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Abstract001

Large Language Models (LLMs) have ad-002
vanced Natural Language Processing (NLP)003
tasks but limited in mathematical reasoning.004
To address this, few-shot examples are used005
in prompts for in-context learning. However,006
existing methods require annotated datasets, re-007
sulting in higher computational costs and lower008
quality examples. To mitigate these limitations,009
we propose APMath, a framework that automat-010
ically generates high-quality in-context exam-011
ples to enhance LLMs’ mathematical reasoning.012
APMath ensures consistency across different013
modalities (e.g., Chain-of-Thought (CoT), code014
snippets, and equations) by generating and se-015
lecting mutations that improve response consis-016
tency. Evaluated on four math problem datasets,017
APMath outperforms six baselines, with LLM018
accuracy ranging from 87.0% to 99.3%. It sur-019
passes the state-of-the-art in-context example020
retrieval method in three of the four datasets by021
1.9% to 4.4%, without relying on an external022
annotated dataset.023

1 Introduction024

LLMs have achieved state-of-the-art performances025

in many NLP applications (Min et al., 2024). How-026

ever, they exhibit limited proficiency in solving027

mathematical problems (Rae et al., 2021; Srivas-028

tava et al., 2022). This limitation arises due to the029

fact that math tasks require understanding complex030

multi-step reasoning to solve the problems. To031

overcome the deficiency in math-solving capability,032

in-context learning has been proposed (Wei et al.,033

2022; Zhang et al., 2023). These approaches lever-034

age few-shot examples, each consisting of math035

problem and its explanation, embedding the exam-036

ples into prompts to facilitate learning within the037

context towards improved performance.038

However, existing in-context learning for math039

tasks has limitations. The generation of in-context040

examples requires extensive resources and often de-041

pends on large, externally annotated datasets (Wei042

et al., 2022; Zhang et al., 2023). This process could 043

be labor-intensive, involving manual curation of ex- 044

amples, and computationally expensive, relying on 045

sophisticated retrieval models to find appropriate 046

examples from the external datasets. Furthermore, 047

the scale of the external dataset may be constrained, 048

limiting the search space for identifying suitable 049

math problems and their explanations for the target 050

problem. These limitations hinder the automatic 051

generation of appropriate in-context examples, lim- 052

iting the practicality and scalability of in-context 053

learning for math tasks. 054

To overcome these limitations, we identify two 055

challenges. First, it is crucial to generate math prob- 056

lems relevant to the target problem for in-context 057

learning. The relevant problems for in-context 058

learning provides appropriate reasoning algorithms 059

to solve the target problem, and these algorithms en- 060

sure accurate reasoning explanations. However, the 061

creation of such examples requires substantial costs 062

due to manual curation and extensive search within 063

annotated datasets. Second, the retrieval of high- 064

quality in-context examples is challenging. The 065

existing method evaluates the relevancy of the in- 066

context example with the target problem by measur- 067

ing the semantic similarity between them (Zhang 068

et al., 2023). However, this approach does not al- 069

ways guarantee that the retrieved examples contain 070

comprehensive or high-quality explanations that 071

can assist in solving the target problem. Conse- 072

quently, the quality of the LLM’s response to the 073

target problem may depend on the quality of ex- 074

planations provided by the in-context examples. In 075

scenarios where explanations are evaluated solely 076

by manual assessment, automating the evaluation 077

of these explanations remains a challenging. 078

To address these challenges, we employ a multi- 079

modal technique for the generation and retrieval of 080

in-context examples. Multi-modal learning, which 081

integrates information from diverse sources such as 082

text, images, and videos, has demonstrated poten- 083
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tial in improving model comprehension. Prior stud-084

ies have shown that models trained on multi-modal085

data can attain a deeper understanding of the con-086

tent, consistently across different modalities (Lin087

and Parikh, 2015; Su et al., 2020; Radford et al.,088

2021). Similarly, LLMs also possess the ability089

to produce diverse forms of responses to the same090

mathematical problem, known as modality, such as091

generating CoT, composing code snippets, or for-092

mulating complex mathematical equations (Kojima093

et al., 2022; Wang et al., 2023b; Imani et al., 2023).094

The consistency of LLM responses across these095

modalities can act as an indicator for evaluating096

the confidence in LLM predictions. Consistency,097

defined as the degree of agreement among model098

predictions, has been a focus of prior research as a099

method for measuring the reliability of responses,100

leading to accurate answers (Wang et al., 2023b;101

Imani et al., 2023). The convergence of the con-102

sistency across independent modalities suggests a103

lower likelihood of systematic bias or errors being104

present only in a single modality. Consequently,105

this aids in estimating the accuracy of LLM re-106

sponses. Accordingly, the key insight of our work107

lies in leveraging consistency across modalities,108

combined with few-shot learning techniques, to109

improve model performance.110

In this work, we present an automated in-context111

prompting approach for math problem, referred to112

as APMath, that addresses the above challenges113

with the aid of mutation and consistency over114

modalities. APMath operates by initially gener-115

ating a collection of mutated math problems and116

their corresponding LLM responses across various117

prompt modalities. This procedure ensures that the118

mutation maintains the same reasoning algorithm119

utilized for solving the target problem, resulting120

in potentially the most relevant in-context exam-121

ples, addressing the first challenge. Subsequently,122

APMath selects a subset of mutated examples that123

improves consistency of responses across modali-124

ties for the target math problem. This tackles the125

second challenge by evaluating LLM responses of126

mutations through consistency. By doing so, it el-127

evates the confidence level of the LLM, thereby128

leading to a correct answer. Our experimental eval-129

uation shows that APMath produces higher accura-130

cies on four popular arithmetic reasoning datasets131

over OpenAI GPT large language models, includ-132

ing ASDiv (97.1%), SVAMP (87.0%), GSM8k133

(83.8%), and MultiArith (99.3%). These accuracies134

outperforms not only the single zero-shot prompt135

baselines for all four datasets but also the state-of- 136

the-art in-context example retrieval method in three 137

out of the four datasets by 1.9% to 4.4%, without 138

relying on an external annotated dataset. 139

2 Motivation 140

In this section, we present responses to an arith- 141

metic math problem using in-context examples to 142

motivate the development of APMath. Figure 1 143

illustrates an example from the SVAMP, a widely 144

used dataset for arithmetic reasoning problems (Pa- 145

tel et al., 2021). This demonstrates the diverse 146

responses of an LLM (GPT-3.5) to the same math 147

problem under different settings. At the top, it 148

presents the answers to the math problem across 149

different modalities (CoT, code, and equation) in 150

zero-shot setting, revealing that the LLM responses 151

are inconsistent and the confidence level in the 152

answers is low. For example, CoT response incor- 153

rectly concludes that “$17 + $7 = $24” (step 5), 154

leading to the erroneous answer “the answer is $24” 155

(step 6). In contrast, the bottom of the figure shows 156

in-context examples retrieved from the target prob- 157

lem by altering the numerical values (the yellow 158

box). In this setting, the LLM’s answers across 159

all modalities are consistent, resulting in a high 160

confidence level and correct answers. Specifically, 161

the accuracy of the CoT response is attributed to 162

the underlying algorithm, represented by “x - 65 + 163

39 = 67”, which is also applied to solve the target 164

problem, “x - 17 + 10 = 7” (step 4). 165

Overall, our study is motivated by the exam- 166

ples presented in Figure 1 with regard to two key 167

facets. First, altering the numerical values in a 168

math problem does not change the underlying rea- 169

soning algorithm used to solve it. Therefore, us- 170

ing the reasoning algorithm for in-context learn- 171

ing can provide relevant instructions that enable 172

LLMs to accurately solve the problem. This in- 173

sight facilitates the automated generation of math 174

problems that are assumed to operate under the 175

same reasoning algorithm. Second, the quality of 176

LLM responses can vary across different modal- 177

ities. Figure 1 demonstrates that answers to the 178

math problem can differ across various modalities. 179

This shows the effectiveness of using consistency 180

across modalities to enhance the reliability of LLM 181

responses. It motivates us to leverage the degree 182

of the consistency as a metric for evaluating the 183

confidence level of the responses for the automatic 184

selection of high-quality in-context examples. 185
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Q: Edward spent $ 17. Then he received $ 10 from his 
friend. Now he has $ 7. How much did Edward have 
before he spent his money?

Q: Edward spent $65 . Then he received $39 from his 

friend . Now he has $67 . How much did Edward have 

before he spent his money?

A: Step 1: Edward spent $65.

Step 2: He received $39 from his friend.

Step 3: Now he has $67.

Step 4: To find out how much Edward had before he 

spent his money, we can use the equation: x - 65 + 

39 = 67, where x represents the amount he had 

before spending his money.

Step 5: Simplifying the equation, we get x - 26 = 67.

Step 6: Adding 26 to both sides, we get x = 93.

Step 7: Therefore, the answer is 93.

Q: Edward spent $8 . Then he received $12 from his 

friend . Now he has $19 . How much did Edward have 

before he spent his money?

A: Step 1: Edward spent $8.

...

The answer is $15.

Mutation

CoT The answer is 14

LLM Responses

Step 1: Edward spent $17.

Step 2: He received $10 from his friend.

Step 3: Now he has $7.

Step 4: To find out how much Edward had before 

he spent his money, we can use the equation: x - 

17 + 10 = 7, where x represents the amount he 

had before spending his money.

Step 5: Simplifying the equation, we get x - 7 = 7.

Step 6: Adding 7 to both sides, we get x = 14.

Step 7: Therefore, the answer is 14.

Code The answer is 14

Eqn The answer is 14

...

...

LLM

Q: Edward spent $ 17. Then he received $ 10 from his 
friend. Now he has $ 7. How much did Edward have 
before he spent his money?

CoT The answer is $24

Code The answer is 20

Eqn The answer is 14

LLM Responses

Step 1: Edward spent $17.

Step 2: He received $10 from his friend.

Step 3: Now he has $7.

Step 4: To find out how much Edward had before 

he spent his money, we need to add the $17 he 

spent and the $7 he has now.

Step 5: $17 + $7 = $24

Step 6: Therefore, the answer is $24.

...

...

LLM

Figure 1: Responses of GPT-3.5 to an arithmetic reasoning problem derived from the SVAMP dataset (Patel et al.,
2021). The top presents the responses across CoT, Python code, and Mathematical Equation in a zero-shot setting.
The bottom shows the responses in the CoT modality utilizing in-context examples retrieved from the mutation.

3 Approach186

We have developed APMath, an automated in-187

context example generation framework. APMath188

is structured with two main goals: 1. we employ a189

mutation technique on the target math problem for190

the generation of relevant in-context examples, con-191

sidering these mutations as potential candidates for192

in-context examples. 2. we incorporate a genetic193

algorithm that selects mutations by maximizing the194

consistency of the responses to the target question195

to ensure the correct reasoning path in the prompt.196

Figure 2 presents an overview of APMath. The Ini-197

tial Consistency Computation Phase first collects198

the preliminary responses of an LLM to the target199

problem across modalities. Next, the consistency200

of these responses is evaluated. If this consistency201

reaches its maximum value (i.e., all the answers202

are the same), then it returns the answer from the203

responses as the output. The inputs of this phase204

include the target problem in text and an LLM.205

In the scenarios where the consistency does not206

reach its maximum value, both the target problem207

and the LLM proceed to the Target Problem Muta-208

tion Phase. This phase mutates the target problem209

by altering the numerical values in the problem.210

Furthermore, we use the LLM to process these mu-211

tated problems and obtain their corresponding re-212

sponses across modalities. A mutation is accepted213

if its responses are consistent across the modali-214

ties. This phase is crucial as it addresses the first215

goal, which is to obtain the relevant problems for 216

in-context learning. Additionally, we employ a Mu- 217

tation Selection by Consistency Optimization Phase 218

to achieve the second goal, which is the retrieval of 219

high-quality in-context examples. In this phase, the 220

LLM responses to the target problem are collected 221

for each mutation, with the mutation prepended as 222

an in-context example. The consistency of these 223

responses is then evaluated. If this consistency 224

reaches its maximum value, the response is used as 225

the output. Otherwise, we further evaluate whether 226

the new consistency score surpasses the previous 227

score without the mutation or if the most consistent 228

answer using the mutation differs from the previ- 229

ous one. If either condition is met, we update the 230

prompts across modalities, the consistency score, 231

and the most consistent answer with the new mu- 232

tation as an in-context example. This process is 233

repeated for all mutations, ultimately yielding the 234

most consistent answer as the output. 235

3.1 Initial Consistency Computation 236

Given a target problem and an LLM, we obtain 237

top-K responses for each modality. The answers 238

are then extracted from these LLM responses, and 239

their consistency is evaluated across the modali- 240

ties. Specifically, given the top-K answers for a 241

specific modality mod, ANSmod, and its collec- 242

tion of LLM answers across modalities, ANS = 243

{ANSmod|ANSmod = LM (qtgt, pmod)∩pmod ∈ 244

PMOD ∩mod ∈ MOD}, where LM is an LLM, 245
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Figure 2: Overview of APMath.

qtgt is a target problem, and PMOD is a set of246

prompt across modalities MOD. We define con-247

sistency across the modalities in Equation 3:248

freq (a,ANS) =
∑

ans∈ANS

δ (a = ans) (1)249

250

SC(a,ANS) =
freq (a,ANS)

|ANS|
(2)251

252
C(a,ANS,w) =

∑
mod∈MOD wmod · SC(a,ANSmod)

(3)253

where freq(a,ANS) in Equation 1 represents254

the number of occurrences of a specific answer255

a within the answer set ANS. In Equation 2,256

SC denotes self-consistency score of the a for the257

ANS (Wang et al., 2023b). The consistency score258

across the MOD, C(a,ANS,w) in Equation 3,259

is the weighted sum of SC for a unique answer260

a across the MOD. The modality belief weight261

wmod represents the degree of empirical confidence262

of a specific modality and is set as a hyperparameter263

of APMath. An answer with a higher consistency264

score C for a specific answer indicates a higher265

level of confidence in the answer across modalities,266

while a lower score indicates lower confidence. If267

the consistency score of answer to the target prob-268

lem fails to reach the maximum value, we proceed269

to the mutation phase, described in Section 3.2.270

3.2 Target Problem Mutation271

This phase generates a pool of problems that can272

potentially provide relevant knowledge for LLM273

to solve the target problem. This is achieved by274

mutating the target problem, resulting in a set of275

mutated problems. We operate under the assump-276

tion that a problem identical to the original one, but277

with different numerical values, follows the same278

reasoning path in solving the original problem. The 279

process first identifies the numerical values present 280

in the target problem. These identified values are 281

then randomly mutated; the original values are re- 282

placed with their mutated values, and responses 283

are obtained from the LLM to these mutated prob- 284

lems across modalities. The validity of these muta- 285

tions is verified by estimating the accuracy of the 286

LLM’s responses to the mutated problems through 287

response consistency across modalities. A muta- 288

tion is considered acceptable if responses are con- 289

sistent across modalities; otherwise, it is rejected. 290

By repeatedly applying this mutation process to 291

the target problem, this phase generates pairs of 292

mutated problems and their corresponding LLM 293

responses across modalities. 294

3.3 Mutation Selection by Consistency 295

Optimization 296

Although the mutation phase is capable of produc- 297

ing numerous mutations, it is important to evaluate 298

the quality of these mutations for their utility as 299

in-context examples to accurately solve the target 300

problem. To address this challenge, we have devel- 301

oped an optimization strategy aimed at improving 302

consistency as defined in the Equation 3. 303

Algorithm 1 shows how the optimization strat- 304

egy identifies the in-context examples. It takes the 305

LLM, the target problem, prompts across modal- 306

ities, initial answer and consistency score to the 307

target problem measured in the phase descreibed 308

in Section 3.1, a pool of mutations and the maxi- 309

mum number of in-context examples to be used as 310

inputs. If the algorithm attains a maximum consis- 311

tency value, which means that all answers are the 312

same across modalities, it returns this answer as 313
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Algorithm 1 Consistency optimization algorithm.
1: Input: a large language model LM , target question qtgt, prompts over

modalities PMOD , initial the most consistent answer of the target problem
ans0, consistency score of the ans0 mc0, mutations Mqtgt , maximum
number of in-context examples Nexample, belief weights across modali-
ties W

2: Output: final answer ansfinal

3: n = 1
4: ansfinal = ans0
5: while n < Nexample do
6: if mc0 is maximum then
7: return ansfinal

8: else
9: m = Mqtgt .pop()

10: if m = ∅ then
11: break
12: P+

MOD , R+ = [], []

13: for each pmod from PMOD do
14: p+

mod = m.mod + pmod

15: r+mod = LM(qtgt, p
+
mod)

16: P+
MOD.append(p+

mod)

17: R+.append(r+mod)

18: ans+,mc+ = get_answer(R+,W )

19: if (mc+ > mc0) ∨ (ans+ ̸= ansfinal) then
20: PMOD = P+

MOD

21: R = R+

22: mc0 = mc+

23: ansfinal = ans+

24: n = n + 1
25: return ansfinal

Algorithm 2 get_answer algorithm.
1: Input: responses of the target question over modalities R, belief weights

across modalities W
2: Output: final answer final_ans, consistency score of the final answer

final_cs
3: unique_answers = set()
4: cs, sc = dict(), dict()
5: for each mod from R.modalities do
6: Anstopk = extract_answers(R[mod])
7: for each ans from unq_ans do
8: sc[mod, ans] = self_consistency(ans,Anstopk)

9: unique_answers.add(unq_ans)
10: for each ans from unique_answers do
11: cs[ans] = 0.0
12: for each mod from R.modalities do
13: cs[ans] += Wmod ∗ SC[mod, ans]
14: final_ans, final_cs = get_highest_score_answer(cs)
15: return final_ans, final_cs

the final answer (lines 6-7). Otherwise, the algo-314

rithm incorporates each mutation as an in-context315

example in prompts (lines 9-18). Subsequently,316

LLM responses using the mutation across modali-317

ties are obtained, and the consistency is calculated318

based on these responses using the get_answer()319

algorithm (line 18). Algorithm 2 elucidates the320

get_answer() function. This function first gathers321

the self-consistency score for each unique answer322

across modalities (lines 7-8). Then it computes323

the consistency score, as defined in Equation 3324

(lines 11-13). Finally, it returns the highest con-325

sistency score and its corresponding answer. Re-326

turning to Algorithm 1, the algorithm then eval-327

uates the difference in the consistency scores be-328

fore and after the addition of the mutation to the329

modality prompts. Mutations are selected as in-330

Table 1: Prompts for large language model over different
modals.

Modality Prompt

CoT “{QUESTION} Let’s think step by step and end
your response with ‘the answer is {answer}”’

Code

“I want you to act like a mathematician. I will type
mathematical question and you will respond with
a function named with ’func’ in python code that
returns the answer of the question. the function
should have no arguments. I want you to answer
only with the final python code and nothing else.
Do not write explanations: {QUESTION}”

Equation

“{QUESTION} Write a wolframalpha mathemati-
cal equation with no explanations and no units
to the numbers in the equation. Generate the
answer format starting with ‘Answer =”’

context examples in prompts if there is an increase 331

in modal-consistency following their addition, or if 332

the LLM generates a different answer than the pre- 333

vious one (line 19). Upon selection of a mutation, 334

prompts across modalities, answer for the target 335

problem, and their respective consistency values 336

are updated to facilitate the search for additional 337

mutations (lines 20-24). This process iterates un- 338

til either the number of selected mutations or the 339

consistency reaches its maximum, or until no muta- 340

tions remain (lines 5, 6 and 10, respectively). The fi- 341

nal answer for the target problem, obtained through 342

the iterative optimization process, is returned. 343

4 Experiments 344

4.1 Experimental setup 345

Dataset. We assess the performance of APMath 346

on the following widely used public arithmetic 347

reasoning benchmarks: the Math Word Problem 348

Repository MultiArith (Roy and Roth, 2016), AS- 349

Div (Miao et al., 2020), SVAMP (Patel et al., 2021), 350

and GSM8k (Cobbe et al., 2021), a recently pub- 351

lished benchmark of grade-school-math problems. 352

Large Language Models. We evaluate the AP- 353

Math using GPT-3.5 (OpenAI, 2023). It is a 354

transformer-based architecture with 175 billion pa- 355

rameters. Specificlly, we utilize the public engine 356

gpt-3.5-turbo from the OpenAI models. 357

Prompts over modalities. Inspired by the prompts 358

presented in (Akin, 2022), we manually crafted 359

the prompts detailed in Table 1 over three modal- 360

ities. The first and second columns of Table 1 361

represent the modality type and the correspond- 362

ing prompt text, respectively, with the placeholder 363

“{QUESTION}” used to represent the input ques- 364

tion. The goal of the prompt design is to segregate 365

the explanation from the corresponding final an- 366

swer, thereby facilitating the automatic parsing of 367

5



the answer from the LLM responses. The prompt368

for the CoT modality generates a reasoning path.369

The phrase within the prompt, “Let’s think step370

by step”, facilitates step-by-step thinking before371

providing an answer. The instruction “end your372

response with ‘the answer is {answer}’ ” prompts373

the LLM to conclude its response with the phrase374

‘the answer is {answer}’, where {answer} repre-375

sents the ultimate answer to the question. For the376

code and equation modalities, we obtain the gen-377

erated executable Python code and WolframAlpha378

mathematical equation from the LLM with no ad-379

ditional explanation provided. We then execute the380

code and equation using the Python command and381

WolframAlpha API (WolframAlpha, 2023), respec-382

tively. Finally, we consider the returned value as383

the answer for the respective modality.384

Evaluation Metric. We compare accuracy of LLM385

responses, defined as the ratio of the number of386

correctly predicted answers to the number of arith-387

metic math questions in the test datasets.388

Baselines. We evaluate APMath by assessing its389

accuracy on the datasets compared to baseline390

methods. It aims to demonstrate APMath’s abil-391

ity to generate relevant examples in zero-shot con-392

texts. We also show the effectiveness of consistency393

across modalities by comparing it to APMath’s per-394

formance without this feature. Furthermore, we395

compare an existing state-of-the-art method for re-396

trieving in-context examples with APMath to high-397

light the effectiveness of mutations for in-context398

examples over those from external datasets.399

• Zero-shot with a specific Modality: This400

prompt solely uses a specific modality without401

any in-context examples. In this experiment,402

we utilize the CoT, Code, and Equation modal-403

ities, denoted as CoTPrompt, CodePrompt404

and EqnPrompt, respectively. For each modal-405

ity, the final answer is determined by selecting406

the most frequently occurring answers from407

the top three responses (Wang et al., 2023b).408

The prompt used is identical to the correspond-409

ing modality prompt in Table 1.410

• Majority voting of answers across modal-411

ities (MajVotModals): This method deter-412

mines the final answer by majority voting of413

answers across the three modalities.414

• APMath w/o consistency over modalities415

(APMath w/o modalities): For a specific416

modality, we employ a subset of mutations417

that improve the self-consistency, as defined in418

Equation 2, of the LLM’s top-K responses to 419

a target problem, utilizing these as in-context 420

examples. Specifically, we extract the top-3 421

responses of the LLM for the CoT modality. 422

• In-context example retrieval method (Auto- 423

CoT): AutoCoT (Zhang et al., 2023) is im- 424

plemented. It clusters the embedding vec- 425

tors of retrieval examples using Sentence- 426

BERT (Reimers and Gurevych, 2019) into K 427

clusters. Next, for each clustered examples, 428

the embedding vector of the target question 429

is compared with them, and the closest exam- 430

ple is selected. These K examples are then 431

utilized as in-context examples. In this exper- 432

iment, we construct 8 clusters, providing 8 433

in-context examples for each target question. 434

Implementation Details and Hardware Environ- 435

ment. We utilized the OpenAI API to run GPT-3.5. 436

We applied temperature with T = 0.7 and truncated 437

at the top-3 responses. Due to the limited resources, 438

we generated 20 mutated questions for each orig- 439

inal question and obtained their LLM responses 440

to identify relevant in-context examples. In addi- 441

tion, The modality belief weight for the aggregation 442

across the modalities is set to 0.4 for CoT modal- 443

ity and 0.3 for both code and equation modalities, 444

reflecting the more important role of CoT modal- 445

ity in reasoning and logical flow (Wei et al., 2022; 446

Chowdhery et al., 2023). All experiments were con- 447

ducted on a Ubuntu 14.04 server with three Intel 448

Xeon E5-2660 v3 CPUs @2.60GHz, eight Nvidia 449

1080Ti GPUs, and 500GB of RAM. 450

4.2 Results 451

Comparison of APMath with Zero-Shot Base- 452

lines. We first report the experimental results of 453

APMath to demonstrate the effectiveness of AP- 454

Math in the zero-shot setting. Table 2 shows the 455

accuracies of the LLM on different math problem 456

datasets. The first and second columns denotes 457

the names of the datasets and the number of math 458

problems for each dataset used in the experiment, 459

respectively. Columns 3-6 show the accuracies of 460

LLMs achieved using baseline methods. The last 461

column shows the LLM accuracy attained with AP- 462

Math. The results show that APMath outperforms 463

all the baselines on all four datasets. APMath 464

achieved better accuracy than the baselines by 1% 465

to 7.3% on ASDiv, 3.8% to 15.4% on SVAMP, 4% 466

to 22.4% on GSM8k, and 1% to 62.1% on Multi- 467

Arith. This result indicates that APMath exhibits 468
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Table 2: Accuracies of GPT-3.5 across different math problem datasets in the zero-shot setting.
Dataset #Data CoTPrompt [%] CodePrompt [%] EqnPrompt [%] MajVotModals [%] APMath [%]

ASDiv 1218 95.2 95.0 89.8 96.1 97.1
SVAMP 1000 79.5 79.7 71.6 83.2 87.0
GSM8k 1319 77.5 69.4 61.4 79.8 83.8
MultiArith 600 96.0 98.3 37.2 97.0 99.3

Table 3: Accuracies on GPT-3.5 with in-context exam-
ples across different math problem datasets.

Dataset AutoCoT [%] APMath w/o
modalities [%] APMath [%]

ASDiv 97.4 96.1 97.1
SVAMP 82.6 85.4 87.0
GSM8k 81.4 86.9 83.8
MultiArith 97.2 96.8 99.3

Table 4: Results of manual study to evaluate the correct-
ness of GPT-3.5 responses to mutated math problems.
The number of mutations and correct mutations used
as in-context examples are denoted as MutUsed and
CorrectMutUsed, respectively.

Dataset #MutUsed #CorrectMutUsed

ASDiv 98 89
SVAMP 180 132
GSM8k 180 149
MultiArith 24 24

significant improvements in enhancing accuracy469

across various mathematical problem datasets in470

zero-shot setting. It suggests that the additional471

contextual processing enabled by APMath’s muta-472

tion selection phase is crucial for handling more473

mathematical queries that may not be as effectively474

addressed through standard zero-shot methodolo-475

gies. In Appendix A.1, we provide samples of476

APMath generated in-context examples for each of477

the four datasets.478

Effectiveness of Mutation as In-context Exam-479

ples. The comparison of LLM accuracies using480

APMath with the other baselines are shown in481

Table 3. The first column lists the names of the482

mathematical problem datasets. The second and483

third columns report the accuracies achieved by484

APMath without consistency over modalities and485

by the in-context example retrieval method, Au-486

toCoT, respectively. Comparing to AutoCoT, AP-487

Math improves accuracy by 4.4%, 2.4%, and 2.1%488

for the SVAMP, GSM8k, and MultiArith, respec-489

tively. For the ASDiv dataset, APMath exhibits a490

slight decrease in accuracy by 0.3%. Overall, AP-491

Math’s in-context examples is more effective than492

those produced by current retrieval-based methods493

in the absence of external retrieval datasets and494

models.495

Effectiveness of Combination Across Modalities.496

Comparing to APMath w/o modalities (third col-497

umn in Table 3), APMath exhibits a decreased ac- 498

curacy by 3.1% for the GSM8k dataset. Out of the 499

79 problems correctly answered by APMath but in- 500

correctly by APMath w/o modalities, APMath fails 501

to find in-context examples for 53 problems, while 502

APMath w/o modalities succeeds. For the remain- 503

ing 26 problems, the discrepancies are attributed to 504

the randomness induced by the temperature setting 505

of the LLM. However, APMath improves accuracy 506

by 1%, 1.6%, and 2.5% for the ASDiv, SVAMP, 507

and MultiArith datasets, respectively. This result 508

suggests that the idea of increasing consistency 509

over various modalities is effective. Additionally, 510

we conduct a manual study to assess the consis- 511

tency across modalities as a metric of evaluating 512

the correctness of LLM responses to mutated prob- 513

lems used as in-context examples. The correctness 514

is determined by manually verifying the LLM re- 515

sponses with the expected outcomes derived from 516

the ground truth data, ensuring that the model accu- 517

rately interprets and solves the mutated problems. 518

The results of this manual study are presented in Ta- 519

ble 4. The second column shows the number of mu- 520

tations used as in-context examples for target prob- 521

lems in each dataset. The third column shows the 522

number of correct mutations used as in-context ex- 523

amples for the target math problems. Table 4 shows 524

that APMath provides accurate LLM responses to 525

the mutated math problems, with accuracy ranging 526

from 73.3% (132 out of 180) for SVAMP to 100% 527

(24 out of 24) for MultiArith. The variance in ac- 528

curacy across datasets is attributed to the different 529

complexities of the problems in each dataset. Com- 530

plexity arises from the structure of the problems, 531

the steps required to solve them, and the mathe- 532

matical concepts involved. Consequently, more 533

complex problems present greater challenges for 534

LLMs. Despite this variance, these results suggests 535

that consistency across modalities plays a crucial 536

role in ensuring the correctness of the responses, 537

thereby enhancing the effectiveness of evaluating 538

LLM responses across different modalities. 539
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5 Related Work540

In-context Learning. There has been recent541

advancement in in-context learning. Saunshi et542

al. (Saunshi et al., 2021) suggests that downstream543

tasks can be solved linearly by conditioning on a544

prompting words following an input text. Xie et545

al. (Xie et al., 2022) suggests that the language546

model can infer in-context shared latent concept547

among examples in a prompt. Levine et al. (Levine548

et al., 2022) establishes that the information within549

in-context examples gives more improvements. In550

addition, Wei et al. (Wei et al., 2022) has imple-551

mented manually hand-crafted the few-shot exam-552

ples for improving quality of CoT explanation that553

LLM generates. However, to tackle the need for554

manually hand-crafted few-shot examples, recent555

studies have developed a retriever to select analogy556

examples for demonstration (Zhang et al., 2023;557

Rubin et al., 2022; Su et al., 2023; Wang et al.,558

2023a; Luo et al., 2023). These studies differ from559

ours in that they require a substantial amount of560

fully annotated data to train models and retrieve561

in-context examples, whereas APMath generates562

in-context examples automatically through muta-563

tion and consistency optimization.564

Consistency in LLM. Prior research has suggested565

that language models may experience inconsistency566

in natural language conversation (Adiwardana et al.,567

2020), and factual knowledge extraction (Elazar568

et al., 2021). Wang et al. (Wang et al., 2023b) uti-569

lize answer consistency across various reasoning570

paths within top-K responses to enhance accuracy.571

Camburu et al. (Camburu et al., 2020) introduced572

an adversarial framework aimed at verifying lan-573

guage models’ coherence in generating natural lan-574

guage explanations. Moreover, recent studies have575

tackled the issue of inconsistency in the long-form576

creative writing generated by LLMs through tech-577

niques like prompt chaining (Mirowski et al., 2022)578

and editing to rectify long-range factual inconsis-579

tencies within story passages (Yang et al., 2022).580

In this paper, we concentrate on quantifying the581

consistency of answers across various modalities582

and leveraging this metric to estimate the accuracy583

of LLM responses by incorporating mutations as584

in-context examples.585

Prompt Optimization. Our research also inter-586

sects with prompt optimization. Research work587

improves hard prompts via an iterative local edit588

and gradient-free search (Prasad et al., 2023) or589

gradient-based optimization (Sun et al., 2023).590

Yang et al. (Yang et al., 2023) describes the op- 591

timization task in natural language and feeds it to 592

the large language model as a prompt and then 593

generates new prompt. Compared with them, AP- 594

Math automatically optimizes in-context examples 595

across modalities, rather than relying on a single 596

modality to improve the robustness of evaluation 597

of LLM behavior. In addition, prior research work 598

have optimized a small continuous vector for down- 599

stream tasks, leaving LLM parameters frozen (Li 600

and Liang, 2021; Zhong et al., 2021; Sun et al., 601

2022b,a; Chen et al., 2023). Diao et al. (Diao et al., 602

2023) applies a policy gradient to estimate the gra- 603

dients of the parameters of the categorical distri- 604

bution of each discrete prompt. However, they are 605

limited to the white-box setting, requiring access- 606

ing the parameters of a pre-trained model while 607

APMath is in black-box optimization by the consis- 608

tency of LLM responses across modalities. In addi- 609

tion, Mishra et al. (Khashabi et al., 2022) studies 610

advantages of prompt tuning, but it requires manual 611

efforts. Zhou et al. (Zhou et al., 2023) automate 612

the generation of instructions and select the most 613

suitable instruction based on computed evaluation 614

scores. However, their focus lies on instruction 615

induction tasks rather than math problem-solving 616

tasks. 617

6 Conclusions 618

This paper introduces APMath, a novel tool that 619

automates the generation of relevant in-context ex- 620

amples to enhance the arithmetic problem-solving 621

capabilities of LLMs. APMath automates the mu- 622

tation of target math problems, generating variants 623

that use the same solving algorithm. It also em- 624

ploys a consistency check across various LLM re- 625

sponse modalities to evaluate answer confidence 626

and estimate accuracy for both original and altered 627

problems. Additionally, it identifies mutations for 628

in-context examples that improve response con- 629

sistency. Evaluations show APMath significantly 630

enhances answer accuracy for mutated math prob- 631

lems, demonstrating efficient generation of relevant 632

in-context examples without manual annotations or 633

external datasets. The proposed consistency check 634

method increases LLM response confidence and 635

correctness. 636

7 Limitation 637

This work has several limitations. First, APMath re- 638

lies on the random mutation of the identified numer- 639

ical values. The effectiveness of such random muta- 640
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tions is limited in generating realistic mutated math641

problems. We leave it as our future work to ex-642

plore context-aware mutation mutation techniques643

for the target math problems. Second, APMath644

demonstrates evident advantages only for solving645

arithmetic math problems through mutation while646

maintaining the same reasoning algorithm. Future647

work will aim to extend generating mutations for a648

broader range of reasoning problems.649
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A Appendix 958

A.1 Qualitative Analysis of APMath 959

Table 5 to 8 presents four illustrative examples from 960

the datasets employed in our experiments to eval- 961

uate APMath. In each table, the first row displays 962

in-context examples generated by APMath. The 963

second row shows the target mathematical prob- 964

lem to be solved. Furthermore, the first and sec- 965

ond columns in the third row present GPT-3.5’s 966

responses to the target problem across modalities, 967

using the zero-shot setting and APMath, respec- 968

tively. 969

These examples demonstrate that in the zero- 970

shot setting, GPT-3.5’s reasoning is incorrect in at 971

least one modality across all datasets. Conversely, 972

the in-context examples generated by APMath cor- 973

rectly instruct GPT-3.5 to solve the target problem, 974

resulting in accurate answers by following the same 975

reasoning implemented in the in-context examples. 976
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Table 5: APMath generated in-context examples for ASDiv.

(In-context 1)
Q: Olivia had 69 math problems to complete . She spent about 15 minutes on each problem and then
she spent 42 minutes checking her answers . How many minutes did she spend total?
[CoT] A: To find the total time Olivia spent, we need to calculate the time she spent on solving the
math problems and the time she spent checking her answers separately. First, let’s calculate the time
Olivia spent on solving the math problems. Since she spent about 15 minutes on each problem, we
can multiply the number of problems by 15: 69 problems * 15 minutes/problem = 1035 minutes Next,
let’s calculate the time Olivia spent checking her answers, which is given as 42 minutes. Now, let’s
add the time spent on solving the problems and checking the answers together: 1035 minutes + 42
minutes = 1077 minutes Therefore, Olivia spent a total of 1077 minutes. The answer is 1077 minutes.
[Code] A: def func(): return 69 * 15 + 42
[Eqn] A: Answer = 69*15 + 42

(In-context 2)
Q: Olivia had 52 math problems to complete . She spent about 10 minutes on each problem and then
she spent 50 minutes checking her answers . How many minutes did she spend total?
[CoT] A: To find the total number of minutes Olivia spent, we need to add the time she spent solving
the math problems to the time she spent checking her answers. First, we need to calculate the time
Olivia spent solving the math problems. Since she spent about 10 minutes on each problem, we can
multiply the number of problems by 10: 52 problems * 10 minutes/problem = 520 minutes. Next, we
need to calculate the time Olivia spent checking her answers, which is given as 50 minutes. Finally,
we can find the total time by adding the time spent solving the problems to the time spent checking
the answers: 520 minutes + 50 minutes = 570 minutes. Therefore, the answer is 570 minutes.
[Code] A: def func(): return 52 * 10 + 50
[Eqn] A: Answer = 52*10 + 50

Target Q: Olivia had 7 math problems to complete. She spent about 4 minutes on each problem and
then she spent 3 minutes checking her answers. How many minutes did she spend total?

Zero-shot After APMath
Target [CoT]A: To find the total time Olivia spent,
we need to calculate the time she spent on solving
the math problems and the time she spent checking
her answers separately. First, let’s calculate the
time Olivia spent on solving the math problems.
Since she spent about 4 minutes on each problem,
we can multiply 4 by the number of problems she
had: 4 minutes/problem * 7 problems = 28 minutes.
Next, let’s calculate the time Olivia spent check-
ing her answers. She spent 3 minutes checking
her answers after solving each problem, so we can
multiply 3 by the number of problems she had: 3
minutes/problem * 7 problems = 21 minutes. Fi-
nally, to find the total time Olivia spent, we add
the time spent on solving the problems to the time
spent checking her answers: 28 minutes + 21 min-
utes = 49 minutes. Therefore, the answer is 49
minutes.

Target [CoT]A: To find the total time Olivia spent,
we need to calculate the time she spent on solving
the math problems and the time she spent checking
her answers separately. First, let’s calculate the
time Olivia spent on solving the math problems.
Since she spent about 4 minutes on each problem,
we can multiply the number of problems by 4: 7
problems * 4 minutes/problem = 28 minutes Next,
let’s calculate the time Olivia spent checking her
answers, which is given as 3 minutes. Now, let’s
add the time spent on solving the problems and
checking the answers together: 28 minutes + 3
minutes = 31 minutes Therefore, Olivia spent a
total of 31 minutes. The answer is 31 minutes.

Target [Code]A: def func(): return 7 * (4 + 3) Target [Code]A: def func(): return 7 * 4 + 3
Target [Eqn]A: Answer = 7 * 4 + 7 * 3 Target [Eqn]A: Answer = 7*4 + 3
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Table 6: APMath generated in-context examples for SVAMP.

(In-context 1)
Q: Edward spent $8 . Then he received $12 from his friend . Now he has $19 . How much did Edward
have before he spent his money?
[CoT]A: Step 1: Edward spent $8. Step 2: He received $12 from his friend. Step 3: Now he has $19.
Step 4: To find out how much Edward had before he spent his money, we can use the equation: x - 8 +
12 = 19, where x represents the amount he had before spending his money. Step 5: Simplifying the
equation, we get x + 4 = 19. Step 6: Subtracting 4 from both sides, we get x = 15. Step 7: Therefore,
Edward had $15 before he spent his money. The answer is $15.
[Code]A: def func(): return (19 - 12 + 8)
[Eqn]A: Answer = x - 8 + 12 = 19

(In-context 2)
Q: Olivia had 52 math problems to complete . She spent about 10 minutes on each problem and then
she spent 50 minutes checking her answers . How many minutes did she spend total?
[CoT]A: Step 1: Edward spent $65. Step 2: He received $39 from his friend. Step 3: Now he has
$67. Step 4: To find out how much Edward had before he spent his money, we can use the equation: x
- 65 + 39 = 67, where x represents the amount he had before spending his money. Step 5: Simplifying
the equation, we get x - 26 = 67. Step 6: Adding 26 to both sides, we get x = 93. Step 7: Therefore,
the answer is 93.
[Code]A: def func(): return (67 - 39) + 65
[Eqn]A: Answer = x - 65 + 39 = 67

Target Q: Edward spent $17. Then he received $10 from his friend. Now he has $7. How much did
Edward have before he spent his money?

Zero-shot After APMath
Target [CoT]A: Step 1: Edward spent $17. Step
2: He received $10 from his friend. Step 3: Now
he has $7. Step 4: To find out how much Edward
had before he spent his money, we need to add the
$17 he spent and the $7 he has now. Step 5: $17 +
$7 = $24 Step 6: Therefore, the answer is $24.

Target [CoT]A: Step 1: Edward spent $17. Step
2: He received $10 from his friend. Step 3: Now
he has $7. Step 4: To find out how much Edward
had before he spent his money, we can use the
equation: x - 17 + 10 = 7, where x represents the
amount he had before spending his money. Step 5:
Simplifying the equation, we get x - 7 = 7. Step
6: Adding 7 to both sides, we get x = 14. Step 7:
Therefore, the answer is 14.

Target [Code]A: def func(): return 17 + 10 - 7 Target [Code]A: def func(): return (7 - 10) + 17
Target [Eqn]A: Answer = x - 17 + 10 = 7 Target [Eqn]A: Answer = x - 17 + 10 = 7
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Table 7: APMath generated in-context examples for MultiArith.

(In-context 1)
Q: Gwen and her friends were recycling paper for their class . For every 1 pounds they recycled they
earned 38 point . If Gwen recycled 15 pounds and her friends recycled 36 pounds, how many points
did they earn?
[CoT]A: First, we need to calculate the number of points Gwen earned for recycling 15 pounds.
Since they earned 38 points for every 1 pound, Gwen earned 15 * 38 = 570 points. Next, we need to
calculate the number of points Gwen’s friends earned for recycling 36 pounds. Following the same
logic, her friends earned 36 * 38 = 1368 points. Finally, we need to find the total number of points
earned by Gwen and her friends. Adding Gwen’s points to her friends’ points, we get 570 + 1368 =
1938 points. Therefore, the answer is 1938.
[Code]A: def func(): gwen_pounds = 15 friends_pounds = 36 points_per_pound = 38 total_points =
(gwen_pounds + friends_pounds) * points_per_pound return total_points
[Eqn]A: Answer = 15*38 + 36*38

Target Q: Gwen and her friends were recycling paper for their class. For every 3 pounds they recycled
they earned one point. If Gwen recycled 5 pounds and her friends recycled 13 pounds, how many
points did they earn?

Zero-shot After APMath
Target [CoT]A: First, we need to calculate how
many points Gwen earned. Since she recycled 5
pounds, we divide 5 by 3 to find out how many
sets of 3 pounds she recycled. 5 divided by 3
equals 1 with a remainder of 2. So, Gwen earned 1
point. Next, we need to calculate how many points
Gwen’s friends earned. Since they recycled 13
pounds, we divide 13 by 3 to find out how many
sets of 3 pounds they recycled. 13 divided by 3
equals 4 with a remainder of 1. So, Gwen’s friends
earned 4 points. Finally, we add the points Gwen
earned (1 point) to the points her friends earned
(4 points) to find the total number of points they
earned. 1 + 4 equals 5. Therefore, the answer is 5
points.

Target [CoT]A: First, we need to find the total
pounds of paper recycled by Gwen and her friends.
Gwen recycled 5 pounds and her friends recycled
13 pounds, so the total pounds recycled is 5 + 13
= 18 pounds. Next, we need to determine how
many points they earn for recycling 18 pounds. For
every 3 pounds recycled, they earn 1 point. So,
18 pounds divided by 3 pounds per point equals 6
points. Therefore, Gwen and her friends earned a
total of 6 points for recycling paper. the answer is
6

Target [Code]A: def func(): gwen_pounds = 5
friends_pounds = 13 total_pounds = gwen_pounds
+ friends_pounds points = total_pounds // 3 return
points

Target [Code]A: def func(): gwen_pounds = 5
friends_pounds = 13 total_points = (gwen_pounds
+ friends_pounds) // 3 return total_points

Target [Eqn]A: Answer = (5 + 13) / 3 Target [Eqn]A: Answer = 6
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Table 8: APMath generated in-context examples for GSM8k.

(In-context 1)
Q: George has 46% more pears than bananas . If George has 90 bananas, how many fruits does
George have?
[CoT]A: If George has 90 bananas, then he has 46/100 * 90 = «46/100*90=41.4»41.4 more pears
than bananas. This means George has 90 + 41.4 = «90+41.4=131.4»131.4 pears. In total, George has
90 + 131.4 = «90+131.4=221.4»221.4 fruits. The answer is 221.4.
[Code]A: def func(): bananas = 90 pears = bananas * 1.46 total_fruits = bananas + pears return
total_fruits
[Eqn]A: Answer = 90 + 1.46 * 90

(In-context 2)
Q: George has 56% more pears than bananas . If George has 74 bananas, how many fruits does
George have?
[CoT]A: If George has 74 bananas, then he has 56/100 * 74 = «56/100*74=41.44»41.44 more pears
than bananas. This means George has 74 + 41.44 = «74+41.44=115.44»115.44 pears. Therefore,
George has a total of 74 + 115.44 = «74+115.44=189.44»189.44 fruits. The answer is 189.44.
[Code]A: def func(): bananas = 74 pears = bananas + (bananas * 56 / 100) return bananas + pears
[Eqn]A: Answer = 74 + 1.56 * 74

Target Q: George has 45% more pears than bananas. If George has 200 bananas, how many fruits
does George have?

Zero-shot After APMath
Target [CoT]A: Step 1: Calculate 45% of 200
bananas. 45% of 200 = (45/100) * 200 = 0.45 *
200 = 90 Step 2: Add the result from step 1 to the
number of bananas. 200 + 90 = 290 Therefore,
George has 290 fruits. The answer is 290.

Target [CoT]A: If George has 200 bananas, then
he has 45/100 * 200 = «45/100*200=90»90 more
pears than bananas. This means George has 200 +
90 = «200+90=290»290 pears. Therefore, George
has a total of 200 + 290 = «200+290=490»490
fruits. The answer is 490.

Target [Code]A: def func(): bananas = 200 pears =
bananas + (0.45 * bananas) return bananas + pears

Target [Code]A: def func(): bananas = 200 pears
= bananas + (bananas * 45 / 100) return bananas +
pears

Target [Eqn]A: Answer = 200 + 0.45 * 200 Target [Eqn]A: Answer = 200 + 1.45 * 200
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