between L1572

and L2 (Wang et al., 2021). Additionally, L1 knowl-573

edge tends to be automatically activated when non-574

native speakers process L2 idioms (Carrol et al.,575

2016). Therefore, future research could explore576

how to enhance the model’s metaphor comprehen-577

sion for specific low-resource languages by target-578

ing language pairs with similar semantic structures.579

7 Salience Experiment580

The results, summarized in Table 2, show that581

the model’s classification accuracies were signifi-582

cantly higher for literal samples (Lit.) compared583

to metaphorical samples (Met.), a trend that was584

consistent across models and datasets. For in-585

stance, on the VUA20 dataset, the mBERT model586

achieved an accuracy of 0.964 for literal samples,587

far surpassing its performance on metaphorical588

samples (0.767). Similarly, the mRob-b, mRob-l,589

and mDeb-b models all demonstrated significantly590

better performance in detecting literal semantics591

than metaphorical ones. In addition, Transferability592

experiment further tests the literal salience hypoth-593

esis. Figures 2 reveal that the model’s ability to594

capture literal semantics is significantly better than595

its ability to detect metaphorical semantics (p <596

0.01). For example, on the VUA20 dataset, the597

model’s detection accuracy for literal samples is598

80%, whereas the accuracy for metaphorical sam-599

ples is only 47%, a 33% difference. This trend600

is also evident in cross-linguistic scenarios. In the 601

Chinese context, for example, the model’s accuracy 602

on the VUA20 English dataset is 78% for literal 603

samples, but only 39% for metaphorical samples, 604

further supporting the literal salience hypothesis. 605

This phenomenon aligns with the cognitive char- 606

acteristics of human learners. Research has demon- 607

strated that bilinguals are quicker and more accu- 608

rate at judging phrases with literal meanings (López 609

et al., 2017). Additionally, studies (Citron et al., 610

2020) have found that the activation of literal mean- 611

ings occurs more frequently during reading, as in- 612

dicated by shorter reading times. This suggests that 613

processing literal semantics is not only more intu- 614

itive for neural network models but also represents 615

a more cognitively efficient mode for humans. 616

8 Conclusion 617

This study reviews theories on metaphor acquisi- 618

tion in linguistics and conducts experiments to ex- 619

plore metaphor comprehension in large models. Re- 620

sults show that as the aptness interval increases, the 621

model’s accuracy in metaphor detection improves, 622

demonstrating its ability to capture metaphor usage 623

across contexts. Factors such as a richer training 624

corpus, larger model size, and optimized architec- 625

ture enhance metaphor comprehension, emphasiz- 626

ing the importance of large data and efficient mod- 627

eling. The models also show strong cross-linguistic 628

adaptation, leveraging shared semantic features 629

for cross-cultural metaphor reasoning. However, 630

the model recognizes literal meanings better than 631

metaphorical ones, supporting the literal salience 632

hypothesis and highlighting the need for further 633

advancements in metaphor detection. 634
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9 Limitations635

This paper explores the similarities and differ-636

ences in metaphor acquisition between humans and637

large language models (LLMs). However, limita-638

tions exist due to the long-tailed data distribution639

and varying metaphor similarity across languages,640

leading to some non-significant results. In par-641

ticular, the multilingual transferable comprehen-642

sion task revealed instability in the model’s cross-643

linguistic generalization. Future research will use644

high-quality metaphor resources like parallel cor-645

pora and expand language types to enhance robust-646

ness. Additionally, integrating cognitive science647

approaches for metaphor representation learning648

is expected to improve the model’s reasoning and649

alignment with human cognition.650

10 Ethics Statement651

This study adheres to academic ethical standards,652

ensuring fairness and transparency in data collec-653

tion, processing, and experimental design. All654

metaphor corpora were sourced from publicly avail-655

able resources, without involving sensitive or per-656

sonal data. In multilingual experiments, we ac-657

counted for linguistic and cultural differences to658

prevent bias. Given the potential impact of model659

bias on metaphor parsing, we carefully analyzed660

the limitations of the models, particularly in cross-661

cultural understanding, to avoid inappropriate gen-662

eralizations. Future research will focus on creating663

a more equitable and culturally adaptive metaphor664

comprehension system to minimize bias and en-665

hance fairness and interpretability in multilingual666

settings.667
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11 Appendix830

11.1 Model Introduction831

1. LLaMA31: Released by Meta AI on April 18,832

2024, LLaMA3 is available in 8B and 70B833

parameter versions. This study utilizes the834

LLaMA3-70B-Instruct model, accessible via835

official request.836

2. ChatGPT2: Developed by OpenAI, ChatGPT837

is a closed-source model accessible through838

API-based subscription. Two versions are em-839

ployed in this study: GPT-4o-mini-2024-07-840

18 and GPT-4o-2024-08-0.841

3. mBERT (Multilingual BERT) (Conneau842

and Lample, 2019) is a multilingual exten-843

sion of BERT (Devlin, 2018), pre-trained844

on Wikipedia3 across 100 languages using845

masked language modeling (MLM) and next846

sentence prediction (NSP).847

4. XLM-RoBERTa (Conneau, 2019) extends848

RoBERTa (Liu, 2019), pre-trained solely with849

MLM on the CC100 dataset4. Both its base850

(mRoB-r) and large (mRoB-l) versions are851

included in this study.852

5. mDeBERTa-V3 (He et al., 2021) is a multi-853

lingual variant of DeBERTa (He et al., 2020),854

structurally aligned with its monolingual coun-855

terpart and trained on CC100. It incorporates856

ELECTRA-style contrastive pretraining and a857

gradient-decoupled embedding-sharing mech-858

anism to enhance generalization.859

11.2 Dataset Introduction860

1. VUA (VU Amsterdam Metaphor Corpus)861

(Steen et al., 2010), based on the British Na-862

tional Corpus (BNC) (Edition et al., 2007),863

contains 187,570 word-level metaphor anno-864

tations labeled using MIPVU. It covers four865

text genres: academic, dialogue, fiction, and866

news. This study employs the VUA20 version867

(Leong et al., 2020).868

2. CoMeta (Sanchez-Bayona and Agerri, 2022)869

comprises two subsets:870

1https://llama.meta.com/
llama-downloads

2https://platform.openai.com/
3https://meta.wikimedia.org/wiki/List_

of_Wikipedias
4https://huggingface.co/datasets/

statmt/cc100

(a) Universal Dependencies (UD): Pro- 871

cessed and deduplicated news, blogs, 872

and Wikipedia texts, totaling 2,862 sen- 873

tences. 874

(b) Political Discourse (PD): Parliamentary 875

records from Spanish and Basque gov- 876

ernments, containing 771 sentences. 877

Both subsets are annotated using MIPVU. 878

3. PSUCMC (Lu and Wang, 2017), derived 879

from the Lancaster Corpus of Mandarin Chi- 880

nese (LCMC) (McEnery and Xiao, 2004), in- 881

cludes 1M words spanning academic, fiction, 882

and news texts, with MIPVU-based metaphor 883

annotations. 884

4. KOMET (Klemen and Robnik-Šikonja, 885

2023), sourced from the Slovenian Corpus of 886

Young People’s Literature (MAKS), contains 887

13,963 annotated sentences from news reports, 888

literary works (e.g., novels, essays), and on- 889

line texts, following MIPVU annotation. 890

11.3 Prompt Design 891

Table 3: Prompt for Metaphor Word Identification

LLM Prompt

Determine whether sent contains metaphor-
ically used words. If so, output only those
words separated by semicolons; otherwise, re-
turn none.
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Table 4: Dataset Statistics (VUA20, CoMeta, PSUCMC, KOMET)

Dataset Total Metaphor Samples Metaphor (%) Sentences Avg. Sentence Length
VUA20 182,263 23,146 12.70% 14,482 12.59
CoMeta 117,038 2,144 1.83% 3,595 32.56

PSUCMC 35,753 2,918 8.16% 1,718 20.81
KOMET 258,099 16,009 6.20% 13,696 18.84

12


	Introduction
	Related Work
	Aptness
	Language Proficiency
	Transferable Comprehension
	Literal Salience Hypothesis

	Method
	Aptness Experiment
	Experimental Design
	Experimental Analysis

	Language Proficiency Experiment
	Experimental Design
	Experimental Analysis

	Transferability Experiment
	Experimental Design

	Salience Experiment
	Conclusion
	Limitations
	Ethics Statement
	Appendix
	Model Introduction
	Dataset Introduction
	Prompt Design


