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Abstract
Reliable channel estimation (CE) is fundamental
for robust communication in dynamic wireless en-
vironments, where models must generalize across
varying conditions such as signal-to-noise ratios
(SNRs), the number of resource blocks (RBs),
and channel profiles. Traditional deep learning
(DL)-based methods struggle to generalize effec-
tively across such diverse settings, particularly
under multitask and zero-shot scenarios. In this
work, we propose MoE-CE, a flexible mixture-of-
experts (MoE) framework designed to enhance the
generalization capability of DL-based CE meth-
ods. MoE-CE provides an appropriate inductive
bias by leveraging multiple expert subnetworks,
each specialized in distinct channel characteris-
tics, and a learned router that dynamically selects
the most relevant experts per input. This archi-
tecture enhances model capacity and adaptability
without a proportional rise in computational cost
while being agnostic to the choice of the backbone
model and the learning algorithm. Through exten-
sive experiments on synthetic datasets generated
under diverse SNRs, RB numbers, and channel
profiles, including multitask and zero-shot evalua-
tions, we demonstrate that MoE-CE consistently
outperforms conventional DL approaches, achiev-
ing significant performance gains while maintain-
ing efficiency.

1. Introduction
In modern wireless communication systems, reliable data
transmission over time-varying and multi-path fading chan-
nels depends critically on the accurate knowledge of the
channel state information (CSI). Channel estimation (CE)
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Figure 1. MoE framework for channel estimation.

plays a vital role in this context by enabling the receiver to
mitigate distortions introduced by the wireless medium. CE
techniques are particularly important in advanced commu-
nication systems such as the fifth generation (5G) cellular
networks, massive multiple input multiple output (MIMO),
and millimeter-wave communications, where maintaining
high data rates, low latency, and spectral efficiency is es-
sential despite complex propagation conditions. Traditional
channel estimation methods, including least squares (LS)
and minimum mean square error (MMSE) (Neumann et al.,
2018), rely heavily on pilot symbols and statistics of the
channel models. However, the growing complexity of mod-
ern wireless environments has motivated the exploration of
data-driven and learning-based approaches that can capture
intricate channel behaviors and adapt to dynamic conditions
more effectively. Nevertheless, these models often struggle
to generalize across diverse deployment scenarios, such as
varying signal-to-noise ratio (SNR) levels, the number of re-
source blocks (RBs), or channel profiles, particularly when
task distribution shifts significantly at inference time.

Several efforts have been made to enhance the generaliza-
tion capabilities of deep learning (DL)-based CE approaches.
From a data-centric standpoint, (Luan & Thompson, 2023)
highlights the critical role of training dataset design in
achieving robust performance across varying channel condi-
tions. Their work shows that exposing DL models to a rich
diversity of simulated channel environments during training

1



MoE-CE: Enhancing Generalization for Deep Learning based Channel Estimation via a Mixture-of-Experts Framework

significantly improves their adaptability to unseen deploy-
ment scenarios. From a learning algorithm perspective,
in (Mao et al., 2019), the authors introduce a meta-learning-
based approach designed to improve channel estimation in
orthogonal frequency division multiplexing (OFDM) sys-
tems called RoemNet. It employs a meta-learner that can
adapt to varying channel conditions, demonstrating superior
performance compared to traditional methods under diverse
scenarios. Despite these promising directions, many exist-
ing approaches emphasize data and training strategies while
neglecting the role of model architecture itself. Architec-
tural inductive biases, such as modularity, or conditional
computation, are rarely explored as a primary avenue for
improving generalization. Designing models that inherently
support robustness to channel variability, even under stan-
dard training regimes, remains an open and underexplored
challenge in the literature.

Mixture-of-experts (MoE) is a neural network architecture
that introduces conditional computation by dynamically se-
lecting a subset of specialized sub-models, or “experts”, for
each input. Originally proposed in (Jacobs et al., 1991),
the core idea is rooted in the divide-and-conquer princi-
ple, where a complex problem is decomposed into smaller,
more manageable subproblems. Unlike monolithic models
that must use a shared set of weights for all data variations,
MoE architectures encourage modularity, allowing different
experts to specialize in distinct subspaces of the task distri-
bution. This architectural inductive bias not only improves
efficiency but also enhances the model’s ability to generalize
across heterogeneous tasks and input domains. In multitask
setting, MoE has demonstrated strong performance by cap-
turing task-specific structure while maintaining flexibility,
as shown in domains such as robotics robotics (Huang et al.,
2025) and computer vision (Chen et al., 2023). This ar-
chitectural flexibility makes MoE particularly well-suited
for zero-shot generalization as well, where the model must
handle tasks or channel conditions that were not explicitly
seen during training. The routing mechanism enables input-
dependent expert selection, allowing the model to adaptively
decompose complex learning problems and respond flexibly
to new or unseen scenarios, as demonstrated in (Muqeeth
et al., 2024). This property is especially valuable in domains
like wireless channel estimation, where rapid adaptation to
changing environments is critical and explicit supervision
for every possible condition is impractical.

In this paper, we propose mixture-of-experts framework for
channel estimation (MoE-CE), an MoE framework designed
to enhance the generalization capability of DL-based chan-
nel estimation methods. The MoE-CE architecture com-
prises multiple expert sub-networks, each specializing in
different channel characteristics or task variations, alongside
a gating mechanism that dynamically routes input features
to the most relevant experts. This modular design not only

expands model capacity without a proportional increase in
computational complexity but also enables flexible adapta-
tion to a wide range of channel conditions.

Importantly, MoE-CE is agnostic to the specific learning
algorithm and backbone network. In other words, it can
incorporate any deep learning architecture for channel esti-
mation and be trained using a variety of optimization strate-
gies, from standard gradient-based methods with different
optimizers to more advanced schemes like meta-learning
(such as MAML (Finn et al., 2017)), to further improve the
model’s generalization capabilities.

We demonstrate that MoE-CE achieves substantial perfor-
mance gains in both multitask learning settings, where the
model learns across multiple channel types or system con-
figurations; and in zero-shot scenarios, where it generalizes
to previously unseen channel conditions at test time. Our re-
sults show that the combination of expert specialization and
dynamic routing in MoE-CE is particularly well-suited for
the non-stationary and diverse nature of wireless channels.

Contributions. The key contributions of this work are
outlined as follows:

• We introduce MoE-CE, a flexible and learning-
algorithm-agnostic framework that enhances the gener-
alization performance of DL-based channel estimation.
It supports arbitrary backbone architectures and can be
integrated with various learning strategies, including
meta-learning, to further boost generalization.

• We evaluate MoE-CE under both multitask and zero-
shot settings, showing consistent improvements over
conventional DL-based channel estimation (DL-CE)
baselines under similar computational complexity.

• Using a mixed-SNR training scenario as a case study,
we analyze expert selection patterns and demonstrate
how MoE-CE promotes specialization and adaptability
across diverse channel conditions.

2. Background and Related Work
To contextualize our proposed framework, this section re-
views the foundational concepts and existing literature rele-
vant to our work. We begin by presenting the mathematical
formulation of the channel estimation problem in OFDM
systems and briefly review recent DL-based approaches de-
veloped for this task. Next we introduce the MoE architec-
ture, highlighting its core principles, practical applications
in large-scale models, and relevance to channel estimation.
Finally, we discuss strategies for managing expert load bal-
ancing, including both auxiliary-loss-based and auxiliary-
loss-free approaches, which are critical for efficient and
stable training of MoE-based systems.
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2.1. Channel Estimation

OFDM is a widely used modulation technique in mod-
ern communication systems due to its robustness against
frequency-selective fading and efficient implementation via
the Fast Fourier Transform (FFT). In this section, we de-
scribe the mathematical formulation of the channel estima-
tion problem in a typical OFDM system.

Consider an OFDM system with Npf pilot sub-carriers and
Nant receive antennas. The input-output relationship be-
tween transmitted and received signals at pilot sub-carriers
in the frequency domain can be written as:

Y = H⊙X+W, (1)

where Y ∈ CNant×Npf are the received signals at Npf pilot
sub-carriers and Nant receive antennas, H ∈ CNant×Npf

denotes the channel matrix in the space-frequency domain,
the operator ⊙ represents the Hadamard product that is an
element-wise product, X ∈ CNant×Npf are the transmitted
pilot signals known to the receiver, and W ∈ CNant×Npf

is an additive white Gaussian noise (AWGN).

The goal of the channel estimation task is to estimate chan-
nel matrix H based on the pilot signal X and the received
signals Y. The simplest channel estimation solution is the
LS estimate, denoted by Ĥ

LS
, which is readily computed

by:

Ĥ
LS

i,j =
Yi,j

Xi,j
, ∀i ∈ [Nant], j ∈ [Npf ], (2)

where the notation [N ] denotes all positive integers no larger
than N . The above equation can therefore be further simpli-
fied to:

Ĥ
LS

= H + W. (3)

2.2. DL-based Channel Estimation

In recent years, DL has emerged as a powerful tool in the
field of wireless communications, offering promising en-
hancements to traditional signal processing algorithms. Var-
ious DL-based techniques have been explored to improve
tasks such as modulation classification (O’Shea & Hoydis,
2017), signal detection (Erdogmus et al., 2001), channel
equalization (He et al., 2018), and CSI feedback compres-
sion (Samuel et al., 2017). In the context of channel esti-
mation, conventional estimators like LS and MMSE rely on
statistical assumptions and predefined models, which may
not generalize well to real-world environments. In contrast,
DL-based methods can learn complex mappings directly
from data, enabling more flexible and robust estimation. DL-
based channel estimation techniques can be broadly divided
into two categories. The first category adopts an end-to-end
learning perspective, treating the entire communication sys-
tem as a differentiable model. For instance, in (Ye et al.,

2017), a deep neural network is trained to perform encod-
ing, decoding, channel estimation and all other functionali-
ties of a communication link jointly in an implicit fashion,
showing significant performance gains over traditional base-
lines. Similarly, (O’Shea & Hoydis, 2017) proposes an
autoencoder-based communication system that integrates
modulation, channel estimation, and decoding into a single
trainable model. However, such approaches often lack ex-
plicit access to the estimated channel state, thereby limiting
their applicability in systems where CSI is needed for other
signal processing tasks. The second category focuses specif-
ically on learning the channel matrix using supervised deep
neural networks. In (Wen et al., 2018), the authors treat the
channel matrix as a two-dimensional (2D) image and apply
a convolutional neural network (CNN) (LeCun et al., 1998)
for denoising-based channel estimation in massive MIMO
systems. This method captures spatial correlations across
antennas effectively. Following this idea, many recent chan-
nel estimation works have adopted this framework, such
as (Li et al., 2020; Soltani et al., 2019; Ahmad et al., 2023;
Hu et al., 2021; Dong et al., 2019), proving the importance
and effective of this DL framework for channel estimation.

From the Equation (3), the CE problem can be viewed as
a 2D denoising problem in the frequency domain, where
the goal is to recover the true channel matrix from its noisy
LS estimate. Typically, a neural network is trained to learn
a nonlinear mapping from the noisy LS estimate, obtained
using pilot symbols, to the underlying clean channel matrix.

Ĥ = fθ(Ĥ
LS), (4)

where fθ is a neural network parameterized by θ.

By decomposing the complex channel matrix into its real
and imaginary components, we obtain a tensor of size
Nant×Npf×2, effectively transforming the channel estima-
tion task into an image denoising problem. Neural networks
developed for vision tasks, such as CNNs (LeCun et al.,
1998) and more advanced architectures like Resnet (He et al.,
2016), and NAFNet (Chen et al., 2022), are well-suited for
this setting, as they can effectively capture spatial corre-
lations across antenna and subcarrier dimensions. When
applied to channel estimation, these models are typically
trained using the normalized mean squared error (NMSE)
as the loss function:

LNMSE = E

[
∥H− Ĥ∥22

∥H∥22

]
. (5)

2.3. Mixture of Experts Architecture

Modern MoE architectures are often based on transform-
ers and consist of two main elements: sparse MoE layers
and a gating network or the so-called router. On one hand,
the sparse MoE layer consists of various “expert” blocks.
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Typically, these expert blocks are parameterized by feed
forward networks (FFN) in the transformer architecture, of-
ten with the same structure. The router, on the other hand,
determines which input is sent to which expert. The router
does so by outputting a vector of weights for all the ex-
perts. A subset of the top-k experts is then selected based
on these weights, and only these experts are activated to pro-
cess the input. Finally, the outputs of the selected experts
are aggregated and passed to the next layer. Notably, the
MoE layer often replaces the traditional FFN layer in the
Transformer architectures, enabling more specialized mod-
eling without incurring too much computational overhead.
Through expert specialization, the FFN in the MoE layer
likely requires fewer parameters, thereby further enhancing
the computational efficiency of the transformer.

In large-scale language models, MoE has been widely
adopted to enhance scalability while maintaining computa-
tional efficiency. Models such as Switch Transformer (Fedus
et al., 2022), GShard (Lepikhin et al.), and DeepSeek (Liu
et al., 2024) utilize MoE architectures to increase the num-
ber of parameters without a proportional rise in computa-
tional cost. In these architectures, only a small fraction of
the experts are active per token, significantly reducing the
per-step float operations (FLOPs) consumption compared
to a dense model of similar size. The key benefit of MoE
in language models is its ability to scale efficiently while
mitigating inference costs. By activating only a subset of
experts, MoE architecture enables models to learn diverse
representations across different tokens, capturing nuanced
patterns in natural language.

An MoE layer with r experts is defined as follows: given
an input x, a set of expert functions {F1, F2, . . . , Fr} each
computing a candidate output, and a gating function R(x) ∈
Rr assigning routing weights, the output of a fully routed
MoE layer is computed as:

ŷ =

r∑
i=1

R(x)i · Fi(x), (6)

where R(x)i ≥ 0 and
∑r

i=1 R(x)i = 1.

In the case of hard routing with top k selection, only the k
experts with the highest gating scores are activated, reducing
computational cost. The output becomes:

ŷ =
∑

i∈Tk(x)

R(x)i · Fi(x), (7)

where Tk(x) denotes the indices of the top k experts se-
lected by the gating function.

2.4. Load Balancing in MoE

Training MoE models requires careful handling of load bal-
ancing to prevent uneven expert utilization. When certain

experts receive a disproportionate amount of traffic, the
model’s training efficiency and convergence may deterio-
rate. To address this, prior works have employed auxiliary
losses to encourage balanced expert utilization. Notably,
GShard (Lepikhin et al.) and Switch Transformer (Fedus
et al., 2022) incorporate auxiliary losses that penalize im-
balanced expert activation. For instance, GShard utilizes a
load balancing loss that discourages excessive reliance on a
small subset of experts. Additionally, Switch Transformer
simplifies the gating mechanism to a top 1 selection, reduc-
ing the routing overhead while improving load distribution.
Specifically, Switch Transformer utilizes the auxiliary loss:

Lload =

r∑
i=1

α ·N
T 2

∑
x∈B

1{argmax R(x) = i}
∑
x∈B

R(x)i,

(8)
where B denote the current batch, T is the number of tokens,
N is the number of examples and α is a regularization
weight. Equation (8) encourages uniform routing since it is
minimized under a uniform distribution.

2.5. Auxiliary-Loss-Free Load Balancing

To eliminate the need for explicitly tuning load balancing
losses, recent studies have proposed architectural strategies
that naturally promote balanced expert usage. One such
approach, auxiliary loss-free load balancing (ALFLB), is
introduced by DeepSeek (Guo et al., 2025; Liu et al., 2024;
Wang et al., 2024). Instead of enforcing load balancing
through auxiliary objectives in classic literature, this ap-
proach leverages an adaptive gating function that naturally
distributes computation across experts. To achieve this, the
model needs to maintain an expert bias, initialized as an
all-zero vector of size r. After each gradient update, one
needs to compute the frequency of the expert selection. If
the frequency for an expert being selected is higher than
a threshold τ1, we call this expert being “over-utilized”.
Otherwise, if it is lower than a threshold τ2, we refer to
it as being “under-utilized”. For the over-utilized experts,
we decrease the corresponding expert bias by γ while for
the under-utilized ones, we increase their expert bias by γ.
When selecting the top k experts, we use the sum of the
router’s output weights and the expert bias to determine
which experts to select.

3. Methodology
In this section, we present the mixture-of-experts frame-
work for channel estimation (MoE-CE) in details. This
framework is flexible and can accommodate any backbone
ML models and learning methods. The core idea is to con-
struct multiple expert networks, which can adopt various
neural network architectures tailored to different aspects
of CE, e.g. different SNR levels, RB numbers, or channel
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Algorithm 1 Training MoE-CE with ALFLB and SGD
1: Experts (subnetworks): NN parameterized functions

F1, · · · , Fr : RNant×Npf×D → RNant×Npf×D.
2: Router: NN parameterized function R :

RNant×Npf×D → Rr.
3: Input: Noisy channel (LS estimate of the channle ma-

trix) ĤLS ∈ RNant×Npf×D.
4: Input: Clean channel H ∈ RNant×Npf×D.
5: repeat
6: Initialize the expert bias u ∈ Rr

+ for ALFLB to be
all zeros.

7: Initialize the router R and the subnetworks
F1, · · · , Fr.

8: Compute the forward pass of the router function:
w⊤ = R(ĤLS).

9: Compute the top k selection weights w̃⊤ = w⊤ +
u⊤

10: Obtain the top k indices based on w̃, e.g., S =
{1, · · · , k} and the corresponding router weights
weights w′⊤, e.g., w′⊤ = [w1, · · · ,wk]

⊤.
11: Based on the expert selection frequency, adjust the

expert bias u.
12: Renormalize the weights: w′⊤ = w′⊤

<w′⊤,1> .
13: Compute the forward pass of the selected sub-

networks, e.g., F1(Ĥ
LS), · · · , Fk(Ĥ

LS). Stack
these candidate outputs to form a tensor P ∈
Rk×Nant×Npf×D.

14: Obtain the final output:

k∑
i=1

Pi,:,:,:w
′
i.

15: Compute the NMSE loss function LNMSE w.r.t. H
and run stochastic gradient descent to update the
parameters of the selected subnetworks F1, · · · , Fk

and the router R.
16: until Converge

profiles. A lightweight router network is responsible for
dynamically selecting the top k most relevant experts during
each forward pass, enabling efficient resource allocation and
adaptive learning. By dynamically selecting the most suit-
able experts based on the current input, the model achieves
improved generalization and computational efficiency, en-
hancing the robustness and adaptability of CE models in
dynamic communication environments. We will show later
in the experiment sections that this framework works well
not only under a multitask set-up but also has significant
performance gain when testing in a zero-shot setting as well.

Figure 1 illustrates the MoE-CE pipeline. An MoE-CE top
k/r with r selective experts and top k selection goes as
the following: first we take as input the LS estimate of the

Figure 2. Cross SNR levels channel estimation performance com-
parison between vanilla Resnet and Resnet-MoE (left) and expert
usage analysis (right).

channel matrix either in the frequency domain or the de-
lay domain, which is of size Nant × Npf ×D. Note that
typically D is set to 2 indicating the real and imaginary de-
composition of the complex channel matrix. Alternatively,
the parameter D can also be 4 when polarization is intro-
duced. The input will first go through a router network
R : RNant×Npf×D → Rr, mapping the input data to a
size r vector. Then after applying softmax function, we
obtain the expert weights w⊤ and subsequently select the
top k experts based on the corresponding expert weights
and obtain the selected expert indices S = {s1, · · · , sk}
as well as their corresponding expert weights w′⊤ ∈ Rk.
For the ease of illustration, let us assume si = i, for all
i ∈ [k], i.e., S = {1, 2, · · · , k} . Note that the expert se-
lection varies based on the current input. After obtaining
the selected expert indices, the LS estimate input will go
through the forward pass of the selected expert networks,
namely F1, · · · , Fr : RNant×Npf×D → RNant×Npf×D,
which can be parameterized as arbitrary neural networks.
Assuming S = {1, 2, · · · , k}, the input only goes through
the selected k expert networks, i.e., F1, · · · , Fk and for
the remaining r − k networks, no forward pass is car-
ried out. We then obtain k candidate outputs of size
RNant×Npf×D and concatenate them together to form a ten-
sor P ∈ Rk×Nant×Npf×D. The selected expert weights
w′⊤ are renormalized w′⊤ = w′⊤

<w′⊤,1> , where 1 is an
all 1 vector of size k, so that it sums up to 1. Finally, a
weighted sum is computed to obtain the final denoised chan-
nel

∑k
i=1 Pi,:,:,:w

′
i. For resolving load balancing issue,

we opt to use ALFLB as introduced in the previous sec-
tion. We further explain the complete training procedure
of MoE-CE with ALFLB and stochastic gradient descent
(SGD) in Algorithm 1. We defer the integration of MoE-CE
with alternative learning schemes, such as meta-learning,
for future work.

4. Experiment
Generalizing to multiple SNR levels, channel profiles, and
RB numbers is vital for building robust and scalable chan-
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Figure 3. Cross channel profiles channel estimation performance comparison between vanilla Resnet and Resnet-MoE under multitask
setting on: (a) UMi, (b) UMa, (c) CDL-B and (d) CDL-D; and under zero-shot generalization setting on: (e) CDL-B with 1200 ns delay
spread and (f) UMi with 1200 delay spread.

nel estimation models in modern wireless communication
systems. Real-world environments are dynamic, with fluc-
tuating SNR and varying channel characteristics due to mo-
bility, interference, and deployment scenarios. A model that
can generalize across these variations ensures consistent
performance without retraining, reducing latency, and im-
proving system reliability. Likewise, generalization across
RB numbers allows the model to adapt to different band-
width allocations, enabling flexibility and efficiency across
standards like 5G and future 6G systems. Such general-
ization not only lowers deployment complexity and cost
by avoiding the need for specialized models but also sup-
ports long-term adaptability to evolving network conditions,
spectrum usage, and hardware configurations.

When generalizing to different RB numbers or channel pro-
files, it is often necessary to also generalize to various SNR
levels simultaneously because these dimensions of variabil-
ity are inherently intertwined in real-world wireless envi-
ronments. For example, a change in RB number affects
frequency resolution and spectral efficiency, but its impact
on performance is highly dependent on the SNR: what works
well at high SNR may fail at low SNR due to significant
noise level discrepancy. Similarly, different channel profiles
(e.g., urban vs. rural or line-of-sight vs. non-line-of-sight)
exhibit distinct multipath and fading characteristics, whose
effects are amplified or diminished depending on the SNR.

Therefore, to ensure robust channel estimation under real-
istic deployment scenarios, the model must be capable of
handling the joint variability of RB number, channel profile,
together with different SNR levels.

In this section, we conduct a series of experiments to eval-
uate the effectiveness and generalization capability of the
proposed MoE-CE framework. We design our evaluations
to reflect realistic challenges in wireless communication,
including varying signal-to-noise ratios (SNRs), channel
profiles, and RB numbers. For experiments involving di-
verse channel profiles and RB numbers, we also incorpo-
rate cross-SNR generalization to simulate more practical
and demanding deployment scenarios. The experiments
are organized to test both multitask learning performance
and zero-shot generalization ability. We compare MoE-CE
against strong deep learning baselines under matched com-
putational budgets, and analyze expert utilization patterns
to provide insights into the model’s adaptability and special-
ization behavior across diverse conditions.

Throughout the experiment section, we use Adam (Kingma
& Ba, 2014) with learning rate 0.001 as the optimizer. The
training and test data are generated from physical uplink
shared channel (PUSCH) using Siona (Hoydis et al., 2022).
For ALFLB setup, we set τ1 = 2

r , τ2 = 4
5r and γ = 0.001

via cross validation, where r is the number of selective

6



MoE-CE: Enhancing Generalization for Deep Learning based Channel Estimation via a Mixture-of-Experts Framework

Table 1. Model computational complexity and size comparison between MoE-CE and vanilla DL methods. The complexity is computed
based on an input size of 16× 240× 4 (with polarization).

MODEL MACS FLOPS #PARAMETERS MODEL SIZE

RESNET MOE TOP 1/4 79.43 M 158.86 M 81.19 K 317 KB
RESNET MOE TOP 2/4 159.28 M 318.56 M 81.19 K 317 KB
RESNET 4B 78.84 M 157.68 M 19.99 K 78 KB
RESNET 8B 155.03 M 310.06 M 38.80 K 151 KB
NAFNET MOE TOP 1/4 22.2 M 44.4 M 147.78 K 577 KB
NAFNET MOE TOP 2/4 44.81 M 89.62 M 147.78 K 577 KB
NAFNET VANILLA 21.61 M 43.22 M 36.64 K 145 KB

experts. For all MoE-CE models presented in this section,
we use a three-layer CNN as the router architecture, with 3×
3 filter size and r, 2r, and r hidden channels in the respective
layers. The output of the CNN router is passed through
global average pooling followed by a softmax function to
produce the initial task weights.

4.1. Data Preprocessing and Postprocessing

The data we obtained from the Siona-based system level
simulator are the clean channel matrix (the label) and the LS
estimate (noisy) of the channel matrix, under the PUSCH
frequency domain and OFDM format. We first convert the
data into delay domain using fast Fourier transformation
(FFT). The ML models then operate on the delay domain
transformed data. After obtaining the output from the ML
model, an inverse FFT (IFFT) is performed to recover the
prediction back to the frequency domain. The loss function
as well as the evaluation metric is then computed under the
frequency domain.

4.2. Mixed SNRs

In this experiment, we showcase the generalization capabil-
ity of the proposed MoE framework on cross SNRs setups.
To be more specific, we generate synthetic training data
from urban micro (UMi) channel profile, with SNR ranges
from −10 dB to 12 dB, taken every 2 dB. The RB number
for both training and test data is set to be 40. For evaluation,
we look at the NMSE result on a separate test dataset of the
same RB number and channel profile, with SNR ranges from
−10 dB to 14 dB. For this experiment, we use Resnet (He
et al., 2016) as the backbone model, namely all experts
are parameterized by the Resnet architecture. Specifically,
for baseline models, we use Resnet with 4 Resnet blocks
(Resnet-4B) and 8 blocks (Resnet-8B), and the channel size
is set to 16. For all MoE experts, we use Resnet-4B with 16
channel size. In the following experiments, without other
specifications, all MoE experts are using Resnet-4B with 16
channel size as the architecture. We use 3 × 3 kernel size
for all CNN layers in all experiments.

In the left figure of Figure 2, we show the NMSE compar-

ison of our Resnet-MoE architecture with top 1 and top 2
expert selection out of 4 selective experts. The notation top
1/4 means we are using top 1 selection, and the total number
of selective experts is 4. Note that under this set-up, Resnet
MoE top 1/4 and 2/4 share similar computation complexity
to Resnet-4B and 8B, respectively. We can see clearly that
MoE based models achieve better performance, especially
under relatively high SNR cases.

Notice that the curve of top 1/4 (blue curve with upward
triangle markers) is not very smooth. This is because dif-
ferent experts are selected at different SNR levels. Due to
the discrete nature of the top 1 selection, we can observe
the sharp turning point on this curve. The right figure of
Figure 2 illustrates the distribution of expert usage during
evaluation across different SNR levels. At −10 dB SNR, the
router chooses expert 1 for all evaluation input data. This
behavior is gradually shifted to expert 4 at 0 dB SNR. Then
at 5 dB SNR the router shifts the selection entirely to expert
2. This is subsequently changed to a mix of expert 2 and
expert 3 at 10 dB SNR. Overall, experts 1 and 4 are often
selected for low SNR cases while experts 2 and 3 are for
high SNR ones.

In Table 1, we present the computational complexity of
all models compared in the experiment section. One can
clearly see that Resnet MoE top 1/4 shares similar FLOPs
with Resnet 4B, while Resnet MoE top 2/4 shares similar
FLOPs with Resnet 8B. One thing to note is that MoE-CE
architecture leverages several subnetworks simultaneously,
therefore it significantly increases the number of parameters
and the model size.

4.3. Mixed SNRs and Channel Profiles

In this experiment, we want to evaluate the ability of the pro-
posed MoE architecture to generalize to multiple SNR lev-
els and channel profiles, such as UMi, urban macrocellular
channel (UMa), clustered delay line (CDL)-B and CDL-D.
To do this, we generate synthetic data from all these channel
profiles under PUSCH, with SNR ranges from −10 dB to 12
dB. The RB number for both training and evaluation is still
set to 40 and with delay spread set to 300 ns, 300 ns, 600 ns,
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Figure 4. Zero-shot generalization performance comparison for
varying RB numbers between vanilla Resnet and Resnet-MoE (left)
and vanilla NAFNet and NAFNet-MoE (right).

10 ns for the respective channel profiles. For the expert’s
architecture, we follow the same Resnet structure as in the
previous experiment (4 blocks with 16 channels). For a
multitask setting, subfigures (a), (b), (c), and (d) of Figure 3
present evaluation result of the trained model on UMi, UMa,
CDL-B, CDL-D with the same delay spread as the training
data respectively. For a zero-shot setting, subfigures (e), (f)
show the evaluation results of the same trained model but
on CDL-B and UMi with 1200 ns delay spread instead. We
can see that MoE-based approach consistently outperforms
the vanilla method, under both multitask setting as well
as zero-shot adaptation setting. The gain in performance is
more significant with increased SNR, the same phenomenon
as we observed in the previous experiment. An additional
observation is that increasing the number of selected ex-
perts tend to enhance the performance of the MoE model
in the low SNR regime, while causing a slight performance
degradation in the higher regime. This highlights a trade-off
that needs to be carefully considered when implementing
an MoE-based architecture.

4.4. Mixed SNRs and Varying RB Numbers

In this experiment, besides showing the generalization ca-
pability of the MoE architecture to multiple SNR levels
and RB numbers, we also showcase the flexibility of the
proposed MoE structure. In addition to using Resnet as the
backbone model, we also use a 15-layer NAFNet (Chen
et al., 2022) with 8 hidden channels as the backbone model.
For this experiment, we use the training data generated from
a UMi channel with RB numbers of 5, 9, 12, 16, 20 with
SNR ranges from −10 dB to 12 dB. The validation data
has the same setup as the training data. For evaluation, we
generate data from the same UMi channel but with 54 RBs.
For Resnet, compared between Resnet 4B, 8B and Resnet
MoE top 1/4, 2/4. Same as before, Resnet MoE utilizes a
Resnet 4B as the backbone model. Additionally, we also
compare between vanilla NAFNet and NAFNet MoE of 4
selective experts with top 1 and top 2 selections. Note that

this experiment is purely zero-shot setting as the test RB
number does not exist in the training RB numbers.

Figure 4 presents the cross RB numbers performance eval-
uation of Resnet backbone (left) and NAFNet backbone
(right) for testing the 54 RB configuration under the delay
domain. We can see that in both cases there is a significant
performance gain using the MoE-CE architecture compared
to the vanilla model. In Table 1, we show the computational
complexity and model size for NAFNet-MoE. We observe
that, same as Resnet-MoE, the forward pass complexity
between the vanilla NAFNet and NAFNet-MoE top 1/4 is
nearly identical, albeit the small router complexity. Though
the model size and number of parameters is four times the
vanilla NAFNet.

5. Conclusion
In this paper, we propose MoE-CE, a mixture-of-experts
framework designed to enhance the generalization ability of
DL-based channel estimation methods in wireless commu-
nication systems. By combining multiple expert networks
with a lightweight router for dynamic expert selection, MoE-
CE enables task-specific specialization while maintaining
computational efficiency. We demonstrated that this archi-
tecture generalizes well across a wide range of scenarios,
including varying SNR levels, RB numbers, and channel
profiles, under both the multitask and zero-shot settings.
Extensive experiments showed that MoE-CE consistently
outperforms conventional DL-based methods, achieving
improved accuracy with comparable computational cost.
Furthermore, the framework’s compatibility with diverse
backbones and training strategies makes it a flexible and
scalable solution for real-world deployment in dynamic and
heterogeneous wireless environments.

Although the proposed MoE-CE framework exhibits robust
generalization across varying SNR levels, RB numbers, and
channel profiles, several promising avenues remain open for
future research. One immediate possibility is to incorporate
model-agnostic meta-learning (MAML) (Finn et al., 2017)
or other meta learning algorithms into MoE-CE, further
enhance zero-shot generalization capability of the frame-
work. Furthermore, in the current setup, all experts share
the same backbone structure. Designing heterogeneous or
dynamically configurable expert architectures, e.g., various
approaches mentioned in (Han et al., 2021), could allow for
more fine-grained specialization, potentially improving both
performance and efficiency. Last but not least, developing
formal theoretical understanding of how and why experts
specialize, especially under cross-condition generalization,
could offer insights on the channel estimation problem un-
der such system configuration, and additionally for more
principled design of future MoE-based architectures for
communication systems.
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Impact Statement
This work aims to advance the field of machine learning for
wireless communication by improving the generalization ca-
pability of deep learning-based channel estimation through a
modular MoE framework. By enabling robust performance
across diverse and dynamic environments, our approach has
the potential to enhance the reliability and adaptability of fu-
ture wireless systems, including 5G and beyond. Improved
channel estimation may lead to more efficient use of spec-
trum and energy, benefiting both infrastructure providers,
end users as well as the environment.

We do not anticipate any direct negative societal conse-
quences or ethical concerns from this work. However, as
with all technologies that improve the performance of com-
munication systems, care must be taken to ensure equitable
access and responsible deployment.
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