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Abstract
We consider the problem of causal structure learning in the setting of heterogeneous populations,
i.e., populations in which a single causal structure does not adequately represent all population
members, as is common in biological and social sciences. To this end, we introduce a distance
covariance-based kernel designed specifically to measure the similarity between the underlying
nonlinear causal structures of different samples. Indeed, we prove that the corresponding feature
map is a statistically consistent estimator of nonlinear independence structure, rendering the kernel
itself a statistical test for the hypothesis that sets of samples come from different generating causal
structures. Even stronger, we prove that the kernel space is isometric to the space of causal ancestral
graphs, so that distance between samples in the kernel space is guaranteed to correspond to distance
between their generating causal structures. This kernel thus enables us to perform clustering to
identify the homogeneous subpopulations, for which we can then learn causal structures using
existing methods. Though we focus on the theoretical aspects of the kernel, we also evaluate its
performance on synthetic data and demonstrate its use on a real gene expression data set.
Keywords: graphical causal models; distance covariance; whole-graph embeddings; clustering.

1. Introduction

Learning causal relationships from observational and experimental data is one of the fundamental
goals of scientific research, and causal inference methods are thus used in a wide variety of fields. The
resulting variety of applications nevertheless share some common difficulties, such as causal inference
from complex time-series data (Eichler, 2012) or the underlying causal structure being obscured
by unmeasured confounders (Greenland et al., 1999). Another common difficulty, especially for
applications in the biological and social sciences, is causal inference from heterogeneous populations
(Xie, 2013; Brand and Thomas, 2013)—addressing this difficulty is our main motivation.

In general terms, we understand a heterogeneous population to be one whose members are not
adequately described by a single model but rather better described by a collection of models. Within
our context of causal structure learning, this means a population is heterogeneous if some samples
are generated by different causal structures—we call this structural heterogeneity. We note that there
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are other kinds of heterogeneity, such as that in samples generated by different joint distributions
over the same causal structure, but these are outside our scope in this work.

A specific example of structural heterogeneity can be found in genetics: causal methods are
used to learn the structure of gene regulatory networks (Altay and Emmert-Streib, 2010), and gene
expression data from a single recording or experiment may include thousands of genes, many of
which are involved in entirely different networks (Liu, 2015); thus, attempting to learn a single causal
structure for all of the genes will obscure the fact that different sets of them have different structures.

The bulk of our work in this paper, and our main contribution, is to introduce the dependence
contribution kernel, which facilitates a flexible and easily extensible approach to causal clustering:
first perform clustering to identify structurally homogeneous subsets of samples, and then proceed
with the actual learning task on each cluster. We prove that our kernel space is isometric to the space
of causal ancestral graphs, and hence our kernel can be used to find clusters that minimize structural
heterogeneity for causal structure learning tasks. Furthermore, the kernel is derived from the distance
covariance (Székely et al., 2007), imbuing it with the ability to detect nonlinear dependence. It
can easily be used in a wide array of clustering algorithms, such as k-means, DBSCAN, spectral
clustering, or any other method that analogously makes use of a similarity (or distance) measure
between samples (Filippone et al., 2008).

The rest of the paper is organized as follows: We finish this section by discussing some of the
most relevant related work from the causal inference and statistics literature. All of Section 2 is
devoted to the theory underlying our dependence contribution kernel, including a comparison of
the familiar product-moment covariance with the distance covariance (Section 2.1), defining an
equivalence class of causal models with a convenient representation in the kernel space (Section 2.2),
and the actual definition of our kernel and proofs of its relevant properties (Section 2.3). Next, in
Section 3, we supplement the preceding theoretical analysis of our kernel by evaluating its use in a
combination of clustering, dimensionality reduction, and structure learning tasks on synthetic and
real data. Finally, we conclude in Section 4 mentioning possible future work.

1.1. Related Work

Causal inference in heterogeneous populations sometimes refers to data-fusion (Bareinboim and
Pearl, 2016), i.e., combining known homogeneous subpopulations and performing causal inference
on the resulting heterogeneous population, or similarly, it can refer to meta-learning using known
subpopulations (Sharma et al., 2019). Other times, it refers to estimating heterogeneous treatment
effects (Xie et al., 2012; Athey and Imbens, 2015). However, in our case, the subpopulations
are not known and we rather consider the problem of learning which samples come from which
subpopulation, and these are differentiated according to structure instead of treatment effect.

Previous work on causal clustering has focused more on the causal modeling aspect, using
stronger assumptions about the underlying structures to learn more detailed models. For example,
Kummerfeld et al. (2014); Kummerfeld and Ramsey (2016) focus on causal clustering in measurement
models, with the goal of clustering different features together to study their latent causal structure,
based on tetrad constraints within the linear product-moment covariance matrix. Huang and Zhang
(2019) define a class of causal models facilitating mechanism-based clustering, learning causal
models both for clusters of samples as well as a shared one for all samples, assuming the underlying
structures are linear non-Gaussian. Saeed et al. (2020) characterize distributions arising from
mixtures of directed acyclic graph (DAG) causal models (i.e., causal models without latent or
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selection variables), trying to learn both the component DAGs and a representation of how they are
mixed. All of these approaches, like most causal inference methods, make specific (and for some
applications, restrictive) assumptions about the underlying distributions or causal structures.

In contrast, our method is not tied to specific distributional assumptions such as linearity or
(non)Gaussianity—we assume there are enough samples for statistical inference, as well as the usual
causal Markov and faithfulness assumptions. For the first step, we cluster samples together if they
(implicitly, in the kernel space) have similar nonlinear independence structures. For the second step,
causal structure learning, any existing method (along with its corresponding assumptions) can in
principle be used. In our gene expression data application (Section 3.2), the measurement dependence
inducing latent (MeDIL) causal model framework (Markham and Grosse-Wentrup, 2020), which
assumes the data consists of measurement variables that are causally connected only through latent
variables, seems appropriate, however other applications can easily use other methods. For example,
component and mixture DAGs (Saeed et al., 2020) can be better learned when one first knows which
samples come from which component—clustering with our kernel ensures samples in different
clusters come from different DAGs, and so using their method instead of the MeDIL framework
would be a natural choice for applications in which a DAG (without any latents) is more appropriate.

Finally, there is some work from the statistics literature that sounds superficially similar to our
distance covariance-based kernel but is conceptually quite different. Namely, another well-known
measure of nonlinear independence, the Hilbert-Schmidt Independence Criterion (Gretton et al.,
2005, 2007), is part of a class of reproducing kernel Hilbert space- (RKHS-) based dependence
measures that Sejdinovic et al. (2013) show is equivalent to distance-based measures such as the
distance covariance. Our dependence contribution kernel, unlike these, is not a dependence measure
between features—it rather uses the distance covariance to measure the similarity of samples based
on patterns in the dependence structure of their features, and is rather more like a whole-graph
embedding (Cai et al., 2018; Maddalena et al., 2020).

2. Theory

2.1. Product-moment Covariance, Distance Covariance, and Dependence Contribution

Though there is more to causal relationships than probabilistic dependence, causal inference methods
based on graphical models ultimately rely on at least implicitly learning conditional independence
(CI) relations. CI relations can be estimated in many ways, with different dependence measures
and tests each having their own theoretical guarantees and being better suited for distributions of
various different kinds of data (e.g., categorical, discrete, or continuous) and with various kinds
of relationships (e.g., linear, monotonic nonlinear, arbitrary nonlinear) and with different testing
assumptions (see Tjøstheim et al., 2018, for a comprehensive overview).

A widely used measure of dependence is the product-moment covariance, often just called
covariance, which is defined for two zero-mean random variables X1 and X2 as the scalar value
cov(X1, X2) = E[X1X2]. This can be extended from a pair of random variables to every pair of
variables in a random vector, thus returning a matrix instead of a scalar. The covariance matrix for a
vector of zero-mean random variables X = (X1, . . . , Xm) can be estimated from a set S ∈ Rn,m of
n samples as Σ̂X = 1

nS
⊤S, and the j, j′-th value of Σ̂X is thus the estimate ˆcov(Xj , X

′
j).

Probabilistic independence (denoted ⊥⊥) of two random variables implies that their product-
moment covariance is zero, i.e., Xj ⊥⊥ Xj′ =⇒ cov(Xj , Xj′) = 0 (importantly, the inverse of this
does not hold). Thus, the estimated product-moment covariance can be used in statistical hypothesis
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testing for independence (Wasserman, 2013, Ch. 10): Xj and Xj′ are taken to be independent if
and only if ˆcov(Xj , Xj′) is sufficiently close to 0. However, this method has an important flaw: the
product-moment covariance as a test statistic is only valid against linear dependence.

Székely et al. (2007) introduce the distance covariance to remedy this problem: random variables
are probabilistically independent if and only if their distance covariance is zero, i.e., Xj ⊥⊥ Xj′ ⇐⇒
dCov(Xj , Xj′) = 0, resulting in the estimated distance covariance being a valid test statistic against
all types of dependence. The distance covariance is related to the product-moment covariance by
dCov2(Xj , Xj′) = cov(|Xj −X ′

j |, |Xj′ −X ′
j′ |)− 2cov(|Xj −X ′

j |, |Xj′ −X ′′
j′ |), where (X ′

j , X
′
j′)

and (X ′′
j , X

′′
j′) are independent and identically distributed (iid) copies of (Xj , Xj′) (Székely and

Rizzo, 2014). The key intuition here is that the distances (e.g., |Xj −X ′
j |) constitute a nonlinear

projection, so that using the linear product-moment covariance in this projected space allows for the
detection of nonlinear dependence in the original space.

Note that dCov is typically defined to be a scalar value when taken between two arbitrary-
dimensional random vectors, but our restricted presentation of it above in terms of random variables
is to make it more obviously analogous to the product-moment covariance between random variables.
Thus, corresponding to Σ̂X for random vectors, we define the following:

Definition 1 Let S ∈ Rn,m be a set of n samples from the vector of random variables X =
(X1, . . . , Xm). For each j ∈ {1, . . . ,m} and i, i′ ∈ {1, . . . , n}, define the pairwise distance matrix
Dj , with values given by Dj

i,i′ := |Si,j − Si′,j |. Now define the corresponding doubly-centered

matrices Cj
i,i′ := Dj

i,i′ − D̄j
i,· − D̄j ·,i′ + D̄j ·,·, where putting a bar over the matrix and replacing

an index i or i′ with · denotes taking the mean over that index. Define the matrix L ∈ Rn2,m so
that each column is a flattened doubly-centered distance matrix, L := (vec(C1), . . . , vec(Cm)),
where vec(Cj) denotes “flattening” matrix Cj into a column vector. Finally, the estimated distance
covariance matrix over sample S is defined as: ∆̂X := 1

n2L
⊤L.

Analogous to Σ̂X, the j, j′-th entry of ∆̂X corresponds to ˆdCov
2
(Xj , Xj′)—indeed it is mathe-

matically equivalent to computing each pairwise distance covariance value and then manually filling
in the matrix. The novelty of our Definition 1 is in finding a matrix of pairwise values instead of a
single value for the distance covariance between random vectors, which helps provide an intuition
for our next definition:

Definition 2 Let S ∈ Rn,m be a set of n samples from the vector of random variables X =
(X1, . . . , Xm); note that we consistently use indices i, i′ ∈ {1, . . . , n} and j, j′ ∈ {1, . . . ,m}.
Let D ∈ Rn,n,m denote the 3-dimensional array of stacked pairwise distance matrices defined by
Di,i′,j := |Si,j − Si′,j |, and use C ∈ Rn,n,m to denote these same distance matrices after being
doubly-centered, i.e., Ci,i′,j := Di,i′,j−D̄i,·,j−D̄·,i′,j+D̄·,·,j , where replacing an index i or i′ with ·
denotes the entire (lower-dimensional) subarray over that index, and writing a bar, D̄, denotes taking
the mean over that subarray. Then standardize the doubly-centered distances to get Zi,i′,j :=

Ci,i′,j
D̄·,·,j

.
Finally, the dependence contribution map, φ : Rm → Rm,m, is defined as

φ(Si,·) := Z⊤
i,·,·Zi,·,· − T (α),
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where T (α) ∈ Rm,m is a matrix of scaled critical values corresponding to a given significance level

α with zeros along the diagonal, i.e., T (α)j,j′ =

{
0, if j = j′

1
nχ

2
1−α(1), otherwise

, with χ2
1−α(1) being the

1− α quantile of the chi-square distribution with 1 degree of freedom.

Notice the similarity between Definitions 2 and 1: if we set T (α) to be a matrix of 0s and forgo
standardization (i.e., use C instead of Z), then 1

n2

∑n
i=1 φ(Si,·) = ∆̂X. Now, the differences: ∆̂X

is a single matrix computed over an entire set of samples, whereas φ is a map that projects each
given sample to the new feature space; each entry of ∆̂X is simply a distance covariance value,
whereas each entry of the sum of φ(Si,·) over i, by using standardization (using Z instead of C)
and subtracting a critical value, corresponds to the result of using a distance covariance value in a
statistical hypothesis test for independence—indeed:

Lemma 3 Let S ∈ Rn,m be a set of n iid samples from random variables X1, . . . , Xm with finite
first moments. For a given significance level α, under the null hypothesis of Xj ⊥⊥ Xj′ , rejecting
h∅ if

(∑n
i=1 φ(Si,·)

)
j,j′

> 0 is a statistically consistent test against all types of dependence.

Proof This follows from (Székely and Rizzo, 2009, Theorem 5 and Corollary 2) and how φ is
defined to correspond to the difference between distance covariance and critical values.

These differences between ∆̂X and φ serve two important purposes: first, they ensure φ maps
to a reproducing kernel Hilbert space so that our Definition 9 is a corresponding kernel function
(Schölkopf et al., 2001); and second, as the name “dependence contribution map” suggests, they
ensure φ(Si,·) is informative not just about distance covariance but about nonlinear dependence
and about how the inclusion of sample Si,· in a set of samples S contributes to the dependence
patterns estimated from S— this is the key intuition behind how our kernel function is used to learn
structurally homogeneous sample subsets, as explicated in the following sections.

Compared to other general measures of dependence, such as mutual information (Shannon,
1948; Cover, 1999) or ball covariance (Pan et al., 2019), we chose the distance covariance in
particular because it has mathematical properties that are convenient (if not necessary) for defining
the kernel: namely, (1) the pairwise distance correlation matrix can be rewritten in terms of the
per-sample covariance (or dependence, if one subtracts a critical value) contribution matrix, which
facilitates comparing two samples and thus defining the kernel—this is for example complicated by
the logarithms used in defining mutual information; and (2) the distance covariance under the null
hypothesis provably approaches the chi-square distribution in the sample limit, facilitating the direct
computation of critical values corresponding to a given significance level (T (α) in Definition 2),
whereras estimating critical values in the case of mutual information or ball covariance using
permutations would be computationally infeasible.

2.2. Causal Graphs in Kernel Space

In general, a full causal structure can only be learned with sufficient data about the effects of
interventions, and thus causal structure learning from purely observational data is usually possible
only up to an equivalence class of causal graphs (Spirtes et al., 2000; Pearl, 2009). For example, the
classic PC and IC algorithms, under the assumptions of no selection bias and no confounding by
latent variables, do not necessarily return a fully-specified DAG but instead return a mixed graph,
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containing possibly directed and undirected edges, representing the Markov equivalence class (Spirtes
and Glymour, 1991; Pearl and Verma, 1995).

We now define a set of equivalence classes for ancestral graphs (AGs), which—unlike causal
DAGs—do not assume the absence of selection bias and latent confounders (Richardson et al., 2002):

Definition 4 Consider an arbitrary ancestral graph A with the set of vertices V A and edge function
EA, and denote the set of unconditional m-connection statements entailed by their corresponding
unique maximal ancestral graph as MA = {(j, j′) : j /⊥m j′ | ∅} ⊆ V A × V A. For any ancestral
graph A′ such that V A′

= V A, define the unconditional equivalence relation denoted by ‘∼U’ as
A ∼U A′ if and only if MA = MA′

.

Lemma 5 This lemma has two parts: (i) the relation ∼U is an equivalence relation over the
set of ancestral graphs A; (ii) for an arbitrary ancestral graph A ∈ A, the bidirected graph
UA = (V A, EU ), where EU maps all pairs (j, j′) ∈ MA to the bidirected edge symbol ‘↔’, is a
unique representative of the equivalence class [A].

Proof For (i), recall that an equivalence relation is any relation satisfying reflexivity, symmetry,
and transitivity (Devlin, 2003), all of which are satisfied by ∼U because of its correspondence to
the relation ‘=’ between sets. Thus, to prove (ii), it suffices to show that the map s : A/∼U →
A, [A] 7→ UA is injective (i.e, that it is a section) and that [s([A])] = [A] (Mac Lane, 2013). The
key to the proof is the observation that UA, because it contains only bidirected edges, is maximal
and therefore entails exactly the unconditional m-separation statements MA, thus by (i) we have
UA ∼U A or equivalently UA ∈ [A] or equivalently [UA] = [A]. Let A,A′ be arbitrary AGs, and
assume s([A]) = s([A′]). Then by definition of s we have UA = UA′

, and by the observation above,
UA ∈ [A′] and thus [A] = [A′], making s injective. And finally, by the definition of s and also by
the observation above, [s([A])] = [UA] = [A], completing the proof.

This equivalence relation and its representatives has some important but perhaps subtle properties.
First, it is different from Markov equivalence over AGs (which is characterized by partial ancestral
graphs, PAGs) (Zhang, 2007)—it uses only unconditional m-separation while PAGs are learned from
conditional m-separation statements. Second, because all DAGs are AGs, ∼U is also an equivalence
relation over DAGs. Third, being a representative means that every equivalence class includes exactly
one fully bidirected graph (along with other equivalent AGs). Fourth, because each representative
is formed by considering m-connected paths, UA is not equivalent to what would be generated
by some “edge-wise” procedure, such as simply replacing every edge in a PAG/AG/DAG/Markov
random field/moralized DAG with bidirected edges. Finally, its most important property is that it
facilitates Theorem 8, for which we first need a few more definitions.

Definition 6 Given arbitrary ancestral graphs A,A′ ∈ A over the same set of vertices, define
the Hamming similarity product, denoted ‘•’, as • : A × A → A and A • A′ 7→ H, where
H = (V A, EH) and the function EH(j, j′) = ‘↔’ if and only if EA(j, j′) = EA′

(j, j′).

In words, the Hamming similarity product between two ancestral graphs returns a fully bidirected
graph, with edges only where the two graphs have the same edge type. Now, shifting from ancestral
graphs to real-valued square matrices:
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Definition 7 Let ‘∼O’ denote the orthant equivalence relation (‘orthant’ is the generalization of
‘quadrant’ from R2 to arbitrarily higher dimensions) in square real matrices, i.e., for matrices

Y, Y ′ ∈ Rm,m and with the element-wise function sign(Y )j,j′ =

{
1, if Yj,j′ > 0 or j = j′

−1, otherwise
,

Y ∼O Y ′ if and only if sign(Y )j,j′ = sign(Y ′)j,j′ for all j, j′.

Theorem 8 Let a be the map from the set of unconditional equivalence classes over ancestral
graphs with m vertices, Am/∼U = Um, to the set of orthant equivalence classes over the image of φ,
i.e., m×m symmetric real matrices with positive diagonal entries, φ(Rm)/∼O = Om, defined by

a : U 7→ O, where Oj,j′ =

{
1, if EU (j, j′) = ‘↔’ or j = j′

−1, otherwise
. Then a is a group isomorphism

between (Um, •) and (Om,⊙), where ‘⊙’ denotes the element-wise product.

Proof First, note that (Um, •) is indeed a group, satisfying the three group axioms (Artin, 2011): the
representative of its identity element is the fully connected bidirected graph over m vertices, U1;
each element is its own inverse; and • is associative. Likewise, (Om,⊙) is a group with identity
element [1m,m], each element its own inverse, and the associative element-wise product operator.

Now, to show the two groups are isomorphic, it suffices to show (i) that a is bijective and (ii) that
for arbitrary U ,U ′ ∈ Um, a(U)⊙ a(U ′) = a(U • U ′). For (i) notice that if U ̸= U ′, then there must
be at least one pair of vertices j, j′ such that EU (j, j′) ̸= EU ′

(j, j′) and thus clearly Oj,j′ ̸= O′
j,j′ ,

so a in injective. Furthermore, notice that every distinct O ∈ Om is the image of some graph U ,
so a is also surjective. For (ii), for every j, j′ ∈ {1, . . . ,m}, the definitions of a, ⊙, and • ensure
a(U)j,j′ ⊙ a(U ′)j,j′ = 1 ⇐⇒ EU (j, j′) = EU ′

(j, j′) ⇐⇒ 1 = a(U • U ′), completing the proof.

For causal inference, which (often, but not necessarily) amounts to taking several samples in real
space and inferring a single corresponding member in the space of ancestral graphs (or, more often,
its quotient set by some equivalence relation), Theorem 8 means we can compare the different graphs
of different sample sets without having to first move to the ancestral graph space.

Finally, notice the space of real square matrices is not a typical sample space but rather precisely
(a superspace of) the space that our dependence contribution map φ (Definition 2) maps samples
to—this means that mapping samples with φ allows us to make use of the group isomorphism.
Though this already provides an intuition for why using φ would help with causal clustering,
explicitly mapping each sample with it would be unnecessarily computationally expensive, and
we are ultimately interested in morphisms between metric spaces (not just groups) of samples and
graphs. To address this, we therefore now move on to defining a kernel for φ.

2.3. The Dependence Contribution Kernel

Definition 9 Let S,Z, T , and φ be as in Definition 2. We define the dependence contribution
kernel using the Frobenius (denoted by the subscript F) inner product and norm: κ(Si,·, Si′,·) =

⟨φ(Si,·), φ(Si′,·)⟩F
∥φ(Si,·)∥F∥φ(Si′,·)∥F

. A more convenient expression for applying the kernel to a data set is obtained

by first defining a helper kernel, γ, using it along with vec from Definition 1:

γ(Si,·, Si′,·) = ⟨φ(Si,·), φ(Si′,·)⟩F
=

(
(vec(Zi,·)

⊤vec(Zi′,·)
)2 − Zi,·T Z⊤

i,· − Zi′,·T Z⊤
i′,· + ∥T ∥22
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This allows us to write

κ(s, s′) =
γ(Si,·, Si′,·)

γ(Si,·, Si,·)
1
2γ(Si′,·, Si′,·)

1
2

Finally, note that κ can be readily implemented on an entire set of samples, returning an entire
Gram (kernel) matrix instead of a scalar value, by replacing the matrix operations above with tensor
operations and specifying the correct axes along which summation occurs—an open source Python
implementation can be found at https://causal.dev/code/dep_con_kernel.py .

A proper distance metric can also be obtained from this kernel through function composition:
arccos ◦κ. The key idea behind the kernel is that it is the cosine similarity in the space that φ maps
to, meaning for arbitrary sample points x, x′ it evaluates to cos(θ), where θ is the angle between
φ(x) and φ(x′). In this space, θ represents the dissimilarity of the dependence patterns underlying
x and x′, without being biased by the possibly different magnitudes of φ(x) and φ(x′) due to
differing variances. Indeed, it can be used as a statistical test of whether samples come from different
dependence structures and therefore causal models:

Theorem 10 Let S ∈ Rn,m, S′ ∈ Rn′,m be sets of n, n′ iid samples drawn respectively from the
random variables X = (X1, . . . , Xm) and X ′ = (X ′

1, . . . , X
′
m) with finite first moments. Then,∑n

i=1

∑n′

i′=1 κ(Si,·, S
′
i′,·) < 0 =⇒ ∃j, j′ ∈ {1, . . . ,m} such that I(Xj , ∅, Xj′) ̸= I(X ′

j , ∅, X ′
j′).

Proof Through Slutsky’s Theorem (see Takeshi, 1985, Theorem 3.2.7) and the continuous mapping
theorem (see Van der Vaart, 2000, Theorem 2.3), the consistency of φ (Lemma 3) guarantees the
consistency of κ. Because the numerator of κ is a Frobenius inner product of φ,

n∑
i=1

n′∑
i′=1

κ(Si,·, S
′
i′,·) ∝

n∑
i=1

n′∑
i′=1

m∑
j=1

m∑
j′=1

φ(Si,·)j,j′φ(S
′
i′,·)j,j′ .

Thus, in order for
∑

i,i′ κ(Si,·, S
′
i′,·) < 0, there must be a j and j′ for which φ(Si,·)j,j′ > 0 but

φ(S′
i′,·)j,j′ < 0 (or vice versa), and thus the hypothesis test in Lemma 3 would reject the null

hypothesis that Xj ⊥⊥ Xj′ but fail to reject that X ′
j ⊥⊥ X ′

j′ .

Corollary 11 Due to the relationship between independence and causal structure, an immediate
result of Theorem 10 is that

∑
i,i κ(Si,·, S

′
i′,·) < 0 implies X and X ′ have different causal structures.

Theorem 12 Let d be the distance measure between unconditional equivalence classes of ancestral
graphs over m vertices, d(U ,U ′) = m2 − |{(j, j′) : EU •U ′

(j, j′) = ‘↔’}| −m. For given sample
sets S, S′ (i.e., real n ×m matrices), use φ̄(S) to denote the mean of the sample in kernel space,∑

i φ(Si,.), and say S ∼K S′ if and only if φ̄(S) ∼O φ̄(S′); denote the corresponding quotient
set by this equivalence class as Rn,m/ ∼K= Kn,m and a representative from each equivalence
class as Q ∈ [S]. Let δ be the distance between sets of samples in K defined as δ(Q,Q′) =
m2 − 1

2n2

∑
i,i′ γ(Qi,·, Q

′
i,·). Let b : Um → Kn,m, b : U 7→ Ω, where Ω is the unique element in

K such that sign(φ̄(Ω)) = a(U). Then b is a distance-preserving map (i.e., an isometry) from the
metric space (Um, d) to (Kn,m, δ).

8
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Proof Notice that (Um, d) is indeed a metric space (Choudhary, 1993, Ch. 2): d(U ,U ′) = 0 iff
U−1 •U ′ is the empty graph, which happens iff U = U ′; the symmetry of d follows from the
symmetry of •; and for subadditivity of d, observe that for vertices j, j′ in arbitrary 2-vertex graphs
U ,U ′,U” we have either d(U ,U”) = 2, in which case d(U ,U ′) + d(U ′,U”) = 4, or we have
d(U ,U”) = 0, in which case d(U ,U ′) + d(U ′,U”) is either 0 or 4—in both cases d(U ,U”) ≤
d(U ,U ′) + d(U ′,U”); this easily extends to graphs of arbitrary numbers of vertices. Likewise,
(Kn,m, δ) is a metric space: δ(Q,Q′) = 0 ⇐⇒ 1

2n2

∑
i,i′ γ(Qi,·, Q

′
i,·) = m2 ⇐⇒ φ̄(Q)j,j′ =

φ̄(Q)j,j′ , for all j, j′, so iff Q = Q′; symmetry and subadditivity of δ follow from the symmetry and
subadditivity of γ.

Finally, to show b is an isometry, we must show (i) that it is bijective and (ii) that for all
U ,U ′ ∈ Um, d(U ,U ′) = δ(b(U), b(U ′)). For (i), observe that by the group isomorphism a and
definition of b, we have U ̸= U ′ =⇒ a(U) ̸= a(U ′) =⇒ Q ̸= Q′ =⇒ b(U) ̸= b(U ′) and so b is
injective. Also observe that because K is exactly the set of representatives of orthant equivalence
classes of sample sets in kernel space, then for every Q ∈ K, there exists a U such that b(U) = Q,
and so b is surjective. For (ii), isomorphism a and the relation between element-wise product and
Frobenius inner product allow us to write d(U ,U ′) = m2 −

∑
j,j′(O⊙O′)j,j′ = m2 − ⟨O, O′⟩F.

Substituting O,O′ with their corresponding Ω,Ω′, and because the Frobenius inner product is a
sesquilinear form, we can write d(U ,U ′) = m2 − 1

n2

∑
i,i′⟨φ(Ωi,·), φ(Ω

′
i,·)⟩F, which by Definition

9 finally gives us that d(U ,U ′) = δ(Ω,Ω′), completing the proof.

In less formal terms, Theorem 12 shows how the space of unconditional equivalence classes of
ancestral graphs corresponds to the space of real matrices, which is a common space for samples to
lie in. More specifically, it shows how the structure defined by distances between graphs is the same
as the structure defined by distances between sets of samples and how this sample distance is related
to our kernel κ. Note that this is much stronger than Theorem 10: not only can κ tell us that two sets
of samples come from different causal models, it gives a measure of just how different the causal
models are, in terms of their differing unconditional nonlinear independencies.

To summarize, we began by defining φ (Definition 2), which maps a given data set into a new
higher-dimensional feature space. This feature space corresponds to a space of causal graphical
models, such that samples which are similar in the new feature space must come from similar causal
models (Theorem 8). Our main contribution then is to propose the dependence contribution kernel κ
(Definition 9). This kernel κ is guaranteed not only to tell us that two sets of samples come from
different causal models (Theorem 10 and Corollary 11) but furthermore exactly how different the
causal models are (Theorem 12), all without the computational expense of explicitly projecting
samples or learning causal models. Thus, κ is well-suited for addressing the causal clustering
problem and ensures that resulting clusters will be structurally homogeneous so that subsequent
causal structure learning will be more informative.

3. Applications

3.1. Synthetic Data

Python code for generating this data and our plots is open source and available at https://
causal.dev/code/depcon-kernel-evaluation.tar.gz. One data set consists of 600
samples, 100 each from six random DAGs over 10 variables. For the linear case, we generated
random parameters for a structural equation model corresponding to each DAG. We then generated

9
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(a) (b)

Figure 1: Comparison of clustering with dependence contribution kernel versus baseline methods.

100 of these data sets, and performed clustering on each with kernel k-means using our dependence
contribution kernel as well as with three baseline methods: (1) the radial basis function (RBF)
kernel, for its universality, (2) the d = 2 polynomial kernel, for its ability to detect patterns in
linear correlation between samples, and (3) plain k-means with no kernel, for its simplicity. For the
nonlinear case, we then repeated this process, except that we first generated three random DAGs,
gave them random parameters for corresponding linear structural equal models (SEMs), and then
added a copy of each of the three SEMs but having replaced independencies (so an edge parameter
of 0) with nonlinear dependencies.

The linear data set gives a best-case scenario for the the d = 2 polynomial kernel baseline method
(which looks at the linear correlation patterns between samples), while the nonlinear data set gives a
worst-case scenario in which nonlinear dependencies have zero linear correlation and thus are harder
to detect with the polynomial kernel baseline method.

For each method on each data set, we chose k for k-means by optimizing the Variance Ratio
Criterion (VRC) (Caliński and Harabasz, 1974), so that clustering results realistically reflect how
the method would perform when the ground truth is not known. We evaluated the clusterings in two
ways (Figure 1): first, by using the adjusted Rand index (Rand, 1971) to compare a given clustering
to the ground truth, with 1 being a perfect score and 0 being the score by chance (Figure 1(a)); and
second, by looking at the predicted number of clusters k found by optimizing the VRC (Figure 1(b)).

The mean adjusted Rand indices show that our kernel performs as well as the best of the baseline
methods in the linear case and better than all baseline methods in the nonlinear case (Figure 1(a)).
The histograms of the predicted k according to the VRC show that our kernel performs better than all
baseline methods in the linear case (Figure 1(b), and the same holds for the unshown nonlinear case).

These results also show that, despite being defined in terms of equivalence classes of causal
graphs, our kernel performs reasonably well at clustering samples according to individual DAGs.
This is perhaps explained by the fact that the clusters are detectable not only by looking at their
causal structure but also by simply looking at their mean in the sample space (indicated by plain
k-means’ performance being better than chance), or perhaps by the fact that different random DAGs
tend to belong to different equivalence classes (especially as the number of nodes increases).
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(a) (b)

Figure 2: Same data visualized with (a) linear PCA versus (b) dependence contribution kernel PCA.

Furthermore, we can gain some intuition for how the kernel works, i.e., how the samples look in
the kernel space and how this representation relates to its clustering performance, by using kernel
principal component analysis (kPCA) (Schölkopf et al., 1998). Figure 2(a) shows projection onto
the first two principal components (according to (linear) PCA) of one of the linear data sets, while
Figure 2(b) shows the same thing but using kPCA with our kernel. Samples from the different causal
models (represented by different colors) are much more easily separated when using our kernel.

3.2. Real data

We use kernel k-means with our dependence contribution kernel to cluster a gene expression data
set and then use the measurement dependence inducing latent (MeDIL) causal model framework
for structure learning within each cluster (Markham and Grosse-Wentrup, 2020). The goal of causal
clustering here is to reason about the different latent transcription factor (TF) networks governing
gene expression (see Verny et al., 2017; Hackett et al., 2020, for other latent causal model approaches
to learning TF networks). The original data set comes from Iyer et al. (1999) and can be found at
genome-www.stanford.edu/serum/data/fig2clusterdata.txt, with subsequent
analysis by Dhillon et al. (2003, 2004). Our code is available at https://causal.dev/code/
fibroblast_clustering.py.

The data consists of the measured gene expression levels of 517 different genes, measured at 11
different time points, i.e., there are 517 samples and 11 different features. In genetics applications, it
is not unusual to consider genes to be samples and expression (over time) to be features—indeed the
three previous analyses of this data all have this approach—and the intuition is simply that we wish
to cluster genes based on patterns in their expression levels over time, in order to identify subsets of
genes that are controlled by the same gene regulatory network. Such data exemplifies the structurally
heterogeneous populations discussed in Section 1: different genes can of course be regulated by
different TFs, and so we can better represent the data by first clustering it into subpopulations that
are more homogeneous and then performing causal structure learning on each subpopulation.

For clustering, we used k = 6, which we found by looking at both the VRC and the Silhouette
Coefficients (Rousseeuw, 1987), computed with the scikit-learn machine learning toolbox (Pedregosa
et al., 2011). We implemented (unweighted) kernel k-means ourselves, using the pseudocode given
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(a) (b)

Figure 3: Results of dependence contribution kernel clustering with significance level α = 0.1.

by Dhillon et al. (2004). We then used the MeDIL (Markham et al., 2020) package to learn the
dependence structure and latent causal models for each cluster.

Figure 3 shows an example of our results for three of the six gene clusters: Figure 3(a) shows
their distance covariance heatmaps and estimated nonlinear dependence structure (so the axes are the
11 different features, i.e., the time, in hours, at which gene expression level was measured), while
Figure 3(b) shows their corresponding causal structures, with measurement variables M0–M10 for
each of the features and learned latent variables L for different posited TFs.

The results show a clear difference in causal structure for the different clusters and allow us to
reason about the latent TFs regulating genes in different clusters: notice that the latents in cluster K1
each cause only two or three measurement variables that tend to be close together—e.g., L1 causes
M1 and M2, indicating the TF corresponding to L1 is “short-acting”, only affecting gene expression
from 30 minutes (M1) to 1 hour (M2) after serum exposure; in contrast, the latents in cluster K3
each cause between two and seven measurement variables that tend to be more spread out—e.g.,
L1 causes M1 and M7, indicating the corresponding TF is more complicated, “long-acting” but not
continuously so, affecting gene expression 30 minutes (M1) and 12 hours (M7) after serum exposure,
but independently of gene expression in the time between.

Our results are especially noteworthy compared to what happens if one ignores the heterogeneity
of the data and learns a single causal structure for the entire data set without first clustering with our
kernel into structurally homogeneous subpopulations: in that case, all of the measurement variables
are dependent, with a single latent causing them all, and no meaningful conclusions can be drawn
about how unmeasured transcription factors regulate measured gene expression, i.e., heterogeneity
obscures the underlying causal structures.
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In summary, our causal clustering analysis reveals which subpopulations (clusters) of genes have
similar latent TF networks as well as how the TF networks differ between clusters—information that
is obscured when analyzing the structurally heterogeneous data set as a whole. Additionally, our
kernel’s ability to measure similarity of nonlinear dependence structure makes it more sensitive than
previous analyses of this data set using linear correlation (Dhillon et al., 2003, 2004).

4. Discussion

We address the problem of causal clustering—that is, finding the different causal structures underlying
a structurally heterogeneous data set. Our main contribution is to develop the dependence contribution
kernel and prove its suitability for the causal clustering task. This allows us to first use the kernel
with existing clustering methods, such as kernel k-means or DBSCAN, to identify homogeneous
subpopulations. Then we use existing causal structure learning methods on each subpopulation. The
kernel guarantees that each subpopulation is more structurally homogeneous and therefore that the
learned causal structures better capture the true causal structures within the data than if a single
model were learned for the entire heterogeneous population—however, increasingly homogeneous
subpopulations comes at the cost of decreasing sample sizes within each subpopulation, so (as is
generally the case in clustering) care should be taken when choosing the parameters for whichever
clustering method is used.

Furthermore, we prove several interesting theoretical properties of our kernel, including (i) that
it can be used as a statistical test for the hypothesis that two sets of samples come from different
causal structures, as well as (ii) how it induces a metric space that is isometric to the one defined
by Hamming distance between ancestral graphs, i.e., comparing sets of samples with our kernel is
equivalent to first estimating the causal graphs of the different sets and then comparing those graphs.
Beyond the practical applications of our kernel, as shown by our application in reasoning about latent
transcription factor networks that regulate gene expression, this work also draws from and suggests
further fruitful connections between a variety of fields, including causal inference, kernel methods,
and algebraic statistics. Finally, we emphasize that though clustering is our motivating application in
this paper, the dependence contribution kernel can be used in the full variety of machine learning
tasks solvable with kernel methods, including, e.g., data visualization/reduction with kernel principal
component analysis and classification tasks using kernel support vector machines.
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