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Abstract

Supervised models trained for single-label001
classification tasks with cross-entropy loss are002
implicitly enforced to produce probability dis-003
tributions that follow a discrete delta distribu-004
tion in training. Model predictions in test time005
are expected to be similar to delta distributions006
given that the classifier determines the class007
of an input correctly. However, the shape of008
the predicted probability distribution becomes009
similar to the uniform distribution when the010
model cannot infer properly. We exploit this011
observation for detecting out-of-scope (OOS)012
utterances in conversational systems. Specifi-013
cally, we propose a zero-shot post-processing014
step, called Distance-to-Uniform (D2U), ex-015
ploiting not only the classification confidence016
score, but the shape of the entire output dis-017
tribution. We also introduce a learning proce-018
dure that uses D2U for loss calculation in the019
supervised setup. We conduct experiments us-020
ing six publicly available datasets. Experimen-021
tal results show that the performance of out-022
of-scope detection is improved with our post-023
processing when there is no OOS training data,024
as well as with D2U learning procedure when025
OOS training data is available.026

1 Introduction027

Automated conversational systems have recently028

received attention from the research community029

(Dopierre et al., 2021; Mehri et al., 2020; Qin et al.,030

2021). In applications such as voice assistants, Spo-031

ken Language Understanding (Young et al., 2013)032

aims to extract meaning from the user inputs, called033

utterances, in order to process and execute desired034

functionalities. The task of Intent Detection, or035

Intent Classification, aims to classify user utter-036

ance into a set of system-identifiable intents. How-037

ever, supervised training of such systems can only038

cover a restricted set of classes, i.e. in-scope (INS)039

classes. To enhance user experience, the task of040

Out-of-Scope (OOS) detection (Lin and Xu, 2019a;041
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Figure 1: Sample output distributions of an INS classi-
fier predicting the intent of an INS and OOS utterance.
Since OOS utterances do not belong to any intent, the
classifier is confused, and the prediction gets closer to
the uniform distribution.

Xu et al., 2021; Zhan et al., 2021; Shen et al., 2021) 042

distinguishes INS utterances from those that do not 043

belong to the scope of the classifier with dedicated 044

model architectures and loss functions. 045

Modeling OOS detection in a supervised setting 046

can be problematic, since covering every OOS in- 047

tent in training data is quite challenging. Zero-shot 048

OOS detection is a potential solution to this prob- 049

lem, which examines the prediction confidence of 050

an INS classifier (Hendrycks et al., 2020) to dis- 051

criminate OOS utterances at inference time. Dur- 052

ing INS training, cross-entropy loss between model 053

predictions and ground-truth is minimized, result- 054

ing in confident predictions for INS utterances that 055

enable a confidence threshold value separating INS 056

and OOS utterances. However, softmax classifiers 057

suffer from overconfident predictions for OOS data 058

(Hendrycks and Gimpel, 2017), which makes it 059

difficult to accurately determine a threshold value. 060

Figure 1 illustrates output probability distribu- 061

tions of a classifier for predicting the intent class for 062

an INS and OOS utterance. The classifier, trained 063

only on INS utterances, is confused when OOS 064

utterance is given. The model assigns closer proba- 065

bilities for different classes since there is no correct 066

class for this OOS utterance, hence the resulting 067

distribution gets closer to a uniform distribution 068

than a discrete delta distribution. 069
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Based on this observation, we propose to mea-070

sure the dissimilarity from or distance to the uni-071

form distribution (D2U). Statistical distance or di-072

vergence calculations between the prediction distri-073

bution and uniform distribution enable a decision074

boundary to be more accurately determined. Figure075

2 illustrates possible benefits of using distance to076

the uniform distribution with cross-entropy. The077

subplot at the left shows the distribution of the078

number of utterances according to their Maximum079

Likelihood Estimate (MLE) score. The subplot at080

the right shows the same distribution according to081

cross-entropy score between prediction probability082

and uniform distribution. A decision boundary or083

threshold can be easily determined using D2U’s084

cross-entropy as a post-processing step without any085

OOS training data.086

When OOS training data is available (Larson087

et al., 2019), D2U can be used as a loss function088

to minimize the distance between OOS predictions089

and the uniform distribution. Such a loss function090

forces OOS predictions to be less confident, and091

benefit D2U post-processing further. To test our092

hypothesis that D2U is a useful method for OOS093

detection, we answer the following research ques-094

tions:095

• Research Question 1: Does the application of096

D2U as a post-processing step on INS classifier097

predictions increase OOS detection performance098

when there is no OOS training data?099

• Research Question 2: Can the performance be100

boosted by incorporating D2U into the training101

procedure as a particular loss function when OOS102

training data is available?103
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Figure 2: The histogram of prediction probability
scores for INS and OOS utterances (MLE) by using
a classifier trained on only INS utterances at the left.
Instead of MLE, for the same classifier, cross-entropy
score between prediction distribution and uniform dis-
tribution (D2U) is given at the right. A vertical decision
boundary on the x-axis separating INS and OOS utter-
ances can be more accurately determined with D2U.

• Research Question 3: Is the performance of 104

OOS detection significantly improved by D2U 105

over existing state-of-the-art methods? 106

We design dedicated experiments for each re- 107

search question, and provide results for zero-shot 108

setup with no OOS training data (RQ1), supervised 109

training setup with OOS training data (RQ2), and 110

comparisons against the state-of-the-art OOS de- 111

tection algorithms from the literature (RQ3). We 112

use six publicly available datasets and report five 113

performance metrics with statistical significance 114

analyses. 115

This paper is structured as follows. In Section 116

2, we provide a summary of related studies. Our 117

proposed method is described in Section 3. We 118

report the experimental details in Section 4. We 119

discuss several aspects of our study in Section 5, 120

and conclude the paper in Section 6. 121

2 Related Work 122

We divide OOS detection studies into three cate- 123

gories: (i) Confidence-based, (ii) representation- 124

based, and (iii) distance-based methods. 125

2.1 Confidence-based OOS detection 126

Threshold-based Methods In earlier studies, de- 127

tecting OOS utterances is achieved by thresholding 128

the softmax output of INS classifiers (Larson et al., 129

2019; Feng et al., 2020; Zhang et al., 2020), which 130

reflects the intuition that a classifier network is 131

likely to output a more confident prediction score 132

for a sample that follows its training distribution. 133

The overconfidence problem of softmax classifiers 134

(Hendrycks and Gimpel, 2017), although found to 135

be less apparent in Transformer-based (Vaswani 136

et al., 2017) models (Hendrycks et al., 2020), hin- 137

ders threshold-based OOS detection performance. 138

Post-processing Methods The overconfidence 139

problem of softmax classifiers is tackled by post- 140

processing predictions. ODIN (Liang et al., 2018) 141

and SofterMax (Lin and Xu, 2019b) apply tem- 142

perature scaling for enlarging the confidence gap 143

between INS and OOS instances, since INS logits 144

are ideally further away on the positive axis of the 145

softmax input. Gangal et al. (2020) utilize likeli- 146

hood ratios with generative classifiers to distinguish 147

OOS predictions. Our proposed method, D2U, is 148

a confidence-based post-processing method when 149

there is no OOS training data available. 150

2



2.2 Representation-based OOS detection151

Dedicated model architectures or loss functions152

help represent utterances in a high-dimensional153

space suitable for OOS detection. Large Margin154

Cosine Loss (LMCL) ensures that INS intents are155

tightly clustered (Zeng et al., 2021a), so that OOS156

utterances are exposed for outlier detection algo-157

rithms, such as Local Outlier Factor (Lin and Xu,158

2019a). Intent class embeddings (Cavalin et al.,159

2020) model OOS detection as a reverse dictionary160

task by mapping intent classes and utterances to the161

same space. Yilmaz and Toraman (2020) propose162

a feature representation mechanism that uses KL163

Divergence to capture the changes in model predic-164

tions during sequential processing of utterances.165

In order to mitigate data scarcity in OOS de-166

tection, Marek et al. (2021) propose a method for167

generating OOS data with Generative Adversarial168

Networks. GANs are also utilized for generating169

high-dimensional vector representations that are170

hard to distinguish from that of real utterances,171

providing adversarial signals to the INS classifier172

(Zeng et al., 2021b; Liang et al., 2021). The adver-173

sarial signal supplied during training ensures that174

the model is more robust to OOS samples, making175

their detection more achievable.176

2.3 Distance-based OOS detection177

Distances and divergences are useful tools in OOS178

detection, since they provide a measure of dissimi-179

larity that can distinguish INS and OOS samples.180

Xu et al. (2020) utilize Euclidean and Mahalanobis181

distances with generative classifiers to identify out-182

liers with Gaussian Discriminative Analysis. Ma-183

halanobis distance calculated using representations184

from the intermediate layers of BERT (Devlin et al.,185

2019) increases OOS detection performance (Shen186

et al., 2021). Lee et al. (2018) introduce the con-187

fidence loss in Computer Vision for GANs that188

calculates KL Divergence between the training pre-189

dictions for OOS samples and uniform distribution,190

and minimize it to achieve lower confidence values.191

The idea of measuring the distance between pre-192

diction distribution and uniform distribution is uti-193

lized in different learning architectures (Lee et al.,194

2018; Gangal et al., 2020), but not extensively stud-195

ied for OOS intent detection. Besides, we explore196

various distance metrics in zero-shot OOS detec-197

tion and different distance-to-uniform training pro-198

cedures in supervised setup.199

3 Distance-to-Uniform Calculation for 200

OOS Detection 201

3.1 D2U post-processing for zero-shot OOS 202

detection 203

Supervised classifiers trained on INS data model 204

the ground truth labels with a discrete delta func- 205

tion that corresponds to the label, given as follows. 206

δci(x) =

{
1, if x = ci

0, otherwise
(1) 207

For the data instance i, ci is the ground-truth 208

label indicating the correct class. The cross-entropy 209

loss between softmax model output and discrete 210

delta function is given as follows. 211

LCE = − 1

N

N∑
i=1

δci(x) log P̂ (ui) (2) 212

Here, P̂ (ui) is the output probability distribu- 213

tion of the model for utterance ui in a batch of N 214

utterances, and ci is the correct class label for the 215

given utterance. This criterion implicitly forces 216

the model to generate confident predictions for a 217

given data point with maximal confidence score 218

assigned to the ground-truth class label, and low 219

prediction scores for the other classes. When an 220

OOS utterance is given to an intent classifier that 221

is trained using only INS data, the classifier gets 222

confused, i.e., the output probability distribution 223

is more dissimilar to a delta distribution than what 224

an INS utterance would result in. In other words, 225

output distributions of OOS samples get closer to 226

the uniform distribution than that of INS samples, 227

an observation that we exploit for OOS detection. 228

The conventional methods for OOS detection 229

make use of a pre-determined threshold value on 230

the Maximum Likelihood Estimate (MLE) score 231

assigned to the predicted label, given as follows. 232

OOS(ui) =

{
1, if max(P̂ (ui)) < θ

0, otherwise
(3) 233

Here, θ is a pre-defined threshold value between 234

0 and 1, and max(P̂ (ui)) is the MLE score, which 235

considers only the prediction confidence and ig- 236

nores the shape of the distribution. We exploit the 237

information conveyed by the shape of the entire pre- 238

diction distribution by first calculating a distance 239

between the output distribution P̂ and the uniform 240

3



distribution U before applying the threshold, given241

as follows.242

OOS(ui) =

{
1, if dst(P̂ (ui), U) < θ

0, otherwise
(4)243

The distance determined by the dst(.) function244

between P̂ (ui) and U can be calculated with var-245

ious distance metrics. We experiment with geo-246

metric distance calculations, such as Euclidean247

distance and Cosine distance; as well as statisti-248

cal distance calculations, such as Jensen-Shannon249

distance and symmetrized Kullback-Leibler diver-250

gence. The distance value calculated by the dst(.)251

function can be intuitively interpreted as the level of252

confidence of the model. When the distance value253

is low, the model is less confident and more con-254

fused, since the output distribution assigns closer255

scores for each class.256

This is an architecture-agnostic zero-shot post-257

processing step which can be generalized to any258

classification model trained with cross-entropy loss259

with no need for OOS training data. OOS detec-260

tion in test time is achieved by a function of the261

prediction distribution given by D2U.262

3.2 Distance metrics for post-processing263

We examine a number of geometric and statistical264

distance measures listed as follows.265

• Bray Curtis Distance (BC): For two probability266

distributions, u and v, the Bray Curtis distance is267

given as
∑

i |ui − vi|/
∑

i |ui + vi|.268

• Canberra Distance (Cbr): Canberra distance be-269

tween u and v is
∑

i (|ui − vi|/(ui + vi)).270

• Cosine Distance (Cos): Derived from the Cosine271

similarity, the Cosine distance is formulated as272

1− (u ·v/||u||2||v||2) where ||.||2 is the L2 norm.273

• Euclidean Distance (Euc): The Euclidean dis-274

tance between u and v is given as ||u− v||2.275

• Hellinger Distance (Helng): The Hellinger dis-276

tance between u and v is ||
√
u−
√
v||2/

√
2.277

• Cross-Entropy (CE): Cross-Entropy is a measure278

of dissimilarity between distributions u and v279

given as −
∑

i ui log vi.280

• Symmetrized KL Divergence (KL): The sym-281

metrized Kullback-Leibler divergence is given as282

[KL(u, v) + KL(v, u)]/2 where KL(u, v) =283 ∑
i ui log (ui/vi).284

• Jenshen Shannon Distance (JS): Jensen Shan- 285

non Distance generalizes KL divergence between 286

u and v as (KL(u,m)/2) + (KL(v,m)/2) 287

where m is the mean of two distributions. 288

3.3 D2U training procedure for supervised 289

OOS detection 290

When OOS training data is available, we propose 291

D2U loss function, as shown in Figure 3, to in- 292

crease the similarity between OOS output probabil- 293

ity distributions and the uniform distribution. We 294

use pretrained BERT (Devlin et al., 2019) as the 295

classifier network. The loss function for INS ut- 296

terances, Lins, is still cross-entropy between true 297

label and prediction, given as follows. 298

Lins = −
1

Nins

Nins∑
i=1

δ(ci) log P̂ (ui) (5) 299

For OOS utterances, the loss Loos, is calculated 300

against the uniform distribution, given as follows. 301

Loos =
1

Noos

Noos∑
i=1

dst(P̂ (ui), U) (6) 302

The total loss is the weighted average over a 303

batch of utterances containing Nins number of INS 304

utterances and Noos number of OOS utterances, 305

given as follows. 306

Ltotal =
NinsLins +NoosLoos

Nins +Noos
(7) 307

As the dst(.) function in Equation 6, we experi- 308

ment with differentiable functions; such as cross- 309

entropy, KL divergence, and Sinkhorn distance (Cu- 310

turi, 2013), named as D2U-CE, D2U-KL, and D2U- 311

S, respectively. These functions treat the model 312

INS 
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Figure 3: The architecture of the proposed supervised
learning method, D2U. INS utterances are learned with
conventional cross-entropy loss against true label dis-
tribution, while OOS loss is calculated against the uni-
form distribution.
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output and ground truth as probability distributions313

and provide a differentiable measure. We do not314

modify the loss calculation for INS utterances so315

as not to affect the INS classification performance.316

Note that this architecture does not model the317

OOS intent as a separate class. Therefore, post-318

processing is applied as described in Section 3.1319

in test time. Since the loss function incorporates320

D2U into training, the performance gain by the321

post-processing is expected to be increased.322

4 Experiments323

4.1 Datasets324

We use six publicly available intent classification325

datasets, some of which include labeled OOS data.326

CLINC (Larson et al., 2019) is a dataset with327

150 INS intent classes targeting various domains328

with curated OOS data. We use the OOS split329

of CLINC to augment other existing intent detec-330

tion datasets that do not include labeled OOS data;331

which are ACID (Acharya and Fung, 2020), Bank-332

ing (Casanueva et al., 2020), HWU64 (Liu et al.,333

2019), and SNIPS (Coucke et al., 2018). We ob-334

serve that HWU64 has many short and noisy ut-335

terances, we therefore remove any utterances with336

length less than or equal to three words.337

TOP (Gupta et al., 2018) is an intent detection338

dataset that generalizes conventional intent label-339

ing with semantic parsing. The intent labels fol-340

low a hierarchical structure with potentially many341

labels for an utterance. However, we take only342

root intent class label into account to be consis-343

tent with other datasets. The utterances with the344

intent labels "UNSUPPORTED" and "UNSUP-345

PORTED_NAVIGATION" are treated as OOS. We346

give the main statistics of the datasets in Table 1.347

The variety of the number of classes, average348

length (number of words), and vocabulary size349

provides a wide spectrum for understanding dif-350

ferent OOS detection scenarios. For instance, TOP351

dataset can be considered a low resource setup352

since the number of OOS utterances is significantly353

lower than INS utterances.354

Table 1: The statistics of the datasets used in this study.

ACID Banking CLINC HWU64 SNIPS TOP
INS 22,172 13,081 22,500 23,431 13,784 36,668
OOS 16,000 16,000 16,000 16,000 16,000 3,653
Total 38,172 29,081 38,500 39,431 29,784 40,321
Vocabulary 25,083 26,702 25,810 26,069 30,100 12,610
Avg. Len. 8.95 9.85 8.39 7.25 8.65 8.93
Classes 175 77 150 46 7 16

4.2 Evaluation metrics 355

To assess the performance of OOS detection, we 356

report the scores of Receiver Operating Curve Area 357

Under Curve (ROC AUC), False Positive Rate at 358

90% OOS True Positive Rate (FPR90), and False 359

Negative Rate at 90% OOS True Negative Rate 360

(FNR90). Since these performance metrics are 361

independent of a threshold value used for decision 362

boundary, they provide a means of fair comparison. 363

We also report weighted OOS Recall and weighted 364

OOS F1 metrics based on the threshold value that 365

maximizes the Youden’s J statistic (Youden, 1950) 366

on a validation set. 367

Compared to Precision, Recall is arguably a 368

more critical performance metric for OOS detec- 369

tion; since Recall considers Type II error, meaning 370

that OOS utterances are mislabeled as INS. In this 371

case, the voice assistant would execute a task that 372

the user does not intent to do. We argue that ROC 373

is a more generic measure that considers the per- 374

formances of varying thresholds, than Recall and 375

F1 considering only a fixed threshold. 376

4.3 Baseline approaches 377

We provide results for important baseline methods. 378

In the experiments, BERT (Devlin et al., 2019) 379

with softmax layer is used as the classifier network. 380

For RQ1, the baseline zero-shot post-processing 381

approaches are listed below. 382

• MLE (Hendrycks and Gimpel, 2017; Hendrycks 383

et al., 2020): The confidence score of a classi- 384

fier trained only on INS utterances is used with 385

thresholding. 386

• Softmax temperature scaling (Temp) (Liang 387

et al., 2018; Lin and Xu, 2019b): As a modifi- 388

cation to the MLE setup, the softmax input is 389

applied a temperature value of 103. 390

• Standard deviation (Stdev): We use the stan- 391

dard deviation of the distribution before thresh- 392

olding since OOS predictions would have lower 393

standard deviation. 394

• Entropy (Ent) (Shen et al., 2021): The entropy 395

of the prediction distribution, H(P̂ (ui)), is cal- 396

culated before applying the threshold, as follows. 397

OOS(ui) =

{
1, if H(P̂ (ui)) > θ

0, otherwise
(8) 398
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Table 2: RQ1: D2U-zero with various distance metrics vs. post-processing baselines in zero-shot setup. Row-wise
best scores are given in bold. (↑) and (↓) indicate that higher and lower scores are better, respectively. "•" indicates
statistically significant differences with two-tailed paired t-test at a 95% interval (with Bonferroni correction p <
0.0125) in pairwise comparison between D2U-zero and all baselines except the ones marked with "◦".

Metric Dataset Baselines D2U-zero
MLE Temp Stdev Ent CE BC Cbr Cos JS Euc KL Helng.

ROC AUC (↑)
ACID 90.93 91.83◦ 91.54 91.98 92.01 91.40 90.18 91.54 92.08 91.54 92.14• 92.13
Banking 94.92 96.15 95.88 96.66 97.03• 96.89 96.09 95.88 96.99 95.88 96.91 96.97
CLINC 95.34 96.16 95.52 95.90 96.32• 96.09 96.26 95.52 96.24 95.52 96.20 96.25
HWU64 79.29 80.46 79.95 80.90 80.32 81.49• 80.49 79.95 81.16 79.95 80.92 81.05
SNIPS 95.45 96.20 95.50 95.70 96.33• 95.61 95.83 95.50 95.86 95.50 96.15 96.04
TOP 74.23 73.23 74.26 74.19 73.24 74.32 74.36• 74.26 74.18 74.26 73.25 73.76

FPR90 (↓)
ACID 25.00 22.10◦ 20.70◦ 19.85◦ 21.40 24.80 28.60 20.70 20.90 20.70 19.70• 20.70
Banking 13.30 10.00 11.30 7.85 7.30 6.60 12.00 11.30 6.20 11.30 6.30 6.10•
CLINC 9.30 7.80◦ 9.30 8.00◦ 7.50• 8.10 7.70 9.30 7.70 9.30 7.80 7.60
HWU64 58.90 54.10 55.70 48.12 52.50 51.60 55.00 55.70 52.20 55.70 52.60 51.90
SNIPS 10.40 8.40 10.30 10.71 8.40 10.40 10.30 10.30 9.90 10.30 8.60 8.70
TOP 51.38 53.00 51.38 66.65 53.00 51.38 51.38 51.38 51.50 51.38 53.00 51.75

FNR90 (↓)
ACID 27.30 25.67 26.22 19.70• 21.46◦ 20.60◦ 26.70 26.22 20.45◦ 26.22 21.38◦ 20.75◦
Banking 14.36 10.49 11.37 7.20• 8.01◦ 8.79◦ 13.68 11.37 7.88◦ 11.37 7.69◦ 7.79◦
CLINC 11.80 9.16◦ 11.60 8.90 8.36 8.11 7.56• 11.60 7.98 11.60 8.67 8.31
HWU64 51.97 52.26 51.75 52.80◦ 52.01 47.14 47.01• 51.75 48.63 51.75 51.03 49.57
SNIPS 11.14 9.29 11.14 11.80 9.29 11.14 11.14 11.14 10.71 11.14 9.71 10.29
TOP 67.88 69.05 67.89 51.50 69.07 67.89 67.90 67.89 68.17 67.89 69.04 68.46

For RQ2, we use D2U zero-shot cross-entropy399

post-processing (D2U-zero) as the baseline method,400

since we examine any improvement in supervised401

setup over zero-shot. For RQ3, we compare super-402

vised D2U with the following baselines.403

• Large Margin Cosine Loss (LMCL) (Zeng404

et al., 2021b): During INS training, the Cosine405

distance among class centroids is increased up to406

a margin. We set the margin as 0.35, and scaling407

factor as 30.408

• Domain Regularization Module (DRM) (Shen409

et al., 2021): DRM introduces domain logits for410

regularization during INS training. We slightly411

modify the design and apply sigmoid to domain412

logits before dividing the classification logits for413

training stability.414

• BERT-Binary (Binary) (Devlin et al., 2019):415

The "bert-base-uncased" model fine-tuned as a416

binary classifier for OOS detection.417

• Entropy Regularization (Reg.) (Zheng et al.,418

2020): Entropy of OOS training predictions are419

maximized with a loss function given as follows.420

421

Loos = −
1

Noos

Noos∑
i=1

H(P̂ (ui)) (9)422

4.4 Experimental design423

The experiments are designed with respect to our424

research questions (RQ 1-3). First, we fine-tune a425

BERT classifier (Devlin et al., 2019) for INS intent426

Original test

Fold #1

Fold #2

Fold #10

. . .

Original train + val

. . . . . .

Figure 4: Modified leave-one-out 10-fold split strategy
that complies with original splits. At each fold, only
10% of test data is included, while 90% of training data
is retained and the remaining 10% is used as validation.

detection with cross-entropy loss, and apply differ- 427

ent D2U post-processing methods for RQ1. Then, 428

we fix the post-processing method, and examine the 429

effect of supervised D2U training for RQ2. Lastly, 430

we compare D2U with state-of-the art baselines for 431

RQ3 to assess the performance gain of our method. 432

To avoid potential annotator-dependent effects 433

as noted by Larson et al. (2019) and comply with 434

the original splits, we modify 10-fold leave-one-out 435

cross-validation as illustrated in Figure 4. The vali- 436

dation splits are used to find confidence threshold 437

values for Recall and F1 calculations. We validate 438

statistically significant differences in the average 439

performances of 10-folds with the two-tailed paired 440

t-test at a 95% interval with Bonferroni correction. 441

Note that the test splits do not overlap in order to 442

satisfy the independence criterion of t-test. 443

4.5 Experimental results 444

RQ1: D2U in zero-shot setup. In Table 2, we re- 445

port ROC AUC, FPR90, and FNR90 scores for dif- 446

ferent post-processing methods applied to a BERT- 447
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Table 3: RQ2: D2U training compared to zero-shot.
"•" indicates statistically significant differences with
the two-tailed paired t-test at a 95% interval in pairwise
comparison between D2U-zero and best supervised.

Data Method ROC↑ FPR90↓ FNR90↓ REC↑ F1↑

A
C

ID

D2U-zero 92.01 21.40 21.46 86.43 88.69
D2U-CE 96.75 7.30• 7.96 95.98 95.55
D2U-KL 96.78• 7.90 7.76• 96.31• 96.01•
D2U-S 95.88 8.80 9.54 93.18 93.78

B
an

ki
ng

D2U-zero 97.03 7.30 8.01 91.47 91.67
D2U-CE 99.36• 1.00• 0.23• 96.66 96.55
D2U-KL 99.25 1.70 0.39 97.47• 97.42•
D2U-S 98.79 2.00 2.12 95.90 95.88

C
L

IN
C D2U-zero 96.32 7.50 8.36 91.31 91.75

D2U-CE 97.48 5.10 6.18 93.27 92.84
D2U-KL 97.29 5.20 4.93• 93.33 92.91
D2U-S 97.69• 3.90• 5.36 94.53• 94.53•

H
W

U
64

D2U-zero 80.32 52.50 52.01 76.83 76.03•
D2U-CE 87.37• 31.70 37.05• 74.58 68.18
D2U-KL 87.19 30.30• 41.50 75.27 69.41
D2U-S 82.23 47.80 49.10 74.28 68.30

SN
IP

S D2U-zero 96.33 8.40 9.29 88.35 88.43
D2U-CE 98.61 2.70 2.86 89.47 89.52
D2U-KL 99.16• 1.60• 1.57• 88.59 88.64
D2U-S 98.39 2.80 2.29 90.29 90.36

TO
P

D2U-zero 73.24 53.00 69.07 84.54 86.14
D2U-CE 97.42 6.25 4.03• 94.55 95.01
D2U-KL 97.50• 5.88• 4.10 95.17• 95.51•
D2U-S 94.94 12.00 15.61 92.13 92.95

based INS classifier with no OOS training data.448

Our proposed method, D2U-zero, statistically sig-449

nificantly outperforms all baselines in all datasets450

with respect to ROC AUC score. Using cross-451

entropy for D2U-zero has better performance in452

majority of cases, compared to other distance met-453

rics. The reason for its success might be that cross-454

entropy is the loss function used in the training455

procedure of the model. In terms of FPR90 and456

FNR90, D2U-zero does not always outperform all457

baselines. Though, the cases when baselines out-458

perform are not statistically significant. This shows459

that the baseline methods can optimize FPR90 and460

FNR90 individually but cannot outperform D2U in461

terms of ROC which considers Type I and Type II462

errors simultaneously. Entropy (Shen et al., 2021)463

is a strong baseline that performs better than other464

baselines with respect to all performance metrics.465

RQ2: D2U in supervised setup. Next, we466

report the effect of D2U training on OOS detec-467

tion in Table 3. Since our concern here is to ob-468

serve any improvement over zero-shot setup, we469

fix post-processing method as cross-entropy for470

all methods due to its performance in the pre-471

vious experiment. The results show that using472

D2U as a loss function statistically significantly 473

improves the performance of D2U-zero in almost 474

all cases. KL divergence loss (D2U-KL) and Cross- 475

Entropy loss (D2U-CE) are effective D2U meth- 476

ods in ACID, Banking, HWU64, SNIPS, and TOP 477

datasets, whereas Sinkhorn distance (D2U-S) is 478

effective in CLINC dataset. 479

RQ3: D2U versus state-of-the-art. The perfor- 480

mances of state-of-the-art baseline OOS detection 481

models, regardless of zero-shot or supervised, and 482

D2U methods are compared in Table 4, with ex- 483

tensive results reported in the Appendix. MLE, 484

softmax temperature (Temp.), Entropy, LMCL, 485

and DRM are zero-shot OOS detection setups, 486

whereas entropy regularization (Reg.) and BERT- 487

Binary (Binary) are supervised setups. D2U sta- 488

tistically significantly outperforms other baselines 489

in most datasets, although Binary is a strong base- 490

line method that outperforms D2U in ACID and 491

Banking datasets and challenges it in HWU64 and 492

TOP, which is not statistically significant. ACID, 493

Banking and TOP datasets contain domain-specific 494

utterances; from insurance, banking, and naviga- 495

tion applications, respectively. This might cause 496

a trivial detection for the BERT-based binary clas- 497

sifier. HWU64 contains generic utterances like 498

queries and questions which may coincide with the 499

OOS split and disturb the training process of D2U. 500

5 Discussion 501

5.1 Limitations 502

We acknowledge some limitations to our study. 503

All methods in our study, including baselines, use 504

BERT (Devlin et al., 2019) as the classifier net- 505

work but one can experiment with other multiclass 506

prediction models. In addition, the generalization 507

ability of D2U to other neural networks such as 508

LSTM and CNN are not investigated. 509

Except for CLINC and TOP, the datasets are aug- 510

mented with the OOS data from CLINC. However, 511

we argue that this approach is nontrivial since the 512

majority of the OOS training data is sampled from 513

Wikipedia (Larson et al., 2019) and remains OOS 514

for other datasets. Moreover, D2U has effective 515

performance on CLINC and TOP datasets which 516

are specifically designed with OOS utterances. 517

5.2 Qualitative analysis 518

We provide a qualitative analysis on the effect 519

of D2U training. We illustrate the model out- 520

put distributions for INS utterance "get me to 521
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Table 4: RQ3: D2U vs. OOS detection baselines. The bold score is the best. The underlined score is the best that
baseline achieves when D2U outperforms, or vice versa. "•" indicates statistically significant differences with the
two-tailed paired t-test at a 95% interval (with Bonferroni correction p < 0.0071) in pairwise comparisons between
D2U and all baselines except the ones marked with "◦". If baseline outperforms, "•" indicates the difference (with
Bonferroni correction p < 0.0167) in pairwise comparisons between the baseline and our best version.

Train ACID Banking CLINC
ROC FPR FNR REC F1 ROC FPR FNR REC F1 ROC FPR FNR REC F1

MLE (Hendrycks et al., 2020) 90.9 25.0 67.9 84.9 87.5 94.9 13.3 14.4 89.4 89.6 95.3 9.3 11.8 90.2 90.8
Temp. (Liang et al., 2018) 91.8 22.1 69.1 85.8 88.2 96.2 10.0 10.5 90.3 90.5 96.2 7.8 9.2 90.1 90.7
Entropy (Shen et al., 2021) 92.0 19.9 51.5 86.9 89.0 96.7 7.9 7.2 91.6 91.8 95.9 8.0 8.9 90.3 90.8
Binary (Devlin et al., 2019) 97.2 6.2 6.7 96.5 96.1 99.9 0.2 0.2 97.9 97.8 85.6 48.6 31.4 88.3 86.1
LMCL (Zeng et al., 2021a) 94.1 15.6 66.5 88.4 90.1 97.2 6.3 8.1 92.6 92.6 96.3 7.4 9.9 90.8 91.3
DRM (Shen et al., 2021) 93.2 19.9 62.5 86.8 89.0 96.1 13.1 11.4 90.6 90.5 95.9 8.5 9.7 91.0 91.4
Reg. (Zheng et al., 2020) 96.0 10.3 7.1 95.6 95.1 99.0 2.4 0.9 96.8 96.8 97.3◦ 6.5 6.8 93.3◦ 92.9◦
D2U-CE-CE (ours) 96.8 7.3 8.0 96.0 95.6 99.4 1.0 0.2 96.7 96.6 97.5 5.1 6.2 92.3 92.8
D2U-KL-CE (ours) 96.8 7.9 7.8 96.3 96.0 99.3 1.7 0.4 97.5 97.4 97.3 5.2 4.9 93.3 92.9
D2U-S-CE (ours) 95.9 8.8 9.5 93.2 93.8 98.8 2.3 2.1 95.9 95.9 97.7• 3.9• 5.4 94.5• 94.5•

Train HWU64 SNIPS TOP
ROC FPR FNR REC F1 ROC FPR FNR REC F1 ROC FPR FNR REC F1

MLE (Hendrycks et al., 2020) 79.3 58.9 52.0 73.0 73.7 95.5 10.4 11.1 88.3◦ 88.4◦ 74.2 51.4 67.9 84.9 86.6
Temp. (Liang et al., 2018) 80.5 54.1 52.3 76.7 76.5 96.2 8.4 9.3 88.4◦ 88.5◦ 73.2 53.0 69.1 84.5 86.1
Entropy (Shen et al., 2021) 80.9 48.1 52.8 77.7 77.3 95.7 10.7 11.8 88.2◦ 88.3◦ 74.2 66.7 51.5 84.8 86.5
Binary (Devlin et al., 2019) 88.0 35.8◦ 31.0 74.7 67.8 98.9◦ 1.7◦ 2.0◦ 86.2◦ 86.2◦ 97.3◦ 4.4• 5.8◦ 97.0• 97.0•
LMCL (Zeng et al., 2021a) 84.3 43.0 49.0 80.3• 80.2• 85.2 49.5 31.9 67.8 66.3 70.6 69.8 66.5 57.8 66.3
DRM (Shen et al., 2021) 79.3 56.9 50.3 73.4 74.0 93.6 13.4 12.0 87.9◦ 87.9◦ 77.0 50.1 62.5 81.7 84.4
Reg. (Zheng et al., 2020) 83.4 46.5 45.2 74.0 67.0 98.6◦ 2.5◦ 2.7◦ 88.4◦ 88.5◦ 96.5 7.5 7.1◦ 94.5 94.9
D2U-CE-CE (ours) 87.4 31.7 37.1 74.6 68.2 98.6 2.7 2.9 89.5 89.5 97.4 6.3 4.0• 94.6 95.0
D2U-KL-CE (ours) 87.2 30.3• 41.5 75.3 69.4 99.2• 1.6• 1.6• 88.6 88.6 97.5• 5.9 4.1 95.2 95.5
D2U-S-CE (ours) 82.2 47.8 49.1 74.3 68.3 98.4 2.8 2.3 90.3• 90.4• 94.9 12.0 15.6 92.1 93.0

ritzville by 4 via the freeway." belonging to the522

"GET_DIRECTIONS" intent, and the OOS utter-523

ance "how many skating rinks are available in the524

south pacific tomorrow at 10" taken from the TOP525

dataset in Figure 5. We observe that the OOS ut-526

terance results in an overconfident prediction in527

the BERT MLE model whereas the prediction dis-528

tribution of D2U-CE is quite similar to uniform529

distribution.530
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Figure 5: The effect of D2U on prediction distributions.

5.3 INS performance531

In Table 5, we analyze if OOS detection models de-532

teriorate the performance of INS detection. We set533

MLE as a baseline, which does not modify training534

procedure. The results show that the performance535

of INS classification is not dramatically deterio-536

rated by the supervised models including D2U in537

SNIPS and TOP, whereas it is even improved in538

the remaining datasets. Although D2U’s INS per-539

formance is similar to other supervised models, 540

D2U has better OOS performance than others, as 541

observed in Table 4. 542

We do not include BERT-Binary, which has no 543

capability of INS classification. BERT-Binary has 544

a challenging OOS performance in Table 4, but 545

D2U has advantage of showing state-of-the-art per- 546

formances for both INS and OOS detection. 547

Table 5: Weighted F1 score for INS classification.

Method Datasets
ACID Banking CLINC HWU64 SNIPS TOP

MLE 80.74 84.91 95.67 81.97 98.14 98.60
LMCL 85.69 89.64 95.83 82.08 97.86 98.56
DRM 88.70 89.89 96.25 82.49 98.14 98.68
Reg. 86.60 91.22 96.38 82.55 97.43 98.32
D2U-CE 86.40 90.95 96.42 82.31 97.84 98.26
D2U-KL 86.26 90.69 96.22 82.72 98.01 98.29
D2U-S 86.50 91.52 96.34 82.16 97.43 98.37

6 Conclusion 548

In this study, we improve confidence-based OOS 549

detection performance with a distance calculation 550

between classifier prediction and uniform distri- 551

bution. In zero-shot setup, our proposed method 552

serves as an architecture-agnostic post-processing 553

step to emphasize the distinction between INS and 554

OOS utterances. With use of OOS training data in 555

the supervised setup, we bring closer OOS predic- 556
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tions to uniform distribution with a specialized loss557

calculation. Experimental results demonstrate that558

D2U improves OOS detection performance over559

existing baselines. We plan to extend our study560

to different neural network architectures and deep561

learning tasks, such as other out-of-domain tasks562

and other research areas.563
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A Appendix779

We report Receiver Operating Curve Area Under780

Curve, False Positive Rate at 90% OOS True Pos-781

itive Rate, False Negative Rate at 90% OOS True782

Negative Rate, weighted OOS Recall, and weighted783

OOS F1 scores in Tables 6, 7, 8, 9, 10 respec-784

tively. Different training procedures, baseline and785

proposed, are reported in rows and different post-786

processing methods, baseline and proposed, are787

reported in columns.788

Baseline training methods are BERT-based in-789

scope classifier (MLE) (Larson et al., 2019; Devlin790

et al., 2019), Large Margin Cosine Loss (LMCL)791

(Zeng et al., 2021a), Domain Regularization Mod-792

ule (DRM) (Shen et al., 2021), entropy regular-793

ization (Reg.) (Zheng et al., 2020), and BERT-794

binary classifier (Binary) (Devlin et al., 2019). Post-795

processing methods are not applicable for Binary796

training since it models OOS detection as a binary797

classification problem. Baseline post-processing798

methods are Maximum Likelihood Estimate (MLE)799

(Gangal et al., 2020; Zhang et al., 2020), softmax800

temperature (Temp) (Liang et al., 2018; Lin and801

Xu, 2019b), standard deviation (Stdev), and entropy802

(Ent) (Shen et al., 2021).803
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Table 6: Average ROC AUC score of 10-Fold binary OOS Detection. Row-wise highest scores are given in bold.

Data Training MLE Temp Stdev Ent CE BC Cbr Cos JS Euc KL Helng.

ACID

MLE 90.93 91.83 91.54 91.98 92.01 91.40 90.18 91.54 92.08 91.54 92.14 92.13
LMCL 94.05 94.07 94.23 94.04 93.72 89.31 85.54 94.23 93.88 94.23 93.91 93.89
DRM 93.23 92.43 93.54 93.95 91.70 94.07 93.67 93.54 94.00 93.54 92.92 93.85
Reg. 95.98 96.56 96.15 96.50 97.06 96.82 97.10 96.15 96.84 96.15 96.75 96.81
Binary 97.19 - - - - - - - - - - -

D2U-CE 95.63 96.22 95.85 96.17 96.75 96.43 96.72 95.85 96.47 95.85 96.42 96.46
D2U-KL 95.47 96.25 95.65 96.06 96.78 96.47 96.77 95.65 96.49 95.65 96.37 96.45
D2U-S 94.46 95.14 94.80 95.24 95.88 95.55 95.61 94.80 95.63 94.80 95.54 95.61

Banking

MLE 94.92 96.15 95.88 96.66 97.03 96.89 96.09 95.88 96.99 95.88 96.91 96.97
LMCL 97.19 97.20 97.32 97.15 96.88 94.07 91.61 97.32 97.01 97.32 97.04 97.03
DRM 96.12 96.97 96.70 97.47 96.56 98.06 97.93 96.70 97.97 96.70 97.28 97.88
Reg. 98.95 99.12 99.03 99.13 99.19 99.16 99.18 99.03 99.18 99.03 99.16 99.17
Binary 99.88 - - - - - - - - - - -

D2U-CE 99.07 99.28 99.14 99.24 99.36 99.26 99.29 99.14 99.28 99.14 99.29 99.29
D2U-KL 98.99 99.19 99.07 99.15 99.25 99.19 99.22 99.07 99.22 99.07 99.22 99.22
D2U-S 97.83 98.53 98.12 98.43 98.79 98.61 98.65 98.12 98.65 98.12 98.63 98.64

CLINC

MLE 95.34 96.16 95.52 95.90 96.32 96.09 96.26 95.52 96.24 95.52 96.20 96.25
LMCL 96.31 96.30 96.30 96.14 95.81 92.51 86.08 96.30 95.95 96.30 96.02 95.99
DRM 95.85 94.47 96.00 96.19 93.78 96.29 95.73 96.00 95.88 96.00 95.07 95.63
Reg. 97.29 97.63 97.31 97.47 97.58 97.52 97.55 97.31 97.62 97.31 97.65 97.64
Binary 85.57 - - - - - - - - - - -

D2U-CE 97.08 97.47 97.14 97.30 97.48 97.27 97.31 97.14 97.42 97.14 97.48 97.45
D2U-KL 96.86 97.29 96.90 97.04 97.29 97.07 97.12 96.90 97.20 96.90 97.26 97.23
D2U-S 96.71 97.54 96.85 97.15 97.69 97.22 97.33 96.85 97.42 96.85 97.53 97.48

HWU64

MLE 79.29 80.46 79.95 80.90 80.32 81.49 80.49 79.95 81.16 79.95 80.92 81.05
LMCL 84.28 84.37 84.98 85.17 85.33 84.04 82.50 84.98 85.28 84.98 85.27 85.27
DRM 79.32 79.05 80.00 80.67 78.68 81.55 80.50 80.00 80.75 80.00 79.66 80.31
Reg. 83.38 86.34 84.19 85.68 87.05 86.78 87.22 84.19 86.70 84.19 86.51 86.62
Binary 88.02 - - - - - - - - - - -

D2U-CE 83.64 86.58 84.42 85.80 87.37 87.09 87.60 84.42 86.98 84.42 86.77 86.89
D2U-KL 83.46 86.44 84.14 85.50 87.19 86.71 87.27 84.14 86.64 84.14 86.54 86.62
D2U-S 79.67 81.74 80.42 81.69 82.23 82.86 82.57 80.42 82.41 80.42 82.13 82.27

SNIPS

MLE 95.45 96.20 95.50 95.70 96.33 95.61 95.83 95.50 95.86 95.50 96.15 96.04
LMCL 85.18 87.54 88.20 90.45 93.15 89.91 93.08 88.20 91.69 88.20 91.87 91.76
DRM 93.58 94.47 93.63 93.82 94.58 93.75 93.95 93.63 93.98 93.63 94.43 94.13
Reg. 98.61 98.74 98.61 98.64 98.76 98.62 98.63 98.61 98.65 98.61 98.73 98.67
Binary 98.91 - - - - - - - - - - -

D2U-CE 98.51 98.60 98.52 98.53 98.61 98.52 98.54 98.52 98.54 98.52 98.60 98.56
D2U-KL 98.97 99.15 98.99 99.01 99.16 98.99 99.02 98.99 99.04 98.99 99.14 99.09
D2U-S 98.24 98.37 98.25 98.30 98.39 98.29 98.32 98.25 98.32 98.25 98.37 98.34

TOP

MLE 74.23 73.23 74.26 74.19 73.24 74.32 74.36 74.26 74.18 74.26 73.25 73.76
LMCL 70.62 70.11 70.72 70.88 70.11 70.58 71.29 70.72 70.95 70.72 70.43 70.70
DRM 76.97 76.59 76.99 76.96 76.61 77.06 77.13 76.99 76.98 76.99 76.60 76.83
Reg. 96.45 96.57 96.45 96.47 96.57 96.45 96.47 96.45 96.49 96.45 96.56 96.52
Binary 97.29 - - - - - - - - - - -

D2U-CE 97.30 97.42 97.30 97.33 97.42 97.31 97.34 97.30 97.35 97.30 97.41 97.38
D2U-KL 97.39 97.50 97.41 97.43 97.50 97.42 97.43 97.41 97.44 97.41 97.49 97.46
D2U-S 94.68 94.94 94.71 94.76 94.94 94.75 94.78 94.71 94.80 94.71 94.92 94.87
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Table 7: Average FPR90 score of 10-Fold binary OOS Detection. Row-wise lowest scores are given in bold.

Data Training MLE Temp Stdev Ent CE BC Cbr Cos JS Euc KL Helng.

ACID

MLE 25.00 22.10 20.70 19.85 21.40 24.80 28.60 20.70 20.90 20.70 19.70 20.70
LMCL 15.60 15.50 14.80 13.83 17.40 37.10 46.20 14.80 16.50 14.80 16.50 16.50
DRM 19.90 20.80 18.40 13.51 24.80 14.40 16.30 18.40 15.00 18.40 18.80 15.30
Reg. 10.30 8.60 9.70 8.41 7.20 7.40 7.10 9.70 7.50 9.70 8.20 7.60
Binary 6.17 - - - - - - - - - - -

D2U-CE 10.30 8.20 9.40 8.54 7.30 7.50 7.40 9.40 7.20 9.40 7.70 7.30
D2U-KL 10.70 8.90 9.90 7.56 7.90 8.00 7.80 9.90 8.10 9.90 8.10 8.10
D2U-S 11.90 10.30 11.00 9.57 8.80 9.00 9.30 11.00 9.10 11.00 9.40 9.30

Banking

MLE 13.30 10.00 11.30 7.85 7.30 6.60 12.00 11.30 6.20 11.30 6.30 6.10
LMCL 6.30 6.20 5.50 7.00 7.10 19.40 25.80 5.50 6.80 5.50 6.80 6.80
DRM 13.10 8.40 10.20 6.06 9.20 4.60 4.90 10.20 5.20 10.20 7.30 5.30
Reg. 2.40 1.80 2.20 0.36 1.60 1.60 1.40 2.20 1.70 2.20 1.60 1.70
Binary 0.16 - - - - - - - - - - -

D2U-CE 2.40 1.60 2.10 0.23 1.00 1.00 1.00 2.10 1.00 2.10 1.00 1.00
D2U-KL 2.70 1.60 2.50 0.39 1.70 1.70 1.60 2.50 1.70 2.50 1.80 1.70
D2U-S 5.80 3.70 5.20 2.25 2.00 2.60 1.90 5.20 2.60 5.20 3.40 2.80

CLINC

MLE 9.30 7.80 9.30 8.00 7.50 8.10 7.70 9.30 7.70 9.30 7.80 7.60
LMCL 7.40 7.30 7.60 8.51 8.60 18.30 35.40 7.60 8.40 7.60 8.50 8.40
DRM 8.50 11.80 8.50 7.64 13.70 7.80 9.50 8.50 8.30 8.50 9.40 8.20
Reg. 6.50 5.10 6.60 5.13 5.10 4.80 4.90 6.60 5.00 6.60 5.10 5.20
Binary 48.58 - - - - - - - - - - -

D2U-CE 6.70 5.40 6.70 5.62 5.10 5.90 5.40 6.70 5.50 6.70 5.50 5.60
D2U-KL 6.50 5.50 6.50 4.89 5.20 5.90 5.80 6.50 5.70 6.50 5.60 5.70
D2U-S 7.10 4.50 7.10 6.38 3.90 4.80 4.60 7.10 4.60 7.10 4.80 4.50

HWU64

MLE 58.90 54.10 55.70 48.12 52.50 51.60 55.00 55.70 52.20 55.70 52.60 51.90
LMCL 43.00 42.90 38.10 41.84 37.30 41.70 44.90 38.10 37.50 38.10 37.10 37.30
DRM 56.90 51.10 53.00 49.62 54.30 52.40 53.00 53.00 50.80 53.00 51.50 51.40
Reg. 46.50 32.70 41.20 41.84 29.60 31.30 29.60 41.20 31.80 41.20 32.60 32.10
Binary 35.77 - - - - - - - - - - -

D2U-CE 44.90 35.10 40.80 40.43 31.70 31.70 30.60 40.80 32.50 40.80 33.50 33.10
D2U-KL 43.80 33.70 39.90 42.48 30.30 31.50 31.10 39.90 33.00 39.90 33.30 33.10
D2U-S 57.60 48.10 53.00 46.84 47.80 47.40 48.50 53.00 47.30 53.00 48.10 47.60

SNIPS

MLE 10.40 8.40 10.30 10.71 8.40 10.40 10.30 10.30 9.90 10.30 8.60 8.70
LMCL 49.50 41.90 36.70 29.86 21.10 30.10 16.40 36.70 24.10 36.70 24.10 24.10
DRM 13.40 10.20 13.40 10.86 10.20 13.40 13.30 13.40 12.40 13.40 10.40 11.50
Reg. 2.50 2.20 2.50 2.29 2.20 2.50 2.50 2.50 2.40 2.50 2.20 2.30
Binary 1.71 - - - - - - - - - - -

D2U-CE 2.70 2.70 2.70 3.14 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70
D2U-KL 2.10 1.60 2.10 2.14 1.60 2.10 2.10 2.10 1.90 2.10 1.60 1.60
D2U-S 2.90 2.80 2.90 3.00 2.80 2.90 2.90 2.90 2.80 2.90 2.80 2.70

TOP

MLE 51.38 53.00 51.38 66.65 53.00 51.38 51.38 51.38 51.50 51.38 53.00 51.75
LMCL 69.75 70.13 69.50 65.06 70.75 70.63 71.50 69.50 70.50 69.50 70.25 70.25
DRM 50.13 51.88 50.13 59.79 51.88 50.13 50.13 50.13 50.88 50.13 51.63 50.63
Reg. 7.50 7.25 7.50 4.90 7.25 7.50 7.50 7.50 7.50 7.50 7.25 7.25
Binary 4.43 - - - - - - - - - - -

D2U-CE 6.13 6.25 6.13 4.04 6.25 6.13 6.13 6.13 6.13 6.13 6.25 6.13
D2U-KL 6.25 5.88 6.25 3.57 5.88 6.25 6.38 6.25 6.25 6.25 5.88 6.00
D2U-S 11.63 11.88 11.63 12.94 12.00 11.63 11.50 11.63 11.63 11.63 11.88 11.75
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Table 8: Average FNR90 score of 10-Fold binary OOS Detection. Row-wise lowest scores are given in bold.

Data Training MLE Temp Stdev Ent CE BC Cbr Cos JS Euc KL Helng.

ACID

MLE 27.30 25.67 26.22 19.70 21.46 20.60 26.70 26.22 20.45 26.22 21.38 20.75
LMCL 16.36 16.30 14.80 15.80 16.57 28.78 38.57 14.80 15.58 14.80 15.30 15.39
DRM 16.42 20.92 16.23 15.00 23.88 13.31 14.48 16.23 13.95 16.23 18.94 14.33
Reg. 10.80 8.79 10.39 8.70 7.61 8.32 7.48 10.39 8.08 10.39 8.30 8.20
Binary 6.70 - - - - - - - - - - -

D2U-CE 11.11 9.11 10.12 8.00 7.96 8.40 8.03 10.12 8.41 10.12 8.61 8.47
D2U-KL 12.84 9.99 12.04 9.00 7.76 8.05 7.53 12.04 8.17 12.04 8.85 8.35
D2U-S 12.69 10.41 11.88 10.20 9.54 9.68 10.00 11.88 9.87 11.88 9.76 9.71

Banking

MLE 14.36 10.49 11.37 7.20 8.01 8.79 13.68 11.37 7.88 11.37 7.69 7.79
LMCL 8.05 7.95 6.78 6.30 9.09 18.60 25.96 6.78 8.44 6.78 8.34 8.37
DRM 11.43 9.71 9.90 7.20 12.12 4.76 5.90 9.90 5.47 9.90 8.99 6.19
Reg. 0.94 0.42 0.52 1.80 0.42 0.55 0.46 0.52 0.55 0.52 0.55 0.55
Binary 0.20 - - - - - - - - - - -

D2U-CE 0.42 0.26 0.26 1.30 0.23 0.26 0.26 0.26 0.26 0.26 0.26 0.26
D2U-KL 1.50 0.59 0.72 1.80 0.39 0.59 0.72 0.72 0.52 0.72 0.42 0.49
D2U-S 4.85 3.58 3.68 3.70 2.12 2.38 2.57 3.68 2.41 3.68 2.74 2.57

CLINC

MLE 11.80 9.16 11.60 8.90 8.36 8.11 7.56 11.60 7.98 11.60 8.67 8.31
LMCL 9.91 9.96 9.76 8.30 10.76 21.51 45.62 9.76 10.44 9.76 10.13 10.20
DRM 9.69 16.31 9.67 7.90 21.27 7.80 10.36 9.67 8.84 9.67 12.62 9.69
Reg. 6.82 5.42 6.73 6.00 5.11 5.18 5.36 6.73 5.20 6.73 5.36 5.18
Binary 31.40 - - - - - - - - - - -

D2U-CE 7.40 6.13 7.33 6.60 6.18 6.18 6.11 7.33 6.04 7.33 6.09 6.02
D2U-KL 6.60 5.07 6.42 6.20 4.93 4.82 4.82 6.42 4.87 6.42 4.96 4.82
D2U-S 8.33 5.98 8.16 6.50 5.36 5.84 5.53 8.16 5.84 8.16 6.00 5.89

HWU64

MLE 51.97 52.26 51.75 52.80 52.01 47.14 47.01 51.75 48.63 51.75 51.03 49.57
LMCL 48.97 48.55 47.91 37.40 47.01 47.86 52.18 47.91 47.52 47.91 47.78 47.78
DRM 50.34 62.91 50.47 51.10 62.91 51.88 57.31 50.47 57.39 50.47 60.81 59.74
Reg. 45.17 41.62 45.13 34.70 40.60 41.88 40.09 45.13 40.77 45.13 41.50 40.81
Binary 31.00 - - - - - - - - - - -

D2U-CE 45.43 38.59 45.17 36.10 37.05 41.58 37.09 45.17 40.34 45.17 39.10 39.87
D2U-KL 45.56 42.74 45.64 35.90 41.50 40.47 39.19 45.64 41.84 45.64 42.56 41.88
D2U-S 50.00 49.23 49.96 48.70 49.10 45.77 45.21 49.96 47.99 49.96 49.06 48.63

SNIPS

MLE 11.14 9.29 11.14 11.80 9.29 11.14 11.14 11.14 10.71 11.14 9.71 10.29
LMCL 31.86 30.86 31.43 30.30 23.29 31.86 26.00 31.43 29.43 31.43 28.29 28.43
DRM 12.00 10.57 12.00 14.30 10.57 12.00 12.00 12.00 11.71 12.00 10.43 11.71
Reg. 2.71 2.14 2.57 3.10 2.00 2.43 2.43 2.57 2.43 2.57 2.29 2.29
Binary 2.00 - - - - - - - - - - -

D2U-CE 3.29 3.00 3.29 2.90 2.86 3.29 3.29 3.29 3.29 3.29 3.14 3.14
D2U-KL 2.86 1.86 2.86 2.30 1.57 2.71 2.57 2.86 2.29 2.86 1.86 2.14
D2U-S 3.43 2.43 3.43 3.10 2.29 3.29 3.14 3.43 2.86 3.43 2.43 2.86

TOP

MLE 67.88 69.05 67.89 51.50 69.07 67.89 67.90 67.89 68.17 67.89 69.04 68.46
LMCL 66.54 72.06 66.61 69.88 72.97 66.54 68.03 66.61 69.61 66.61 71.76 71.35
DRM 62.51 62.65 62.51 50.38 62.66 62.51 62.51 62.51 62.39 62.51 62.68 62.55
Reg. 7.06 6.07 7.05 7.50 6.02 7.06 6.76 7.05 6.63 7.05 6.17 6.44
Binary 5.75 - - - - - - - - - - -

D2U-CE 5.10 4.22 5.08 6.13 4.03 4.93 4.42 5.08 4.62 5.08 4.32 4.48
D2U-KL 5.25 4.25 5.21 6.38 4.10 5.22 4.55 5.21 4.67 5.21 4.32 4.54
D2U-S 14.98 15.59 14.99 11.63 15.61 14.98 15.00 14.99 15.10 14.99 15.64 15.19
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Table 9: Average Recall score of 10-Fold binary OOS Detection. Row-wise highest scores are given in bold.

Data Training MLE Temp Stdev Ent CE BC Cbr Cos JS Euc KL Helng.

ACID

MLE 84.86 85.76 87.23 86.88 86.43 85.80 84.10 87.23 87.48 87.23 87.81 87.18
LMCL 88.35 88.79 88.79 87.47 86.84 80.77 77.23 88.79 87.04 88.79 87.26 87.07
DRM 86.81 89.53 88.83 90.02 89.63 90.73 90.33 88.83 90.70 88.83 90.23 90.56
Reg. 95.58 95.76 95.92 96.03 96.00 96.08 96.25 95.92 96.05 95.92 96.06 96.05
Binary 96.45 - - - - - - - - - - -

D2U-CE 95.11 95.28 95.44 95.65 95.98 95.92 96.03 95.44 95.90 95.44 95.86 95.90
D2U-KL 95.64 95.91 96.04 96.23 96.31 96.30 96.38 96.04 96.26 96.04 96.25 96.25
D2U-S 92.43 93.05 93.39 93.34 93.18 92.85 91.56 93.39 93.12 93.39 93.36 93.26

Banking

MLE 89.36 90.29 90.88 91.62 91.47 91.57 89.78 90.88 92.04 90.88 92.09 92.04
LMCL 92.56 92.78 93.19 92.65 92.43 86.81 85.04 93.19 92.65 93.19 92.53 92.68
DRM 90.59 93.32 92.01 93.69 92.83 94.45 94.10 92.01 94.55 92.01 93.49 94.30
Reg. 96.83 96.98 96.93 97.17 97.40 97.42 97.40 96.93 97.40 96.93 97.35 97.47
Binary 97.84 - - - - - - - - - - -

D2U-CE 96.76 96.63 96.68 96.49 96.66 96.63 96.61 96.68 96.54 96.68 96.54 96.54
D2U-KL 97.10 97.20 97.25 97.10 97.47 97.57 97.54 97.25 97.44 97.25 97.47 97.44
D2U-S 94.52 95.41 95.41 96.02 95.90 95.87 95.80 95.41 96.04 95.41 96.12 96.07

CLINC

MLE 90.22 90.05 90.29 90.25 91.31 91.07 91.04 90.29 90.82 90.29 90.27 90.45
LMCL 90.78 90.80 91.20 91.40 91.20 88.44 81.44 91.20 91.27 91.20 91.11 91.15
DRM 90.95 92.53 90.96 91.75 91.85 92.73 92.75 90.96 92.93 90.96 92.73 92.76
Reg. 93.29 93.31 93.49 93.38 93.31 93.33 93.33 93.49 93.56 93.49 93.49 93.56
Binary 88.31 - - - - - - - - - - -

D2U-CE 92.35 92.84 92.60 92.87 93.27 93.33 93.11 92.60 93.13 92.60 93.31 93.00
D2U-KL 93.16 93.64 93.35 93.05 93.33 93.13 93.02 93.35 93.62 93.35 93.09 93.55
D2U-S 93.42 94.55 93.93 94.58 94.53 94.67 94.65 93.93 94.67 93.93 94.62 94.87

HWU64

MLE 73.02 76.65 74.79 77.66 76.83 77.34 75.57 74.76 77.40 74.79 77.57 77.31
LMCL 80.33 80.24 81.32 81.38 81.92 80.75 79.10 81.32 81.95 81.32 81.83 81.98
DRM 73.44 77.01 76.29 77.22 76.77 77.99 77.51 76.29 77.69 76.29 77.22 77.43
Reg. 73.95 74.58 74.43 74.43 74.94 74.82 74.73 74.43 74.70 74.43 74.79 74.79
Binary 74.70 - - - - - - - - - - -

D2U-CE 73.23 75.09 73.89 74.22 74.58 74.40 74.76 73.89 74.16 73.89 74.16 74.10
D2U-KL 73.74 74.76 74.07 74.58 75.27 74.97 75.54 74.07 74.43 74.07 75.27 74.79
D2U-S 74.25 75.00 74.16 74.37 74.28 74.37 73.89 74.16 74.40 74.16 74.55 74.73

SNIPS

MLE 88.29 88.41 88.29 88.24 88.35 88.29 88.06 88.29 88.24 88.29 88.41 88.06
LMCL 67.76 71.76 74.65 79.35 83.12 79.94 85.82 74.65 80.71 74.65 80.65 80.71
DRM 87.88 89.24 87.88 88.41 89.18 87.88 88.06 87.88 88.88 87.88 89.12 88.88
Reg. 88.41 88.94 88.35 87.94 89.53 88.47 89.06 88.35 89.35 88.35 88.88 89.35
Binary 86.18 - - - - - - - - - - -

D2U-CE 88.24 89.41 88.65 87.76 89.47 89.18 89.12 88.65 89.18 88.65 89.47 89.24
D2U-KL 88.53 88.59 88.53 88.00 88.59 88.94 88.76 88.53 88.71 88.53 88.65 88.76
D2U-S 87.00 90.29 86.41 87.82 90.29 89.35 89.35 86.41 89.65 86.41 90.35 90.29

TOP

MLE 84.85 84.52 84.85 84.75 84.54 84.85 84.71 84.85 84.71 84.85 84.49 83.14
LMCL 57.78 68.92 57.53 61.81 75.63 58.43 67.12 57.53 65.35 57.53 68.10 64.83
DRM 81.68 72.93 81.68 79.17 72.87 81.68 81.78 81.68 79.49 81.68 72.80 75.56
Reg. 94.51 95.23 94.51 94.76 95.07 94.77 95.60 94.51 95.07 94.51 95.04 94.97
Binary 96.95 - - - - - - - - - - -

D2U-CE 93.85 94.34 93.84 94.00 94.55 94.00 94.90 93.84 94.56 93.84 94.33 94.49
D2U-KL 94.21 95.07 94.21 94.29 95.17 94.52 95.55 94.21 95.25 94.21 95.17 95.35
D2U-S 91.29 91.92 91.29 91.70 92.13 91.29 91.36 91.29 91.90 91.29 91.97 91.59
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Table 10: Average F1 score of 10-Fold binary OOS Detection. Row-wise highest scores are given in bold.

Data Training MLE Temp Stdev Ent CE BC Cbr Cos JS Euc KL Helng.

ACID

MLE 87.51 88.21 89.24 89.03 88.69 88.24 86.95 89.24 89.45 89.24 89.71 89.24
LMCL 90.14 90.46 90.47 89.52 89.05 84.60 81.99 90.47 89.20 90.47 89.35 89.22
DRM 89.00 90.83 90.42 91.34 90.83 91.85 91.51 90.42 91.81 90.42 91.40 91.70
Reg. 95.10 95.28 95.46 95.58 95.58 95.67 95.89 95.46 95.62 95.46 95.65 95.63
Binary 96.07 - - - - - - - - - - -

D2U-CE 94.43 94.60 94.80 95.09 95.55 95.47 95.61 94.80 95.46 94.80 95.42 95.46
D2U-KL 95.19 95.55 95.64 95.88 96.01 95.99 96.08 95.64 95.94 95.64 95.93 95.93
D2U-S 93.16 93.66 93.90 93.87 93.78 93.51 92.59 93.90 93.71 93.90 93.89 93.81

Banking

MLE 89.60 90.53 91.03 91.76 91.67 91.74 90.04 91.03 92.17 91.03 92.22 92.18
LMCL 92.63 92.87 93.27 92.75 92.52 87.21 85.42 93.27 92.72 93.27 92.61 92.74
DRM 90.50 93.16 91.89 93.54 92.60 94.36 93.99 91.89 94.42 91.89 93.31 94.19
Reg. 96.75 96.91 96.85 97.12 97.35 97.38 97.35 96.85 97.35 96.85 97.30 97.43
Binary 97.79 - - - - - - - - - - -

D2U-CE 96.66 96.54 96.59 96.37 96.55 96.53 96.50 96.59 96.43 96.59 96.43 96.43
D2U-KL 97.03 97.13 97.18 97.02 97.42 97.52 97.50 97.18 97.39 97.18 97.41 97.39
D2U-S 94.48 95.36 95.36 95.98 95.88 95.86 95.80 95.36 96.02 95.36 96.07 96.03

CLINC

MLE 90.75 90.65 90.82 90.80 91.75 91.54 91.50 90.82 91.32 90.82 90.84 91.00
LMCL 91.27 91.29 91.61 91.79 91.59 88.98 82.71 91.61 91.68 91.61 91.54 91.57
DRM 91.39 92.66 91.39 92.08 91.94 92.96 92.93 91.39 93.12 91.39 92.90 92.97
Reg. 92.89 92.89 93.12 92.96 92.91 92.95 92.94 93.12 93.22 93.12 93.13 93.22
Binary 86.07 - - - - - - - - - - -

D2U-CE 91.64 92.26 91.98 92.30 92.84 92.87 92.63 91.98 92.61 91.98 92.86 92.46
D2U-KL 92.70 93.28 92.90 92.54 92.91 92.65 92.55 92.90 93.23 92.90 92.58 93.15
D2U-S 93.46 94.55 93.92 94.58 94.53 94.64 94.61 93.92 94.66 93.92 94.63 94.86

HWU64

MLE 73.72 76.50 75.08 77.33 76.03 76.96 75.26 75.06 76.80 75.08 77.07 76.79
LMCL 80.18 80.08 81.09 81.16 81.77 80.52 78.90 81.09 81.69 81.09 81.53 81.74
DRM 74.01 76.66 76.06 76.82 76.11 77.68 76.98 76.06 77.30 76.06 76.90 77.00
Reg. 66.95 68.19 67.81 67.85 68.80 68.52 68.49 67.81 68.21 67.81 68.37 68.37
Binary 67.83 - - - - - - - - - - -

D2U-CE 65.55 69.02 66.65 67.39 68.18 67.69 68.60 66.65 67.29 66.65 67.45 67.31
D2U-KL 66.42 68.42 67.16 68.23 69.41 68.91 69.88 67.16 67.81 67.16 69.37 68.46
D2U-S 69.28 69.93 68.67 68.85 68.30 68.39 67.82 68.67 68.64 68.67 68.95 69.31

SNIPS

MLE 88.37 88.49 88.37 88.31 88.43 88.37 88.13 88.37 88.31 88.37 88.49 88.13
LMCL 66.27 71.04 74.22 79.27 83.13 79.87 85.91 74.22 80.68 74.22 80.61 80.68
DRM 87.94 89.29 87.94 88.46 89.23 87.94 88.11 87.94 88.93 87.94 89.17 88.94
Reg. 88.46 88.99 88.40 87.98 89.57 88.52 89.10 88.40 89.40 88.40 88.93 89.40
Binary 86.15 - - - - - - - - - - -

D2U-CE 88.29 89.45 88.69 87.81 89.52 89.23 89.17 88.69 89.22 88.69 89.52 89.28
D2U-KL 88.58 88.64 88.58 88.05 88.64 89.00 88.82 88.58 88.76 88.58 88.70 88.82
D2U-S 87.02 90.36 86.43 87.87 90.36 89.42 89.42 86.43 89.71 86.43 90.42 90.36

TOP

MLE 86.57 86.13 86.57 86.50 86.14 86.57 86.47 86.57 86.48 86.57 86.11 85.19
DRM 84.41 77.62 84.41 82.42 77.56 84.41 84.48 84.41 82.64 84.41 77.53 79.50
Reg. 94.93 95.55 94.93 95.14 95.42 95.15 95.85 94.93 95.41 94.93 95.39 95.32
LMCL 66.25 75.13 66.04 69.48 80.25 66.71 73.74 66.04 72.34 66.04 74.48 71.90
Binary 96.95 - - - - - - - - - - -

D2U-CE 94.42 94.83 94.41 94.55 95.01 94.55 95.29 94.41 95.00 94.41 94.82 94.95
D2U-KL 94.71 95.43 94.71 94.78 95.51 94.97 95.84 94.71 95.58 94.71 95.51 95.67
D2U-S 92.29 92.78 92.29 92.61 92.95 92.29 92.35 92.29 92.77 92.29 92.82 92.53
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