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Abstract
There has been a huge effort to tackle the Do-
main Generalization (DG) problem with a focus
on developing new loss functions. Inspired by the
capabilities of the diffusion models, we pose a
pivotal question: Can diffusion models function
as data augmentation tools to address DG from a
data-centric perspective, rather than relying on the
loss functions? We show that trivial cross domain
data augmentation (CDGA) along with the vanilla
ERM using readily available diffusion models out-
performs state-of-the-art (SOTA) DG algorithms.
To justify the success of CDGA, we experimen-
tally show that CDGA reduces the distribution
shift between domains which is the main reason
behind the lack of out-of-distribution (OOD) gen-
eralization of ERM under domain shift. These
results advocate for further investigation into the
potential of SOTA generative models for tackling
the representation learning problem.

1. Introduction
Out-of-distribution (OOD) generalization is a pivotal abil-
ity for deep learning models in real-world scenarios. The
prevalent setting for investigating OOD generalization is
termed domain generalization (DG) Blanchard et al. (2011),
involving multiple source domains to generalize to an un-
seen target domain. In DG problems, there is a shift be-
tween the training domains and the target domain which
makes the models trained using Empirical Risk Minimiza-
tion (ERM) (Vapnik, 1999) struggle to maintain their perfor-
mance in the target domain. To enhance OOD generalization
of ERM within the DG framework, researchers have pro-
posed innovative loss functions based on different forms
of invariant representation learning on feature level (Sun
& Saenko, 2016; Ganin et al., 2016; Li et al., 2018; Tzeng
et al., 2014), classifier head (Arjovsky et al., 2019), loss
(Krueger et al., 2021) and gradient/Hessian (Parascandolo
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et al., 2020; Shahtalebi et al., 2021; Koyama & Yamaguchi,
2020; Shi et al., 2021; Hemati et al., 2023). Similar to
our work, there is another line of work that explores data
augmentation-based algorithms for DG (Gulrajani & Lopez-
Paz, 2020; Somavarapu et al., 2020; Zhou et al., 2021; Car-
lucci et al., 2019; Ilse et al., 2021; Zhang et al., 2017).
Nevertheless, none of these approaches consistently outper-
form others across all datasets, as illustrated by DomainBed
benchmark (Gulrajani & Lopez-Paz, 2020). This observa-
tion suggests that a singular regularizer capable of capturing
all invariances might not exist. Given the diverse shifts
present in each dataset, encompassing correlation shift, di-
versity shift, label shift, etc. it is highly possible that a rigid,
data-independent regularizer may not be able to mitigate
different types of spurious correlations and shifts. Addi-
tionally, the incorporation of sub-optimal regularizers can
impose excessive risk (Sener & Koltun, 2022), additional
hyperparameters, and computational load to ERM.

Recent advances in diffusion-based generative models (Ho
et al., 2020; Song et al., 2020; Rombach et al., 2022; Zhang
& Agrawala, 2023) demonstrate their capability to achieve
SOTA image quality. Recently, it has been shown that syn-
thetic images generated by diffusion models can boost rep-
resentation learning performance. Tian et al. (2023) showed
in the self-supervised learning, synthetic images generated
by stable diffusion models can enhance SimCLR (Chen
et al., 2020). Inspired by these advancements in generative
foundation models, rather than relying solely on traditional
loss functions, we attempt to address the DG problem from
a data-centric standpoint. Specifically, the capability of
Denoising Diffusion Models (Ho et al., 2020; Song et al.,
2020; Rombach et al., 2022) in generating high-fidelity syn-
thetic images offers an innovative approach for advanced
data augmentation, to enhance OOD generalization. To ex-
amine this hypothesis, we employ a straightforward Cross
Domain Generative Augmentation (CDGA) method. In
CDGA, synthetic images are generated conditioned on im-
ages or text descriptions from all possible combinations of
the training domain pairs using a pre-trained latent diffu-
sion model (LDM) (Rombach et al., 2022). We show that
applying vanilla ERM along with generated and real images
outperforms the previous state-of-the-art algorithms across
all datasets in the DomainBed benchmark. Our empirical
investigations show that generated synthetic images miti-
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gate the domain shift across domains while preserving the
semantic information inherent to each class. From a the-
oretical standpoint, CDGA along with ERM is equivalent
to replacing pointwise kernel estimates in ERM with new
density estimates in the proximity of domain pairs. This
modification to ERM reduces the inherent data estimation
error in the presence of domain shift, subsequently enhanc-
ing its out-of-distribution (OOD) performance. To the best
of our knowledge, we are the first to utilize latent diffusion
models as a data-centric approach for DG.

2. Cross Domain Generative Augmentation
In this section, we provide a detailed description of CDGA.
CDGA utilizes LDM to perform a transformation denoted by
M(·). This transformation takes two arguments as inputs: a
data point in one domain and a guidance attribute in another
domain from the same class. Formally,

x̃i,j
k = M(xi

k,guide
j), (1)

where x̃i,j
k is a synthetic image transformed from domains i

and j, generated from the k-th sample in Si. The attribute
guidej serves as guidance towards another domain, Sj ,
within the same class.

In CDGA, each data point in domain Si undergoes transfor-
mation to all n domains, including its own domain. This
augmentation increases the number of samples for domain
Si from |Si| to (b×n+1)× |Si|, where n is the number of
training domains, |Si| is the number of data points in Si, and
b is the generation batch size. Furthermore, we introduce
CDGA∗, where we assume access to a guidance attribute of
the target domain. In this scenario, the size of domain Si

increases from |Si| to (b× (n+1)+1)×|Si|. the workflow
is illustrated in Figure 1.

CDGA with Prompt Guidance (CDGA-PG): In CDGA-
PG, given the k-th image in Si, i.e., xk

i , the guidance at-
tribute guidej is a domain description text prompt that
represents the same class in Sj . Having the image and
the prompt guidance, we use the LDM to generate b syn-
thetic images which we expect to interpolate domains i
and j for the same class. For each image in Si, we per-
form these image translations for all the training domains
j, ∀j ∈ {1, ..., n}. We also consider the scenario where we
can utilize the target domain description, i.e., guideT as
the guidance.

CDGA with Image Guidance (CDGA-IG): For scenarios
where a text prompt description of domains is not available,
CDGA-IG is used where the guidance is an image from Sj

instead of a text description. More precisely, in CDGA-IG
we attempt to mix two images from two different domains
which is also known as the image mixer in the literature.
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Figure 1: Illustration of CDGA. For each input image of a
domain, we generate a new image using the image or the
description of another domain. The generated image is an
interpolation between two domains.

3. CDGA Outperforms SOTA
In this section, we compare CDGA + ERM with SOTA
DG training methods, demonstrating its superior perfor-
mance. We assess CDGA and CDGA∗ on for datasets,
namely VLCS (Fang et al., 2013), PACS (Li et al., 2017),
OfficeHome (Venkateswara et al., 2017), and DomainNet
(Peng et al., 2019), using the DomainBed benchmark (Gul-
rajani & Lopez-Paz, 2020). This benchmark has gained
popularity as a fair and standard evaluation platform for
domain generalization algorithms. The evaluation process
involves comparing DG algorithms across 20 hyperparame-
ter choices and 3 trials, utilizing three distinct model selec-
tion techniques. To demonstrate CDGA’s effectiveness, we
present its evaluation results using the DomainBed bench-
mark in Tables 1-4. The tables follow a format of presenting
the first and second results. For brevity, we report only the
top five performing algorithms for each model selection,
with full results available in the Appendix D. Examining Ta-
bles 1-4, CDGA∗ consistently achieves SOTA performance
across all datasets and model selection techniques. Specifi-
cally, we applied prompt guidance for PACS, OfficeHome,
and DomainNet, while using image guidance (i.e., image
mixer) for VLCS. The code implementation for deploying
CDGA-generated data within the DomainBed scheme is
detailed in Appendix F.

4. CDGA Reduces Domain Shift
In this section, we empirically validate that CDGA reduces
domain shift. To validate the efficacy of CDGA in mitigat-
ing domain shift, we employ five domain shift quantification
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Table 1: DomainBed benchmark for training-domain vali-
dation set model selection method.

Algorithm PACS OfficeHome DomainNet Avg

ERM 85.5 ± 0.2 66.5 ± 0.3 40.9 ± 1.8 64.3
CORAL 86.2 ± 0.3 68.7 ± 0.3 41.5 ± 0.1 65.5
SagNet 86.3 ± 0.2 68.1 ± 0.1 40.3 ± 0.1 64.9
Fish 85.5 ± 0.3 68.6 ± 0.4 42.7 ± 0.2 65.6
Fishr 85.5 ± 0.4 67.8 ± 0.1 41.7 ± 0.0 65.0
HGP 84.7 ± 0.0 68.2 ± 0.0 41.1 ± 0.0 64.7

ERM + CDGA-PG 88.5 ± 0.5 68.2 ± 0.6 43.7 ±0.1 66.6
ERM + CDGA-PG∗ 89.5 ± 0.3 70.8 ± 0.6 44.8 ±0.0 68.4

Table 2: DomainBed benchmark for leave-one-domain-out
cross-validation model selection.

Algorithm PACS OfficeHome DomainNet Avg

ERM 83.0 ± 0.7 65.7 ± 0.5 40.6 ± 0.2 63.1
CORAL 82.6 ± 0.5 68.5 ± 0.2 41.1 ± 0.1 64.1
SagNet 82.3 ± 0.1 67.6 ± 0.3 40.2 ± 0.2 63.4
MLDG 82.9 ± 1.7 66.1 ± 0.5 41.0 ± 0.2 63.3
HGP 82.2 ± 0.0 67.5 ± 0.0 41.1 ± 0.0 63.6
Hutchinson 84.8 ± 0.0 68.5 ± 0.0 41.4 ± 0.0 64.9

ERM + CDGA-PG 86.8 ± 0.4 68.7 ± 0.4 43.6 ±0.1 66.2
ERM + CDGA-PG∗ 88.4 ± 0.5 70.2 ± 0.4 44.8 ±0.0 67.8

techniques from the literature on the PACS dataset. Specifi-
cally, we utilize t-SNE visualization of feature embeddings,
near-duplicate analysis (Oquab et al., 2023), and diversity
shift metrics (Ye et al., 2022) to quantify the shift between
domains.

4.1. Domain shift Visualization

To visualize domain shifts in CDGA-based data for the class
"dog" across all domains (P, A, C, and S), we generate syn-
thetic images for A → A, A → P, A → C, and A → S.
Subsequently, we utilize the pretrained CLIP ViT-B/32 im-
age encoder (Radford et al., 2021) to extract features from
both real and synthetic images. These features are then
projected onto a two-dimensional space using t-SNE and
presented in Figure 2. Notably, the cross-domain synthetic
images effectively interpolate between different domains,
addressing the desired distribution shift. In Figure 2, exam-
ining domains A (in red) and S (in pink) reveals a significant
distribution shift in their two-dimensional representations,
despite all images belonging to the dog class. However, A
→ S synthetic images seamlessly bridge the gap between A
and S representations. Refer to Figure 9 in the Appendix C
for t-SNE plots of other classes.

4.2. Diversity Shift

Ye et al. (2022) proposed a numerical method to measure
diversity shift which is equivalent to total variation (Zhang
et al., 2021) to quantify domain shift. Diversity shift is usu-

Table 3: DomainBed benchmark test-domain validation
set (oracle)model selection method.

Algorithm PACS OfficeHome DomainNet Avg

ERM 86.7 ± 0.3 66.4 ± 0.5 41.3 ± 0.1 64.8
Mixup 86.8 ± 0.3 68.0 ± 0.2 39.6 ± 0.1 64.8
MLDG 86.8 ± 0.4 66.6 ± 0.3 41.6 ± 0.1 65.0
CORAL 87.1 ± 0.5 68.4 ± 0.2 41.8 ± 0.1 65.8
SagNet 86.4 ± 0.4 67.5 ± 0.2 40.8 ± 0.2 64.9
Fish 85.8 ± 0.6 66.0 ± 2.9 43.4 ± 0.3 65.1
Fishr 86.9 ± 0.2 68.2 ± 0.2 41.8 ± 0.2 65.6
Hutchinson 86.3 ± 0.0 68.4 ± 0.0 41.9 ± 0.0 65.5

ERM + CDGA-PG 89.6 ± 0.3 68.8 ± 0.3 44.4 ±0.1 67.2
ERM + CDGA-PG∗ 90.4 ± 0.3 70.2 ± 0.2 44.8 ±0.0 68.5

Table 4: DomainBed benchmark on VLCS dataset.

Method
Training
domain

Leave-one
-domain-out Oracle

ERM 77.5 ± 0.4 77.2 ± 0.4 77.6 ± 0.3

CORAL 78.8 ± 0.6 78.7 ± 0.4 77.7 ± 0.2

SagNet 77.8 ± 0.5 77.5 ± 0.3 77.6 ± 0.1

Fishr 77.8 ± 0.1 78.2 ± 0.0 78.2 ± 0.2

HGP 77.6 ± 0.0 76.7 ± 0.0 77.3 ± 0.0

Hutchinson 76.8 ± 0.0 79.3 ± 0.0 77.9 ± 0.0

ERM + CDGA-IG 78.9 ± 0.3 77.9 ± 0.5 79.5 ± 0.1

ally due to the novel domain-specific features in the data. We
employ the proposed algorithm by Ye et al. (2022) to quan-
tify and compare diversity shift between training domains
and the target domain in a leave-one domain out scheme for
PACS real data, CDGA-PACA, and CDGA∗-PACS datasets.
Figure 5 (left) shows both CDGA and CDGA∗ reduce the
diversity shift between training domains and the target do-
main.

4.3. Near-duplicate Analysis

We employ near-duplicate image detection on images gen-
erated using CDGA to quantify the similarity between the
generated and original images in each domain. Following
the self-supervised image retrieval technique outlined in
(Oquab et al., 2023), we utilize the pretrained CLIP ViT-
B/32 image encoder (Radford et al., 2021) to extract embed-
dings and calculate cosine similarity between original and
generated images. For each original image, if at least one
image in a generated domain exhibits a cosine similarity
above 0.95, we categorize the original domain as having a
near-duplicate. Figure 3 provides a summarized view of this
experiment for the case of generated images from domain
C, while the complete results are available in Figure 7 in
the Appendix B. In Figure 3, we report, for each original
domain, the percentage of near-duplicates relative to the
original domain size. Clearly, generating synthetic images
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Figure 2: The t-SNE plot of features extracted from the
original PACS dataset and generated images by CDGA from
A domain. This figure shows that CDGA can fill the gap
between the original domains. Check Section 4 for details.
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Figure 3: Heat map of the percentage of near-duplicates of
each original domain in the generated domains. This table
shows that using target-domain description results in more
near-duplicate images.

within the manifold between training domains allows us
to obtain examples that are near-duplicates of the target
domain. Figure 4 showcases some of the near-duplicates
identified for a sample image in the S domain using this
technique. Additional examples can be found in Figure 8 in
the Appendix B.

5. Conclusions
In this paper, we showed that a simple cross domain gen-
erative augmentation (i.e., CDGA) alongside ERM outper-
forms SOTA DG algorithms in the standard DomainBed
benchmark. Empirically, using different distribution shift
quantification techniques, we observe that the generated
synthetic images from the vicinity distribution around each
domain pair lead to a significant reduction in distribution
shift between training domains after applying CDGA. Mit-
igating the distribution shift between domains reduces the
estimation error of true data distribution in ERM which re-
sulted in SOTA domain generalization of ERM along with
CDGA. Our work provides a novel data-centric point of
view for domain generalization, in the era of generative
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Original images used
for augmentation

Cartoon  SketchCartoon

Cartoon  CartoonCartoon
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CDGA

Figure 4: Examples of near-duplicates (right-most column)
found for the dog image in Sketch domain (left-most col-
umn) that are generated using CDGA from the original
images (middle column).
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Figure 5: (left) Diversity shift as a measure of iid-ness of
PACS (raw data) against CDGA, and CDGA∗ augmented
datasets. Each column is the target domain and the rest
of the domains are training domains. CDGA and CDGA∗

reduce the diversity shift.

foundation models. For future work, we plan to dive into
the possible theoretical implications of employing CDGA
and the reasons behind the superior performance of this
basic data generation technique compared to complex DG
algorithms.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Implementation Details
Models: We use the pretrained, version 1.4 of stable diffusion (Rombach et al., 2022) without finetuning as our base LDM.
For the implementation of CDGA-IG, we use the image mixer that has been fine-tuned by Justin Pinkney at Lambda Labs
(Pinkney, 2023) to accept CLIP image embeddings. For image generation, we do not tune any hyperparameters (e.g.,
strength, steps, etc) and all the parameters are set to their default values of the (Rombach et al., 2022) repository.

Prompts: For CDGA-PG, we use both the classes of the images and the domain description in the text prompts as guidance.
The complete list of the prompts used for each domain in each dataset is in appendix E.

Implementation method: For implementing CDGA, we use offline augmentation where we first generate images between
each pair of training domains (the workflow is illustrated in Figure 1), and then start the training process. The folder structure
of our implementation for the PACS dataset when using P and A domains as train domains and S domain for test domain is
illustrated in Figure 6. For all the methods, we set generation batch size b = 1 unless stated otherwise.

ERM ERM+CDGA ERM+CDGA*

S S S

Te
st

Tr
ai
n P

P,P
P,A

A
A,A
A,P

P
P,P
P,A

A
A,A
A,P

P,S A,S

P A

Figure 6: Illustration of the implementation structure of ERM, CDGA, and CDGA∗ on PACS dataset when using P and A
domains as training and S as target domain.

Hardware: We use two clusters of four V100 NVIDIA GPUs for generation and benchmarks.

B. Test Domain Near-duplication Analysis Full Results
To quantify how much the generated images are similar to the original images for each domain, in section ??, Figures 3 and
4 we presented the summarised results for near-duplicate image detection. More precisely, near-duplicate image detection
was applied to images generated using CDGA to quantify how much the generated images are similar to the original images
for each domain. Here, we present the extended version of these results in Figures 7 and 8 respectively. In Figure 7, for
each original domain, we report the percentage of near-duplicates over the size of the original domain. Clearly, generating
synthetic images that exist in the manifold between training domains enables us to have examples near-duplicate to the
target domain. Figure 8 shows multiple examples where the synthetically generated images are near-duplicates to real data.
These examples show how CDGA can reduce the domain shift between training domains and the target domain.
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Figure 7: Heat map of the number of near-duplicates of each target domain that are in each original and generated dataset.
This table shows that using test-domain description results in more near-duplicate images.

7



Cross Domain Generative Augmentation

Photo

Sketch

Art Photo Photo  ArtArtCartoon

SketchCartoon Cartoon  CartoonCartoon

Cartoon  PhotoCartoonArt  PhotoArt

Original image Generated
near-duplicates

Original images used
for augmentation

Generated
near-duplicates

Original images used
for augmentation

CDGA*

CDGA*CDGA*

CDGA*

CDGA*

CDGA

Figure 8: Illustration of near-duplicates of three images from the test domain (left-most column) that are generated using
cross-domain generative augmentation (denoted by the arrow) from the original images and are in the training domain.

C. t-SNE plots
In Figure 2, we presented a 2D projection of the original PACS dataset from all domains along with CDGA-based data
obtained from Domain A only for the “Dog" class. This figure showed how the cross-domain synthetic images interpolate
different domains as we desired. Here in Figure 9, we present the results of this experiment for all other classes in the PACS
dataset. As can be seen, for most classes the synthetic examples consistently reduce the domain shift which results in better
OOD performance of ERM.

D. DomainBed benchmark full results
To save space in the main paper, for the DomainBed results in Tables 1- 4 we only reported the five top-performing methods
for each model selection technique. Here in Tables 5, 6, 7, and 8 we present the results for all algorithms that have been
tested on the DomainBed benchmark (Rame et al., 2022; Gulrajani & Lopez-Paz, 2020). Given that all the results presented
for the DomainBed so far are averaged performances for the leave-one-domain-out experiments. The detailed per-domain
results for PACS, OfficeHome, DomainNet, and VLCS are presented in Tables 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and
20.
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Figure 9: The t-SNE plot of features extracted from the original PACS dataset and generated images using CDGA by the
LDM from A domain for all classes. This figure shows that CDGA can fill the gap between domains.
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Table 5: DomainBed benchmark for training-domain validation set model selection method. We format first, second and
worse than ERM results.

Algorithm PACS OfficeHome DomainNet Avg

ERM 85.5 ± 0.2 66.5 ± 0.3 40.9 ± 1.8 64.3
IRM 83.5 ± 0.8 64.3 ± 2.2 33.9 ± 2.8 60.6
GroupDRO 84.4 ± 0.8 66.0 ± 0.7 33.3 ± 0.2 61.2
Mixup 84.6 ± 0.6 68.1 ± 0.3 39.2 ± 0.1 64.0
MLDG 84.9 ± 1.0 66.8 ± 0.6 41.2 ± 0.1 64.3
CORAL 86.2 ± 0.3 68.7 ± 0.3 41.5 ± 0.1 65.5
MMD 84.6 ± 0.5 66.3 ± 0.1 23.4 ± 9.5 58.1
DANN 83.6 ± 0.4 65.9 ± 0.6 38.3 ± 0.1 62.6
CDANN 82.6 ± 0.9 65.8 ± 1.3 38.3 ± 0.3 62.2
MTL 84.6 ± 0.5 66.4 ± 0.5 40.6 ± 0.1 63.9
SagNet 86.3 ± 0.2 68.1 ± 0.1 40.3 ± 0.1 64.9
ARM 85.1 ± 0.4 64.8 ± 0.3 35.5 ± 0.2 61.8
V-REx 84.9 ± 0.6 66.4 ± 0.6 33.6 ± 2.9 61.6
RSC 85.2 ± 0.9 65.5 ± 0.9 38.9 ± 0.5 63.2
AND-mask 84.4 ± 0.9 65.6 ± 0.4 37.2 ± 0.6 62.4
SAND-mask 84.6 ± 0.9 65.8 ± 0.4 32.1 ± 0.6 60.8
Fish 85.5 ± 0.3 68.6 ± 0.4 42.7 ± 0.2 65.6
Fishr 85.5 ± 0.4 67.8 ± 0.1 41.7 ± 0.0 65.0
HGP 84.7 ± 0.0 68.2 ± 0.0 41.1 ± 0.0 64.7
Hutchinson 83.9 ± 0.0 68.2 ± 0.0 41.6 ± 0.0 64.6

ERM + CDGA-PG 88.5 ± 0.5 68.2 ± 0.6 43.1 ±0.0 66.6
ERM + CDGA-PG∗ 89.5± 0.3 70.8 ± 0.6 44.8 ±0.0 68.4

Table 6: DomainBed benchmark for leave-one-domain-out cross-validation model selection. We format first, second and
worse than ERM results.

Algorithm PACS OfficeHome DomainNet Avg

ERM 83.0 ± 0.7 65.7 ± 0.5 40.6 ± 0.2 63.1
IRM 81.5 ± 0.8 64.3 ± 1.5 33.5 ± 0.3 59.8
GroupDRO 83.5 ± 0.2 65.2 ± 0.2 33.0 ± 0.3 60.6
Mixup 83.2 ± 0.4 67.0 ± 0.2 38.5 ± 0.3 62.9
MLDG 82.9 ± 1.7 66.1 ± 0.5 41.0 ± 0.2 63.3
CORAL 82.6 ± 0.5 68.5 ± 0.2 41.1 ± 0.1 64.1
MMD 83.2 ± 0.2 60.2 ± 5.2 23.4 ± 9.5 55.6
DANN 81.0 ± 1.1 64.9 ± 1.2 38.2 ± 0.2 61.4
CDANN 78.8 ± 2.2 64.3 ± 1.7 38.0 ± 0.1 60.4
MTL 83.7 ± 0.4 65.7 ± 0.5 40.6 ± 0.1 63.3
SagNet 82.3 ± 0.1 67.6 ± 0.3 40.2 ± 0.2 63.4
ARM 81.7 ± 0.2 64.4 ± 0.2 35.2 ± 0.1 60.4
V-REx 81.3 ± 0.9 64.9 ± 1.3 33.4 ± 3.1 59.9
RSC 82.6 ± 0.7 65.8 ± 0.7 38.9 ±0.5 62.4
HGP 82.2 ± 0.0 67.5 ± 0.0 41.1 ± 0.0 63.6
Hutchinson 84.8 ± 0.0 68.5 ± 0.0 41.4 ± 0.0 64.9

ERM + CDGA-PG 86.8 ±0.4 68.7 ± 0.4 43.1 ± 0.0 66.2
ERM + CDGA-PG∗ 88.4 ±0.5 70.2 ± 0.4 44.8 ± 0.0 67.8
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Table 7: DomainBed benchmark for test-domain validation set (oracle) model selection method. We format first, second
and worse than ERM results.

Algorithm PACS OfficeHome DomainNet Avg

ERM 86.7 ± 0.3 66.4 ± 0.5 41.3 ± 0.1 64.8
IRM 84.5 ± 1.1 63.0 ± 2.7 28.0 ± 5.1 58.5
GroupDRO 87.1 ± 0.1 66.2 ± 0.6 33.4 ± 0.3 62.2
Mixup 86.8 ± 0.3 68.0 ± 0.2 39.6 ± 0.1 64.8
MLDG 86.8 ± 0.4 66.6 ± 0.3 41.6 ± 0.1 65.0
CORAL 87.1 ± 0.5 68.4 ± 0.2 41.8 ± 0.1 65.8
MMD 87.2 ± 0.1 66.2 ± 0.3 23.5 ± 9.4 59.0
DANN 85.2 ± 0.2 65.3 ± 0.8 38.3 ± 0.1 62.9
CDANN 85.8 ± 0.8 65.3 ± 0.5 38.5 ± 0.2 63.2
MTL 86.7 ± 0.2 66.5 ± 0.4 40.8 ± 0.1 64.7
SagNet 86.4 ± 0.4 67.5 ± 0.2 40.8 ± 0.2 64.9
ARM 85.8 ± 0.2 64.8 ± 0.4 36.0 ± 0.2 62.2
V-REx 87.2 ± 0.6 65.7 ± 0.3 30.1 ± 3.7 61.0
RSC 86.2 ± 0.5 66.5 ± 0.6 38.9 ± 0.6 63.9
AND-mask 86.4 ± 0.4 66.1 ± 0.2 37.9 ± 0.6 63.5
SAND-mask 85.9 ± 0.4 65.9 ± 0.5 32.2 ± 0.6 61.3
Fish 85.5 ± 0.3 68.6 ± 0.4 42.7 ± 0.2 65.6
Fishr 85.8 ± 0.6 66.0 ± 2.9 43.4 ± 0.3 65.1
Hutchinson 86.3 ± 0.0 68.4 ± 0.0 41.9 ± 0.0 65.5
HGP 86.5 ± 0.0 67.4 ± 0.0 41.2 ± 0.0 65.0

ERM + CDGA-PG 89.6 ± 0.3 68.8 ± 0.3 43.1 ±0.0 67.2
ERM + CDGA-PG∗ 90.4 ± 0.3 70.2 ± 0.2 44.8 ±0.0 68.5

Table 8: DomainBed benchmark on VLCS dataset across different model selection methods. We format first, second and
worse than ERM results.

Method Training domain Leave-one-domain-out Oracle

ERM 77.5 ± 0.4 77.2 ± 0.4 77.6 ± 0.3

IRM 78.5 ± 0.5 76.3 ± 0.6 76.9 ± 0.6

GroupDRO 76.7 ± 0.6 77.9 ± 0.5 77.4 ± 0.5

Mixup 77.4 ± 0.6 77.7 ± 0.6 78.1 ± 0.3

MLDG 77.2 ± 0.4 77.2 ± 0.9 77.5 ± 0.1

CORAL 78.8 ± 0.6 78.7 ± 0.4 77.7 ± 0.2

MMD 77.5 ± 0.9 77.3 ± 0.5 77.9 ± 0.1

DANN 78.6 ± 0.4 76.9 ± 0.4 79.7 ± 0.5

CDANN 77.5 ± 0.1 77.5 ± 0.2 79.9 ± 0.2

MTL 77.2 ± 0.4 76.6 ± 0.5 77.7 ± 0.5

SagNet 77.8 ± 0.5 77.5 ± 0.3 77.6 ± 0.1

Fishr 77.8 ± 0.1 78.2 ± 0.0 78.2 ± 0.2

HGP 77.6 ± 0.0 76.7 ± 0.0 77.3 ± 0.0

Hutchinson 76.8 ± 0.0 79.3 ± 0.0 77.9 ± 0.0

ERM + CDGA-IG 78.9 ± 0.3 77.9 ± 0.5 79.5 ± 0.1
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Table 9: DomainBed benchmark, PACS full results for training-domain validation set model selection method.

Algorithm A C P S Avg

ERM 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5
IRM 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5
GroupDRO 83.5 ± 0.9 79.1 ± 0.6 96.7 ± 0.3 78.3 ± 2.0 84.4
Mixup 86.1 ± 0.5 78.9 ± 0.8 97.6 ± 0.1 75.8 ± 1.8 84.6
MLDG 85.5 ± 1.4 80.1 ± 1.7 97.4 ± 0.3 76.6 ± 1.1 84.9
CORAL 88.3 ± 0.2 80.0 ± 0.5 97.5 ± 0.3 78.8 ± 1.3 86.2
MMD 86.1 ± 1.4 79.4 ± 0.9 96.6 ± 0.2 76.5 ± 0.5 84.6
DANN 86.4 ± 0.8 77.4 ± 0.8 97.3 ± 0.4 73.5 ± 2.3 83.6
CDANN 84.6 ± 1.8 75.5 ± 0.9 96.8 ± 0.3 73.5 ± 0.6 82.6
MTL 87.5 ± 0.8 77.1 ± 0.5 96.4 ± 0.8 77.3 ± 1.8 84.6
SagNet 87.4 ± 1.0 80.7 ± 0.6 97.1 ± 0.1 80.0 ± 0.4 86.3
ARM 86.8 ± 0.6 76.8 ± 0.5 97.4 ± 0.3 79.3 ± 1.2 85.1
V-REx 86.0 ± 1.6 79.1 ± 0.6 96.9 ± 0.5 77.7 ± 1.7 84.9
RSC 85.4 ± 0.8 79.7 ± 1.8 97.6 ± 0.3 78.2 ± 1.2 85.2
AND-mask 85.3 ± 1.4 79.2 ± 2.0 96.9 ± 0.4 76.2 ± 1.4 84.4
SAND-mask 85.8 ± 1.7 79.2 ± 0.8 96.3 ± 0.2 76.9 ± 2.0 84.6
Fish - - - - 85.5
Fishr 88.4 ± 0.2 78.7 ± 0.7 97.0 ± 0.1 77.8 ± 2.0 85.5

CDGA-PG 89.1 ± 1.0 82.5 ± 0.5 97.4 ± 0.2 84.8 ± 0.9 88.5
CDGA∗-PG 89.7 ± 1.1 86.6 ± 0.3 97.4 ± 0.1 84.3 ± 1.6 89.5

Table 10: DomainBed benchmark, PACS full results for leave-one-domain-out cross-validation model selection method.

Algorithm A C P S Avg

ERM 83.2 ± 1.3 76.8 ± 1.7 97.2 ± 0.3 74.8 ± 1.3 83.0
IRM 81.7 ± 2.4 77.0 ± 1.3 96.3 ± 0.2 71.1 ± 2.2 81.5
GroupDRO 84.4 ± 0.7 77.3 ± 0.8 96.8 ± 0.8 75.6 ± 1.4 83.5
Mixup 85.2 ± 1.9 77.0 ± 1.7 96.8 ± 0.8 73.9 ± 1.6 83.2
MLDG 81.4 ± 3.6 77.9 ± 2.3 96.2 ± 0.3 76.1 ± 2.1 82.9
CORAL 80.5 ± 2.8 74.5 ± 0.4 96.8 ± 0.3 78.6 ± 1.4 82.6
MMD 84.9 ± 1.7 75.1 ± 2.0 96.1 ± 0.9 76.5 ± 1.5 83.2
DANN 84.3 ± 2.8 72.4 ± 2.8 96.5 ± 0.8 70.8 ± 1.3 81.0
CDANN 78.3 ± 2.8 73.8 ± 1.6 96.4 ± 0.5 66.8 ± 5.5 78.8
MTL 85.6 ± 1.5 78.9 ± 0.6 97.1 ± 0.3 73.1 ± 2.7 83.7
SagNet 81.1 ± 1.9 75.4 ± 1.3 95.7 ± 0.9 77.2 ± 0.6 82.3
ARM 85.9 ± 0.3 73.3 ± 1.9 95.6 ± 0.4 72.1 ± 2.4 81.7
VREx 81.6 ± 4.0 74.1 ± 0.3 96.9 ± 0.4 72.8 ± 2.1 81.3
RSC 83.7 ± 1.7 82.9± 1.1 95.6 ± 0.7 68.1 ± 1.5 82.6

CDGA-PG 87.3 ± 1.5 80.9 ± 1.6 96.6 ± 0.7 82.5 ± 0.9 86.8
CDGA∗-PG 88.1 ± 1.1 86.6 ± 1.0 97.2 ± 0.4 81.9 ± 1.0 88.4
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Table 11: DomainBed benchmark, PACS full results for test-domain validation set (oracle) model selection method.

Algorithm A C P S Avg

ERM 86.5 ± 1.0 81.3 ± 0.6 96.2 ± 0.3 82.7 ± 1.1 86.7
IRM 84.2 ± 0.9 79.7 ± 1.5 95.9 ± 0.4 78.3 ± 2.1 84.5
GroupDRO 87.5 ± 0.5 82.9 ± 0.6 97.1 ± 0.3 81.1 ± 1.2 87.1
Mixup 87.5 ± 0.4 81.6 ± 0.7 97.4 ± 0.2 80.8 ± 0.9 86.8
MLDG 87.0 ± 1.2 82.5 ± 0.9 96.7 ± 0.3 81.2 ± 0.6 86.8
CORAL 86.6 ± 0.8 81.8 ± 0.9 97.1 ± 0.5 82.7 ± 0.6 87.1
MMD 88.1 ± 0.8 82.6 ± 0.7 97.1 ± 0.5 81.2 ± 1.2 87.2
DANN 87.0 ± 0.4 80.3 ± 0.6 96.8 ± 0.3 76.9 ± 1.1 85.2
CDANN 87.7 ± 0.6 80.7 ± 1.2 97.3 ± 0.4 77.6 ± 1.5 85.8
MTL 87.0 ± 0.2 82.7 ± 0.8 96.5 ± 0.7 80.5 ± 0.8 86.7
SagNet 87.4 ± 0.5 81.2 ± 1.2 96.3 ± 0.8 80.7 ± 1.1 86.4
ARM 85.0 ± 1.2 81.4 ± 0.2 95.9 ± 0.3 80.9 ± 0.5 85.8
V-REx 87.8 ± 1.2 81.8 ± 0.7 97.4 ± 0.2 82.1 ± 0.7 87.2
RSC 86.0 ± 0.7 81.8 ± 0.9 96.8 ± 0.7 80.4 ± 0.5 86.2
AND-mask 86.4 ± 1.1 80.8 ± 0.9 97.1 ± 0.2 81.3 ± 1.1 86.4
SAND-mask 86.1 ± 0.6 80.3 ± 1.0 97.1 ± 0.3 80.0 ± 1.3 85.9
Fish - - - - 85.8
Fishr 87.9 ± 0.6 80.8 ± 0.5 97.9 ± 0.4 81.1 ± 0.8 86.9

CDGA-PG 89.6 ± 0.8 85.3 ± 0.7 97.3 ± 0.3 86.2 ± 0.5 89.6
CDGA∗-PG 90.3 ± 0.8 89.0 ± 0.2 96.8 ± 0.1 85.7 ± 1.0 90.4

Table 12: DomainBed benchmark, OfficeHome full results for training-domain validation set model selection method.

Algorithm A C P R Avg

ERM 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5
IRM 58.9 ± 2.3 52.2 ± 1.6 72.1 ± 2.9 74.0 ± 2.5 64.3
GroupDRO 60.4 ± 0.7 52.7 ± 1.0 75.0 ± 0.7 76.0 ± 0.7 66.0
Mixup 62.4 ± 0.8 54.8 ± 0.6 76.9 ± 0.3 78.3 ± 0.2 68.1
MLDG 61.5 ± 0.9 53.2 ± 0.6 75.0 ± 1.2 77.5 ± 0.4 66.8
CORAL 65.3 ± 0.4 54.4 ± 0.5 76.5 ± 0.1 78.4 ± 0.5 68.7
MMD 60.4 ± 0.2 53.3 ± 0.3 74.3 ± 0.1 77.4 ± 0.6 66.3
DANN 59.9 ± 1.3 53.0 ± 0.3 73.6 ± 0.7 76.9 ± 0.5 65.9
CDANN 61.5 ± 1.4 50.4 ± 2.4 74.4 ± 0.9 76.6 ± 0.8 65.8
MTL 61.5 ± 0.7 52.4 ± 0.6 74.9 ± 0.4 76.8 ± 0.4 66.4
SagNet 63.4 ± 0.2 54.8 ± 0.4 75.8 ± 0.4 78.3 ± 0.3 68.1
ARM 58.9 ± 0.8 51.0 ± 0.5 74.1 ± 0.1 75.2 ± 0.3 64.8
V-REx 60.7 ± 0.9 53.0 ± 0.9 75.3 ± 0.1 76.6 ± 0.5 66.4
RSC 60.7 ± 1.4 51.4 ± 0.3 74.8 ± 1.1 75.1 ± 1.3 65.5
ANDMask 59.5 ± 1.2 51.7 ± 0.2 73.9 ± 0.4 77.1 ± 0.2 65.6
SAND-mask 60.3 ± 0.5 53.3 ± 0.7 73.5 ± 0.7 76.2 ± 0.3 65.8
Fish - - - - 68.6
Fishr 62.4 ± 0.5 54.4 ± 0.4 76.2 ± 0.5 78.3 ± 0.1 67.8

CDGA-PG 60.1 ± 1.4 54.2 ± 0.5 78.2 ± 0.6 80.4 ± 0.1 68.2
CDGA∗-PG 63.1 ± 1.5 60.2 ± 0.1 79.4 ± 0.7 80.5 ± 0.2 70.8
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Table 13: DomainBed benchmark, OfficeHome full results for leave-one-domain-out cross-validation model selection
method.

Algorithm A C P R Avg

ERM 61.1 ± 0.9 50.7 ± 0.6 74.6 ± 0.3 76.4 ± 0.6 65.7
IRM 58.2 ± 1.2 51.6 ± 1.2 73.3 ± 2.2 74.1 ± 1.7 64.3
GroupDRO 59.9 ± 0.4 51.0 ± 0.4 73.7 ± 0.3 76.0 ± 0.2 65.2
Mixup 61.4 ± 0.5 53.0 ± 0.3 75.8 ± 0.2 77.7 ± 0.3 67.0
MLDG 60.5 ± 1.4 51.9 ± 0.2 74.4 ± 0.6 77.6 ± 0.4 66.1
CORAL 64.5 ± 0.8 54.8 ± 0.2 76.6 ± 0.3 78.1 ± 0.2 68.5
MMD 60.8 ± 0.7 53.7 ± 0.5 50.2 ± 19.9 76.0 ± 0.7 60.2
DANN 60.2 ± 1.3 52.2 ± 0.9 71.3 ± 2.0 76.0 ± 0.6 64.9
CDANN 58.7 ± 2.9 49.0 ± 2.1 73.6 ± 1.0 76.0 ± 1.1 64.3
MTL 59.1 ± 0.3 52.1 ± 1.2 74.7 ± 0.4 77.0 ± 0.6 65.7
SagNet 63.0 ± 0.8 54.0 ± 0.3 76.6 ± 0.3 76.8 ± 0.4 67.6
ARM 58.7 ± 0.8 49.8 ± 1.1 73.1 ± 0.5 75.9 ± 0.1 64.4
VREx 57.6 ± 3.4 51.3 ± 1.3 74.9 ± 0.2 75.8 ± 0.7 64.9
RSC 61.6 ± 1.0 51.1 ± 0.8 74.8 ± 1.1 75.7 ± 0.9 65.8

CDGA-PG 60.5 ± 1.2 56.5 ± 0.3 77.1 ± 0.4 80.6 ± 0.2 68.7
CDGA∗-PG 62.9 ± 0.4 59.9 ± 0.5 78.1 ± 0.9 79.9 ± 0.4 70.2

Table 14: DomainBed benchmark, OfficeHome full results for test-domain validation set (oracle) model selection
method.

Algorithm A C P R Avg

ERM 61.7 ± 0.7 53.4 ± 0.3 74.1 ± 0.4 76.2 ± 0.6 66.4
IRM 56.4 ± 3.2 51.2 ± 2.3 71.7 ± 2.7 72.7 ± 2.7 63.0
GroupDRO 60.5 ± 1.6 53.1 ± 0.3 75.5 ± 0.3 75.9 ± 0.7 66.2
Mixup 63.5 ± 0.2 54.6 ± 0.4 76.0 ± 0.3 78.0 ± 0.7 68.0
MLDG 60.5 ± 0.7 54.2 ± 0.5 75.0 ± 0.2 76.7 ± 0.5 66.6
CORAL 64.8 ± 0.8 54.1 ± 0.9 76.5 ± 0.4 78.2 ± 0.4 68.4
MMD 60.4 ± 1.0 53.4 ± 0.5 74.9 ± 0.1 76.1 ± 0.7 66.2
DANN 60.6 ± 1.4 51.8 ± 0.7 73.4 ± 0.5 75.5 ± 0.9 65.3
CDANN 57.9 ± 0.2 52.1 ± 1.2 74.9 ± 0.7 76.2 ± 0.2 65.3
MTL 60.7 ± 0.8 53.5 ± 1.3 75.2 ± 0.6 76.6 ± 0.6 66.5
SagNet 62.7 ± 0.5 53.6 ± 0.5 76.0 ± 0.3 77.8 ± 0.1 67.5
ARM 58.8 ± 0.5 51.8 ± 0.7 74.0 ± 0.1 74.4 ± 0.2 64.8
V-REx 59.6 ± 1.0 53.3 ± 0.3 73.2 ± 0.5 76.6 ± 0.4 65.7
RSC 61.7 ± 0.8 53.0 ± 0.9 74.8 ± 0.8 76.3 ± 0.5 66.5
AND-mask 60.3 ± 0.5 52.3 ± 0.6 75.1 ± 0.2 76.6 ± 0.3 66.1
SAND-mask 59.9 ± 0.7 53.6 ± 0.8 74.3 ± 0.4 75.8 ± 0.5 65.9
Fish - - - - 66.0
Fishr 63.4 ± 0.8 54.2 ± 0.3 76.4 ± 0.3 78.5 ± 0.2 68.2

CDGA-PG 61.1 ± 1.1 55.9 ± 1.0 78.2 ± 0.8 79.8 ± 0.2 68.5
CDGA∗-PG 64.0 ± 0.2 58.3 ± 0.4 77.7 ± 0.4 80.8 ± 0.1 70.2
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Table 15: DomainBed benchmark, DomainNet full results for training-domain validation set model selection method.

Algorithm clip info paint quick real sketch Avg

ERM 58.1 ± 0.3 18.8 ± 0.3 46.7 ± 0.3 12.2 ± 0.4 59.6 ± 0.1 49.8 ± 0.4 40.9
IRM 48.5 ± 2.8 15.0 ± 1.5 38.3 ± 4.3 10.9 ± 0.5 48.2 ± 5.2 42.3 ± 3.1 33.9
GroupDRO 47.2 ± 0.5 17.5 ± 0.4 33.8 ± 0.5 9.3 ± 0.3 51.6 ± 0.4 40.1 ± 0.6 33.3
Mixup 55.7 ± 0.3 18.5 ± 0.5 44.3 ± 0.5 12.5 ± 0.4 55.8 ± 0.3 48.2 ± 0.5 39.2
MLDG 59.1 ± 0.2 19.1 ± 0.3 45.8 ± 0.7 13.4 ± 0.3 59.6 ± 0.2 50.2 ± 0.4 41.2
CORAL 59.2 ± 0.1 19.7 ± 0.2 46.6 ± 0.3 13.4 ± 0.4 59.8 ± 0.2 50.1 ± 0.6 41.5
MMD 32.1 ± 13.3 11.0 ± 4.6 26.8 ± 11.3 8.7 ± 2.1 32.7 ± 13.8 28.9 ± 11.9 23.4
DANN 53.1 ± 0.2 18.3 ± 0.1 44.2 ± 0.7 11.8 ± 0.1 55.5 ± 0.4 46.8 ± 0.6 38.3
CDANN 54.6 ± 0.4 17.3 ± 0.1 43.7 ± 0.9 12.1 ± 0.7 56.2 ± 0.4 45.9 ± 0.5 38.3
MTL 57.9 ± 0.5 18.5 ± 0.4 46.0 ± 0.1 12.5 ± 0.1 59.5 ± 0.3 49.2 ± 0.1 40.6
SagNet 57.7 ± 0.3 19.0 ± 0.2 45.3 ± 0.3 12.7 ± 0.5 58.1 ± 0.5 48.8 ± 0.2 40.3
ARM 49.7 ± 0.3 16.3 ± 0.5 40.9 ± 1.1 9.4 ± 0.1 53.4 ± 0.4 43.5 ± 0.4 35.5
V-REx 47.3 ± 3.5 16.0 ± 1.5 35.8 ± 4.6 10.9 ± 0.3 49.6 ± 4.9 42.0 ± 3.0 33.6
RSC 55.0 ± 1.2 18.3 ± 0.5 44.4 ± 0.6 12.2 ± 0.2 55.7 ± 0.7 47.8 ± 0.9 38.9
AND-mask 52.3 ± 0.8 16.6 ± 0.3 41.6 ± 1.1 11.3 ± 0.1 55.8 ± 0.4 45.4 ± 0.9 37.2
SAND-mask 43.8 ± 1.3 14.8 ± 0.3 38.2 ± 0.6 9.0 ± 0.3 47.0 ± 1.1 39.9 ± 0.6 32.1
Fish - - - - - - 42.7
Fishr 58.2 ± 0.5 20.2 ± 0.2 47.7 ± 0.3 12.7 ± 0.2 60.3 ± 0.2 50.8 ± 0.1 41.7

CDGA-PG 61.0 ± 0.2 20.2 ± 0.1 50.7 ± 0.1 11.1 ± 0.3 65.3 ± 0.7 54.0 ± 0.3 43.7
CDGA∗-PG 62.5 ± 0.0 24.8 ± 0.0 51.7 ± 0.0 11.7 ± 0.0 65.2 ± 0.0 52.8 ± 0.0 44.8

Table 16: DomainBed benchmark, DomainNet full results for leave-one-out model selection method.

Algorithm clip info paint quick real sketch Avg

ERM 58.1 ± 0.3 17.8 ± 0.3 47.0 ± 0.3 12.2 ± 0.4 59.2 ± 0.7 49.5 ± 0.6 40.6
IRM 47.5 ± 2.7 15.0 ± 1.5 37.3 ± 5.1 10.9 ± 0.5 48.0 ± 5.4 42.3 ± 3.1 33.5
GroupDRO 47.2 ± 0.5 17.0 ± 0.6 33.8 ± 0.5 9.2 ± 0.4 51.6 ± 0.4 39.2 ± 1.2 33.0
Mixup 54.4 ± 0.6 18.0 ± 0.4 44.5 ± 0.5 11.5 ± 0.2 55.8 ± 1.1 46.9 ± 0.2 38.5
MLDG 58.3 ± 0.7 19.3 ± 0.2 45.8 ± 0.7 13.2 ± 0.3 59.4 ± 0.2 49.8 ± 0.3 41.0
CORAL 59.2 ± 0.1 19.5 ± 0.3 46.2 ± 0.1 13.4 ± 0.4 59.1 ± 0.5 49.5 ± 0.8 41.1
MMD 32.2 ± 13.3 11.0 ± 4.6 26.8 ± 11.3 8.7 ± 2.1 32.7 ± 13.8 28.9 ± 11.9 23.4
DANN 52.7 ± 0.1 18.0 ± 0.3 44.2 ± 0.7 11.8 ± 0.1 55.5 ± 0.4 46.8 ± 0.6 38.2
CDANN 53.1 ± 0.9 17.3 ± 0.1 43.7 ± 0.9 11.6 ± 0.6 56.2 ± 0.4 45.9 ± 0.5 38.0
MTL 57.3 ± 0.3 19.3 ± 0.2 45.7 ± 0.4 12.5 ± 0.1 59.3 ± 0.2 49.2 ± 0.1 40.6
SagNet 56.2 ± 0.3 18.9 ± 0.2 46.2 ± 0.5 12.6 ± 0.6 58.2 ± 0.6 49.1 ± 0.2 40.2
ARM 49.0 ± 0.7 15.8 ± 0.3 40.8 ± 1.1 9.4 ± 0.2 53.0 ± 0.4 43.4 ± 0.3 35.2
VREx 46.5 ± 4.1 15.6 ± 1.8 35.8 ± 4.6 10.9 ± 0.3 49.6 ± 4.9 42.0 ± 3.0 33.4
RSC 55.0 ± 1.2 18.3 ± 0.5 44.4 ± 0.6 12.2 ± 0.2 55.7 ± 0.7 47.8 ± 0.9 38.9

CDGA-PG 61.6 ± 0.1 20.6 ± 0.3 50.1 ± 0.4 11.2 ± 0.3 64.5 ± 0.4 53.8 ± 0.4 43.6
CDGA∗-PG 62.5 ± 0.0 24.8 ± 0.0 51.7 ± 0.0 11.7 ± 0.0 65.2 ± 0.0 52.8 ± 0.0 44.8
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Table 17: DomainBed benchmark, DomainNet full results for test-domain validation set (oracle) model selection method.

Algorithm clip info paint quick real sketch Avg

ERM 58.6 ± 0.3 19.2 ± 0.2 47.0 ± 0.3 13.2 ± 0.2 59.9 ± 0.3 49.8 ± 0.4 41.3
IRM 40.4 ± 6.6 12.1 ± 2.7 31.4 ± 5.7 9.8 ± 1.2 37.7 ± 9.0 36.7 ± 5.3 28.0
GroupDRO 47.2 ± 0.5 17.5 ± 0.4 34.2 ± 0.3 9.2 ± 0.4 51.9 ± 0.5 40.1 ± 0.6 33.4
Mixup 55.6 ± 0.1 18.7 ± 0.4 45.1 ± 0.5 12.8 ± 0.3 57.6 ± 0.5 48.2 ± 0.4 39.6
MLDG 59.3 ± 0.1 19.6 ± 0.2 46.8 ± 0.2 13.4 ± 0.2 60.1 ± 0.4 50.4 ± 0.3 41.6
CORAL 59.2 ± 0.1 19.9 ± 0.2 47.4 ± 0.2 14.0 ± 0.4 59.8 ± 0.2 50.4 ± 0.4 41.8
MMD 32.2 ± 13.3 11.2 ± 4.5 26.8 ± 11.3 8.8 ± 2.2 32.7 ± 13.8 29.0 ± 11.8 23.5
DANN 53.1 ± 0.2 18.3 ± 0.1 44.2 ± 0.7 11.9 ± 0.1 55.5 ± 0.4 46.8 ± 0.6 38.3
CDANN 54.6 ± 0.4 17.3 ± 0.1 44.2 ± 0.7 12.8 ± 0.2 56.2 ± 0.4 45.9 ± 0.5 38.5
MTL 58.0 ± 0.4 19.2 ± 0.2 46.2 ± 0.1 12.7 ± 0.2 59.9 ± 0.1 49.0 ± 0.0 40.8
SagNet 57.7 ± 0.3 19.1 ± 0.1 46.3 ± 0.5 13.5 ± 0.4 58.9 ± 0.4 49.5 ± 0.2 40.8
ARM 49.6 ± 0.4 16.5 ± 0.3 41.5 ± 0.8 10.8 ± 0.1 53.5 ± 0.3 43.9 ± 0.4 36.0
V-REx 43.3 ± 4.5 14.1 ± 1.8 32.5 ± 5.0 9.8 ± 1.1 43.5 ± 5.6 37.7 ± 4.5 30.1
RSC 55.0 ± 1.2 18.3 ± 0.5 44.4 ± 0.6 12.5 ± 0.1 55.7 ± 0.7 47.8 ± 0.9 38.9
AND-mask 52.3 ± 0.8 17.3 ± 0.5 43.7 ± 1.1 12.3 ± 0.4 55.8 ± 0.4 46.1 ± 0.8 37.9
SAND-mask 43.8 ± 1.3 15.2 ± 0.2 38.2 ± 0.6 9.0 ± 0.2 47.1 ± 1.1 39.9 ± 0.6 32.2
Fish - - - - - - 43.4
Fishr 58.3 ± 0.5 20.2 ± 0.2 47.9 ± 0.2 13.6 ± 0.3 60.5 ± 0.3 50.5 ± 0.3 41.8

CDGA-PG 61.6 ± 0.1 20.9 ± 0.2 51.8 ± 0.1 12.7 ± 0.2 66.0 ± 0.5 54.4 ± 0.2 44.4
CDGA∗-PG 62.5 ± 0.0 24.8 ± 0.0 51.7 ± 0.0 11.7 ± 0.0 65.2 ± 0.0 52.8 ± 0.0 44.8

Table 18: DomainBed benchmark, VLCS full results for training-domain validation set model selection method.

Algorithm C L S V Avg

ERM 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5
IRM 98.6 ± 0.1 64.9 ± 0.9 73.4 ± 0.6 77.3 ± 0.9 78.5
GroupDRO 97.3 ± 0.3 63.4 ± 0.9 69.5 ± 0.8 76.7 ± 0.7 76.7
Mixup 98.3 ± 0.6 64.8 ± 1.0 72.1 ± 0.5 74.3 ± 0.8 77.4
MLDG 97.4 ± 0.2 65.2 ± 0.7 71.0 ± 1.4 75.3 ± 1.0 77.2
CORAL 98.3 ± 0.1 66.1 ± 1.2 73.4 ± 0.3 77.5 ± 1.2 78.8
MMD 97.7 ± 0.1 64.0 ± 1.1 72.8 ± 0.2 75.3 ± 3.3 77.5
DANN 99.0 ± 0.3 65.1 ± 1.4 73.1 ± 0.3 77.2 ± 0.6 78.6
CDANN 97.1 ± 0.3 65.1 ± 1.2 70.7 ± 0.8 77.1 ± 1.5 77.5
MTL 97.8 ± 0.4 64.3 ± 0.3 71.5 ± 0.7 75.3 ± 1.7 77.2
SagNet 97.9 ± 0.4 64.5 ± 0.5 71.4 ± 1.3 77.5 ± 0.5 77.8
ARM 98.7 ± 0.2 63.6 ± 0.7 71.3 ± 1.2 76.7 ± 0.6 77.6
V-REx 98.4 ± 0.3 64.4 ± 1.4 74.1 ± 0.4 76.2 ± 1.3 78.3
RSC 97.9 ± 0.1 62.5 ± 0.7 72.3 ± 1.2 75.6 ± 0.8 77.1
AND-mask 97.8 ± 0.4 64.3 ± 1.2 73.5 ± 0.7 76.8 ± 2.6 78.1
SAND-mask 98.5 ± 0.3 63.6 ± 0.9 70.4 ± 0.8 77.1 ± 0.8 77.4
Fish - - - - 77.8
Fishr 98.9 ± 0.3 64.0 ± 0.5 71.5 ± 0.2 76.8 ± 0.7 77.8

CDGA-IG 96.3 ± 0.7 75.7 ± 1.0 72.8 ± 1.3 73.7 ± 1.3 79.6
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Table 19: DomainBed benchmark, VLCS full results for eave-one-domain-out cross-validation model selection.

Algorithm C L S V Avg

ERM 98.0 ± 0.4 62.6 ± 0.9 70.8 ± 1.9 77.5 ± 1.9 77.2
IRM 98.6 ± 0.3 66.0 ± 1.1 69.3 ± 0.9 71.5 ± 1.9 76.3
GroupDRO 98.1 ± 0.3 66.4 ± 0.9 71.0 ± 0.3 76.1 ± 1.4 77.9
Mixup 98.4 ± 0.3 63.4 ± 0.7 72.9 ± 0.8 76.1 ± 1.2 77.7
MLDG 98.5 ± 0.3 61.7 ± 1.2 73.6 ± 1.8 75.0 ± 0.8 77.2
CORAL 96.9 ± 0.9 65.7 ± 1.2 73.3 ± 0.7 78.7 ± 0.8 78.7
MMD 98.3 ± 0.1 65.6 ± 0.7 69.7 ± 1.0 75.7 ± 0.9 77.3
DANN 97.3 ± 1.3 63.7 ± 1.3 72.6 ± 1.4 74.2 ± 1.7 76.9
CDANN 97.6 ± 0.6 63.4 ± 0.8 70.5 ± 1.4 78.6 ± 0.5 77.5
MTL 97.6 ± 0.6 60.6 ± 1.3 71.0 ± 1.2 77.2 ± 0.7 76.6
SagNet 97.3 ± 0.4 61.6 ± 0.8 73.4 ± 1.9 77.6 ± 0.4 77.5
ARM 97.2 ± 0.5 62.7 ± 1.5 70.6 ± 0.6 75.8 ± 0.9 76.6
VREx 96.9 ± 0.3 64.8 ± 2.0 69.7 ± 1.8 75.5 ± 1.7 76.7
RSC 97.5 ± 0.6 63.1 ± 1.2 73.0 ± 1.3 76.2 ± 0.5 77.5

ERM+GA txt2im- label 96.5 ± 1.3 75.4 ± 1.4 71.0 ± 2.4 78.1 ± 1.8 80.3

Table 20: DomainBed benchmark, VLCS full results for test-domain validation set (oracle) model selection method.

Algorithm C L S V Avg

ERM 97.6 ± 0.3 67.9 ± 0.7 70.9 ± 0.2 74.0 ± 0.6 77.6
IRM 97.3 ± 0.2 66.7 ± 0.1 71.0 ± 2.3 72.8 ± 0.4 76.9
GroupDRO 97.7 ± 0.2 65.9 ± 0.2 72.8 ± 0.8 73.4 ± 1.3 77.4
Mixup 97.8 ± 0.4 67.2 ± 0.4 71.5 ± 0.2 75.7 ± 0.6 78.1
MLDG 97.1 ± 0.5 66.6 ± 0.5 71.5 ± 0.1 75.0 ± 0.9 77.5
CORAL 97.3 ± 0.2 67.5 ± 0.6 71.6 ± 0.6 74.5 ± 0.0 77.7
MMD 98.8 ± 0.0 66.4 ± 0.4 70.8 ± 0.5 75.6 ± 0.4 77.9
DANN 99.0 ± 0.2 66.3 ± 1.2 73.4 ± 1.4 80.1 ± 0.5 79.7
CDANN 98.2 ± 0.1 68.8 ± 0.5 74.3 ± 0.6 78.1 ± 0.5 79.9
MTL 97.9 ± 0.7 66.1 ± 0.7 72.0 ± 0.4 74.9 ± 1.1 77.7
SagNet 97.4 ± 0.3 66.4 ± 0.4 71.6 ± 0.1 75.0 ± 0.8 77.6
ARM 97.6 ± 0.6 66.5 ± 0.3 72.7 ± 0.6 74.4 ± 0.7 77.8
V-REx 98.4 ± 0.2 66.4 ± 0.7 72.8 ± 0.1 75.0 ± 1.4 78.1
RSC 98.0 ± 0.4 67.2 ± 0.3 70.3 ± 1.3 75.6 ± 0.4 77.8
AND-mask 98.3 ± 0.3 64.5 ± 0.2 69.3 ± 1.3 73.4 ± 1.3 76.4
SAND-mask 97.6 ± 0.3 64.5 ± 0.6 69.7 ± 0.6 73.0 ± 1.2 76.2
Fish 77.8
Fishr 97.6 ± 0.7 67.3 ± 0.5 72.2 ± 0.9 75.7 ± 0.3 78.2

CDGA-IG 96.6 ± 0.7 75.5 ± 1.9 73.6 ± 1.1 77.8 ± 1.0 80.9
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E. Prompts
All prompts follow the same structure i.e., "a <class label>, <domain description>" where the domain descriptions for PACS,
OfficeHome, and DomainNet are as follows:

E.1. PACS

• Photos: photorealistic, extremely detailed

• Sketches: sketch drawing, black and white, less details

• Cartoons: cartoon, cartoonish

• Art: art painting

E.2. OfficeHome

• Clipart: Clipart, schematic, simplified

• Product: Product, Merchandise

• Real: Real World, extremely detailed

• Art: art painting, art

E.3. Domainnet

• Clipart: cartoon, cartoonish, drawing

• Infograph: infographic, data visualization, poster

• Real: photorealistic, extremely detailed

• Painting: art painting

• Quickdraw: extremely simple drawing, black and white

• Sketch: sketch drawing, black and white, less details

• Clipart: cartoon, cartoonish, drawing

F. Code
To reproduce the DomainBed results, each class-specific dataset object inherits from either CDGA or CDGA∗ classes
provided in this section. See the script provided in the section F.

1 class CDGA(MultipleDomainDataset):
2 def __init__(self, root, test_envs, augment, hparams):
3 super().__init__()
4

5 transform = transforms.Compose(
6 [
7 transforms.Resize((224, 224)),
8 transforms.ToTensor(),
9 transforms.Normalize(

10 mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
11 ),
12 ]
13 )
14

15 augment_transform = transforms.Compose(
16 [
17 # transforms.Resize((224,224)),
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18 transforms.RandomResizedCrop(224, scale=(0.7, 1.0)),
19 transforms.RandomHorizontalFlip(),
20 transforms.ColorJitter(0.3, 0.3, 0.3, 0.3),
21 transforms.RandomGrayscale(),
22 transforms.ToTensor(),
23 transforms.Normalize(
24 mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
25 ),
26 ]
27 )
28

29 environments = [f.name for f in os.scandir(root) if f.is_dir()]
30 environments = sorted(environments)
31

32 self.datasets = []
33 print(f"Test domains: {test_envs}")
34 for i, environment in enumerate(environments):
35 # Transformation
36 if augment and (i not in test_envs):
37 env_transform = augment_transform
38 else:
39 env_transform = transform
40

41 path = os.path.join(root, environment)
42 # Create list of generated subfolders for each distribution
43 sub_environments = [f.name for f in os.scandir(path) if f.is_dir()]
44 if i not in test_envs:
45 # if we are in the training distribution combine folders that are not in

the test distributions
46 env_dataset = []
47 for sub_env in sub_environments:
48 if all(environments[i] not in sub_env for i in test_envs):
49 print(f"Adding {sub_env} to {environment} for training")
50 env_dataset.append(
51 ImageFolder(
52 os.path.join(path, sub_env), transform=env_transform
53 )
54 )
55 self.datasets.append(torch.utils.data.ConcatDataset(env_dataset))
56 else:
57 # if we are in the testing distribution just use the original data
58 print(f"using {environment} for testing")
59 self.datasets.append(
60 ImageFolder(
61 os.path.join(path, environment), transform=env_transform
62 )
63 )
64 self.input_shape = (
65 3,
66 224,
67 224,
68 )
69

70

71 class CDGA_star(MultipleDomainDataset):
72 def __init__(self, root, test_envs, augment, hparams):
73 super().__init__()
74

75 transform = transforms.Compose(
76 [
77 transforms.Resize((224, 224)),
78 transforms.ToTensor(),
79 transforms.Normalize(
80 mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
81 ),
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82 ]
83 )
84

85 augment_transform = transforms.Compose(
86 [
87 # transforms.Resize((224,224)),
88 transforms.RandomResizedCrop(224, scale=(0.7, 1.0)),
89 transforms.RandomHorizontalFlip(),
90 transforms.ColorJitter(0.3, 0.3, 0.3, 0.3),
91 transforms.RandomGrayscale(),
92 transforms.ToTensor(),
93 transforms.Normalize(
94 mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
95 ),
96 ]
97 )
98

99 environments = [f.name for f in os.scandir(root) if f.is_dir()]
100 environments = sorted(environments)
101

102 self.datasets = []
103 print(f"Test domains: {test_envs}")
104 for i, environment in enumerate(environments):
105 if augment and (i not in test_envs):
106 env_transform = augment_transform
107 else:
108 env_transform = transform
109 path = os.path.join(root, environment)
110 # create list of generated subfolders for each distribution
111 sub_environments = [f.name for f in os.scandir(path) if f.is_dir()]
112 if i not in test_envs:
113 # if we are in the training distribution combine all the test folder

except the original test data
114 env_dataset = []
115 for sub_env in sub_environments:
116 print(f"Adding {sub_env} to {environment} for training")
117 env_dataset.append(
118 ImageFolder(
119 os.path.join(path, sub_env), transform=env_transform
120 )
121 )
122 self.datasets.append(torch.utils.data.ConcatDataset(env_dataset))
123 else:
124 # if we are in the testing distribution just use the original data
125 print(f"using {environment} for testing")
126 self.datasets.append(
127 ImageFolder(
128 os.path.join(path, environment), transform=env_transform
129 )
130 )
131 self.input_shape = (
132 3,
133 224,
134 224,
135 )
136

137

138 class G_PACS(CDGA):
139 CHECKPOINT_FREQ = 300
140 ENVIRONMENTS = ["A", "C", "P", "S"]
141 num_classes = 7
142

143 def __init__(self, root, test_envs, hparams):
144 self.dir = os.path.join(root, "G_PACS/")
145 super().__init__(self.dir, test_envs, hparams["data_augmentation"], hparams)
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G. Mitigating Class Imbalance
CDGA can also be utilized to mitigate the class imbalance problem in datasets where the number of instances in each class
of each domain is not equal. In such scenarios, one can use a different b for each class of the data such that after generating
samples, the number of instances in each class of generated domains becomes equal. We test the effectiveness of CDGA
method in balancing the OfficeHome dataset (which is highly imbalanced) through the DomainBed benchmark. More
specifically, for every class c and domain Sj , we find the number of samples n(Sj , c) and then we find m = maxc,j n(Sj , c)
which is 100 for OfficeHome. Then for every domain Sj and class c we set b = m

n(Sj ,c)
which leads to larger batch size

for domains and classes with fewer data points and subsequently balances the dataset. The results of this experiment are
presented in Table 21. Clearly, by choosing b in a way that the dataset is more balanced, the OOD generalization has been
further improved.

Table 21: OOD accuracy of models with and without balanced generation in OfficeHome dataset .

Method
Training
domain

Leave-one
-domain-out Oracle

ERM 66.5 ± 0.3 65.7 ± 0.5 66.4 ± 0.5

ERM + CDGA (b = 1) 68.2 ± 0.6 68.7 ± 0.4 68.6 ± 0.3

ERM + CDGA (b = m
n(Ej ,c)

) 69.9 ± 0.2 69.7 ± 0.4 70.0 ± 0.7
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