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Abstract

Supervised models trained for single-label
classification tasks with cross-entropy loss are
implicitly enforced to produce probability dis-
tributions that follow a discrete delta distribu-
tion in training. Model predictions in test time
are expected to be similar to delta distributions
given that the classifier determines the class
of an input correctly. However, the shape of
the predicted probability distribution becomes
similar to the uniform distribution when the
model cannot infer properly. We exploit this
observation for detecting out-of-scope (OOS)
utterances in conversational systems. Specifi-
cally, we propose a zero-shot post-processing
step, called Distance-to-Uniform (D2U), ex-
ploiting not only the classification confidence
score, but the shape of the entire output dis-
tribution. We also introduce a learning proce-
dure that uses D2U for loss calculation in the
supervised setup. We conduct experiments us-
ing six publicly available datasets. Experimen-
tal results show that the performance of out-
of-scope detection is improved with our post-
processing when there is no OOS training data,
as well as with D2U learning procedure when
OOS training data is available.

1 Introduction

Automated conversational systems have recently
received attention from the research community
(Dopierre et al., 2021; Mehri et al., 2020; Qin et al.,
2021). In applications such as voice assistants, Spo-
ken Language Understanding (Young et al., 2013)
aims to extract meaning from the user inputs, called
utterances, in order to process and execute desired
functionalities. The task of Intent Detection, or
Intent Classification, aims to classify user utter-
ance into a set of system-identifiable intents. How-
ever, supervised training of such systems can only
cover a restricted set of classes, i.e. in-scope (INS)
classes. To enhance user experience, the task of
Out-of-Scope (OOS) detection (Lin and Xu, 2019a;
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Figure 1: Sample output distributions of an INS classi-
fier predicting the intent of an INS and OOS utterance.
Since OOS utterances do not belong to any intent, the
classifier is confused, and the prediction gets closer to
the uniform distribution.

Xu et al., 2021; Zhan et al., 2021; Shen et al., 2021)
distinguishes INS utterances from those that do not
belong to the scope of the classifier with dedicated
model architectures and loss functions.

Modeling OOS detection in a supervised setting
can be problematic, since covering every OOS in-
tent in training data is quite challenging. Zero-shot
OOS detection is a potential solution to this prob-
lem, which examines the prediction confidence of
an INS classifier (Hendrycks et al., 2020) to dis-
criminate OOS utterances at inference time. Dur-
ing INS training, cross-entropy loss between model
predictions and ground-truth is minimized, result-
ing in confident predictions for INS utterances that
enable a confidence threshold value separating INS
and OOS utterances. However, softmax classifiers
suffer from overconfident predictions for OOS data
(Hendrycks and Gimpel, 2017), which makes it
difficult to accurately determine a threshold value.

Figure 1 illustrates output probability distribu-
tions of a classifier for predicting the intent class for
an INS and OOS utterance. The classifier, trained
only on INS utterances, is confused when OOS
utterance is given. The model assigns closer proba-
bilities for different classes since there is no correct
class for this OOS utterance, hence the resulting
distribution gets closer to a uniform distribution
than a discrete delta distribution.



Based on this observation, we propose to mea-
sure the dissimilarity from or distance to the uni-
form distribution (D2U). Statistical distance or di-
vergence calculations between the prediction distri-
bution and uniform distribution enable a decision
boundary to be more accurately determined. Figure
2 illustrates possible benefits of using distance to
the uniform distribution with cross-entropy. The
subplot at the left shows the distribution of the
number of utterances according to their Maximum
Likelihood Estimate (MLE) score. The subplot at
the right shows the same distribution according to
cross-entropy score between prediction probability
and uniform distribution. A decision boundary or
threshold can be easily determined using D2U’s
cross-entropy as a post-processing step without any
OOS training data.

When OOS training data is available (Larson
et al., 2019), D2U can be used as a loss function
to minimize the distance between OOS predictions
and the uniform distribution. Such a loss function
forces OOS predictions to be less confident, and
benefit D2U post-processing further. To test our
hypothesis that D2U is a useful method for OOS
detection, we answer the following research ques-
tions:

* Research Question 1: Does the application of
D2U as a post-processing step on INS classifier
predictions increase OOS detection performance
when there is no OOS training data?

* Research Question 2: Can the performance be
boosted by incorporating D2U into the training
procedure as a particular loss function when OOS
training data is available?

70 70 s
00s

00 02 ] 10 3 1 5 6 7

0.4 06 0
Prediction probability Cross entropy

Figure 2: The histogram of prediction probability
scores for INS and OOS utterances (MLE) by using
a classifier trained on only INS utterances at the left.
Instead of MLE, for the same classifier, cross-entropy
score between prediction distribution and uniform dis-
tribution (D2U) is given at the right. A vertical decision
boundary on the x-axis separating INS and OOS utter-
ances can be more accurately determined with D2U.

* Research Question 3: Is the performance of
OOS detection significantly improved by D2U
over existing state-of-the-art methods?

We design dedicated experiments for each re-
search question, and provide results for zero-shot
setup with no OOS training data (RQ1), supervised
training setup with OOS training data (RQ2), and
comparisons against the state-of-the-art OOS de-
tection algorithms from the literature (RQ3). We
use six publicly available datasets and report five
performance metrics with statistical significance
analyses.

This paper is structured as follows. In Section
2, we provide a summary of related studies. Our
proposed method is described in Section 3. We
report the experimental details in Section 4. We
discuss several aspects of our study in Section 5,
and conclude the paper in Section 6.

2 Related Work

We divide OOS detection studies into three cate-
gories: (i) Confidence-based, (ii) representation-
based, and (iii) distance-based methods.

2.1 Confidence-based OOS detection

Threshold-based Methods In earlier studies, de-
tecting OOS utterances is achieved by thresholding
the softmax output of INS classifiers (Larson et al.,
2019; Feng et al., 2020; Zhang et al., 2020), which
reflects the intuition that a classifier network is
likely to output a more confident prediction score
for a sample that follows its training distribution.
The overconfidence problem of softmax classifiers
(Hendrycks and Gimpel, 2017), although found to
be less apparent in Transformer-based (Vaswani
et al., 2017) models (Hendrycks et al., 2020), hin-
ders threshold-based OOS detection performance.

Post-processing Methods The overconfidence
problem of softmax classifiers is tackled by post-
processing predictions. ODIN (Liang et al., 2018)
and SofterMax (Lin and Xu, 2019b) apply tem-
perature scaling for enlarging the confidence gap
between INS and OOS instances, since INS logits
are ideally further away on the positive axis of the
softmax input. Gangal et al. (2020) utilize likeli-
hood ratios with generative classifiers to distinguish
OOS predictions. Our proposed method, D2U, is
a confidence-based post-processing method when
there is no OOS training data available.



2.2 Representation-based OOS detection

Dedicated model architectures or loss functions
help represent utterances in a high-dimensional
space suitable for OOS detection. Large Margin
Cosine Loss (LMCL) ensures that INS intents are
tightly clustered (Zeng et al., 2021a), so that OOS
utterances are exposed for outlier detection algo-
rithms, such as Local Outlier Factor (Lin and Xu,
2019a). Intent class embeddings (Cavalin et al.,
2020) model OOS detection as a reverse dictionary
task by mapping intent classes and utterances to the
same space. Yilmaz and Toraman (2020) propose
a feature representation mechanism that uses KL
Divergence to capture the changes in model predic-
tions during sequential processing of utterances.

In order to mitigate data scarcity in OOS de-
tection, Marek et al. (2021) propose a method for
generating OOS data with Generative Adversarial
Networks. GANSs are also utilized for generating
high-dimensional vector representations that are
hard to distinguish from that of real utterances,
providing adversarial signals to the INS classifier
(Zeng et al., 2021b; Liang et al., 2021). The adver-
sarial signal supplied during training ensures that
the model is more robust to OOS samples, making
their detection more achievable.

2.3 Distance-based OOS detection

Distances and divergences are useful tools in OOS
detection, since they provide a measure of dissimi-
larity that can distinguish INS and OOS samples.
Xu et al. (2020) utilize Euclidean and Mahalanobis
distances with generative classifiers to identify out-
liers with Gaussian Discriminative Analysis. Ma-
halanobis distance calculated using representations
from the intermediate layers of BERT (Devlin et al.,
2019) increases OOS detection performance (Shen
et al., 2021). Lee et al. (2018) introduce the con-
fidence loss in Computer Vision for GANs that
calculates KL Divergence between the training pre-
dictions for OOS samples and uniform distribution,
and minimize it to achieve lower confidence values.

The idea of measuring the distance between pre-
diction distribution and uniform distribution is uti-
lized in different learning architectures (Lee et al.,
2018; Gangal et al., 2020), but not extensively stud-
ied for OOS intent detection. Besides, we explore
various distance metrics in zero-shot OOS detec-
tion and different distance-to-uniform training pro-
cedures in supervised setup.

3 Distance-to-Uniform Calculation for
OOS Detection

3.1 D2U post-processing for zero-shot OOS
detection

Supervised classifiers trained on INS data model
the ground truth labels with a discrete delta func-
tion that corresponds to the label, given as follows.

5. () = {1, ifz = ¢ 0

0, otherwise

For the data instance ¢, ¢; is the ground-truth
label indicating the correct class. The cross-entropy
loss between softmax model output and discrete
delta function is given as follows.

N
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Here, P(u;) is the output probability distribu-
tion of the model for utterance u; in a batch of NV
utterances, and ¢; is the correct class label for the
given utterance. This criterion implicitly forces
the model to generate confident predictions for a
given data point with maximal confidence score
assigned to the ground-truth class label, and low
prediction scores for the other classes. When an
OOS utterance is given to an intent classifier that
is trained using only INS data, the classifier gets
confused, i.e., the output probability distribution
is more dissimilar to a delta distribution than what
an INS utterance would result in. In other words,
output distributions of OOS samples get closer to
the uniform distribution than that of INS samples,
an observation that we exploit for OOS detection.

The conventional methods for OOS detection
make use of a pre-determined threshold value on
the Maximum Likelihood Estimate (MLE) score
assigned to the predicted label, given as follows.

005 (ui) = 3

1, ifmax(P(u;)) < 6

0, otherwise

Here, 6 is a pre-defined threshold value between
0 and 1, and max(P(u;)) is the MLE score, which
considers only the prediction confidence and ig-
nores the shape of the distribution. We exploit the
information conveyed by the shape of the entire pre-
diction distribution by first calculating a distance
between the output distribution P and the uniform



distribution U before applying the threshold, given
as follows.

1, ifdst(P(u),U) <0

0, otherwise

005 (ui) = { 4)

The distance determined by the dst(.) function
between P(u;) and U can be calculated with var-
ious distance metrics. We experiment with geo-
metric distance calculations, such as Euclidean
distance and Cosine distance; as well as statisti-
cal distance calculations, such as Jensen-Shannon
distance and symmetrized Kullback-Leibler diver-
gence. The distance value calculated by the dst(.)
function can be intuitively interpreted as the level of
confidence of the model. When the distance value
is low, the model is less confident and more con-
fused, since the output distribution assigns closer
scores for each class.

This is an architecture-agnostic zero-shot post-
processing step which can be generalized to any
classification model trained with cross-entropy loss
with no need for OOS training data. OOS detec-
tion in test time is achieved by a function of the
prediction distribution given by D2U.

3.2 Distance metrics for post-processing

We examine a number of geometric and statistical
distance measures listed as follows.

* Bray Curtis Distance (BC): For two probability
distributions, v and v, the Bray Curtis distance is

givenas . lu; — vi|/ >, |ui + vil.
¢ Canberra Distance (Cbr): Canberra distance be-
tween v and v is Y, (|u; — vi|/(ui + v3)).

¢ Cosine Distance (Cos): Derived from the Cosine
similarity, the Cosine distance is formulated as
1— (u-v/||ul|2]|v]|]2) where ||.||2 is the Lo norm.

¢ Euclidean Distance (Euc): The Euclidean dis-
tance between v and v is given as ||u — v||2.

 Hellinger Distance (Helng): The Hellinger dis-
tance between v and v is ||v/u — v/0||2/V/2.

* Cross-Entropy (CE): Cross-Entropy is a measure
of dissimilarity between distributions u and v
given as — ) . u; logv;.

* Symmetrized KL Divergence (KL): The sym-
metrized Kullback-Leibler divergence is given as
[K L(u,v) + KL(v,u)]/2 where K L(u,v) =
Zz’ U; log (u,/vz)

¢ Jenshen Shannon Distance (JS): Jensen Shan-
non Distance generalizes KL divergence between
wandv as (KL(u,m)/2) + (KL(v,m)/2)
where m is the mean of two distributions.

3.3 D2U training procedure for supervised
0OOS detection

When OOS training data is available, we propose
D2U loss function, as shown in Figure 3, to in-
crease the similarity between OOS output probabil-
ity distributions and the uniform distribution. We
use pretrained BERT (Devlin et al., 2019) as the
classifier network. The loss function for INS ut-
terances, L;,s, is still cross-entropy between true
label and prediction, given as follows.

N;
1 ms “
Lins = _Nins ; 5(01) logP(uz) (5)

For OOS utterances, the loss L., is calculated
against the uniform distribution, given as follows.

1 NOOS
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dst(P(u;),U)  (6)
i=1
The total loss is the weighted average over a
batch of utterances containing N;;,s number of INS
utterances and N,,s number of OOS utterances,
given as follows.

Nins Lms + NoosLoos

L = 7
total Nins +Noos ( )

As the dst(.) function in Equation 6, we experi-
ment with differentiable functions; such as cross-
entropy, KL divergence, and Sinkhorn distance (Cu-
turi, 2013), named as D2U-CE, D2U-KL, and D2U-
S, respectively. These functions treat the model
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Figure 3: The architecture of the proposed supervised
learning method, D2U. INS utterances are learned with
conventional cross-entropy loss against true label dis-
tribution, while OOS loss is calculated against the uni-
form distribution.



output and ground truth as probability distributions
and provide a differentiable measure. We do not
modify the loss calculation for INS utterances so
as not to affect the INS classification performance.
Note that this architecture does not model the
OOS intent as a separate class. Therefore, post-
processing is applied as described in Section 3.1
in test time. Since the loss function incorporates
D2U into training, the performance gain by the
post-processing is expected to be increased.

4 Experiments

4.1 Datasets

We use six publicly available intent classification
datasets, some of which include labeled OOS data.
CLINC (Larson et al., 2019) is a dataset with
150 INS intent classes targeting various domains
with curated OOS data. We use the OOS split
of CLINC to augment other existing intent detec-
tion datasets that do not include labeled OOS data;
which are ACID (Acharya and Fung, 2020), Bank-
ing (Casanueva et al., 2020), HWU64 (Liu et al.,
2019), and SNIPS (Coucke et al., 2018). We ob-
serve that HWUG64 has many short and noisy ut-
terances, we therefore remove any utterances with
length less than or equal to three words.

TOP (Gupta et al., 2018) is an intent detection
dataset that generalizes conventional intent label-
ing with semantic parsing. The intent labels fol-
low a hierarchical structure with potentially many
labels for an utterance. However, we take only
root intent class label into account to be consis-
tent with other datasets. The utterances with the
intent labels "UNSUPPORTED" and "UNSUP-
PORTED_NAVIGATION" are treated as OOS. We
give the main statistics of the datasets in Table 1.

The variety of the number of classes, average
length (number of words), and vocabulary size
provides a wide spectrum for understanding dif-
ferent OOS detection scenarios. For instance, TOP
dataset can be considered a low resource setup
since the number of OOS utterances is significantly
lower than INS utterances.

Table 1: The statistics of the datasets used in this study.

ACID Banking CLINC HWU64 SNIPS TOP

INS 22,172 13,081 22,500 23,431 13,784 36,668
00S 16,000 16,000 16,000 16,000 3,653
Total s 29,081 38,500 39,43129,784 40,321
Vocabulary 25,083 26,702 25,810 26,069 30,100 12,610
Avg. Len. 8.95 9.85 839 725 8.65 893
Classes 175 77 150 46 7 16

4.2 Evaluation metrics

To assess the performance of OOS detection, we
report the scores of Receiver Operating Curve Area
Under Curve (ROC AUC), False Positive Rate at
90% OOS True Positive Rate (FPR90), and False
Negative Rate at 90% OOS True Negative Rate
(FNR90). Since these performance metrics are
independent of a threshold value used for decision
boundary, they provide a means of fair comparison.
We also report weighted OOS Recall and weighted
OOS F1 metrics based on the threshold value that
maximizes the Youden’s J statistic (Youden, 1950)
on a validation set.

Compared to Precision, Recall is arguably a
more critical performance metric for OOS detec-
tion; since Recall considers Type II error, meaning
that OOS utterances are mislabeled as INS. In this
case, the voice assistant would execute a task that
the user does not intent to do. We argue that ROC
is a more generic measure that considers the per-
formances of varying thresholds, than Recall and
F1 considering only a fixed threshold.

4.3 Baseline approaches

We provide results for important baseline methods.
In the experiments, BERT (Devlin et al., 2019)
with softmax layer is used as the classifier network.
For RQ1, the baseline zero-shot post-processing
approaches are listed below.

* MLE (Hendrycks and Gimpel, 2017; Hendrycks
et al., 2020): The confidence score of a classi-
fier trained only on INS utterances is used with
thresholding.

* Softmax temperature scaling (Temp) (Liang
et al., 2018; Lin and Xu, 2019b): As a modifi-
cation to the MLE setup, the softmax input is
applied a temperature value of 103.

¢ Standard deviation (Stdev): We use the stan-
dard deviation of the distribution before thresh-
olding since OOS predictions would have lower
standard deviation.

* Entropy (Ent) (Shen et al., 2021): The entropy

~

of the prediction distribution, H (P(u;)), is cal-
culated before applying the threshold, as follows.

OOS(Ui):{1, if H(P(u)) > 0 ®

0, otherwise



Table 2: RQ1: D2U-zero with various distance metrics vs. post-processing baselines in zero-shot setup. Row-wise

"nan

best scores are given in bold. (1) and ({) indicate that higher and lower scores are better, respectively. "e" indicates
statistically significant differences with two-tailed paired t-test at a 95% interval (with Bonferroni correction p <
0.0125) in pairwise comparison between D2U-zero and all baselines except the ones marked with "o".

Baselines
E Temp

Metric Dataset

Stdev  Ent CE

ACID
ROC AUC (1) Banking 94.92 96.15

90.93 91.830 91.54
95.88
95.52
79.95
95.50
74.26

FPRY0 ({)

25.00 22.100 20.700 19.85021.40
11.30 7.85 |[7.30

FNRY0 ({)

For RQ2, we use D2U zero-shot cross-entropy
post-processing (D2U-zero) as the baseline method,
since we examine any improvement in supervised
setup over zero-shot. For RQ3, we compare super-
vised D2U with the following baselines.

e Large Margin Cosine Loss (LMCL) (Zeng
et al., 2021b): During INS training, the Cosine
distance among class centroids is increased up to
a margin. We set the margin as 0.35, and scaling
factor as 30.

¢ Domain Regularization Module (DRM) (Shen
et al., 2021): DRM introduces domain logits for
regularization during INS training. We slightly
modify the design and apply sigmoid to domain
logits before dividing the classification logits for
training stability.

* BERT-Binary (Binary) (Devlin et al., 2019):
The "bert-base-uncased" model fine-tuned as a
binary classifier for OOS detection.

* Entropy Regularization (Reg.) (Zheng et al.,
2020): Entropy of OOS training predictions are
maximized with a loss function given as follows.

NOOS N
H(P(ui)) )
i1

4.4 Experimental design

The experiments are designed with respect to our
research questions (RQ 1-3). First, we fine-tune a
BERT classifier (Devlin et al., 2019) for INS intent

Original train + val

Fold #1 [:} 0 N
Fold #2 D U

Fold #10 ﬁ ﬁ

Original test

Figure 4: Modified leave-one-out 10-fold split strategy
that complies with original splits. At each fold, only
10% of test data is included, while 90% of training data
is retained and the remaining 10% is used as validation.

detection with cross-entropy loss, and apply differ-
ent D2U post-processing methods for RQ1. Then,
we fix the post-processing method, and examine the
effect of supervised D2U training for RQ2. Lastly,
we compare D2U with state-of-the art baselines for
RQ3 to assess the performance gain of our method.

To avoid potential annotator-dependent effects
as noted by Larson et al. (2019) and comply with
the original splits, we modify 10-fold leave-one-out
cross-validation as illustrated in Figure 4. The vali-
dation splits are used to find confidence threshold
values for Recall and F1 calculations. We validate
statistically significant differences in the average
performances of 10-folds with the two-tailed paired
t-test at a 95% interval with Bonferroni correction.
Note that the test splits do not overlap in order to
satisfy the independence criterion of t-test.

4.5 Experimental results

RQ1: D2U in zero-shot setup. In Table 2, we re-
port ROC AUC, FPR90, and FNR90 scores for dif-
ferent post-processing methods applied to a BERT-



Table 3: RQ2: D2U training compared to zero-shot.
"e" indicates statistically significant differences with
the two-tailed paired t-test at a 95% interval in pairwise

comparison between D2U-zero and best supervised.

Data Method ROCT FPR90/ FNR90| RECT Fl1t

A D2U-zero 92.01 2140 2146  86.43 88.69
T D2U-CE 96.75 7.30e 7.96 9598 95.55
< D2U-KL 96.78e 7.90 7.76e  96.31e 96.01e
D2U-S 9588 8.80 9.54 93.18 93.78
) D2U-zero 97.03 7.30 8.01 9147 91.67
'% D2U-CE 99.36e 1.00e 0.23e¢  96.66 96.55
s D2U-KL 99.25 1.70 0.39 97.47¢ 97.42¢
/R D2U-S 9879 2.00 2.12 95.90 95.88
v D2U-zero 96.32 7.50 8.36 9131 91.75
Z D2U-CE 97.48 5.10 6.18 93.27 92.84
d D2U-KL 97.29 5.20 4.93¢ 9333 9291
D2U-S  97.69¢ 3.90e 536 94.53¢ 94.53¢
N3 D2U-zero 80.32 52.50 52.01  76.83 76.03e
2 D2U-CE 87.37¢ 31.70 37.05¢ 74.58 68.18
2 D2U-KL 87.19 30.30e 41.50 7527 69.41
T D2U-S 8223 47.80 49.10 74.28 68.30
% D2U-zero 96.33 8.40 9.29 88.35 88.43
Z D2U-CE 98.61 2.70 2.86 89.47 89.52
»vi D2U-KL 99.16e 1.60e 1.57¢  88.59 88.64
D2U-S 9839 2.80 2.29 90.29 90.36
o D2U-zero 73.24 53.00 69.07 84.54 86.14
8 D2U-CE 97.42 6.25 4.03¢  94.55 95.01
D2U-KL 97.50e 5.88¢ 4.10 95.17¢ 95.51e
D2U-S 9494 12.00 15.61 9213 9295

based INS classifier with no OOS training data.
Our proposed method, D2U-zero, statistically sig-
nificantly outperforms all baselines in all datasets
with respect to ROC AUC score. Using cross-
entropy for D2U-zero has better performance in
majority of cases, compared to other distance met-
rics. The reason for its success might be that cross-
entropy is the loss function used in the training
procedure of the model. In terms of FPR90 and
FNR90, D2U-zero does not always outperform all
baselines. Though, the cases when baselines out-
perform are not statistically significant. This shows
that the baseline methods can optimize FPR90 and
FNRO0 individually but cannot outperform D2U in
terms of ROC which considers Type I and Type 11
errors simultaneously. Entropy (Shen et al., 2021)
is a strong baseline that performs better than other
baselines with respect to all performance metrics.

RQ2: D2U in supervised setup. Next, we
report the effect of D2U training on OOS detec-
tion in Table 3. Since our concern here is to ob-
serve any improvement over zero-shot setup, we
fix post-processing method as cross-entropy for
all methods due to its performance in the pre-
vious experiment. The results show that using

D2U as a loss function statistically significantly
improves the performance of D2U-zero in almost
all cases. KL divergence loss (D2U-KL) and Cross-
Entropy loss (D2U-CE) are effective D2U meth-
ods in ACID, Banking, HWU64, SNIPS, and TOP
datasets, whereas Sinkhorn distance (D2U-S) is
effective in CLINC dataset.

RQ3: D2U versus state-of-the-art. The perfor-
mances of state-of-the-art baseline OOS detection
models, regardless of zero-shot or supervised, and
D2U methods are compared in Table 4, with ex-
tensive results reported in the Appendix. MLE,
softmax temperature (Temp.), Entropy, LMCL,
and DRM are zero-shot OOS detection setups,
whereas entropy regularization (Reg.) and BERT-
Binary (Binary) are supervised setups. D2U sta-
tistically significantly outperforms other baselines
in most datasets, although Binary is a strong base-
line method that outperforms D2U in ACID and
Banking datasets and challenges it in HWU64 and
TOP, which is not statistically significant. ACID,
Banking and TOP datasets contain domain-specific
utterances; from insurance, banking, and naviga-
tion applications, respectively. This might cause
a trivial detection for the BERT-based binary clas-
sifier. HWUG64 contains generic utterances like
queries and questions which may coincide with the
0OS split and disturb the training process of D2U.

5 Discussion

5.1 Limitations

We acknowledge some limitations to our study.
All methods in our study, including baselines, use
BERT (Devlin et al., 2019) as the classifier net-
work but one can experiment with other multiclass
prediction models. In addition, the generalization
ability of D2U to other neural networks such as
LSTM and CNN are not investigated.

Except for CLINC and TOP, the datasets are aug-
mented with the OOS data from CLINC. However,
we argue that this approach is nontrivial since the
majority of the OOS training data is sampled from
Wikipedia (Larson et al., 2019) and remains OOS
for other datasets. Moreover, D2U has effective
performance on CLINC and TOP datasets which
are specifically designed with OOS utterances.

5.2 Qualitative analysis

We provide a qualitative analysis on the effect
of D2U training. We illustrate the model out-
put distributions for INS utterance "get me to



Table 4: RQ3: D2U vs. OOS detection baselines. The bold score is the best. The underlined score is the best that

baseline achieves when D2U outperforms, or vice versa.

n "

indicates statistically significant differences with the

two-tailed paired t-test at a 95% interval (with Bonferroni correction p < 0.0071) in pairwise comparisons between

D2U and all baselines except the ones marked with "o". If baseline outperforms,

o'

indicates the difference (with

Bonferroni correction p < 0.0167) in pairwise comparisons between the baseline and our best version.

Train ACID Bankin CLINC

ROC FPR FNR REC F1 |ROC FPR FENR REC F1 |ROC FPR FNR REC F1
MLE (Hendrycks et al., 2020)(90.9 25.0 67.9 84.9 87.5 |94.9 133 144 89.4 89.6 [95.3 9.3 11.8 90.2 90.8
Temp. (Liang et al., 2018 91.8 22.1 69.1 85.8 88.2 |96.2 10.0 10.5 90.3 90.5 [96.2 7.8 9.2 90.1 90.7
Entropy (Shen et al., 2021)  92.0 19.9 51.5 869 89.0 [96.7 7.9 7.2 91.6 91.8 (959 8.0 89 90.3 90.8
Binary (Devlin et al., 2019) [97.2 6.2 6.7 96.5 96.1 (999 0.2 0.2 97.9 97.8 |85.6 48.631.4 88.3 86.1
LMCL (Zeng et al.,2021a) [94.1 15.6 66.5 88.4 90.1 |97.2 6.3 8.1 926 926 (963 74 99 90.8 91.3
DRM (Shen et al., 2021) 93.2 19.9 62.5 86.8 89.0 |96.1 13.1 11.4 90.6 90.5 (959 85 9.7 91.0 914
Reg. (Zheng et al., 2020) 96.0 10.3 7.1 95.6 95.1 |99.0 24 09 96.8 96.8 |97.306.5 6.8 93.3092.90
D2U-CE-CE (ours) 96.8 7.3 8.0 96.0 956 1994 1.0 0.2 96.7 96.6 [97.5 5.1 62 923 92.8
D2U-KL-CE (ours) 96.8 79 7.8 963 96.0 (993 1.7 04 97.5 974 |97.3 52 49 933 929
D2U-S-CE (ours) 59 8.8 5 932 938 (988 2.3 2.1 959 959 [|97.7¢ 3.9¢ 5.4 94.5¢ 94.5¢
Train HWU64 SNIPS TOP

ROC FPR FNR REC F1 |ROC FPR FNR REC F1 |ROC FPR FNR REC F1
MLE (Hendrycks et al., 2020)|79.3 58.9 52.0 73.0 73.7 |95.5 10.4 11.1 88.30 88.40|74.2 51.4 67.9 849 86.6
Temp. (Liang et al., 2018) 80.5 54.1 52.3 76.7 76.5 |96.2 84 9.3 88.40 88.50(73.2 53.0 69.1 84.5 86.1
Entropy (Shen et al., 2021) 809 48.1 52.8 77.7 77.3 [95.7 10 7 11.8 88.20 88.30|74.2 66.7 51.5 84.8 86.5
Binary (Devlin et al., 2019) |88.0 35.80 31.0 74.7 67.8 |98.90 1.70 2.00 86.20 86.20|97.30 4.4e 5.80 97.0e 97.0e
LMCL (Zeng et al., 2021a) [84.3 43.0 49.0 80.3¢ 80.2¢(85.2 49.531.9 67.8 66.3 |70.6 69.8 66.5 57.8 66.3
DRM (Shen et al., 2021) 79.3 56.9 50.3 73.4 74.0 |93.6 13.4 12.0 87.90 87.90|77.0 50.1 62.5 81.7 84.4
Reg. (Zheng et al., 2020) 83.4 46.5 45.2 74.0 67.0 |98.60 2.50 2.70 88.40 88.50|96.5 7.5 7.10 94.5 94.9
D2U-CE-CE (ours) 87.4 31.7 37.1 746 68.2 [98.6 2.7 2.9 89.5 89.5 |97.4 6.3 4.0e 94.6 95.0
D2U-KL-CE (ours) 87.2 30.30 41.5 75.3 69.4 |99.2e 1.6 1.6e 88.6 83.6 [97.5¢ 5.9 4.1 952 95.5
D2U-S-CE (ours) 82.2 47.8 49.1 743 68.3 (984 2.8 2.3 90.3¢ 90.4¢/949 12.0 15.6 92.1 93.

ritzville by 4 via the freeway." belonging to the
"GET_DIRECTIONS" intent, and the OOS utter-
ance "how many skating rinks are available in the
south pacific tomorrow at 10" taken from the TOP
dataset in Figure 5. We observe that the OOS ut-
terance results in an overconfident prediction in
the BERT MLE model whereas the prediction dis-
tribution of D2U-CE is quite similar to uniform
distribution.

BERT MLE D2U-CE

—— Uniform
INS
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Figure 5: The effect of D2U on prediction distributions.

5.3 INS performance

In Table 5, we analyze if OOS detection models de-
teriorate the performance of INS detection. We set
MLE as a baseline, which does not modify training
procedure. The results show that the performance
of INS classification is not dramatically deterio-
rated by the supervised models including D2U in
SNIPS and TOP, whereas it is even improved in
the remaining datasets. Although D2U’s INS per-

formance is similar to other supervised models,
D2U has better OOS performance than others, as
observed in Table 4.

We do not include BERT-Binary, which has no
capability of INS classification. BERT-Binary has
a challenging OOS performance in Table 4, but
D2U has advantage of showing state-of-the-art per-
formances for both INS and OOS detection.

Table 5: Weighted F1 score for INS classification.

Method Datasets

ACID Banking CLINC HWU64 SNIPS TOP
MLE 80.74 8491 95.67 8197 98.14 98.60
LMCL 8569 89.64 95.83 82.08 97.86 98.56
DRM 88.70  89.89 96.25 8249 98.14 98.68
Re 86.60 91.22 96.38 82.55 97.43 98.32
D2U-CE 8640 9095 9642 8231 97.84 98.26
D2U-KL 86.26 90.69 96.22 8272 98.01 98.29
D2U-S 86.50 91.52 96.34 82.16 97.43 98.37

6 Conclusion

In this study, we improve confidence-based OOS
detection performance with a distance calculation
between classifier prediction and uniform distri-
bution. In zero-shot setup, our proposed method
serves as an architecture-agnostic post-processing
step to emphasize the distinction between INS and
OOS utterances. With use of OOS training data in
the supervised setup, we bring closer OOS predic-



tions to uniform distribution with a specialized loss
calculation. Experimental results demonstrate that
D2U improves OOS detection performance over
existing baselines. We plan to extend our study
to different neural network architectures and deep
learning tasks, such as other out-of-domain tasks
and other research areas.
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A Appendix

We report Receiver Operating Curve Area Under
Curve, False Positive Rate at 90% OOS True Pos-
itive Rate, False Negative Rate at 90% OOS True
Negative Rate, weighted OOS Recall, and weighted
OOS F1 scores in Tables 6, 7, 8, 9, 10 respec-
tively. Different training procedures, baseline and
proposed, are reported in rows and different post-
processing methods, baseline and proposed, are
reported in columns.

Baseline training methods are BERT-based in-
scope classifier (MLE) (Larson et al., 2019; Devlin
et al., 2019), Large Margin Cosine Loss (LMCL)
(Zeng et al., 2021a), Domain Regularization Mod-
ule (DRM) (Shen et al., 2021), entropy regular-
ization (Reg.) (Zheng et al., 2020), and BERT-
binary classifier (Binary) (Devlin et al., 2019). Post-
processing methods are not applicable for Binary
training since it models OOS detection as a binary
classification problem. Baseline post-processing
methods are Maximum Likelihood Estimate (MLE)
(Gangal et al., 2020; Zhang et al., 2020), softmax
temperature (Temp) (Liang et al., 2018; Lin and
Xu, 2019b), standard deviation (Stdev), and entropy
(Ent) (Shen et al., 2021).
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Table 6: Average ROC AUC score of 10-Fold binary OOS Detection. Row-wise highest scores are given in bold.

Data  Training MLE Temp Stdev Ent | CE BC Cbr Cos JS Euc KL Helng.

MLE 90.93 91.83 91.54 91.98|92.01 91.40 90.18 91.54 92.08 91.54 92.14 92.13

LMCL  94.05 94.07 94.23 94.04|93.72 89.31 85.54 94.23 93.88 94.23 93.91 93.89

DRM 93.23 92.43 93.54 93.95|91.70 94.07 93.67 93.54 94.00 93.54 92.92 93.85

Reg. 95.98 96.56 96.15 96.50|97.06 96.82 97.10 96.15 96.84 96.15 96.75 96.81

ACID .

Binary 97.19 - - - - - - - - - - -

D2U-CE 95.63 96.22 95.85 96.17|96.75 96.43 96.72 95.85 96.47 95.85 96.42 96.46

D2U-KL 9547 96.25 95.65 96.06(96.78 96.47 96.77 95.65 96.49 95.65 96.37 96.45

D2U-S  94.46 95.14 94.80 95.24|95.88 95.55 95.61 94.80 95.63 94.80 95.54 95.61

MLE 94.92 96.15 95.88 96.66|97.03 96.89 96.09 95.88 96.99 95.88 96.91 96.97

LMCL 97.19 97.20 97.32 97.15|96.88 94.07 91.61 97.32 97.01 97.32 97.04 97.03

DRM 96.12 96.97 96.70 97.47|96.56 98.06 97.93 96.70 97.97 96.70 97.28 97.88

. Reg. 98.95 99.12 99.03 99.13]99.19 99.16 99.18 99.03 99.18 99.03 99.16 99.17
Banking Bi 9988 - ) ) ) ) ) ) ) ) ) )

inary R

D2U-CE 99.07 99.28 99.14 99.24|99.36 99.26 99.29 99.14 99.28 99.14 99.29 99.29

D2U-KL 98.99 99.19 99.07 99.15|99.25 99.19 99.22 99.07 99.22 99.07 99.22 99.22

D2U-S  97.83 98.53 98.12 98.43|98.79 98.61 98.65 98.12 98.65 98.12 98.63 98.64

MLE 95.34 96.16 95.52 95.90|96.32 96.09 96.26 95.52 96.24 95.52 96.20 96.25

LMCL  96.31 96.30 96.30 96.14|95.81 92.51 86.08 96.30 95.95 96.30 96.02 95.99

DRM 95.85 94.47 96.00 96.19|93.78 96.29 95.73 96.00 95.88 96.00 95.07 95.63

CLINC Reg. 97.29 97.63 97.31 97.47|97.58 97.52 97.55 97.31 97.62 97.31 97.65 97.64
Binary 85.57 - - - - - - - - - - -

D2U-CE 97.08 97.47 97.14 97.30(97.48 97.27 97.31 97.14 97.42 97.14 97.48 97.45

D2U-KL 96.86 97.29 96.90 97.04|97.29 97.07 97.12 96.90 97.20 96.90 97.26 97.23

D2U-S  96.71 97.54 96.85 97.15(97.69 97.22 97.33 96.85 97.42 96.85 97.53 97.48

MLE 79.29 80.46 79.95 80.90|80.32 81.49 80.49 79.95 81.16 79.95 80.92 81.05

LMCL 84.28 84.37 84.98 85.17|85.33 84.04 82.50 84.98 85.28 84.98 85.27 85.27

DRM 79.32 79.05 80.00 80.67|78.68 81.55 80.50 80.00 80.75 80.00 79.66 80.31

HWU6A Reg. 83.38 86.34 84.19 85.68|87.05 86.78 87.22 84.19 86.70 84.19 86.51 86.62
Binary 88.02 - - - - - - - - - - -

D2U-CE 83.64 86.58 84.42 85.80|87.37 87.09 87.60 84.42 86.98 84.42 86.77 86.89

D2U-KL 83.46 86.44 84.14 85.50(87.19 86.71 87.27 84.14 86.64 84.14 86.54 86.62

D2U-S  79.67 81.74 80.42 81.69|82.23 82.86 82.57 80.42 82.41 80.42 82.13 82.27

MLE 95.45 96.20 95.50 95.70/96.33 95.61 95.83 95.50 95.86 95.50 96.15 96.04

LMCL 85.18 87.54 88.20 90.45|93.15 89.91 93.08 88.20 91.69 88.20 91.87 91.76

DRM 93.58 94.47 93.63 93.82|94.58 93.75 93.95 93.63 93.98 93.63 94.43 94.13

SNIPS Reg. 98.61 98.74 98.61 98.64|98.76 98.62 98.63 98.61 98.65 98.61 98.73 98.67
Binary 9891 - - - - - - - - - - -

D2U-CE 98.51 98.60 98.52 98.53[98.61 98.52 98.54 98.52 98.54 98.52 98.60 98.56

D2U-KL 98.97 99.15 98.99 99.01|99.16 98.99 99.02 98.99 99.04 98.99 99.14 99.09

D2U-S  98.24 98.37 98.25 98.30(98.39 98.29 98.32 98.25 98.32 98.25 98.37 98.34

MLE 74.23 73.23 74.26 74.19|73.24 74.32 74.36 74.26 74.18 74.26 73.25 73.76

LMCL 70.62 70.11 70.72 70.88|70.11 70.58 71.29 70.72 70.95 70.72 70.43 70.70

DRM 76.97 76.59 76.99 76.96|76.61 77.06 77.13 76.99 76.98 76.99 76.60 76.83

TOP Reg. 96.45 96.57 96.45 96.47|96.57 96.45 96.47 96.45 96.49 96.45 96.56 96.52
Binary 97.29 - - - - - - - - - - -

D2U-CE 97.30 97.42 97.30 97.33|97.42 97.31 97.34 97.30 97.35 97.30 97.41 97.38

D2U-KL 97.39 97.50 97.41 97.43(97.50 97.42 97.43 97.41 97.44 97.41 97.49 97.46

D2U-S  94.68 94.94 94.71 94.76(94.94 94.75 94.78 94.71 94.80 94.71 94.92 94.87
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Table 7: Average FPR9O0 score of 10-Fold binary OOS Detection. Row-wise lowest scores are given in bold.

Data  Training MLE Temp Stdev Ent | CE BC Cbr Cos JS Euc KL Helng.

MLE 25.00 22.10 20.70 19.85|21.40 24.80 28.60 20.70 20.90 20.70 19.70 20.70

LMCL 15.60 15.50 14.80 13.83|17.40 37.10 46.20 14.80 16.50 14.80 16.50 16.50

DRM 19.90 20.80 18.40 13.51{24.80 14.40 16.30 18.40 15.00 18.40 18.80 15.30

Reg. 10.30 8.60 9.70 841|720 740 7.10 9.70 7.50 9.70 8.20 7.60

ACID .

Binary  6.17 - - - - - - - - - - -

D2U-CE 1030 8.20 9.40 854 7.30 7.50 7.40 940 7.20 940 7.70 17.30

D2U-KL 10.70 890 990 7.56 | 790 8.00 7.80 990 8.10 990 8.10 8.10

D2U-S 11.90 10.30 11.00 9.57 | 8.80 9.00 9.30 11.00 9.10 11.00 9.40 9.30

MLE 13.30 10.00 11.30 7.85 | 7.30 6.60 12.00 11.30 6.20 11.30 6.30 6.10

LMCL 630 620 550 7.00|7.10 19.40 2580 5.50 6.80 5.50 6.80 6.80

DRM 13.10 840 10.20 6.06 | 920 4.60 4.90 10.20 520 10.20 7.30 5.30

. Reg. 240 1.80 220 036|160 1.60 140 220 1.70 220 1.60 1.70

Banking Bi

inary 0.16 - - - - - - - - - - -

D2U-CE 240 1.60 2.10 0.23|1.00 1.00 1.00 2.10 1.00 2.10 1.00 1.00

D2U-KL 2.70 1.60 250 039|170 1.70 1.60 250 1.70 2.50 1.80 1.70

D20-S 580 3.70 520 225|200 260 190 520 260 520 340 2.80

MLE 930 7.80 930 800|750 810 7.70 930 7.70 930 7.80 7.60

LMCL 740 7.30 7.60 851 |8.60 18.30 3540 7.60 840 7.60 850 8.40

DRM 850 11.80 8.50 7.64 [13.70 7.80 9.50 850 830 850 940 8.20

CLINC Reg. 6.50 5.10 6.60 5.13|5.10 480 490 6.60 5.00 6.60 510 5.20
Binary 48.58 - - - - - - - - - - -

D2U-CE 6.70 540 6.70 562|510 590 540 6.70 550 6.70 550 5.60

D2U-KL 6.50 5.50 6.50 4.89 | 520 590 580 650 570 6.50 5.60 5.70

D2U-S 7.10 450 7.10 638|390 480 4060 7.10 460 7.10 480 4.50

MLE 58.90 54.10 55.70 48.12|52.50 51.60 55.00 55.70 52.20 55.70 52.60 51.90

LMCL 43.00 42.90 38.10 41.84|37.30 41.70 44.90 38.10 37.50 38.10 37.10 37.30

DRM 56.90 51.10 53.00 49.62|54.30 52.40 53.00 53.00 50.80 53.00 51.50 51.40

HWU64 Reg. 46.50 32.70 41.20 41.84|29.60 31.30 29.60 41.20 31.80 41.20 32.60 32.10
Binary 35.77 - - - - - - - - - - -

D2U-CE 44.90 35.10 40.80 40.43|31.70 31.70 30.60 40.80 32.50 40.80 33.50 33.10

D2U-KL 43.80 33.70 39.90 42.48|30.30 31.50 31.10 39.90 33.00 39.90 33.30 33.10

D2U-S  57.60 48.10 53.00 46.84|47.80 47.40 48.50 53.00 47.30 53.00 48.10 47.60

MLE 10.40 8.40 10.30 10.71| 8.40 10.40 10.30 10.30 9.90 10.30 8.60 8.70

LMCL 49.50 41.90 36.70 29.86|21.10 30.10 16.40 36.70 24.10 36.70 24.10 24.10

DRM 13.40 10.20 13.40 10.86(10.20 13.40 13.30 13.40 12.40 13.40 10.40 11.50

SNIPS Reg. 250 220 250 229|220 250 250 250 240 2.50 220 230
Binary 1.71 - - - - - - - - - - -

D2U-CE 2.70 2.70 270 3.14|270 270 270 270 270 270 270 2.70

D2U-KL 2.10 1.60 2.10 2.14|1.60 2.10 2.10 2.10 190 2.10 1.60 1.60

D2U-S 290 2.80 290 3.00|2.80 290 290 290 2.80 290 280 2.70

MLE 51.38 53.00 51.38 66.65|53.00 51.38 51.38 51.38 51.50 51.38 53.00 51.75

LMCL 69.75 70.13 69.50 65.06|70.75 70.63 71.50 69.50 70.50 69.50 70.25 70.25

DRM 50.13 51.88 50.13 59.79(51.88 50.13 50.13 50.13 50.88 50.13 51.63 50.63

TOP Reg. 750 7.25 750 490|725 7.50 750 7.50 7.50 7.50 7.25 7.25
Binary 443 - - - - - - - - - - -

D2U-CE 6.13 6.25 6.13 4.04 | 625 6.13 6.13 6.13 6.13 6.13 625 6.13

D2U-KL 6.25 5.88 6.25 3.57 | 588 625 638 625 625 625 588 6.00

D2U-S 11.63 11.88 11.63 12.94|12.00 11.63 11.50 11.63 11.63 11.63 11.88 11.75
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Table 8: Average FNR90 score of 10-Fold binary OOS Detection. Row-wise lowest scores are given in bold.

Data  Training MLE Temp Stdev Ent | CE BC Cbr Cos JS Euc KL Helng.

MLE 27.30 25.67 26.22 19.70|21.46 20.60 26.70 26.22 20.45 26.22 21.38 20.75

LMCL 16.36 16.30 14.80 15.80|16.57 28.78 38.57 14.80 15.58 14.80 15.30 15.39

DRM 16.42 20.92 16.23 15.00|23.88 13.31 14.48 16.23 13.95 16.23 18.94 14.33

Reg. 10.80 8.79 1039 8.70 | 7.61 8.32 7.48 10.39 8.08 10.39 8.30 8.20

ACID .

Binary  6.70 - - - - - - - - - - -

D2U-CE 11.11 9.11 10.12 8.00 | 7.96 8.40 8.03 10.12 841 10.12 8.61 847

D2U-KL 12.84 9.99 12.04 9.00 | 7.76 8.05 7.53 12.04 8.17 12.04 885 8.35
D2U-S 12.69 1041 11.88 10.20| 9.54 9.68 10.00 11.88 9.87 11.88 9.76 9.71

MLE 14.36 10.49 11.37 7.20 | 8.01 8.79 13.68 11.37 7.88 11.37 7.69 7.79

LMCL 8.05 795 6.78 6.30|9.09 18.60 2596 6.78 8.44 6.78 834 8.37

DRM 1143 9.71 990 7.20 (12.12 476 590 990 547 990 899 6.19

. Reg. 094 042 052 180|042 055 046 052 055 052 055 055
Banking Bi 0.20 i ) ) i i i - ) ) i )

inary .

D2U-CE 042 0.26 026 1.30]0.23 026 026 026 026 026 026 0.26

D2U-KL 1.50 0.59 0.72 1.80|0.39 0.59 072 0.72 052 0.72 042 049

D2U-S 485 358 3.68 3.70|212 238 257 3.68 241 3.68 274 257

MLE 11.80 9.16 11.60 890 | 836 8.11 7.56 11.60 7.98 11.60 8.67 8.31

LMCL 991 996 9.76 8.30 [10.76 21.51 45.62 9.76 10.44 9.76 10.13 10.20

DRM 9.69 1631 9.67 790 |21.27 7.80 10.36 9.67 8.84 9.67 12.62 9.69

CLINC Reg. 6.82 542 6.73 6.00 | 511 5.18 536 6.73 520 6.73 536 5.18
Binary 31.40 - - - - - - - - - - -

D2U-CE 740 6.13 7.33 6.60 | 6.18 6.18 6.11 7.33 6.04 733 6.09 6.02

D2U-KL 6.60 5.07 6.42 620|493 4.82 482 642 487 642 496 4.82

D2U-S 833 598 8.16 6.50 536 5.84 553 8.16 584 816 6.00 5.89

MLE 51.97 52.26 51.75 52.80(52.01 47.14 47.01 51.75 48.63 51.75 51.03 49.57

LMCL 48.97 48.55 4791 37.40|47.01 47.86 52.18 47.91 47.52 4791 47.78 47.78

DRM 50.34 62.91 50.47 51.10/62.91 51.88 57.31 50.47 57.39 50.47 60.81 59.74

HWU6A Reg. 45.17 41.62 45.13 34.7040.60 41.88 40.09 45.13 40.77 45.13 41.50 40.81
Binary 31.00 - - - - - - - - - - -

D2U-CE 45.43 38.59 45.17 36.10|37.05 41.58 37.09 45.17 40.34 45.17 39.10 39.87

D2U-KL 45.56 42.74 45.64 35.90[41.50 40.47 39.19 45.64 41.84 45.64 42.56 41.88

D2U-S  50.00 49.23 49.96 48.70|49.10 45.77 45.21 49.96 47.99 49.96 49.06 48.63

MLE 11.14 9.29 11.14 11.80] 9.29 11.14 11.14 11.14 10.71 11.14 9.71 10.29

LMCL 31.86 30.86 31.43 30.30(23.29 31.86 26.00 31.43 29.43 31.43 28.29 28.43

DRM 12.00 10.57 12.00 14.30(10.57 12.00 12.00 12.00 11.71 12.00 10.43 11.71

SNIPS Reg. 271 214 257 3.10(2.00 243 243 257 243 257 229 229
Binary  2.00 - - - - - - - - - - -

D2U-CE 3.29 3.00 3.29 290|286 329 329 329 329 329 314 3.14

D2U-KL 2.86 1.86 2.86 230|157 271 257 286 229 286 186 2.14

D2U-S 343 243 343 3.10 229 329 314 343 286 343 243 286

MLE 67.88 69.05 67.89 51.50|69.07 67.89 67.90 67.89 68.17 67.89 69.04 68.46

LMCL 66.54 72.06 66.61 69.88|72.97 66.54 68.03 66.61 69.61 66.61 71.76 71.35

DRM 62.51 62.65 62.51 50.38|62.66 62.51 62.51 62.51 62.39 62.51 62.68 62.55

TOP Reg. 7.06 6.07 7.05 7.50]6.02 7.06 676 7.05 6.63 7.05 6.17 644
Binary  5.75 - - - - - - - - - - -
D2U-CE 5.10 422 5.08 6.13 |4.03 493 442 508 4.62 508 432 448

D2U-KL 525 425 521 638|410 522 455 521 4.67 521 432 454

D2U-S 1498 15.59 14.99 11.63|15.61 1498 15.00 14.99 15.10 14.99 15.64 15.19
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Table 9: Average Recall score of 10-Fold binary OOS Detection. Row-wise highest scores are given in bold.

Data  Training MLE Temp Stdev Ent | CE BC Cbr Cos JS Euc KL Helng.

MLE 84.86 85.76 87.23 86.88|86.43 85.80 84.10 87.23 87.48 87.23 87.81 87.18

LMCL 88.35 88.79 88.79 87.47|86.84 80.77 77.23 88.79 87.04 88.79 87.26 87.07

DRM 86.81 89.53 88.83 90.02|89.63 90.73 90.33 88.83 90.70 88.83 90.23 90.56

Reg. 95.58 95.76 95.92 96.03|96.00 96.08 96.25 95.92 96.05 95.92 96.06 96.05

ACID .

Binary 9645 - - - - - - - - - - -

D2U-CE 95.11 95.28 95.44 95.65|95.98 95.92 96.03 95.44 95.90 95.44 95.86 95.90

D2U-KL 95.64 9591 96.04 96.23]96.31 96.30 96.38 96.04 96.26 96.04 96.25 96.25

D2U-S  92.43 93.05 93.39 93.34|93.18 92.85 91.56 93.39 93.12 93.39 93.36 93.26

MLE 89.36 90.29 90.88 91.62|91.47 91.57 89.78 90.88 92.04 90.88 92.09 92.04

LMCL 92.56 92.78 93.19 92.65|92.43 86.81 85.04 93.19 92.65 93.19 92.53 92.68

DRM 90.59 93.32 92.01 93.69|92.83 94.45 94.10 92.01 94.55 92.01 93.49 94.30

. Reg. 96.83 96.98 96.93 97.17|97.40 97.42 97.40 96.93 97.40 96.93 97.35 97.47
Banking Bi 9784 - ) ) ) ) ) ) ) ) ) )

inary .

D2U-CE 96.76 96.63 96.68 96.49|96.66 96.63 96.61 96.68 96.54 96.68 96.54 96.54

D2U-KL 97.10 97.20 97.25 97.10(97.47 97.57 97.54 97.25 97.44 97.25 97.47 97.44

D2U-S  94.52 95.41 95.41 96.02|95.90 95.87 95.80 95.41 96.04 95.41 96.12 96.07

MLE 90.22 90.05 90.29 90.25|91.31 91.07 91.04 90.29 90.82 90.29 90.27 90.45

LMCL 90.78 90.80 91.20 91.40{91.20 88.44 81.44 91.20 91.27 91.20 91.11 91.15

DRM 90.95 92.53 90.96 91.75|91.85 92.73 92.75 90.96 92.93 90.96 92.73 92.76

CLINC Reg. 93.29 93.31 93.49 93.38|93.31 93.33 93.33 93.49 93.56 93.49 93.49 93.56
Binary 8831 - - - - - - - - - - -

D2U-CE 92.35 92.84 92.60 92.87(93.27 93.33 93.11 92.60 93.13 92.60 93.31 93.00

D2U-KL 93.16 93.64 93.35 93.05|93.33 93.13 93.02 93.35 93.62 93.35 93.09 93.55

D2U-S 9342 94.55 93.93 94.58(94.53 94.67 94.65 93.93 94.67 93.93 94.62 94.87

MLE 73.02 76.65 74.79 77.66|76.83 77.34 75.57 74.76 77.40 74.79 77.57 77.31

LMCL 80.33 80.24 81.32 81.38|81.92 80.75 79.10 81.32 81.95 81.32 81.83 81.98

DRM 73.44 77.01 76.29 77.22|76.77 77.99 77.51 76.29 77.69 76.29 77.22 77.43

HWU6A Reg. 73.95 74.58 74.43 74.43|74.94 74.82 T4.73 74.43 7470 74.43 7479 74.79
Binary 7470 - - - - - - - - - - -

D2U-CE 73.23 75.09 73.89 74.22|74.58 74.40 74.76 73.89 74.16 73.89 74.16 74.10

D2U-KL 73.74 74.76 74.07 74.58|75.27 74.97 75.54 74.07 74.43 74.07 75.27 74.79

D2U-S  74.25 75.00 74.16 74.37|74.28 74.37 73.89 74.16 74.40 74.16 74.55 74.73

MLE 88.29 88.41 88.29 88.24|88.35 88.29 88.06 88.29 88.24 88.29 88.41 88.06

LMCL 67.76 71.76 74.65 79.35|83.12 79.94 85.82 74.65 80.71 74.65 80.65 80.71

DRM 87.88 89.24 87.88 88.41|89.18 87.88 88.06 87.88 88.88 87.88 89.12 88.88

SNIPS Reg. 88.41 88.94 88.35 87.94|89.53 88.47 89.06 88.35 89.35 88.35 88.88 89.35
Binary 86.18 - - - - - - - - - - -

D2U-CE 88.24 89.41 88.65 87.76(89.47 89.18 89.12 88.65 89.18 88.65 89.47 89.24

D2U-KL 88.53 88.59 88.53 88.00|88.59 88.94 88.76 88.53 88.71 88.53 88.65 88.76

D2U-S  87.00 90.29 86.41 87.82(90.29 89.35 89.35 86.41 89.65 86.41 90.35 90.29

MLE 84.85 84.52 84.85 84.75|84.54 84.85 84.71 84.85 84.71 84.85 84.49 83.14

LMCL 57.78 68.92 57.53 61.81|75.63 58.43 67.12 57.53 65.35 57.53 68.10 64.83

DRM 81.68 72.93 81.68 79.17|72.87 81.68 81.78 81.68 79.49 81.68 72.80 75.56

TOP Reg. 94.51 95.23 94.51 94.76|95.07 94.77 95.60 94.51 95.07 94.51 95.04 94.97
Binary 9695 - - - - - - - - - - -

D2U-CE 93.85 94.34 93.84 94.00|94.55 94.00 94.90 93.84 94.56 93.84 94.33 94.49

D2U-KL 94.21 95.07 94.21 94.29(95.17 94.52 95.55 94.21 95.25 94.21 95.17 95.35

D2U-S  91.29 91.92 91.29 91.70(92.13 91.29 91.36 91.29 91.90 91.29 91.97 91.59
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Table 10: Average F1 score of 10-Fold binary OOS Detection. Row-wise highest scores are given in bold.

Data  Training MLE Temp Stdev Ent | CE BC Cbr Cos JS Euc KL Helng.

MLE 87.51 88.21 89.24 89.03|88.69 88.24 86.95 89.24 89.45 89.24 89.71 89.24
LMCL 90.14 90.46 90.47 89.52|89.05 84.60 81.99 90.47 89.20 90.47 89.35 89.22
DRM 89.00 90.83 90.42 91.34]90.83 91.85 91.51 90.42 91.81 90.42 91.40 91.70
Reg. 95.10 95.28 95.46 95.58|95.58 95.67 95.89 95.46 95.62 95.46 95.65 95.63
ACID .
Binary  96.07 - - - - - - - - - - -
D2U-CE 94.43 94.60 94.80 95.09|95.55 95.47 95.61 94.80 95.46 94.80 95.42 95.46
D2U-KL 95.19 95.55 95.64 95.88]96.01 95.99 96.08 95.64 95.94 95.64 9593 95.93
D2U-S  93.16 93.66 93.90 93.87|93.78 93.51 92.59 93.90 93.71 93.90 93.89 93.81
MLE 89.60 90.53 91.03 91.76]91.67 91.74 90.04 91.03 92.17 91.03 92.22 92.18
LMCL 92.63 92.87 93.27 92.75|92.52 87.21 85.42 93.27 92.72 93.27 92.61 92.74
DRM 90.50 93.16 91.89 93.54|92.60 94.36 93.99 91.89 94.42 91.89 93.31 94.19
. Reg. 96.75 96.91 96.85 97.12|97.35 97.38 97.35 96.85 97.35 96.85 97.30 97.43
Banking Bi
inary 97.79 - - - - - - - - - - -
D2U-CE 96.66 96.54 96.59 96.37|96.55 96.53 96.50 96.59 96.43 96.59 96.43 96.43
D2U-KL 97.03 97.13 97.18 97.02|97.42 97.52 97.50 97.18 97.39 97.18 97.41 97.39
D2U-S  94.48 95.36 95.36 95.98|95.88 95.86 95.80 95.36 96.02 95.36 96.07 96.03
MLE 90.75 90.65 90.82 90.80|91.75 91.54 91.50 90.82 91.32 90.82 90.84 91.00
LMCL 91.27 91.29 91.61 91.79|91.59 88.98 82.71 91.61 91.68 91.61 91.54 91.57
DRM 91.39 92.66 91.39 92.08|91.94 92.96 92.93 91.39 93.12 91.39 92.90 92.97
CLINC Reg. 92.89 92.89 93.12 92.96|92.91 92.95 92.94 93.12 93.22 93.12 93.13 93.22
Binary 86.07 - - - - - - - - - - -
D2U-CE 91.64 92.26 91.98 92.30|92.84 92.87 92.63 91.98 92.61 91.98 92.86 92.46
D2U-KL 92.70 93.28 92.90 92.54|92.91 92.65 92.55 92.90 93.23 92.90 92.58 93.15
D2U-S  93.46 94.55 93.92 94.58|94.53 94.64 94.61 93.92 94.66 93.92 94.63 94.86
MLE 73.72 76.50 75.08 77.33|76.03 76.96 75.26 75.06 76.80 75.08 77.07 76.79
LMCL 80.18 80.08 81.09 81.16|81.77 80.52 78.90 81.09 81.69 81.09 81.53 81.74
DRM 74.01 76.66 76.06 76.82|76.11 77.68 76.98 76.06 77.30 76.06 76.90 77.00
HWU6A Reg. 66.95 68.19 67.81 67.85/68.80 68.52 68.49 67.81 68.21 67.81 68.37 68.37
Binary 67.83 - - - - - - - - - - -
D2U-CE 65.55 69.02 66.65 67.39|68.18 67.69 68.60 66.65 67.29 66.65 67.45 67.31
D2U-KL 66.42 68.42 67.16 68.23|69.41 68.91 69.88 67.16 67.81 67.16 69.37 68.46
D2U-S  69.28 69.93 68.67 68.85|68.30 68.39 67.82 68.67 68.64 68.67 68.95 69.31
MLE 88.37 88.49 88.37 88.31|88.43 88.37 88.13 88.37 88.31 88.37 88.49 88.13
LMCL 66.27 71.04 74.22 79.27|83.13 79.87 85.91 74.22 80.68 74.22 80.61 80.68
DRM 87.94 89.29 87.94 88.46|89.23 87.94 88.11 87.94 88.93 87.94 89.17 88.94
SNIPS Reg. 88.46 88.99 88.40 87.98|89.57 88.52 89.10 88.40 89.40 88.40 88.93 89.40
Binary 86.15 - - - - - - - - - - -
D2U-CE 88.29 89.45 88.69 87.81(89.52 89.23 89.17 88.69 89.22 88.69 89.52 89.28
D2U-KL 88.58 88.64 88.58 88.05|88.64 89.00 88.82 88.58 88.76 88.58 88.70 88.82
D2U-S 87.02 90.36 86.43 87.87|90.36 89.42 89.42 86.43 89.71 86.43 90.42 90.36
MLE 86.57 86.13 86.57 86.50|86.14 86.57 86.47 86.57 86.48 86.57 86.11 85.19
DRM 84.41 77.62 84.41 82.42|77.56 84.41 84.48 84.41 82.64 84.41 77.53 79.50
Reg. 94.93 95.55 94.93 95.14|95.42 95.15 95.85 94.93 95.41 94.93 9539 95.32
LMCL 66.25 75.13 66.04 69.48|80.25 66.71 73.74 66.04 72.34 66.04 74.48 71.90
TOP .
Binary 96.95 - - - - - - - - - - -
D2U-CE 94.42 94.83 94.41 94.55|95.01 94.55 95.29 94.41 95.00 94.41 94.82 94.95
D2U-KL 94.71 95.43 94.71 94.78|95.51 94.97 95.84 94.71 95.58 94.71 95.51 95.67
D2U-S  92.29 92.78 92.29 92.61|92.95 92.29 92.35 92.29 92.77 92.29 92.82 92.53
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