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Abstract

One unique property of time series is that the temporal relations are largely pre-
served after downsampling into two sub-sequences. By taking advantage of this
property, we propose a novel neural network architecture that conducts sample
convolution and interaction for temporal modeling and forecasting, named SCINet.
Specifically, SCINet is a recursive downsample-convolve-interact architecture. In
each layer, we use multiple convolutional filters to extract distinct yet valuable
temporal features from the downsampled sub-sequences or features. By combin-
ing these rich features aggregated from multiple resolutions, SCINet effectively
models time series with complex temporal dynamics. Experimental results show
that SCINet achieves significant forecasting accuracy improvements over both
existing convolutional models and Transformer-based solutions across various
real-world time series forecasting datasets. Our codes and data are available at
https://github.com/cure-lab/SCINet.

1 Introduction

Time series forecasting (TSF) enables decision-making with the estimated future evolution of met-
rics or events, thereby playing a crucial role in various scientific and engineering fields such as
healthcare [1], energy management [42], traffic flow [42], and financial investment [10], to name a
few.

There are mainly three kinds of deep neural networks used for sequence modeling, and they are all
applied for time series forecasting [24]: (i). recurrent neural networks (RNNs) [13]; (ii). Transformer-
based models [37]; and (iii). temporal convolutional networks (TCN) [4].

Despite the promising results of TSF methods based on these generic models, they do not consider the
specialty of time series data during modeling. For example, one unique property of time series is that
the temporal relations (e.g., the trend and the seasonal components of the data) are largely preserved
after downsampling into two sub-sequences. Consequently, by recursively downsampling the time
series into sub-sequences, we could obtain a rich set of convolutional filters to extract dynamic
temporal features at multiple resolutions.

Motivated by the above, in this paper, we propose a novel neural network architecture for time series
modeling and forecasting, named sample convolution and interaction network (SCINet). The main
contributions of this paper are as follows:

• We propose SCINet, a hierarchical downsample-convolve-interact TSF framework that
effectively models time series with complex temporal dynamics. By iteratively extracting
and exchanging information at multiple temporal resolutions, an effective representation with
enhanced predictability can be learned, as verified by its comparatively lower permutation
entropy (PE) [16].
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Figure 1: Existing sequence modeling architectures for time series forecasting.

• We design the basic building block, SCI-Block, for constructing SCINet, which downsamples
the input data/feature into two sub-sequences, and then extracts features of each sub-
sequence using distinct convolutional filters. To compensate for the information loss
during the downsampling procedure, we incorporate interactive learning between the two
convolutional features within each SCI-Block.

Extensive experiments on various real-world TSF datasets show that our model consistently outper-
forms existing TSF approaches by a considerable margin. Moreover, while SCINet does not explicitly
model spatial relations, it achieves competitive forecasting accuracy on spatial-temporal TSF tasks.

2 Related Work and Motivation

The time series forecasting problem is defined as: Given a long time series X∗ and a look-back window
of fixed length T , at timestamp t, time series forecasting is to predict X̂t+1:t+τ = {xt+1, ...,xt+τ}
based on the past T steps Xt−T+1:t = {xt−T+1, ...,xt}. Here, τ is the length of the forecast horizon,
xt ∈ Rd is the value at time step t, and d is the number of variates. For simplicity, in the following
we will omit the subscripts, and use X and X̂ to represent the historical data and the forecasted data,
respectively.

2.1 Related Work

Traditional time series forecasting methods such as the autoregressive integrated moving average
(ARIMA) model [8] and Holt-Winters seasonal method [14] have theoretical guarantees. However,
they are mainly applicable for univariate forecasting problems, restricting their applications to
complex time series data. With the increasing data availability and computing power in recent years,
it is shown that deep learning-based TSF techniques have the potential to achieve better forecasting
accuracy than conventional approaches [24, 29].

Earlier RNN-based TSF methods [31, 32] summarize the past information compactly in the internal
memory states that are recursively updated with new inputs at each time step, as shown in Fig. 1(a).
The gradient vanishing/exploding problems and the inefficient training procedure greatly restrict the
application of RNN-based models.

In recent years, Transformer-based models [37] have taken the place of RNN models in almost all
sequence modeling tasks, thanks to the effectiveness and efficiency of the self-attention mechanisms.
Various Transformer-based TSF methods (see Fig. 1(b)) are proposed in the literature [21, 23, 38, 25].
These works typically focus on the challenging long-term time series forecasting problem, taking
advantage of their remarkable long sequence modeling capabilities.

Another popular type of TSF model is the so-called temporal convolutional network [7, 4, 33, 39, 27],
wherein convolutional filters are used to capture local temporal features (see Fig. 1(c)). The proposed
SCINet is also constructed based on temporal convolution. However, our method has several key
differences compared with the TCN model based on dilated causal convolution, as discussed in the
following.

2.2 Rethinking Dilated Causal Convolution for Time Series Modeling and Forecasting

The local correlation of time series data is reflected in the continuous changes within a time slot, and
convolutional filters can effectively capture such local features. Consequently, convolutional neural
networks are explored in the literature for time series modeling and forecasting. In particular, dilated
causal convolution (DCS) is the current de facto method used in this respect.
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DCS was first proposed for generating raw audio waveforms in WaveNet [28]. Later, [4] simplifies
the WaveNet architecture to the so-called temporal convolutional networks (see Fig. 1 (c)). TCN
consists of a stack of causal convolutional layers with exponentially enlarged dilation factors, which
can achieve a large receptive field with just a few convolutional layers. Over the years, TCN has been
widely used in all kinds of time series forecasting problems and achieve promising results [39, 33].
Moreover, convolutional filters can work seamlessly with graph neural networks (GNNs) to solve
various spatial-temporal TSF problems.

With causal convolutions in the TCN architecture, an output i is convolved only with the ith and
earlier elements in the previous layer. While causality should be kept in forecasting tasks, the potential
“future information leakage" problem exists only when the output and the input have temporal overlaps.
In other words, causal convolutions should be applied only in autoregressive forecasting, wherein the
previous output serves as the input for future prediction. When the predictions are completely based
on the known inputs in the look-back window, there is no need to use causal convolutions. We can
safely apply normal convolutions on the look-back window for forecasting.

More importantly, the dilated architecture in TCN has two inherent limitations:

• A single convolutional filter is shared within each layer. Such a unified convolutional kernel
tends to extract the average temporal features from the data/features in the previous layer.
However, complex time series may contain substantial temporal dynamics. Hence, it is
essential to extract distinct yet valuable features with a rich set of convolutional filters.

• While the final layer of the TCN model has the global view of the entire look-back window,
the effective receptive fields of the intermediate layers (especially those close to the inputs)
are limited, causing temporal relation loss during feature extraction.

The above limitations of the TCN architecture motivate the proposed SCINet design, as detailed in
the following section.
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Figure 2: The overall architecture of Sample Convolution and Interaction Network (SCINet).

3 SCINet: Sample Convolution and Interaction Network

SCINet adopts an encoder-decoder architecture. The encoder is a hierarchical convolutional network
that captures dynamic temporal dependencies at multiple resolutions with a rich set of convolutional
filters. As shown in Fig. 2(a), the basic building block, SCI-Block (Section 3.1), downsamples the
input data or feature into two sub-sequences and then processes each sub-sequence with a set of
convolutional filters to extract distinct yet valuable temporal features from each part. To compensate
for the information loss during downsampling, we incorporate interactive learning between the two
sub-sequences. Our SCINet (Section 3.2) is constructed by arranging multiple SCI-Blocks into a
binary tree structure (Fig. 2(b)). A distinctive advantage of such design is that each SCI-Block has
both local and global views of the entire time series, thereby facilitating the extraction of useful
temporal features. After all the downsample-convolve-interact operations, we realign the extracted
features into a new sequence representation and add it to the original time series for forecasting with
a fully-connected network as the decoder. To facilitate extracting complicated temporal patterns, we
could further stack multiple SCINets and apply intermediate supervision to get a Stacked SCINet
(Section 3.3), as shown in Fig. 2(c).
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3.1 SCI-Block

The SCI-Block (Fig. 2(a)) is the basic module of the SCINet, which decomposes the input feature F

into two sub-features F
′

odd and F
′

even through the operations of Spliting and Interactive-learning.

The Splitting procedure downsamples the original sequence F into two sub-sequences Feven and
Fodd by separating the even and the odd elements, which are of coarser temporal resolution but
preserve most information of the original sequence.

Next, we use different convolutional kernels to extract features from Feven and Fodd. As the
kernels are separate, the extracted features from them would contain distinct yet valuable temporal
relations with enhanced representation capabilities. To compensate for potential information loss with
downsampling, we propose a novel interactive-learning strategy to allow information interchange
between the two sub-sequences by learning affine transformation parameters from each other. As
shown in Fig. 2 (a), the interactive learning procedure consists of two steps.

First, Feven and Fodd are projected to hidden states with two different 1D convolutional modules ϕ
and ψ, respectively, and transformed to the formats of exp and interact to the Feven and Fodd with
the element-wise product (see Eq. (1)). This can be viewed as performing scaling transformation on
Feven and Fodd, where the scaling factors are learned from each other using neural network modules.
Here, ⊙ is the Hadamard product or element-wise production.

Fs
odd = Fodd ⊙ exp(ϕ(Feven)), Fs

even = Feven ⊙ exp(ψ(Fodd)). (1)
F

′
odd = Fs

odd ± ρ(Fs
even), F

′
even = Fs

even ± η(Fs
odd). (2)

Second, as shown in Eq. (11), the two scaled features Fs
even and Fs

odd are further projected to
another two hidden states with the other two 1D convolutional modules ρ and η, and then added to
or subtracted from1 Fs

even and Fs
odd. The final outputs of the interactive learning module are two

updated sub-features F
′

even and F
′

odd. The default architectures of ϕ, ψ, ρ and η are shown in the
Appendix C.

Compared to the dilated convolutions used in the TCN architecture, the proposed downsample-
convolve-interact architecture achieves an even larger receptive field at each convolutional layer. More
importantly, unlike TCN that employs a single shared convolutional filter at each layer, significantly
restricting its feature extraction capabilities, SCI-Block aggregates essential information extracted
from the two downsampled sub-sequences that have both local and global views of the entire time
series.

3.2 SCINet

With the SCI-Blocks presented above, we construct the SCINet by arranging multiple SCI-Blocks
hierarchically and get a tree-structured framework, as shown in Fig. 2 (b).

There are 2l SCI-Blocks at the l-th level, where l = 1, . . . , L is the index of the level, and L is
the total number of levels. Within the k-th SCINet of the stacked SCINet (Section 3.3), the input
time series X (for k=1) or feature vector X̂k−1={x̂k−1

1 , ..., x̂k−1
τ } (for k>1) is gradually down-

sampled and processed by SCI-Blocks through different levels, which allows for effective feature
learning of different temporal resolutions. In particular, the information from previous levels will be
gradually accumulated, i.e., the features of the deeper levels would contain extra finer-scale temporal
information transmitted from the shallower levels. In this way, we can capture both short-term and
long-term temporal dependencies in the time series.

After going through L levels of SCI-Blocks, we rearrange the elements in all the sub-features by
reversing the odd-even splitting operation and concatenate them into a new sequence representation.
It is then added to the original time series through a residual connection [12] to generate a new
sequence with enhanced predictability. Finally, a simple fully-connected network is used to decode
the enhanced sequence representation into X̂k={x̂k

1 , ..., x̂
k
τ}. Note that, to mitigate distribution shift

in some TSF tasks, before supplying the data in the look-back window to our model, all the data
elements are subtracted with the value of the last element, which is added to all the data elements in
the forecasting horizon afterwards.

1The selection of the operators in Eq.(2) affects the parameter initialization of our model and we show its
impact in the Appendix B.3.
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3.3 Stacked SCINet

When there are sufficient training samples, we could stack K layers of SCINets to achieve even better
forecasting accuracy (see Fig. 2 (c)), at the cost of a more complex model structure.

Specifically, we apply intermediate supervision [5] on the output of each SCINet using the ground-
truth values, to ease the learning of the intermediate temporal features. The output of the k-th
intermediate SCINet, X̂k with length τ , is concatenated with part of the input Xt−(T−τ)+1:t to
recover the length to the original input and feeded as input into the (k+1)-th SCINet, where
k = 1, . . . ,K−1, and K is the total number of the SCINets in the stacked structure. The output of
the K-th SCINet, X̂K , is the final forecasting results.

3.4 Loss Function

To train a stacked SCINet withK (K ≥ 1) SCINets, the loss of the k-th prediction results is calculated
as the L1 loss between the output of the k-th SCINet and the ground-truth horizontal window to be
predicted:

Lk =
1

τ

τ∑
i=0

∥∥x̂k
i − xi

∥∥ (3)

The total loss of the stacked SCINet can be written as:

L =

K∑
k=1

Lk. (4)

3.5 Complexity Analysis

Thanks to the downsampling procedure, the neurons at each convolutional layer of SCINet have
a larger receptive field than those of TCN. More importantly, the set of rich convolutional filters
in SCINet enable flexible extraction of temporal features from multiple resolutions. Consequently,
SCINet usually does not require downsampling the original sequence to the coarsest level for effective
forecasting. Given the look-back window size T , TCN generally requires ⌈log2 T ⌉ layers when the
dilation factor is 2, while the number of layers L in SCINet could be much smaller than log2 T . Our
empirical study shows that the best forecasting accuracy is achieved with L≤5 in most cases even
with large T (e.g., 168). As for the number of stacks K, our empirical study also shows that K≤3
would be sufficient.

Consequently, the computational cost of SCINet is usually on par with that of the TCN architecture.
The worst-case time complexity is O(T log T ), much less than that of vanilla Transformer-based
solutions: O(T 2).

4 Experiments

In this section, we show the quantitative and qualitative comparisons with the state-of-the-art models
for time series forecasting. We also present a comprehensive ablation study to evaluate the effec-
tiveness of different components in SCINet. More details on datasets, evaluation metrics, data
pre-processing, experimental settings, network structures and their hyper-parameters are shown in
the Appendix.

4.1 Datasets

We conduct experiments on 11 popular time series datasets: (1) Electricity Transformer Tempera-
ture [42] (ETTh) (2) Traffic (3) Solar-Energy (4) Electricity (5) Exchange-Rate (6) PeMS (PEMS03,
PEMS04, PEMS07 and PEMS08). A brief description of these datasets is listed in Table 1. All the
experiments on these datasets in this section are conducted under multi-variate TSF setting.

To make a fair comparison, we follow existing experimental settings, and use the same evaluation
metrics as the original publications [17, 26, 40, 19] in each dataset.
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Table 1: The overall information of the 11 datasets.

Datasets ETTh (1,2) ETTm1 Traffic Solar-Energy Electricity Exchange-Rate PEMS03 PEMS04 PEMS07 PEMS08
Variants 7 7 862 137 321 8 358 307 883 170

Timesteps 17,420 69,680 17,544 52,560 26,304 7,588 26,209 16,992 28,224 17,856
Granularity 1hour 15min 1hour 10min 1hour 1day 5min 5min 5min 5min
Start time 7/1/2016 7/1/2016 1/1/2015 1/1/2006 1/1/2012 1/1/1990 5/1/2012 7/1/2017 5/1/2017 3/1/2012
Task type Multi-step Multi-step Single-step Single-step Single-step Single-step Multi-step Multi-step Multi-step Multi-step

Data partition Follow [42] Training/Validation/Testing: 6/2/2 Training/Validation/Testing: 6/2/2

4.2 Results and Analyses

Table 2, 3, 4, 5, 6 provide the main experimental results of SCINet. We observe that SCINet shows
superior performance than other TSF models on various tasks, including short-term, long-term and
spatial-temporal time series forecasting.

Short-term Time Series Forecasting: we evaluate the performance of the SCINet in short-term TSF
tasks with other baseline methods on Traffic, Solar-Energy, Electricity and Exchange-Rate datasets.
The experimental setting is the same as [19], which uses the input length of 168 to forecast different
future horizons{3, 6, 12, 24}.

As can be seen in Table 2, the proposed SCINet outperforms existing RNN/TCN-based (LSTNet [19],
TPA-LSTM [34], TCN [4], TCN†) and Transformer-based [38, 42, 37] TSF solutions in most cases,
especially for the Solar-Energy and Exchange-Rate datasets. Note that, TCN† denotes a variant of
TCN wherein causal convolutions are replaced by normal convolutions, and improves the original
TCN across all the datasets, which supports our claim in Sec. 2.2. Moreover, we can also observe that
the Transformer-based methods have poor performance in this task. For short-term forecasting, the
recent data points are typically more important for accurate forecasting. However, the permutation-
invariant self-attention mechanisms used in Transformer-based methods do not pay much attention to
such critical information. In contrast, the general sequential models (RNN/TCN) can formulate it
easily, showing quite competitive results in short-term forecasting.

Table 2: Short-term forecasting performance comparison on the four datasets. The best results are
shown in bold and second best results are highlighted with underlined blue font. IMP shows the
improvement of SCINet over the best model.

Model SCINet Autoformer [40] Informer [42] Transformer [37] *TCN [4] *TCN† LSTNet [19] TPA-LSTM [34] IMP
Metric τ RSE CORR RSE CORR RSE CORR RSE CORR RSE CORR RSE CORR RSE CORR RSE CORR RSE

3 0.1775 0.9853 N/A N/A N/A N/A N/A N/A 0.1940 0.9835 0.1900 0.9848 0.1843 0.9843 0.1803 0.9850 1.55%
6 0.2301 0.9739 N/A N/A N/A N/A N/A N/A 0.2581 0.9602 0.2382 0.9612 0.2559 0.9690 0.2347 0.9742 1.96%
12 0.2997 0.9550 N/A N/A N/A N/A N/A N/A 0.3512 0.9321 0.3353 0.9432 0.3254 0.9467 0.3234 0.9487 7.33%Solar-Energy

24 0.4081 0.9112 N/A N/A N/A N/A N/A N/A 0.4732 0.8812 0.4676 0.8851 0.4643 0.8870 0.4389 0.9081 7.02%
3 0.4216 0.8920 0.5368 0.8268 0.5175 0.8515 0.5122 0.8555 0.5459 0.8486 0.5361 0.8540 0.4777 0.8721 0.4487 0.8812 6.04%
6 0.4414 0.8809 0.5462 0.8191 0.5258 0.8465 0.5455 0.8388 0.6061 0.8205 0.5992 0.8197 0.4893 0.8690 0.4658 0.8717 5.24%
12 0.4495 0.8772 0.5623 0.8082 0.5533 0.8279 0.5485 0.8317 0.6367 0.8048 0.6061 0.8205 0.4950 0.8614 0.4641 0.8717 3.15%Traffic

24 0.4453 0.8825 0.6020 0.7757 0.5883 0.8033 0.5934 0.8048 0.6586 0.7921 0.6456 0.7982 0.4973 0.8588 0.4765 0.8629 6.55%
3 0.0740 0.9494 0.1458 0.9032 0.1524 0.8858 0.1182 0.9055 0.0892 0.9232 0.0852 0.9293 0.0864 0.9283 0.0823 0.9439 10.09%
6 0.0845 0.9387 0.1555 0.8957 0.1932 0.8660 0.1328 0.8962 0.0974 0.9121 0.0924 0.9235 0.0931 0.9135 0.0916 0.9337 7.75%
12 0.0929 0.9305 0.1541 0.8907 0.1748 0.8585 0.1375 0.8849 0.1053 0.9017 0.0993 0.9173 0.1007 0.9077 0.0964 0.9250 3.63%Electricity

24 0.0967 0.9270 0.1754 0.8732 0.2110 0.8347 0.1461 0.8774 0.1091 0.9101 0.0989 0.9101 0.1007 0.9119 0.1006 0.9133 3.88%
3 0.0171 0.9787 0.0400 0.9458 0.1392 0.9473 0.0689 0.9759 0.0217 0.9693 0.0202 0.9712 0.0226 0.9735 0.0174 0.979 1.72%
6 0.0240 0.9704 0.0481 0.9197 0.1548 0.9207 0.0806 0.9671 0.0263 0.9633 0.0257 0.9628 0.0280 0.9658 0.0241 0.9709 0.41%
12 0.0331 0.9553 0.0638 0.9054 0.1793 0.8817 0.0893 0.9476 0.0393 0.9531 0.0352 0.9501 0.0356 0.9511 0.0341 0.9564 2.93%

Exchange
Rate

24 0.0436 0.9396 0.0651 0.8952 0.1998 0.7715 0.1127 0.9213 0.0492 0.9223 0.0487 0.9314 0.0449 0.9354 0.0444 0.9381 1.80%

- Autoformer, Informer and Transformer achieved by Autoformer [40] requires pre-prossessed datasets for training.
- N/A denotes no pre-prossessed dataset for training.
- ∗ denotes re-implementation. † denotes the variant with normal convolutions.

Long-term Time Series Forecasting: many real-world applications also require to predict long-term
events. Therefore, we conduct the experiments on Exchange Rate, Electricity ,Traffic and ETT
datasets to evaluate the performance of SCINet on long-term TSF tasks. In this experiment, we
only compare SCINet with Transformer-based methods [38, 18, 21, 42, 37, 25], since they are more
popular in recent long-term TSF research.

As can be seen from Table 3, the SCINet achieves state-of-the-art performances in most benchmarks
and prediction length settings. Overall, SCINet yields 39.89% average improvements on MSE among
the above settings. In particular, for Exchange-Rate, compared to previous state-of-the-art results,
SCINet gives average 65% improvements on MSE. We attribute it to that the proposed SCINet can
better capture both short (local temporal dynamics)- and long (trend, seasonality)-term temporal
dependencies to make an accurate prediction in long-term TSF.
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Table 3: Long-term forecasting performance comparison with Transformer-based models.
Model SCINet Autoformer [38] ∗Pyraformer [25] Informer [42] Transformer [37] LogTrans [21] Reformer [18] IMP
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

96 0.061 0.188 0.197 0.323 1.748 1.105 0.847 0.752 0.559 0.587 0.968 0.812 1.065 0.829 68.98%
192 0.106 0.244 0.300 0.369 1.874 1.151 1.204 0.895 1.168 0.835 1.040 0.851 1.188 0.906 64.70%
336 0.181 0.323 0.509 0.524 1.943 1.172 1.672 1.036 1.423 0.949 1.659 1.081 1.357 0.976 64.36%

Exchange
Rate

720 0.525 0.571 1.447 0.941 2.085 1.206 2.478 2.478 2.160 1.150 1.941 1.127 1.510 1.016 63.72%
96 0.168 0.253 0.201 0.317 0.386 0.449 0.274 0.368 0.263 0.359 0.258 0.357 0.312 0.402 16.42%
192 0.175 0.262 0.222 0.334 0.378 0.443 0.296 0.296 0.273 0.374 0.266 0.368 0.348 0.433 21.17%
336 0.189 0.278 0.231 0.338 0.376 0.443 0.300 0.394 0.277 0.373 0.280 0.380 0.350 0.433 18.19%Electricity

720 0.231 0.316 0.254 0.361 0.376 0.445 0.373 0.439 0.290 0.378 0.283 0.376 0.340 0.420 9.06%
96 0.613 0.395 0.613 0.388 0.867 0.468 0.719 0.391 0.638 0.354 0.684 0.384 0.732 0.423 0.00%
192 0.535 0.355 0.616 0.382 0.869 0.467 0.696 0.379 0.647 0.354 0.685 0.390 0.733 0.420 13.15%
336 0.540 0.359 0.622 0.337 0.881 0.469 0.777 0.420 0.669 0.364 0.733 0.408 0.742 0.420 13.18%Traffic

720 0.620 0.394 0.660 0.408 0.896 0.473 0.864 0.472 0.707 0.386 0.717 0.396 0.755 0.423 6.06%

- ∗ denotes re-implementation.

Table 4: Multivariate time-series forecasting results on the ETT datasets.
ETTh1 ETTh2 ETTm1
Horizon Horizon HorizonMethods Metrics

24 48 168 336 720 24 48 168 336 720 24 48 96 288 672
MSE 0.686 0.766 1.002 1.362 1.397 0.828 1.806 4.070 3.875 3.913 0.419 0.507 0.768 1.462 1.669LogTrans [21] MAE 0.604 0.757 0.846 0.952 1.291 0.750 1.034 1.681 1.763 1.552 0.412 0.583 0.792 1.320 1.461
MSE 0.991 1.313 1.824 2.117 2.415 1.531 1.871 4.660 4.028 5.381 0.724 1.098 1.433 1.820 2.187Reformer [18] MAE 0.754 0.906 1.138 1.280 1.520 1.613 1.735 1.846 1.688 2.015 0.607 0.777 0.945 1.094 1.232
MSE 0.650 0.702 1.212 1.424 1.960 1.143 1.671 4.117 3.434 3.963 0.621 1.392 1.339 1.740 2.736LSTMa [2] MAE 0.624 0.675 0.867 0.994 1.322 0.813 1.221 1.674 1.549 1.788 0.629 0.939 0.913 1.124 1.555
MSE 1.293 1.456 1.997 2.655 2.143 2.742 3.567 3.242 2.544 4.625 1.968 1.999 2.762 1.257 1.917LSTNet [19] MAE 0.901 0.960 1.214 1.369 1.380 1.457 1.687 2.513 2.591 3.709 L1700 1.215 1.542 2.076 2.941
MSE 0.577 0.685 0.931 1.128 1.215 0.720 1.457 3.489 2.723 3.467 0.323 0.494 0.678 1.056 1.192Informer [42] MAE 0.549 0.625 0.752 0.873 0.896 0.665 1.001 1.515 1.340 1.473 0.369 0.503 0.614 0.786 0.926
MSE 0.511 0.515 0.694 0.814 0.944 0.444 0.617 2.405 2.486 2.608 0.229 0.239 0.260 0.768 2.732*TCN [4] MAE 0.549 0.529 0.617 0.682 0.778 0.478 0.615 1.266 1.312 1.276 0.282 0.360 0.363 0.646 1.371
MSE 0.479 0.518 0.758 0.891 0.963 0.477 0.934 3.913 0.907 0.963 0.332 0.492 0.543 0.656 0.901*Pyraformer [25] MAE 0.499 0.520 0.665 0.738 0.782 0.537 0.764 1.557 0.747 0.783 0.383 0.475 0.510 0.598 0.720
MSE 0.406 0.478 0.493 0.515 0.499 0.260 0.311 0.466 0.472 0.480 0.408 0.499 0.540 0.636 0.699Autoformer [38] MAE 0.440 0.462 0.481 0.492 0.500 0.339 0.372 0.458 0.478 0.488 0.424 0.464 0.489 0.533 0.564
MSE 0.300 0.361 0.408 0.504 0.544 0.180 0.230 0.342 0.365 0.475 0.106 0.136 0.165 0.253 0.346SCINet MAE 0.342 0.388 0.417 0.495 0.527 0.263 0.303 0.380 0.409 0.488 0.202 0.230 0.252 0.315 0.376

IMP MSE 26.11% 24.48% 17.24% 2.14% -9.02% 30.77% 25.81% 26.61% 22.67% 1.04% 38.71% 22.83% 21.40% 49.59% 40.18%

- ∗ denotes re-implementation.

We conduct both Multivariate Time-series Forecasting and Univariate Time-series Forecasting on
ETT datasets [42]. For a fair comparison, we keep all input lengths T the same as those of Informer.
The results are shown in Table 4 and Table 5, respectively.

Multivariate Time-series Forecasting on ETT: as can be seen from Table 4, compared with RNN-based
methods such as LSTMa [2] and LSTnet [19], Transformer-based methods [18, 21, 42] produce
better forecasting results. One of the primary reasons is that, RNN-based solutions conduct iterative
forecasting and it is inevitable to suffer from error accumulation effects. As another direct forecasting
method, TCN further outperforms vanilla Transformer-based methods [18, 21, 42], because the
stacked convolutional layers allow for more effective local-to-global temporal relation learning for
multivariate time series. It is worth noting that SCINet outperforms all the above models by a large
margin. Fig. 3 presents the qualitative results on some randomly selected sequences of the ETTh1
dataset, which clearly demonstrate the capability of SCINet in obtaining the trend and seasonality of
time series for TSF.

Univariate Time-series Forecasting on ETT: in this experimental setting, we bring several strong
baseline methods for univariate forecasting into comparison, including ARIMA, Prophet [36],
DeepAR [32] and N-Beats [29]. In Table 5, we can observe that N-Beats is superior to other
baseline methods in most cases. In fact, N-Beats also takes the unique properties of time series into
consideration and directly learns a trend and a seasonality model using a deep stack of fully-connected
layers with residuals, which is a departure from the predominant architectures, such as RNNs, CNNs
and Transformers. Nevertheless, the performance of SCINet is still much better than N-Beats.

The newly-proposed Transformer-based forecasting model, Autoformer [38], achieves the second best
performance in all experimental settings and also surpasses SCINet in ETTm1 when the forecasting
horizon is large. This is because, on the one hand, Autoformer focuses on modeling seasonal patterns
and conducts self-attention at the sub-series level (instead of the raw data), which is much better in
extracting long-term temporal patterns than vanilla Transformer-based methods. On the other hand,
when forecasting long horizons, it is often the trend/seasonal information instead of the temporal
dynamics in the look-back window that play the primary role, wherein the advantages of SCINet are
not fully exhibited.
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Table 5: Univariate time-series forecasting results on the ETT datasets.
Methods Metrics

ETTh1 ETTh2 ETTm1
Horizon Horizon Horizon

24 48 168 336 720 24 48 168 336 720 24 48 96 288 672

ARIMA MSE 0.108 0.175 0.396 0.468 0.659 3.554 3.190 2.800 2.753 2.878 0.090 0.179 0.272 0.462 0.639
MAE 0.284 0.424 0.504 0.593 0.766 0.445 0.474 0.595 0.738 1.044 0.206 0.306 0.399 0.558 0.697

Prophet [36] MSE 0.115 0.168 1.224 1.549 2.735 0.199 0.304 2.145 2.096 3.355 0.120 0.133 0.194 0.452 2.747
MAE 0.275 0.330 0.763 1.820 3.253 0.381 0.462 1.068 2.543 4.664 0.290 0.305 0.396 0.574 1.174

DeepAR [32] MSE 0.107 0.162 0.239 0.445 0.658 0.098 0.163 0.255 0.604 0.429 0.091 0.219 0.364 0.948 2.437
MAE 0.280 0.327 0.422 0.552 0.707 0.263 0.341 0.414 0.607 0.580 0.243 0.362 0.496 0.795 1.352

N-Beats [29] MSE 0.042 0.065 0.106 0.127 0.269 0.078 0.123 0.244 0.270 0.281 0.031 0.056 0.095 0.157 0.207
MAE 0.156 0.200 0.255 0.284 0.422 0.210 0.271 0.393 0.418 0.432 0.117 0.168 0.234 0.311 0.370

Informer [42] MSE 0.098 0.158 0.183 0.222 0.269 0.093 0.155 0.232 0.263 0.277 0.030 0.069 0.194 0.401 0.512
MAE 0.247 0.319 0.346 0.387 0.435 0.240 0.314 0.389 0.417 0.431 0.137 0.203 0.372 0.554 0.644
MSE 0.057 0.103 0.090 0.106 0.120 0.110 0.123 0.188 0.225 0.257 0.025 0.039 0.057 0.103 0.110Autoformer [38] MAE 0.188 0.257 0.235 0.254 0.277 0.259 0.271 0.340 0.376 0.402 0.122 0.156 0.184 0.253 0.261
MSE 0.029 0.041 0.071 0.084 0.099 0.065 0.093 0.158 0.166 0.286 0.019 0.045 0.064 0.111 0.165SCINet MAE 0.127 0.154 0.210 0.234 0.250 0.183 0.227 0.311 0.329 0.429 0.084 0.138 0.183 0.252 0.316

IMP MSE 49.12% 60.19% 21.11% 20.75% 17.50% 40.90% 24.39% 15.96% 26.22% -11.28% 24.00% -15.38% -12.28% -7.76% -50.00%
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Figure 3: The prediction results (Horizon = 48) of SCINet, Autoformer, Informer, and TCN on
randomly-selected sequences from ETTh1 dataset.

Spatial-temporal Time Series Forecasting: besides the general TSF tasks, there is also a large
category of data related to spatial-temporal forecasting. For example, traffic datasets PeMS [9]
(PEMS03, PEMS04, PEMS07 and PEMS08) are complicated spatial-temporal time series for public
traffic network and they have been investigated for decades. Most recent approaches: DCRNN [22],
STGCN [41], ASTGCN [11], GraphWaveNet [39], STSGCN [35], AGCRN [3], LSGCN [15] and
STFGNN [20] use graph neural networks to capture spatial relations while modeling temporal
dependencies via conventional TCN or RNN/LSTM architectures. We follow the same experimental
settings as the above works. As shown in Table 6, these GNN-based methods generally perform
better than pure RNN or TCN-based methods. However, SCINet still achieves better performance
without sophisticated spatial relation modeling, which further proves the superb temporal modeling
capabilities of SCINet.
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Table 6: Performance comparison of different approaches on the PeMS datasets.
Methods IMPDatasets Metrics *LSTM *TCN *TCN† DCRNN STGCN ASTGCN(r) GraphWaveNet STSGCN STFGNN AGCRN LSGCN SCINet MAE

MAE 21.33 19.32 18.87 18.18 17.49 17.69 19.85 17.48 16.77 *15.98 - 14.98 6.26%
MAPE 21.33 19.93 18.63 18.91 17.15 19.40 19.31 16.78 16.30 *15.23 - 14.11 7.36%PEMS03
RMSE 35.11 33.55 32.24 30.31 30.12 29.66 32.94 29.21 28.34 *28.25 - 24.08 8.37%
MAE 25.14 23.22 22.81 24.70 22.70 22.93 25.45 21.19 19.83 19.83 21.53 18.95 4.44%

MAPE 20.33 15.59 14.31 17.12 14.59 16.56 17.29 13.90 13.02 12.97 13.18 11.86 8.56%PEMS04
RMSE 39.59 37.26 36.87 38.12 35.55 35.22 39.70 33.65 31.88 32.30 33.86 30.89 4.40%
MAE 29.98 32.72 30.53 28.30 25.38 28.05 26.85 24.26 22.07 *22.37 - 21.19 5.27%

MAPE 15.33 14.26 13.88 11.66 11.08 13.92 12.12 10.21 9.21 *9.12 - 8.83 3.18%PEMS07
RMSE 42.84 42.23 41.02 38.58 38.78 42.57 42.78 39.03 35.80 *36.55 - 34.03 6.89%
MAE 22.20 22.72 21.42 17.86 18.02 18.61 19.13 17.13 16.64 15.95 17.73 15.72 1.44%

MAPE 15.32 14.03 13.09 11.45 11.40 13.08 12.68 10.96 10.60 10.09 11.20 9.80 2.87%PEMS08
RMSE 32.06 35.79 34.03 27.83 27.83 28.16 31.05 26.80 26.22 25.22 26.76 24.76 1.82%

- dash denotes that the methods do not implement on this dataset. ∗ denotes re-implementation or re-training. † denotes the variant with normal convolutions.

Predictability estimation: inspired by [16, 30], we use permutation entropy (PE) [6] to measure the
predictability of the original input and the enhanced representation learnt by SCINet. Time series with
lower PE values are regarded as less complex, thus theoretically easier to predict2. The PE values of
the original time series and the corresponding enhanced representations are shown in Table 7.

Table 7: Permutation entropy comparison before and after SCINet.
Permutation Entropy Datasets

ETTh1 Traffic Solar-Energy Electricity Exc-rate PEMS03 PEMS04 PEMS07 PEMS08
Parameters m (τ = 1)∗ 6 6 7 6 6 6 6 6 6

Value Original Input 0.8878 0.9371 0.4739 0.9489 0.8260 0.9649 0.9203 0.9148 0.9390
Enhanced Representation 0.7096 0.8832 0.3537 0.8901 0.7836 0.8377 0.8749 0.8330 0.8831

∗ m (embedding dimension) and τ (time-lag) are two parameters used for calculating PE, and the values are selected following [30, 16].

As can be observed, the enhanced representations learnt by SCINet indeed have lower PE values
compared with the original inputs, which indicates that it is easier to predict the future from the
enhanced representations using the same forecaster.

4.3 Ablation studies

To evaluate the impact of each main component used in SCINet, we experiment on several model
variants on two datasets: ETTh1 and PEMS08.

SCIBlock: we first set the number of stacks K = 1 and the number of SCINet levels L = 3 .
For the SCI-Block design, to validate the effectiveness of the interactive learning and the distinct
convolution weights for processing the sub-sequences, we experiment on two variants, namely w/o.
InterLearn and WeightShare. The w/o. InterLearn is obtained by removing the interactive-learning
procedure described in Eq. (1) and (11). In this case, the two sub-sequences would be updated using
F

′

odd=ρ(ϕ(Fodd)) and F
′

even=η(ψ(Feven)). For WeightShare, the modules ϕ, ρ, ψ, and η share
the same weight.

The evaluation results in Fig. 4 show that both interactive learning and distinct weights are essential,
as they improve the prediction accuracies of both datasets at various prediction horizons. At the same
time, comparing Fig. 4(a) with Fig. 4(b), we can observe that interactive learning is more effective for
cases with longer look-back window sizes. This is because, intuitively, we can extract more effective
features by exchanging information between the downsampled sub-sequences when there are longer
look-back windows for such interactions.

SCINet: for the design of SCINet with multiple levels of SCI-Blocks, we also experiment on two
variants. The first variant w/o. ResConn is obtained by removing the residual connection from the
complete SCINet. The other variant w/o. Linear removes the decoder (i.e., the fully-connected
layer) from the complete model. As can be observed in Fig. 4, removing the residual connection
leads to a significant performance drop. Besides the general benefit in facilitating the model training,
more importantly, the predictability of the original time series is enhanced with the help of residuals.
The fully-connected layer is also critical for prediction accuracy, indicating the effectiveness of

2Please note that PE is only a quantitative measurement based on complexity. It would not be proper to say
that a time series with lower PE value will be always easier to predict than a different type of time series with a
higher PE value because the prediction accuracy also depends on many other factors, such as the available data
for training, the trend and seasonality elements of the time series data, as well as the predictive model.

9



w/o ResCon
w/o Linear
w/o InterLearn
WeightShare
Complete

M
ea

n 
Ab

so
lu

te
 E

rr
or

M
ea

n 
Ab

so
lu

te
 E

rr
or

(a) ETTh1(H = 720) (b) PEMS08(H = 12)

w/o ResCon
w/o Linear
w/o InterLearn
WeightShare
Complete

Figure 4: Component analysis of SCINet on two datasets. Smaller values are better. See Section 4.3.

the decoder in extracting and fusing the most relevant temporal information according to the given
supervision for prediction.

We also conduct comprehensive ablation studies on the impact of K (number of stacks) and L
(number of levels), and the selection of operator in the interact learning mechanism. These results are
shown in the Appendix B.2 due to space limitation.

5 Limitations and Future Work

In this paper, we mainly focus on TSF problem for the regular time series collected at even intervals of
time and ordered chronologically. However, in real-world applications, the time series might contain
noisy data, missing data or collected at irregular time intervals, which is referred to as irregular
time series. The proposed SCINet is relatively robust to the noisy data thanks to the progressive
downsampling and interactive learning procedure, but it might be affected by the missing data if
the ratio exceeds a certain threshold, wherein the downsampling-based multi-resolution sequence
representation in SCINet may introduce biases, leading to poor prediction performance. The proposed
downsampling mechanism may also have difficulty handling data collected at irregular intervals. We
plan to take the above issues into consideration in the future development of SCINet.

Moreover, this work focuses on the deterministic time series forecasting problem. Many application
scenarios require probabilistic forecasts, and we plan to revise SCINet to generate such prediction
results.

Finally, while SCINet generates promising results for spatial-temporal time series without explicitly
modeling spatial relations, the forecasting accuracy could be further improved by incorporating
dedicated spatial models. We plan to investigate such solutions in our future work.

6 Conclusion

In this paper, we propose a novel neural network architecture, sample convolution and interaction
network (SCINet) for time series modeling and forecasting, motivated by the unique properties
of time series data compared to generic sequence data. The proposed SCINet is a hierarchical
downsample-convolve-interact structure with a rich set of convolutional filters. It iteratively extracts
and exchanges information at different temporal resolutions and learns an effective representation
with enhanced predictability. Extensive experiments on various real-world TSF datasets demonstrate
the superiority of our model over state-of-the-art methods.
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The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.

• Did you include the license to the code and datasets? [No] The code and the data are
proprietary.

• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See section 5
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] See the
Appendix and link in abstract.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See the Appendix

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See the Appendix

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] Detail seen in
Appendix.

(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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