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Abstract:
Dynamic loco-manipulation requires whole-body control and contact-rich interac-
tions with objects and the environment. Existing learning-based approaches train
a high-level policy or hand-design a finite state machine to switch between low-
level skill policies trained independently, often resulting in quasi-static behaviors.
We propose Preferenced Oracle Guided Multi-mode Policies to learn a single pol-
icy that masters multiple modes and their preferred sequences of transitions. De-
signing hybrid automatons as oracles to generate references over different control
modes, policy optimization is guided through bounded exploration. With a task-
agnostic preference reward, we enforce learning a desired sequence of mode tran-
sitions, thereby solving the task effectively. In uni-object loco-manipulation tasks
like omnidirectional box moving and soccer, our approach results in whole-body
control and smooth transitions, enabling contact-rich dribbling, goal kicks, and
ball stops. Leveraging the oracle’s abstraction, we solve each loco-manipulation
task across diverse robot morphologies, including HECTOR V1, Berkeley Hu-
manoid, Unitree G1, and H1, using the same reward definition and weights.
Project website: https://indweller.github.io/ogmplm/
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1 Introduction

Robot control for loco-manipulation requires tight integration of locomotion and manipulation to
interact extensively with the object and environment. Traditionally, agile locomotion and dexter-
ous manipulation have been studied individually, with the overlapping focus being robustness and
recovery behaviors. In locomotion, the robot’s contact with its environment is limited to the end-

Figure 1: Dynamic contact-rich whole body loco-
manipulation tasks on different bipedal and humanoid
robots with Preferenced OGMP.

effector while maintaining balance and tracking
a desired CoM reference over challenging ter-
rains. In contrast, manipulation requires mul-
tiplicity in contact interactions with objects of
distinct geometries and dynamics. For effective
loco-manipulation, a control policy is thus re-
quired to stabilize the underactuated states of
the robot and the object, leveraging its whole
body to make and break contact to solve the
task effectively. For loco-manipulation, model-
based optimal control relies on a pre-planned
contact schedule and knowledge of an object’s
physical properties [1, 2]. Selecting an optimal
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sequence of contacts is combinatorial, typically addressed through sampling-based [3] or heuristic-
based [4] planners, followed by trajectory optimization [5], with recent efforts toward combined
optimization [6]. Nonetheless, its online computational tractability remains challenging when aug-
menting object dynamics, highlighting an open problem in loco-manipulation control.

As a compelling alternative, Deep Reinforcement Learning (RL) for robot control scales to high-
dimensional simulation models [7, 8, 9, 10, 11, 12]. Optimizing a policy over stochastic dynam-
ics allows introducing randomization, perturbation, and model uncertainty as seen in a real robot,
thereby leading to robust controllers for legged locomotion in the wild [13, 14] and dexterous ma-
nipulation of objects with complex geometry [15]. For uni-object quadrupedal loco-manipulation,
prior works leverage hierarchical frameworks with a versatile low-level locomotion policy and a
high-level policy for arm-control [16] or navigation commands [17]. Analogously, [18] proposes
a high-level switching policy and multiple low-level skill policies for agile goalkeeping. With two
independently trained policies and a hand-designed finite state machine, [19] showcases dynamic
quadrupedal dribbling and recovery. Similarly, [20] learns multiple low-level policies with a sub-
sequent state-initialization strategy for various modes of operation and executes a predetermined
sequence of policy switches for humanoid box loco-manipulation. A shared motif of the above
methods is to leverage hierarchical control with a learned high-level policy or a hand-designed fi-
nite state machine with pre-trained low-level policies. Despite the promising empirical results, it
remains unclear whether the hierarchy and learning of multiple policies are a fundamental necessity
or a practical convenience for loco-manipulation. Moreover, the amount of task-specific engineer-
ing, combined with the lack of abstraction, limits the ability of these approaches to be adopted across
different tasks and robots. Alternatively, [21] learns multiple low-level skill policies but finally dis-
tills them into a single policy for humanoid soccer. Thus, a single policy network can approximate
all the necessary skills, yet a multi-policy training strategy is adopted to 1) ease the reward shaping
for each skill and 2) alleviate the local optima arising from undesirable skill transitions. In this work,
we learn a single policy that masters multiple skills (or control modes) via guided policy optimiza-
tion, prioritizing desired mode transitions while maintaining an abstraction extendable to different
robots and tasks.

Recently [22] proposed a task-agnostic guided policy optimization framework for multi-contact
quadrupedal loco-manipulation. A task-specific policy is guided by a pre-computed demonstration
from an offline multi-modal planner [5], featuring continuous trajectories and contact schedules with
adaptive phase dynamics to handle discrepancies between demonstration and rollout. While [22] is
tractable for motion with sparse user-defined contact affordances [5], the scalability to contact-dense
bipedal dribbling is not straightforward, highlighting the need for emergent behaviors through ex-
ploration. Concurrent work [23] proposes Oracle Guided Multi-mode Policies (OGMP) as a frame-
work for structured exploration by bounding the permissible states to a local neighborhood of a
coarse state reference generated by a closed-loop oracle. In [23], a single policy is trained for
solving agile bipedal parkour with control modes like leap for gaps, jump for blocks, and pace for
flat terrain, traversing arbitrary parkour tracks. Unlike other approaches, the mode transitions in
OGMP are implicit and emergent without relying on high-level modules, leading to effective tran-
sition maneuvers. While OGMP was validated with oracles using robot state feedback and exoge-
nous time-varying inputs (like height-map), the design of oracles to accommodate external object
dynamics is unexplored. Unlike parkour, where terrain geometry uniquely determines the mode
transitions, soccer involves multiple possible mode sequences to solve the task, which is the focus
of this work. We first introduce a hybrid automata perspective to design multi-mode oracles with
continuous reference-generating dynamics and discrete mode switches. With such an oracle, we
propose a Preferenced OGMP to synthesize multi-mode control favoring desirable mode transitions.
The key contribution of our paper is two-fold:

1. We formalize oracle design using a hybrid automata perspective to model multi-mode
reference generation. By designing a single oracle, we solve different uni-object loco-
manipulation tasks such as omnidirectional moving box and soccer variants on multiple
bipeds and humanoid robots including HECTOR, Berkeley Humanoid, Unitree G1 and H1
(Fig. 1).
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2. We introduce a task-agnostic preference reward that directs the policy towards a desired se-
quence of mode transitions. The resulting Preferenced OGMP solves the loco-manipulation
tasks effectively without any robot-specific reward shaping.

The rest of the paper is organized as follows: Sec 2 revisits the OGMP theory, Sec 3 introduces the
hybrid automata perspective for oracles, Sec 4 presents the design methodology applied for the tasks
of interest followed by the results in Sec 5.

2 Oracle Guided Multi-mode Policies Revisited

Given an oracle Ξ, which serves as a closed-loop state reference generator for solving a task T ,
[23] presents an oracle guided policy optimization framework to synthesize multi-mode policies to
optimize a task objective JT . Specifically for any task variant ψT ∈ ΨT , Ξ provides a finite-horizon
reference which is at most ϵ away from the optimal state trajectory x∗t , from any given state xt based
on feedback λt, as defined below.

xΞt:t+tH = Ξ(λt) (1a)

s.t. ∃ xΞt:t+tH ∀ (xt, ψT ) (1b)

∥xΞt − x∗t ∥W < ϵ ∀ t ∈ [0, ∞) (1c)

where W is a user-defined weight matrix and ϵ is an unknown maximum deviation bound. With
such a Ξ, OGMP localizes the exploration to a ρ-neighborhood of xΞ, ensuring effective learning
for an appropriate choice of ρ. Formally,

π∗ := argmax
π∈Π

JT (2a)

s.t. ∥xπt − xΞt ∥W < ρ ∀t ∈ [0,∞) (2b)

where xπ are the states visited while rolling out policy π and ρ is the permissible state-bound.
By bounded exploration, OGMP effectively escapes the multitude of local optima in the objective
landscape, delivering the desired performance.

3 Multi-mode Oracles as Hybrid Automata

This section establishes a functional view of multi-mode oracles as hybrid automata [24]. Since
oracles are reference generators, they have continuous dynamics that evolve the reference states and
discrete jumps between the control modes based on environment feedback, leading to the following
definition,

Ξ := (M,X ,Λ, f,S) (3)

where M is a discrete set of control modes, X is the continuous state space of the reference, Λ is
the continuous input space for environment feedback, f : M×X ×Λ → X is the reference gener-
ating dynamics, and S is a set of permissible transitions with reset, guard, and invariant conditions.
Thus, Ξ generates continuous references in X and discretely jumps between modes in M through
switches in S. As an oracle, these design choices can be coarse, merely guiding optimization as an
ansatz rather than offering a high-fidelity solution for the task. We present the following example to
elucidate this perspective.

Example - Reach-avoid Task: We take the classical reach-avoid problem [25] to demonstrate the
design of an oracle for guided policy optimization. Consider a 2D robot modeled as a double in-
tegrator, q̈robot = u, a parameterized controller, u = π( . ; θ) and a point obstacle and goal with
generalized positions qobstacles, qgoal ∈ R2 respectively.

Given the current environment feedback λt := [qrobot, qobstacle, qgoal, t], Ξ generates a reference by
integrating the continuous dynamics forward in time i.e.,

qΞτ =

∫ τ

t

q̇dt, ∀τ ∈ [t, t+ tH ]
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Figure 2: a) A multi-mode oracle designed as a hybrid automaton for the reach-avoid task. Dotted lines
show the generated references in reach (green, left) and avoid (red, right) modes. b) Overview of the proposed
framework: the environment dynamically queries the multi-mode oracle for a reference. A bounded exploration
around the reference is then performed to learn dynamic loco-manipulation effectively.

from the current mode in M := {reach, avoid}. The switching conditions S ensure that when
the obstacle is at least δ m away, Ξ remains in reach mode, generating references toward the goal,
Fig. 2a (left). Otherwise, it switches to avoid mode guiding the robot away from the obstacle,
Fig. 2a (right). A policy optimization algorithm is expected to learn the optimal θ by exploring
the ρ-neighborhood of oracle’s references as defined in (2). We now highlight key remarks of this
formulation.

Remark 1. λt couples the environment dynamics with the oracle dynamics. Thus, depending on the
control provided by π, the sequence of mode transitions within the oracle can vary across rollouts.
While the oracle defines all the permissible mode switches, the policy determines the mode-transition
probabilities.

Remark 2. From Remark 1, we note that an agent might converge to undesirable transition se-
quences by exploiting dynamics and task objectives. For example, π may learn to avoid an obstacle
indefinitely (getting stuck in an “avoid → reach → avoid” loop) rather than reaching the goal
and completing the task. This highlights the need for an explicit mechanism to enforce a preferred
sequence of mode transitions, as discussed in Sec 4.3

Thus, a hybrid automaton view of oracles provides a formal framework to design oracles system-
atically. Note that the notational complexity does not imply design complexity while scaling to
high-dimensional systems, as we will demonstrate in Sec. 4.

4 Methodology

This section presents our design methodology for solving uni-object bipedal loco-manipulation
tasks. We first define the tasks of interest and the chosen modes of the oracle. Next, we outline
the oracle design and propose a preferenced oracle-guided policy optimization, as shown in Fig. 2b.

4.1 Uni-object Loco-manipulation

We divide the uni-object loco-manipulation task into three modes - reach, manipulate, and detach.
With this 3-mode abstraction, we aim to learn policies for multiple robots with varying dynamic and
kinematic properties. We consider two tasks with different requirements in the finesse of manipula-
tion: soccer and move box. The task variants are listed in Table 1, along with the robots trained for
each task.

4.1.1 Soccer task

The robot is tasked with approaching a ball, dribbling it to a designated target, and detaching from
it. The ball is arbitrarily initialized about a fixed distance from the robot, as seen in Fig. 2b (left).
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Table 1: Variants of uni-object loco-manipulation tasks
Tasks Regularize Robots

soccer-stop × HECTOR v1
soccer-kick ✓ Berkeley Humanoid, Unitree G1 and H1
move box × HECTOR v1
move box ✓ Berkeley Humanoid, Unitree G1 and H1

Upon reaching the target position, the robot is expected to halt with two variations: stop - bringing
the ball to rest from omnidirectional dribbling, and kick - shooting it towards the goal after unidirec-
tional dribbling. Guided by the oracle’s coarse reference, the policy is expected to emergently learn
contact-rich interactive behaviors to control the soccer ball.

4.1.2 Move box task

The move box task is analogous to soccer but only comprises the stop variant for the detach mode.
We choose boxes of dimensions comparable to each robot’s nominal height to ensure whole-body
loco-manipulation behaviors, continuously making and breaking contact with the box to “negotiate”
it towards the goal.

4.2 Oracle design for loco-manipulation

We design a single oracle for all loco-manipulation tasks to provide references for the robot base and
object states across different modes. Following (1), we define an oracle Ξ with modes M := {reach,
manipulate, detach} and permissible mode transitions S as shown in Fig. 2b. The oracle receives an
environment feedback, λt := [probot

t , pobject
t , ptarget

t , t], where p□t denotes the position of □, and t is the
current time in the episode. We chose the oracle reference horizon tH = 1 sec and found the choice
of tH does not affect performance, as shown in [23]. The reference state is defined as the CoM states
of the robot and object, i.e. xΞ := [probot

Ξ , θrobot
Ξ , vrobot

Ξ , ωrobot
Ξ , pobject

Ξ , vobject
Ξ ], where θ, v, and ω denote

the orientation, linear velocity, and angular velocity respectively. All the references are generated
as linear interpolations between the current and target positions. Similar to warm-starting trajectory
optimization [26], we found that linearly interpolated references were sufficient to solve our tasks as
RL optimizes the policy subject to the full robot dynamics in the simulation. This property makes
our approach simple and scalable for loco-manipulation to multiple robots, eliminating the need
for dynamically feasible demonstrations [22] or carefully re-targeted kinematic references [27, 28].
By only having references for a subspace of the full state, the joint states are free for the policy to
explore, thereby generating distinct behaviors for each task.

4.3 Preferenced Oracle Guided Policy Optimization

Our proposed preferenced oracle guided policy optimization framework for dynamic loco-
manipulation is visualized in Fig. 2b. At each environment step, the multi-mode oracle provides
a tH -long reference in the active mode determined by the environment feedback. The policy opti-
mization is guided by the oracle’s reference using permissible state terminations as in Section 2 and
rewards in Table 3. With this OGMP setup, we observed that the policy could exploit the automaton
and converge to undesirable mode transition sequences. To overcome such local optima, we propose
assigning mode preference as discussed below.

Mode preference : Given a set of oracle modes and rewards, multiple solutions exist with some
mode transitions resulting in undesirable behavior. For example, in Fig. 2b, the agent can exploit
the loop srr → srm → smr → srr, leading to kicking the ball once at high velocity in the manipu-
late mode and continuously chasing it in the reach mode. Such “creative” behaviors hinder finding
the preferred behavior, such as srr → srm → smm → smd → sdd. Removing transitions (e.g.,
smr) to break the loop would be conservative as adversarial perturbations may drive the ball away
from the robot, necessitating a switch to reach mode. Hence, we need to retain all necessary transi-
tions but minimize the number of undesired transitions. Since it is infeasible to specify all optimal
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Figure 3: Keyframes from the simulation: a) First row - moving the box along the slope. b) Second row -
moving the box omnidirectionally along the plane c) Third row - dribbling a soccer ball in the soccer-stop task.
In each case, the robot learns to manipulate the object to the target location (green circle).

mode sequences apriori (as it is state-dependent), we propose assigning ranks to each mode. Ensur-
ing increasing ranks point toward the preferred direction of transitions, we introduce the following
preference reward :

rpreference =

{
−1 mt < max

0≤τ≤t
(mτ )

0 otherwise

where t is the current time step in the episode, and mt is the rank of the mode at t. Indicating pref-
erence as a penalizing reward allows yet minimizes transitions in the “wrong direction” and results
in subsequent recovery to the “right direction”. Specifically, we set ranks: reach-0, manipulate-1,
and detach-2 and penalize any transition that decreases the mode rank compared to the highest rank
observed thus far in the current episode. In the example above, switching from manipulate to reach
(rank change: 2 → 1) is allowed but penalized, forcing the policy to learn the necessary recovery
maneuvers. Note that the preference reward offers flexibility, allowing different modes to share
the same rank and enabling multiple optimal behaviors. Unlike densely shaped reward terms, the
above-proposed preference reward is sparse by definition and is left untuned across tasks.

Training details: For training, we use the PPO [29] implementation of RSL RL [30] with the
actor/critic network architectures being 1 RNN cell with 128 hidden units followed by an MLP with
hidden units [200, 100]. The remaining hyperparameters are retained from the default configuration
for RSL RL provided by Isaac Lab [31]. For all tasks specified in Table 1, the policy observation
comprises the proprioceptive robot states, relative distances to the object and target, and a phase
indicating the current step in the reference. The policy outputs actuator PD targets, to be tracked
by a low-level PD controller to compute torques. Our rewards are split into task and regularization
terms, as seen in Table 3. Along with the base tracking from [23], object-tracking and simple task
rewards are added. Apart from the maximum episode length, we terminate based on the position
errors of the robot and object relative to the current oracle reference. For the permissible state
bounds we use ρrobot

x = 0.4, ρrobot
y = 0.4 and ρrobot

z = 0.2 and ρobject
x = 0.4. To ensure realistic

ball-robot dynamics in the soccer tasks, we incorporate a drag force represented by the equation
Fdrag = −0.5v2ball, similar to [19].

5 Results

In this section, we present our results and performance analysis across the loco-manipulation tasks
with different robots listed in Table 1. We train on four robots that vary in morphology, actuation,
and degrees of freedom - HECTOR v1, Berkeley Humanoid, Unitree G1, and H1. Since HECTOR
is under active development, we train without regularization for simulation results. For other robots,
we add regularization rewards considering the sim-to-real concerns, thus resulting in smoother mo-
tions. Our codebase with all the above robot and task variants is open-sourced [32]. It is worth
noting that during inference, the policies are independent of the oracle, and the reference-based ter-
minations are deactivated. We present a qualitative overview followed by quantitative comparisons
with relevant baselines.

5.1 Qualitative Analysis of Performance

As shown in Fig. 3 and 4, the policies trained for each task successfully complete the intended
loco-manipulation objective. Training a single multi-mode policy allows for implicit learning of
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Figure 4: Motion trace of the Unitree G1 policy, transitioning through reach, manipulation, and detach modes.

non-trivial transition maneuvers. This is highlighted in Fig. 5 (left, center) for soccer-kick task,
where the robot crouches and decelerates as it approaches the ball to prevent undesirable con-
tacts. Similarly, before kicking, it accelerates to impart momentum to the ball, as shown in
Fig. 5 (right). As seen in the supplementary video, during the manipulate mode, HECTOR ex-
hibits dribbling behaviors both when the ball is within and outside the support polygon spanned
by its feet. It extensively uses both legs, shuffling the ball between its feet, kicking with one
foot, and stopping it with the other. Despite using the same oracle and reward weights, we
note the resulting policies for each robot differ in their strategies, adhering to the kinematic and
dynamic limits. For instance, in soccer-kick, Berkeley Humanoid kicks using both legs, while
G1 and H1 favor single-leg kicks. In the move box task, all robots employ their entire body
to establish a “stable” support plane on the object and manipulate it toward the target loca-
tion. Rather than always facing the box, the policies prefer to exploit the robot morphology to
cling to the object with non-trivial configurations. Hence, across all tasks, emergent behaviors
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Figure 5: Selected CoM states in the soccer-kick task
for Berkeley Humanoid. Colored regions indicate ac-
tive modes-reach (red), manipulate (blue), kick (green).

involving contact-rich whole-body interactions
are observed. This includes dynamic adjust-
ing of contact points and non-trivial on-and-off
contacts to stabilize and reactively “negotiate”
with the object. Thus, without additional robot-
specific hyperparameter tuning, our approach
enables successful policy synthesis across mul-
tiple robots and task variants within the abstrac-
tion of dynamic uni-object loco-manipulation.

5.2 Comparisons and Quantitative Analysis

5.2.1 Performance Metrics

Table 2 presents the quantitative evaluation for the soccer-kick task. Over 100 episodes, we ran-
domize the initial joint states between (−0.05, 0.05). We declare the episode to be successful when
the ball reaches the goal and the robot stands within the detached region. The average ball con-
tacts represent the number of contacts the robot makes with the ball in the manipulate mode. The
fall percentage indicates the fraction of episodes in which the robot height falls below a threshold.
Despite being trained without initial randomization, our approach succeeds in 98% of the episodes
with at least 9 contacts made with the ball in the manipulate mode in each episode. We compute the
resulting transition probabilities from each mode by counting the transitions and normalizing them
over the total number of transitions. This provides the mode transition distributions the trained pol-
icy converged to, as shown in Fig. 6. Self-transitions dominate the distribution due to the receding
horizon design of oracles — having to stay in a mode until a different switching condition is met.

Table 2: Metrics over 100 episodes for the soccer-kick task
Policy Success % Avg. ball contacts Fall %

multi-policy (baseline) 26.0 12.46 69.0

single-policy w/o pref 28.0 5.11 0.0
single-policy (ours) 98.0 9.76 0.0

5.2.2 Effect of preference reward

We compare the effect of our proposed preference reward in increasing the number of desirable
transitions as noted in Remark 2. From Fig. 6a, we observe that the policy without preference
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reward has comparable transition probabilities between reach → manipulate (0.022) and manipulate
→ reach (0.021). Thus, instead of an effective manipulation strategy, the policy exploits oracle
dynamics, getting stuck in a reach → manipulate → reach loop, where the robot kicks the ball
away and then chases it, as shown in the video. In contrast, the addition of the preference reward
(Fig. 6b) ensures the transition probability from reach → manipulate is greater (0.036) than that
of manipulate → reach (0.001). As shown in Table 2, training with preference results in a higher
number of ball contacts. While both policies have a low fall percentage, the preference-trained
policy stands after kicking, while the non-preference policy avoids falling by perpetually walking
behind the ball. Hence, adding preference results in 3x more successful goal kicks than the one
without, as seen in Table 2. Thus, the preference reward helps disambiguate the desired optima
corresponding to reach → manipulate → detach instead of other locally optimal mode transitions.

(a) w/o preference reward (b) preference reward

0 100 200 300
time step

0.4

0.5

0.6

ro
b

ot
b

as
e

h
ei

gh
t

0 2 4
ball position x

−1

0

1

b
al

l
p

os
it

io
n

y reach manipulate kick

Multi-policy (baseline) Single-policy (ours)

(c) base height and ball trajectories

Figure 6: a) and b) Mode transition probabilities of the policy in the soccer-stop task. c) Robot’s base height
and ball trajectories over 100 episodes from randomized joint state initialization for the Berkeley Humanoid in
the soccer-kick task.

5.2.3 Single-policy vs. Multi-policy approaches

We compare the performance of our single multi-mode policy with the established multiple uni-
mode policies approach. As a baseline, we train three separate policies, one per mode in the soccer-
kick task, using the same mode-specific rewards. During inference, we use the oracle as the finite
state machine to switch between the policies similar to prior approaches [20, 19]. When trained
without initial randomization, the baseline policies fail to transition between each other, as seen in
the attached video. To alleviate this, we randomize the initial floating base and joint states for the
baseline manipulate and kick policies. As shown in Table 2, the multi-policy baseline falls in 69%
of the episodes due to fragile inter-policy transitions, while our single-policy results in stabilizing
base motions through robust inter-mode transitions, also seen in Fig. 6c (left). Comparing the
dribbling performance, the baseline has 30% more contacts during the manipulate mode. Despite
the contact-rich manipulation, the multi-policy baseline fails to transition to the kick policy, as seen
in Fig. 6c (right). In contrast, having a comparable number of ball contacts, our approach results
in a successful transition to kick mode and a task success rate of 98% — 3x more than the baseline
approach. Despite having 0.3x the learnable parameters of the multi-policy approach, our single
multi-mode policy outperforms the baseline.

6 Conclusion

This work presents Preferenced Oracle Guided Multi-mode Policies and is applied to dynamic
bipedal loco-manipulation. By designing reference-generating hybrid automata as coarse oracles
with continuous reference dynamics and discrete mode switches, we effectively guide policy opti-
mization. To minimize the number of undesired transition sequences, we introduce a novel mode
preference reward, enhancing performance in tasks with multiple optimal mode transitions. The
proposed approach was successfully validated over task variants like move box, soccer-stop, and
soccer-kick with multiple robots of varying form factors, including HECTOR v1, Berkeley Hu-
manoid, Unitree G1, and H1 in simulation. Compared with existing approaches, we demonstrate the
advantage of training a single multi-mode policy with mode preference, resulting in non-trivial dy-
namic loco-manipulation. Ongoing work involves the sim-to-real transfer, with future efforts aimed
at extending to more challenging tasks.
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Appendix

Table 3: Rewards

Term Weight Expression

Task Rewards

Base Pos. 0.3 exp(−5.0∥probot − probot
Ξ ∥)

Base Ori. 0.3 exp(−5.0[1− (θrobot · θrobot
Ξ )2])

Base Lin. Vel. 0.15 exp(−2.0∥vrobot − vrobot
Ξ ∥)

Base Ang. Vel. 0.15 exp(−2.0∥ωrobot − ωrobot
Ξ ∥)

Mode Preference −5.0 1(mt < max
0≤τ≤t

(mτ ))

Object Proximity 0.5 1(∥pobject − probot∥ ≤ hrobot)1(mt = 1)

Object Pos. 1.0 exp(−2.0∥pobject − pobject
Ξ ∥)1(mt = 2)

Object Lin. Vel. 1.0 exp(−2.0∥vobject − vobject
Ξ ∥)1(mt = 2)

Ball Rest Penalty −0.5 1(∥vobject∥ ≤ 0.05)1(mt = 1)

Regularization Rewards

Torque Mag. 0.1 exp(−10.0∥τ∥)

Torque Rate 0.1 exp(−10.0∥τ − τprev∥)

Joint Vel. 0.1 exp(−10.0∥q̇∥)

Default Joint Pos. −0.1
∑

i |qi − qdefault
i |

τ , q, q̇ denotes joint torques, positions and velocities, hrobot denotes the nominal height of the robot and ∥ . ∥
denotes the l2-norm divided by corresponding normalizing constant.
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