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Abstract
Large Language Models (LLMs) have shown re-
markable capabilities in text and multimodal pro-
cessing, yet they fundamentally lack physical
awareness–understanding of real-world physical
phenomena. In this work, we present ACORN, a
framework that teaches LLMs physical awareness
through sound, focusing on fundamental physical
phenomena like the Doppler effect, multipath ef-
fect, and spatial relationships. To overcome data
scarcity, ACORN introduce a physics-based sim-
ulator combining real-world sound sources with
controlled physical channels to generate diverse
training data. Using this simulator, we build AQA-
PHY, a comprehensive Audio Question-Answer
dataset, and propose an audio encoder that pro-
cesses both magnitude and phase information. By
connecting our audio encoder to state-of-the-art
LLMs, we demonstrate reasonable results in both
simulated and real-world tasks, such as line-of-
sight detection, Doppler effect estimation, and
Direction-of-Arrival estimation, paving the way
for enabling LLMs to understand physical world.

1. Introduction
Large Language Models (LLMs) have demonstrated remark-
able capabilities in processing and generating text and have
successfully expanded into multimodal understanding. How-
ever, a fundamental limitation remains: LLMs lack physical
awareness–the ability to understand and meaningfully inter-
act with the physical world.

Physical awareness, particularly through sound, is a corner-
stone of how humans understand the environment. Sound
provides rich, instinctive insights into our surroundings: The
Doppler effect, with its frequency shifts, tells us whether
a vehicle is approaching or receding; The multipath effect,
where sound reflects off surfaces, reveals whether we are
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in an enclosed space or outdoors; and binaural hearing al-
lows us to pinpoint the sound direction. Apparently, these
acoustic cues provide crucial information about physical
dynamics and spatial relationships.

Despite their ability to recognize and generate speech, cur-
rent LLMs can not comprehend the physical properties
of sound. This gap poses significant challenges in real-
world applications. For example, a voice-controlled vehicle
might accept a command such as Open the Window
from someone outside the car, introducing a security risk
due to its inability to discern the physical origin of the voice.
Also, in human-robot interaction, embodied AI systems
without physical awareness fail to imitate human behaviors,
such as turning towards the speaker when addressed.

In this paper, we take an initial step toward bridging this gap
by proposing ACORN (Acoustic Channel-Oriented Reason-
ing Network), a framework that teaches LLMs to develop
physical awareness through sound. ACORN equips LLMs
with both passive and active acoustic sensing capabilities:
Through passive sensing, LLMs can detect line-of-sight
(LOS) signal paths, interpret motion via Doppler effects, lo-
calize sound sources, and analyze multipath effects. With ac-
tive sensing, we extend their capabilities to include distance
measurement by generating pulses and analyzing echoes,
akin to sonar systems. We demonstrate that LLMs empow-
ered by ACORN can not only understand the real world via
sound but also interact with it.

However, a significant challenge arises in this endeavor:
How to collect and annotate a large-scale dataset that cap-
tures diverse physical phenomena? (1) Data collection re-
quires extensive deployment of recording devices across var-
ious environments and conditions, making it prohibitively
expensive and impractical. (2) Data annotation is nearly
infeasible because, unlike text or images where humans
can directly annotate content, audio physical phenomena
(like Doppler effects or multipath reflections) can not be
labeled by human alone and often requires sophisticated
measurement equipment.

Our key insight to tackle this challenge is that: The sound
that we hear or microphones capture can be decomposed
into two independent components—the sound source and
the physical channel through which it travels. This decom-
position suggests an elegant solution: instead of collecting
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real-world recordings, we can synthesize realistic audio
data by combining sound sources from existing datasets
with simulated physical channel.

To this end, we devise a dedicate physical channel simula-
tor based on advanced signal processing techniques. This
simulator offers complete transparency over the physical
channel parameters. It enables precise control over task-
specific parameters. Meanwhile, it allows for the systematic
randomization of non-critical parameters, ensuring a diverse
range of physical channels. By convolving these simulated
channels with existing sound sources, this approach facili-
tates the building of large-scale, diverse sound datasets with
annotated physical phenomena.

Leveraging the annotations of the simulated sounds, we cu-
rate Question-Answer (QA) pairs that link language with the
underlying physical phenomena. To ensure effective align-
ment between language and audio, we propose a workflow
for generating both closed-form and open-form questions
and answers that probe the model’s understanding of these
physical phenomena. In this way, we create AQA-PHY, an
Audio QA dataset consisting of 1 million <Audio, Ques-
tion, Answer> tuples, designed for supervised fine-tuning
of LLMs to endow them with physical awareness.

To effectively capture physical information from sounds,
we also introduce an effective audio encoder architecture.
Unlike traditional audio encoders that primarily focus on
content recognition based on magnitude information, our
design explicitly incorporates both the magnitude and phase
components of sounds. This distinction is crucial, as physi-
cal effects often manifest in subtle phase relationships that
magnitude-only encoders may overlook (Bai et al., 2020).

We connect our audio encoder to two state-of-the-art LLMs:
LLama3.1-8B and Qwen2-7B. We train the model using
AQA-PHY. The model achieves strong results across all
tasks: 0.924 accuracy in line-of-sight detection, 0.181 MAE
in Doppler effect estimation, 0.907 MAE in direction of
arrival estimation, 0.903 accuracy in multipath analysis, and
1.599 relative error percentage in range estimation. These
demonstrate the feasibility of teaching LLMs to understand
physical phenomena through sound.

In summary, our contributions include:

• A physics-based channel simulator enabling generation
of diverse audios with various physical phenomena.

• A novel audio encoder capturing both magnitude and
phase information for improved physical understanding.

• The AQA-PHY dataset containing 1 million <Audio,
Question, Answer> tuples for training LLMs.

• Extensive evaluation demonstrating state-of-the-art per-
formance in both simulated and real-world environments.

2. Primer: Sound and Space
The received sound is determined by both its source and
the environment through which it travels. When we hear a
sound—whether through our ears or microphones—we are
receiving a signal that has been transformed by its propagat-
ing space. This transformation can be formally modeled as
a physical channel filter (Channel Impulse Response, CIR),
h. Given a sound source s, the received signal y is given by

y = h⊛ s, (1)

where ⊛ denotes the convolution operation.

The human auditory system possesses a remarkable capa-
bility: from the received signal y, it extracts rich spatial
information embedded within the channel h. This channel
contains valuable environmental data, capturing how sound
waves interact with surfaces and objects in the environment.
Through such acoustic information, humans naturally de-
velop an understanding of their physical surroundings (Traer
& McDermott, 2016).

Drawing inspiration from this innate human ability, we aim
to endow LLMs with similar auditory capabilities, enabling
them to understand physical world through sound.

3. Model Architecture
3.1. Overview

Figure 1(a) illustrates the model architecture of ACORN.
Following established practices in the field, we adopt a
common end-to-end architecture (Deshmukh et al., 2023;
Gong et al., 2023; Chu et al., 2023; 2024) to ensure the
generality of our approach. The architecture consists of
three main components: (1) an audio encoder, (2) a text
encoder, and (3) an LLM. The audio and text encoders
transform raw audio and text inputs into sequences of tokens,
respectively. These tokens are then concatenated into a
unified sequence. Following common practice, we wrap
audio tokens with special tokens: <soa> (start of audio)
and <eoa> (end of audio) to establish clear boundaries for
the audio content.

The concatenated token sequence is then fed into the LLM,
which generates a textual response based on both the text
and the audio. As illustrated in Figure 1(a), consider a
scenario where a voice command, Open the Window,
is issued from outside a locked vehicle. Through analysis of
the raw audio, the model should be able to detect the absence
of a LOS path, indicating that the command originates from
outside the secured environment of the vehicle. In such
cases, the model’s physical awareness enables it to reject
potentially unsafe commands.
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Figure 1. Model architecture and audio encoder design . (a) Model architecture: Integrates audio and text encoders to generate unified
token sequences for LLMs, enabling physical reasoning (e.g., detecting LOS). (b) Audio encoder: Processes magnitude and phase
components of audio to capture physical phenomena such as Doppler effects and multipath.

3.2. Audio Encoder

To effectively understand complex physical phenom-
ena—such as multipath and Doppler effects, or determining
time differences between audio channels—an audio encoder
must capture fine-grained features beyond sound sources.

Figure 1(b) illustrates our proposed audio encoder. The key
design feature is its ability to incorporate phase information
through separate channels for the sine and cosine compo-
nents, in addition to capturing the magnitude of the audio
spectrum. By including phase information, our encoder
can more effectively capture the characteristics of both the
sound source and the acoustic channel, which are essential
for understanding the physical world (Bai et al., 2020).

The process first transforms into its spectral components
using Short-Time Fourier Transform (STFT). We extract
three features from spectral components:

• Magnitude: representing the intensity of various fre-
quency components, the magnitude M(f, t) is given by

M(f, t) = |X(f, t)|, (2)

where X(f, t) is the STFT out.

• Phase (sin) and Phase (cos): Instead of using the phase
angle directly, we compute the sine and cosine of it.
This approach is chosen to mitigate numerical instability
caused by phase wraparound, occurring when the phase
angle transitions from π to −π and vice versa. That is{

sin(θ(f, t)) = sin(∠X(f, t))

cos(θ(f, t)) = cos(∠X(f, t))
. (3)

These help in understanding how the sound wave’s phase
changes, critical for analysis of acoustic channel.

Each of the three components is processed through a 3x3
1D convolution, expanding from 128 to 1280 channels, fol-
lowed by a GELU activation (Hendrycks & Gimpel, 2016).

The features are then concatenated (3840 channels) and
fused through two 3x3 convolutions, reducing the dimen-
sionality to 1280 channels. Sinusoidal positional embed-
dings are added to retain temporal context, the outputs are
processed by a 32-layer transformer, producing the final
audio tokens.

3.3. Language Model and Training

Here, the language model is responsible for understand-
ing and reasoning about the audio with physical awareness,
conditioned by the text prompt. We fuse our audio en-
coder to two different LLMs LLama3-8B and Qwen2-7B,
respectively. The audio tokens are projected to the word
embedding size of these models via a linear projection layer.

Both the audio encoder and the LLM are trained jointly
on a dataset consisting of <Audio, Question, Answer> tu-
ples. The training objective is to maximize the likelihood
of predicting the next token in the Answer, conditioned on
both the Audio and Question inputs. Our audio encoder is
initialized from Whisper-large-v2 (Radford et al., 2023) to
leverage pretrained magnitude representations, while the
phase-related subnetwork is trained from scratch to capture
fine-grained physical cues critical for physical awareness.
LLMs are fine-tuned using LoRA (Hu et al., 2022) to re-
duce the training workload and to leverage its linguistic
capabilities.

4. Channel Simulator
Training our model requires a large-scale dataset with anno-
tations of physical phenomena. However, comprehensive
data collection in the physical world presents fundamental
scalability challenges, given the need to reproduce diverse
acoustic phenomena under controlled conditions. To tackle
this, we leverage a key insight: the received signal y can be
decomposed into the channel h and the sound source s (see
Eq. 1). This reveals that channel h independently captures
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Figure 2. Illustration of Acoustic Channel.

the physical phenomena, isolating them from source s.

Our channel simulator models five main components: (1)
LOS paths and (2) early reflections, (3) reverberation, (4)
Doppler effects, and (5) microphone array reception. Each
can be independently controlled to generate diverse physical
phenomena. For more details, please refer to Appendix B.

4.1. LOS Path and Early Reflections

We begin with LOS paths and early reflections as they form
the basic building blocks of sound propagation.

A CIR models how a sound source propagates and interacts
with its environment before reaching the microphone. As
depicted in Figure 2(a), these interactions include a direct
path (LOS) and two reflected paths, ECHO 1 and ECHO 2.

Figure 2(b) illustrates the CIR function, which can be ex-
pressed as a series of delta functions for these paths:

h(τ) = A1δ(τ−τlos)+A2δ(τ−τecho1)+A3δ(τ−τecho2),
(4)

where τlos, τecho1, and τecho2 denote the time delays of the
LOS, ECHO 1, and ECHO 2 paths, respectively, and Ai is
the corresponding path attenuation.

4.2. Reverberation

Reverberation describes the continued interaction of sounds
with the environment, creating a prolonged echo effect.

Figure 2(c) presents a real-world CIR, illustrating a sharp
initial spike (representing the LOS) followed by smaller
spikes (early reflections) and a long diffuse tail (reverbera-
tion). Figure 2(d) provides a closer view, offering a more
detailed depiction of these components. To effectively cap-
ture reverberation, we extend the channel model as follows:

h(τ) =

N∑
i=0

αiδ(τ − τi) +R(τ), (5)

where the first sum represents the impulses of LOS and early
reflections, and R(t) represents the reverberation tail.

We simulate reverberation R(τ) by decomposing sound into
frequency-specific subbands with unique decay character-
istics. We generate Gaussian noise, apply bandpass filters
for specific frequency ranges, and modulate with amplitude

envelopes to simulate decay. These subbands are recom-
bined to create a broadband impulse response. Detailed
methodologies are provided in Appendix Section B.2.

By controlling the decay rate of R(τ) and selectively in-
cluding path components, we can simulate environments
ranging from ‘dry’ spaces with minimal reverberation to
those with severe echoes.

4.3. Doppler Effect

The Doppler effect, a frequency shift resulting from relative
motion between the transmitter and receiver, can be modeled
by introducing a time-varying delay in the CIR.

Mathematically, for a transmitter and receiver with a relative
velocity v, the distance d(t) between them varies as d(t) =
(d0+v · t), where d0 is the initial distance and c is the sound
speed. The time-varying CIR with this dynamic delay can
be modeled as:

h(t, τ) = δ(t− τ(t)) = δ(τ − d0 + v · t
c

)

We further detail the simulation of the Doppler effect in
Appendix Section B.3, along with efficient methods for
processing this time-varying CIR.
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Figure 3. Microphone Array Model.

4.4. Microphone Array

Sound Direction, formally known as Direction of Arrival
(DoA), can be estimated by measuring the Time Difference
of Arrival (TDoA) between microphones. Due to their spa-
tial separation, each microphone receives sound waves at
slightly different times, enabling DoA estimation.

Figure 3(a) illustrates a binaural recording setup with two
microphones placed a distance d apart. When a far-field
source (Wang et al., 2020; Benesty, 2008) emits sound from
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Table 1. Channel Configuration Settings for Different Tasks.

Task LOS
Path

Early
Reflect. Reverb. Doppler

Effect
Mic.

Array

LOS Detection T R R R ✗

Doppler Estimation R R R T ✗

DoA Estimation ✓ R R R T

Multipath Analysis R R T R ✗

Range Estimation T R R R ✗

Note: ✓: enabled; ✗: disabled; R: randomly enabled/disabled; T: controlled target parameter.

direction θ, it creates a differential path length ∆d. The
corresponding TDoA, τθ, is given by

τθ =
∆d

c
=

d cos(θ)

c
(6)

Figure 3(b) visualizes the timeline of sound reception. For
these two microphones, let τL and τR denote the delays to
reach the left and right microphones. The CIRs, assuming
no attenuation, can be simplified as

hL(τ) = δ(t− τL) = δ(t− τLOS) (7)
hR(τ) = δ(t− τL − τθ) = δ(t− τLOS − τθ). (8)

This general form allows deriving hR(τ) by accounting
for direction θ, facilitating extension from a single CIR to
multiple acoustic channels.

4.5. Configuration

The above individual components—LOS path, early reflec-
tions, reverberation, Doppler effects, and microphone array
reception—combine to create comprehensive acoustic sim-
ulations. This modularity allows us to isolate and study
specific phenomena while maintaining physical realism.

Table 1 presents the task-specific configurations, with de-
tailed task descriptions provided in Appendix A. For dif-
ferent tasks, we configure simulation components as either
enabled (✓), randomly enabled/disabled (R), or disabled
(✗). When marked as ‘T’, the component is systematically
controlled for target parameter variation. To maximize chan-
nel diversity, we aim to randomly toggle each component
whenever possible. However, some tasks have specific re-
quirements—for example, DoA estimation requires the LOS
path to be enabled as it relies on direct sound propagation
for DoA calculation (Benesty, 2008).

Our simulation approach follows a core principle: targeted
physical parameter control with maximal diversity:

Task-specific Physical Parameterization. Generally, for
each task, we control specific parameters to generate physi-
cal channels. For LOS Detection, we control the presence or
absence of LOS path to create positive and negative samples.

Channel
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For Doppler Estimation, we vary source speeds to generate
different frequency shifts. For DoA Estimation, we adjust
arrival directions and microphone spacing to create TDoA
variations. For Multipath Analysis, we modify decay rates
to simulate various reverberation levels. For Range Esti-
mation, we control reflection delays to represent different
propagation distances.

Parameter Randomization. For each enabled or randomly-
enabled component, we randomize internal parameters to
enhance channel diversity while maintaining control over
task-specific variables. Unlike existing methods that recon-
struct CIRs by modeling specific geometric environments
(Chen et al., 2022; Zheng et al., 2024), our approach simu-
lates the entire life cycle of sound waves—from emission
to reception—by explicitly modeling its key components,
including LOS propagation, early reflections, reverberation,
and so on. This component-wise, lifecycle-based model-
ing enables scalable and systematic generation of diverse
physical channels, avoiding the complexity and limited gen-
eralizability of environment-specific reconstructions.

5. The AQA-PHY Dataset
To train our model to understand physical world from
sounds, we introduce AQA-PHY, a Audio Question-Answer
dataset. Each datapoint is a <Audio, Question, Answer>
tuple, where audio and question form the input, and answer
serves as the target output. Figure 4 illustrates the synthesis
workflow of generating a datapoint.

Sound Source. The synthesis workflow begins by sampling
sound sources from an existing dataset. For this, we utilize
AudioSet (Gemmeke et al., 2017), which offers approxi-
mately 2 million 10-second sound clips annotated with over
500 labels. This extensive collection provides a rich variety
of sound sources, enhancing the dataset’s versatility.

Physical Channel. For each sound source, we generate
a physical channel with specific physical properties using
configurations from Section 4.5. The Channel Simulation
module transforms these specifications into CIR, which are
then convolved with sound sources to calculate a sample of
received audio exhibiting desired physical effects.

Question-Answer Pair. Two types of QA pairs are de-
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Table 2. Overall Performance. Values are presented as (Merged | Sole) where “Merged” indicates models trained on combined dataset and
“Sole” indicates models trained separately for each task. By default, we focus on Merged results, with Sole results provided for reference.

Model Architecture Task Performances (Merged | Sole)

Audio
Encoder LLM LOS Detection

BCA (↑)
Doppler Estimation

MAEf (↓)
DoA Estimation

MAEt (↓)
Multipath Analysis

TCA (↑)
Range Estimation

REP (↓)

Whisper
Llama3.1-8B 0.867 | 0.906 1.213 | 3.147 5.585 | 5.601 0.845 | 0.889 12.572 | 17.182

Qwen2-7B 0.881 | 0.910 1.042 | 0.575 2.716 | 6.873 0.848 | 0.897 10.609 | 12.901

ACORN
Llama3.1-8B 0.920 | 0.965 0.791 | 0.557 1.423 | 1.349 0.890 | 0.945 1.764 | 1.446

Qwen2-7B 0.924 | 0.962 0.181 | 0.263 0.907 | 1.167 0.903 | 0.944 1.599 | 1.751

Performance on Open QA
(Our Encoder + Qwen2-7B) 0.898 | 0.953 0.487 | 0.398 2.314 | 2.043∗ 0.906 | 0.908 2.852 | 1.900∗

Random Baseline∗∗ 0.50 10.00 66.67 0.33 33.33
∗ For both DoA Estimation and Range Estimation in Open QA, LLMs first extract basic measurements from audio signals and then apply
step-by-step calculations to determine final results (see example QA in Table 10). For the final calculation results, the MAE of DoA
Estimation is 6.505° (Merged) and 5.685° (Sole), while the MAE of Range Estimation is 0.472m (Merged) and 0.352m (Sole).
∗∗ Random Baseline values are computed based on task-specific assumptions: random guessing for LOS (BCA = 0.5) and Multipath
(TCA = 0.33), random frequency shifts (±15% at 50 m/s) for Doppler, random TDoA within ±100 samples for DoA, and uniform relative
errors (0–100%) for Range Estimation.

signed. Examples of QAs are provided in Table 10.

• Closed-form pairs focus on classification or quantitative
assessments with well-defined answers. These include
binary classifications (e.g., “Does the audio contain a
LOS path?” with Yes/No answers), multi-class selections
(e.g., Rich/Moderate/Negligible for multipath severity),
and numerical estimations (e.g., time delays or Doppler
shift percentages). These pairs are generated using fixed
templates to ensure consistent evaluation.

• Open-form pairs elicit detailed explanations of physi-
cal phenomena. These questions are phrased in natu-
ral language and require comprehensive responses that
demonstrate understanding of the underlying physics. For
example, in range estimation tasks, answers include step-
by-step calculations and explanations of how distance is
derived from time-of-flight measurements. We leverage
ChatGPT-4 with specific prompts to generate these QA.

SFT Datapoint. Finally, the synthesized audio is paired
with its corresponding question and answer to form a single
datapoint: <Audio, Question, Answer>. This triplet is then
formatted into a prompt following the template detailed in
Appendix G. For each task, we generate 200,000 closed-
form datapoints and 10,000 open-form datapoints.

6. Evaluation
6.1. Methodology

Baseline. We compare two audio encoders: OpenAI’s Whis-
per (Radford et al., 2023) encoder (Whisper-large-v2 with

32 Transformer layers and 0.63 billion parameters), a rep-
resentative magnitude-only approach widely used in audio
processing, and our encoder proposed in ACORN with 0.65
billion parameters. To demonstrate the generalizability of
our approach, we pair each encoder with two different large
language models (LLMs): Llama3.1-8B-instruct (Dubey
et al., 2024) and Qwen2-7B-instruct (Yang et al., 2024).
This setting helps verify that our audio encoding improve-
ments are model-agnostic and can benefit various LLM
architectures.

Audio Pre-processing. The audio pre-processing pipeline
transforms raw waveforms (sampled at 16kHz) into spec-
tral representations through Short-Time Fourier Transform
(STFT) with a window size of 2541 and a hop length of
10 ms, chosen specifically to align with the configuration
of our baseline, Whisper. Unlike Whisper which converts
STFT outputs to mel-spectrograms2, we directly preserve
the full spectral resolution. The process extracts three key
components: the log-magnitude spectrum for energy distri-
bution, and sine/cosine components of the phase for tem-
poral information. These features are stacked to create a
three-channel representation of the audio.

Training. The models are trained using standard next-token
prediction loss with the answer text in SFT dataset as labels.
We train the models upon MS-SWIFT (Zhao et al., 2024)
with modifications to accommodate our specific model ar-

1Since the input audio is real-valued, the FFT output is sym-
metric, resulting in (254/2 + 1) = 128 unique frequency bins.

2While mel-spectrograms emphasize human speech frequen-
cies, we preserve full spectral resolution for fine-grained analysis
of physical world sounds.
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Figure 5. Loss History.

chitecture. The model is trained on 4 NVIDIA A100 GPUs
with batch size 32 and completes after 7 epochs. The total
training time is about 61 hours. For response generation,
the decoding parameters are set with temperature 1, top-p 1,
and top-k 50. Appendix C lists more train hyperparameters.

Evaluation Metrics. We employ task-specific metrics to
evaluate the model across five tasks. (1) For LOS Detection,
we use binary classification accuracy (BCA, ↑) to measure
the model’s ability to correctly identify the presence or ab-
sence of LOS path. (2) For Doppler estimation, we employ
Mean Absolute Error (MAE) to quantify the model’s preci-
sion in estimating frequency shift percentage (MAEf ). (3)
DoA estimation accuracy is evaluated using MAE in time
samples (MAEs), measuring the average TDoA deviation
between predicted and actual sound source directions.3 (4)
Multipath Analysis performance is evaluated using Triple-
class Classification Accuracy (TCA, ↑) across three cate-
gories (Rich, Moderate, and Negligible). (5) Range Estima-
tion employs Relative Error Percentage (REP, ↓) to provide
a scale-invariant measure of distance estimation accuracy.

6.2. Overall Performance

As shown in Table 2, our experimental results validate four
main findings: (1) the feasibility of teaching LLMs to under-
stand physical phenomena through sound, as demonstrated
by strong performance across all tasks; (2) the superiority
of our audio encoder over existing approaches, showing
consistent improvements in all evaluation metrics; (3) the
model-agnostic nature of our approach, evidenced by similar
performance of different LLM architectures; (4) the effec-
tiveness of natural language communication, demonstrated
by maintained reasonable performance on open-form QA.

Note that, in Table 2, the evaluation metrics show model per-
formance in the format “(Merged | Sole)”, where “Merged”
represents models trained on combined datasets for all tasks,
while“Sole” indicates models trained separately for each
individual task. Our evaluation primarily focuses on the
Merged results as the default metric, while Sole results is
provided for just reference and comparison.

Feasibility of Understanding Physical World. Our exper-

3The key parameter in estimating DoA is TDoA (see Eq. 6).

imental results demonstrate the fundamental feasibility of
teaching LLMs physical awareness through sound. Across
all tasks, our models achieve promising performance - with
BCA above 0.92 for LOS detection, MAEf below 0.8 for
Doppler estimation, MAEt around 1.4 for DoA estimation,
TCA above 0.89 for multipath analysis, and REP below
1.8 for range estimation. These strong results across di-
verse physical tasks demonstrate that LLMs can effectively
develop physical awareness through acoustic signals.

Audio Encoder Superiority. The audio encoder proposed
in ACORN shows clear superiority over the existing Whis-
per baseline across all evaluation metrics. For LOS detec-
tion, we achieve more than 5 percentage points of improve-
ment in BCA (0.920 vs 0.867 with Llama). In Doppler
Effect estimation, our MAEf shows significant reduction
(0.181 vs 1.042 with Qwen2). For DoA Estimation, we
reduce 74.5% MAEt (1.423 vs 5.585 with Llama). Perhaps
most notably, in Range Estimation, our approach reduces
the REP by 7x (1.764 vs 12.572 with Llama), demonstrating
substantially more accurate distance estimation capabilities.

The convergence behavior further validates this superiority–
as shown in Fig. 5, our approach achieves faster conver-
gence and lower final loss values during training across both
Llama and Qwen architectures. This consistent advantage in
both convergence rate and final performance suggests that
our audio encoder’s design - particularly its incorporation
of both magnitude and phase information - provides a more
effective foundation for learning physical awareness.

Model-agnostic Property. The consistent performance
improvements across different LLMs indicate that our au-
dio encoding approach is robust and model-agnostic. Both
Llama and Qwen show similar patterns of enhancement
when paired with our encoder compared to the Whisper
baseline, suggesting our method can generalize across dif-
ferent LLM architectures.

Open QA Performance. As shown in Table 2, when testing
open-form QA with our encoder and Qwen2-7B, the model
demonstrates two key capabilities: natural language commu-
nication of physical phenomena and multi-step calculations.
For direct estimation tasks like LOS detection (0.898) and
multipath analysis (0.906), it provides clear explanations in
natural language. For tasks requiring multi-step calculations,
such as DoA and range estimation, it extracts measurements
and applies physical formulas to derive results (DoA error:
6.505°, Range error: 0.472m).

6.3. Ablation Study of Acoustic Factors

We conduct ablation studies to understand how different
acoustic factors affect the understanding of physical world.
While these factors could potentially impact all tasks, we se-
lect representative tasks for illustrative purposes to examine
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the effects of various acoustic phenomena. By default, we
set the audio encoder to our proposed design.

Impact of LOS. Figure 6 demonstrates the impact of LOS
paths on multipath analysis by comparing scenarios with
and without LOS components. For Llama, TCA decreases
from 0.901 to 0.880 when LOS paths are present, while for
Qwen, it shows a similar trend with a smaller gap (0.912
to 0.895). This makes intuitive sense, as strong direct-path
signals can overshadow the subtle echoes and reflections
that characterize reverberation, making it challenging to
assess multipath characteristics like reverberation time.

Impact of Doppler Effect. Similarly, Figure 7 illustrates
how Doppler effects influence LOS detection. The introduc-
tion of Doppler shifts slightly reduces the BCA from 0.930
to 0.910 for Llama and from 0.936 to 0.912 for Qwen. This
slight decrease in performance is expected, as the Doppler
effect can introduce signal distortion, adding complexity to
the analysis of LOS components. For a more comprehensive
breakdown of the results, see Appendix Section E.

Notably, our method demonstrates strong resilience to these
acoustic variations, with slight performance degradations.
This robustness makes our approach particularly suitable
for real-world environments where multiple acoustic phe-
nomena often occur simultaneously.

Impact of SNR. Figure 8 illustrates how signal-to-noise
ratio (SNR) affects ranging estimation performance. As
expected, estimation accuracy improves significantly with
higher SNR levels. For Llama, the MAE decreases steadily
from 5.64 samples at low SNR (<10dB) to 0.91 samples
at high SNR (>40dB). Qwen shows a similar trend, with
MAE reducing from 5.33 samples to 0.80 samples as SNR
increases. This trend aligns with the general rule of thumb
in acoustic sensing or ranging systems.

6.4. Real-World Experiments

Deployment. In line with standard practices in vehicle
audio systems, four omni-directional microphones are de-
ployed throughout a NIO ES6 vehicle cabin. Two micro-
phones are positioned in the front seat area and two in the
back, each with left-right configuration. The audio signals
are synchronized and collected via a data acquisition board
at 16 kHz sampling rate. Detailed hardware specifications
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Figure 8. Impact of SNR.
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Figure 9. Real-World Results.

and data collection setup are provided in Appendix F.

Results. Our real-world experiments focused on LOS de-
tection and DoA estimation in a vehicle environment. The
model are trained solely on simulated data and evaluated
on real-world data in a zero-shot manner. Figure 8 presents
the experimental results. For LOS detection, distinguish-
ing between interior and exterior sound sources, the Llama-
based model achieved 0.845 accuracy while the Qwen-based
model maintained 0.870 accuracy. In the DoA estimation
task, implemented as left/right classification within the ve-
hicle cabin, Llama achieved 0.8975 accuracy while Qwen
maintained 0.925 accuracy. These real-world accuracies
show expected degradation compared to our controlled ex-
perimental results, reflecting typical challenges in transition-
ing from simulated to real-world environments. Despite this
performance drop, the results show the practical viability of
our approach in the real world.

7. Related Work
Audio LLM. Recent work has seen significant progress in
extending large language models to handle audio modalities.
AudioGPT (Huang et al., 2024) and HuggingGPT (Shen
et al., 2023) use LLMs as controllers to coordinate multiple
specialized audio models for different tasks. In contrast,
models like Pengi (Deshmukh et al., 2023), LTU (Gong
et al., 2023), and Qwen-Audio (Chu et al., 2023; 2024) take
a more unified approach by directly connecting audio en-
coders with language models to enable end-to-end learning.
SpeechGPT (Zhang et al., 2023) introduces a novel direc-
tion by discretizing speech into tokens that can be directly
processed by LLMs, while BAT (Zheng et al., 2024) and the
work (Tang et al., 2024) extend these capabilities to spatial
audio understanding.

However, these prior works primarily focus on semantic
understanding of audio content or basic spatial properties,
without explicitly modeling physical awareness. In contrast,
ACORN aims to teach LLMs physical awareness through
sound, covering dynamic effects like Doppler, multipath,
and range estimation. Furthermore, our approach to audio
encoding is distinct from BAT’s method. While BAT com-
putes Interaural Phase Difference (IPD) between each pair
of microphone channels, our encoder extracts phase infor-
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mation directly from individual channels. This approach not
only avoids the quadratic growth in pairwise computations
as microphone count increases but also preserves complete
phase information for each channel, enabling a more general
representation of acoustic signal.

Physical Reasoning in LLM. Recent works have explored
LLMs’ capabilities in physical reasoning. NEWTON (Wang
et al., 2023) introduces a comprehensive benchmark eval-
uating LLMs’ physical reasoning through text and visual
inputs. The work (Ghaffari & Krishnaswamy, 2024) ex-
amines multimodal reasoning about physical dynamics in
simulated environments. Works such as (Cherian et al.,
2024; Memery et al., 2023) investigate whether LLMs can
estimate parameters of physical systems. With the rise of
generative LLMs, researchers also explore their applications
in robotics, where physical understanding is vital. Works
such as (Ahn et al., 2022; Liang et al., 2023; Driess et al.,
2023) examine LLMs as back-end planners in situated envi-
ronments. While these efforts primarily focus on physical
reasoning through textual and visual modalities, our work
explores how acoustic information can empower LLMs to
develop physical awareness.

Acoustic Sensing. Prior to the emergence of LLMs for au-
dio understanding, acoustic sensing is dominated by hand-
crafted signal processing techniques such as ToA, TDoA,
FMCW, and CIR (Bai et al., 2020; Li et al., 2022). These
methods extract physical properties for tasks like activity
recognition (Li et al., 2020), gesture tracking (Mao et al.,
2016), communication (Wang et al., 2022a), and localiza-
tion (Wang et al., 2022b;c), but often rely on manual feature
design, synchronization, or controlled settings. In contrast,
our approach leverages pretrained audio models to learn
physical awareness directly from data, potentially offering
greater adaptability and scalability.

8. Limitations and Future Work
Multi-turn Conversation. Our current model is limited to
single-turn interactions. Future efforts will aim to incorpo-
rate multi-turn conversations, enhancing the ability to guide
users through more complex reasoning.

Internal Thought. Our approach currently evaluates di-
rect outputs for physical world understanding. Inspired by
OpenAI-o1 (OpenAI, 2024) and Deepseek-R1 (Guo et al.,
2025), we may examine how LLMs internalize this under-
standing to enhance response conditioning, thus improving
the integration of physical awareness with LLM capabilities.

Extensive Real-World Experiments. While our real-world
experiments provide valuable insights, they are limited in
scope and scale. To fully validate and refine our model’s
capabilities, more extensive real-world testing is necessary.

9. Conclusion
We present ACORN, a framework that teaches LLMs physi-
cal awareness through sound. ACORN addresses a funda-
mental gap in LLMs’ ability to understand and interact with
the physical world. By introducing a physics-based chan-
nel simulator, a novel audio encoder architecture, and the
AQA-PHY dataset, we enable LLMs to understand various
physical phenomena.
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Impact Statement
Our research on teaching physical awareness to LLMs
through sound holds significant potential for applications
across various fields:

Empowering Embodied AI. Equipping LLMs with phys-
ical awareness through sound significantly advances em-
bodied AI. By imitating human auditory capabilities, such
as turning toward sound sources and adapting to acoustic
environments, these systems can engage in more natural
and intuitive human-robot interactions. This development
enhances usability and user engagement, fostering more
effective collaborations between humans and AI.

Advancements in Safety Applications. This work ad-
dresses a critical need for secure and reliable AI systems by
enabling LLMs to reason about physical phenomena such
as sound source localization and LOS detection. These ca-
pabilities can prevent unauthorized access in safety-critical
environments like autonomous vehicles and smart homes by
rejecting unsafe voice commands originating from external
or unauthorized sources. Furthermore, by integrating acous-
tic sensing, our approach equips autonomous vehicles with
the ability to detect and localize critical sound cues, such
as emergency sirens or passenger screams. This advance-
ment addresses a potential limitation in current autonomous
driving systems, often described as “deaf drivers”.

Innovations in Channel-Based Simulation Our channel-
based simulation framework can be directly applied to ex-
isting audio LLMs, enabling the generation of large-scale
datasets that capture diverse acoustic phenomena at signifi-
cantly lower cost compared to traditional data collection.
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A. Task Description

Table 3. Tasks for Physical Awareness Enhancement in LLMs

Task Name Description Example Applications

LOS Detection Determine if the line-of-sight path is blocked or not. Reject voice commands from outside a secured
area like a car.

Doppler Estimation Estimate the frequency shift in sounds due to the rela-
tive motion of the source.

Determine if the source is approaching or mov-
ing away.

DoA Estimation Estimate the direction from which a sound originates
based on the TDoA.

Enable embodied systems to rotate towards
sources, imitating human head movements.

Multipath Analysis Detect the severity of reverberation resulting from mul-
tipath effects.

Assess sound quality by identifying distortions
due to complex surrounding reflections.

Range Estimation Measure the distance to objects by employing sonar
techniques.

Enable proximity sensing to determine phone
screen-lock behavior during calls.

The tasks listed in Table 3 explore both passive and active approaches to understand physical world. The first four
tasks - line-of-sight (LOS) Detection, Doppler (Effect) Estimation, Direction of Arrival (DoA) Estimation, and Multipath
(Effect) Analysis - demonstrate passive sensing capabilities, where LLMs analyze incoming sounds to understand physical
phenomena. The fifth task, Range Estimation, explores the feasibility of active sensing, where the LLM actively probes the
environment by playing, recording, and analyzing sound pulses, similar to how sonar systems operate.

A.1. Passive Sensing Tasks

Our passive sensing tasks evaluate the ability of LLMs to extract physical information from ambient or environmental
sounds:

LOS Detection enables LLMs to determine whether there is a direct path exists between the sound source and receiver.
When sound travels through a direct path, it arrives earlier than reflections and contains highest energy due to minimal path
attenuation. This capability is crucial for security applications, such as validating voice commands in vehicles or buildings.
For example, a car’s voice control system should reject voice commands from outside the vehicle to prevent unauthorized
access. Similarly, smart home devices can use LOS detection to determine if voice commands originate from inside or
outside the house.

Doppler Estimation focuses on measuring frequency shifts caused by relative motion between sound sources and receivers.
When a sound source approaches, the perceived frequency increases due to wave compression; when it recedes, the frequency
decreases due to wave expansion. This shift largely depends on the relative velocity. This physical awareness is valuable for
various applications, from estimating vehicle speeds to enabling proximity-based responses in smart devices. For instance, a
device could adjust its behavior based on whether the sound source is approaching or moving away.

DoA Estimation teaches LLMs to determine where sound originates using multiple microphones. This task relies on
analyzing time differences of arriving different microphones (i.e., Time Difference of Arrival, TDoA). This task is beneficial
to natural human-robot interaction, allowing systems to turn toward heads just as humans do. It might also enable spatial
audio processing and directional noise suppression in applications like smart speakers and hearing aids.

Multipath Analysis involves understanding how sound reflects and reverberates in different environments. Sound waves
bounce off surfaces, creating complex patterns of early reflections and late reverberation. This capability helps systems
assess audio quality and adapt to various acoustic environments. For instance, if the LLM detects excessive reverberation
degrading sound quality during a voice communication, it could proactively suggest to the other party, ‘It seems there’s a lot
of background reverberations—moving to another place might help.’ This level of adaptive response enables the LLM to
function similarly to a human listener, enhancing user experience by facilitating clearer communication in less-than-ideal
acoustic conditions.”

12



Teaching Physical Awareness to LLMs from Sounds

ToF

LOS

LOS

ECHO

Wall ECHO

ToF

LOS

LOS

ECHO

Wall ECHO

(a) Deployment (b) Spectrogram

Figure 10. Ranging Estimation Illustration.

A.2. Active Sensing Tasks

Range Estimation explores active sensing capabilities, requiring LLMs to initiate measurements by transmitting sound
pulses and analyzing their echoes. Unlike passive tasks that only observe existing sounds, this represents a significant
advancement toward active environmental interaction. We envision that the LLMs can trigger pulse transmission through
function calls, measure echo return times, and calculate distances based on the speed of sound. This active approach enables
precise distance measurements independent of ambient sound conditions, demonstrating how LLMs can actively engage
with their physical environment.

To better understand this, we give an example in Figure 10. As shown in Figure 10(a), the basic deployment involves a
system that actively transmits a sound pulse. This pulse travels along two paths: a direct Line-of-Sight (LOS) path to the
microphone, and a reflected ECHO path that bounces off the wall. This configuration mirrors the principles used in natural
and technological sonar systems. The spectrogram in Figure 10(b) illustrates how these paths manifest in the received signal,
demonstrating the feasibility of distance estimation. We can clearly observe two distinct bright patterns: the LOS signal
arrives first, followed by its ECHO from the wall. The time difference between these signals, marked by the Time-of-Flight
(ToF) dashed lines, makes distance calculation straightforward. Since we know sound travels at approximately 343 meters
per second in air, and the echo travels twice the distance to the wall (to the wall and back), we can determine the wall
distance by taking half of the total distance that the echo traveled.

We want to mention that, range estimation is unique among our tasks not only in its active sensing approach but also in its
sound source. While other tasks utilize real-world sound sources sampled from the AudioSet dataset, Range Estimation
employs specially modulated signals for transmission. Specifically, it uses Frequency-Modulated Continuous Wave (FMCW)
signals, also known as chirp, where the frequency changes linearly with time. These chirp signals, widely used in Radar and
Sonar systems (Rao, 2017), provide excellent range resolution properties. To ensure the diversity of source sources used for
range estimation, we randomize several chirp generation parameters including the starting frequency, ending frequency, and
chirp duration.

B. Implementation Detailed for Channel Simulator
B.1. LOS ad Early Reflections

In Eq. 4, we use the Delta function (δ) to explain CIR for better understanding. In practice, we employ damped sinusoids,
which provide both precise parameter control and naturally model physical acoustic behaviors like attenuation and resonance.
Mathematically, Each path in the CIR is modeled as a damped sinusoid

z(t) = cos(2πfzt)e
−αzt, (9)

where fz is the sinusoid wave frequency, αz is the decay rate, and t is the time. Therefore, Eq. 4 can be rewritten as

h(τ) = A1z(τ − τlos) +A2z(τ − τecho1) +A3z(τ − τecho2). (10)

Table 4 lists the corresponding parameters used to simulate LOS and early reflections. Except amplitude, The parameters for
LOS paths are largely fixed to model the direct path’s consistent nature, as it experiences minimal environmental interactions.
In contrast, the parameters for early reflections vary randomly to capture the diversity of channels.
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Table 4. Parameter Specifications for Damped Sinusoid Path Generation

Parameter Description Unit Value/Range Sampling Method

LOS Early Reflections LOS Early Reflections

Base Frequency (fc) Sinusoid wave frequency Hz 2,000 2,000 Fixed Fixed
Frequency Modification Factor for tuning base frequency - 1.0 0.8 - 1.2 Fixed Uniform
Decay Rate (αz) Base exponential decay Hz 8,000 8,000 Fixed Fixed
Decay Modification Factor for tuning decay rate - 1.0 1.0 - 1.5 Fixed Uniform
Amplitude (A) Path strength - 5.0 - 20.0 0.1 - 0.5 Uniform Uniform
Duration Time duration of path second 0.01 0.01 Fixed Fixed

B.2. Reverberation

During the simulation of reverberation, Gaussian noise is first generated as the base signal, characterized by a normal
distribution with a mean of zero and a standard deviation of one, denoted as

n(t) ∼ N (0, 1). (11)

The noise is generated with a sampling rate of 16 kHz, and to accommodate the requirements of our simulation, the duration
of n(t) is set to a maximum of 2 seconds, translating to 32,000 samples. This establishes the temporal extent of the impulse
response we aim to simulate.

Subsequent processing involves bandpass filtering this noise to isolate specific frequency bands, crucial for accurately
modeling the frequency-selective behavior observed in real-world reverberation, where different frequency bands decay at
different rates. Each subband is obtained using a Butterworth bandpass filter, selected for its flat frequency response within
the passband and sharp cutoff characteristics. The frequency range for each subband i is specified by f low

i and fhigi
i . The

filtered signal for the subband i is given by

si(t) = bandpass(n(t), f low
i , fhigh

i ). (12)

Each filtered signal si(t) is modulated by an amplitude envelope to simulate the natural decay characteristics of sound in an
environment. This decay is typically exponential, mathematically represented as ei(t) = exp(−λit), where λi represents
the decay rate for subband i.

Finally, the processed signals from each subband are summed to construct the broadband reverberation, defined as:

R(t) =

Nband∑
i=1

si(t) · ei(t), (13)

where Nband is the number of subbands.

For a detailed breakdown of the parameters used in our reverberation simulation, including the specific frequency bands and
decay rates employed, refer to Table 5.

B.3. Doppler Effect

This subsection provides an detailed explanation of the method for simulating the Doppler effect within a time-varying
CIR and explains an efficient processing approach. Instead of using a traditional convolution operation, we apply the
Doppler-induced time-varying delay transformation directly to the transmitted signal, reducing computational complexity.

In a stationary channel, the Channel Impulse Response (CIR), h(τ), is typically constant over time, representing a fixed
delay or set of delays for each multipath component. However, for a moving transmitter or receiver, the CIR must vary with
time to capture the Doppler effect, which introduces a continuous frequency shift due to the relative motion.

To model this, we introduce an additional time dependency t into the CIR, such that h(t, τ) captures how the path delay
tau(t) changes with relative speed.
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Table 5. Parameter Specifications for Simulating Reverberation

Parameter Description Units Value/Range Sampling

Sampling Rate (fs) Sampling rate of audio signal Hz 16,000 Fixed
Duration (T ) Total length of the Gaussian noise signal second 2 Fixed
Number of Samples Total number of audio samples sample 32,000 Fixed
Number of Subbands (Nband) Number of frequency bands for filtering - 6 Fixed

Subband Frequency (f low
i ,fhigh

i ) Lower and upper frequency bounds of sub-
band i

Hz

(50, 200)
(200, 500)
(500, 1,000)
(1,000, 2,000)
(2,000, 4,000)
(4,000, 8,000)

Fixed

Decay Rates (λi) Amplitude decays rate for subband i - 1.5 – 60∗ Uniform
Butterworth Filter Order Order of the Butterworth bandpass filter - 4 Fixed
∗ A larger decay rate λi means the sound energy decays more quickly, resulting in a shorter reverberation time (RT60). Specifically,
a λi value of 1.5 yields an RT60 of approximately 2 seconds, while a λi value of 60 shortens the RT60 to about 0.05 seconds.

Let’s consider a scenario where the transmitter and receiver are separated by an initial distance d0 and moving at a relative
speed v. As they move, the distance between them changes linearly with time: d(t) = d0 + v · t. Since the speed of sound is
c, this changing distance translates to a time-varying delay τ(t) in the signal:

τ(t) =
d(t)

c
=

d0 + v · t
c

. (14)

This delay means that the time it takes for each part of the transmitted signal to reach the receiver continuously varies as the
distance changes. We can represent this time-varying delay in the CIR by using a delta function that shifts in time. The CIR
with Doppler effect then becomes:

h(t, τ) = δ

(
τ − d0 + v · t

c

)
. (15)

To obtain the received signal y(t), we convolve the transmitted signal x(t) with the time-varying CIR h(t, τ):

y(t) =

∫ −∞

−∞
x(τ)h(t, t− τ)dτ

=

∫ −∞

−∞
x(τ)δ

(
(t− τ)− d0 + v · t

c

)
dτ

= x

(
t− d0 + v · t

c

)
(16)

This expression can be rewritten as:

y(t) = x

(
(1− v

c
)t− d0

c

)
. (17)

As we can see, the factor (1 − v
c ) compresses or stretches the time variable, This aligns with the Doppler effect, where

relative motion changes the observed frequency.

More importantly, This expression shows that the Doppler effect can be viewed as resampling the original source x(t) at a
new effective sampling rate of 1− v

c . By interpreting the delay transformation as a resampling problem, we can achieve the
Doppler simulation efficiently using 1D interpolation to calculate the received signal y(t).

For connivent, Table 6 summarizes the parameters relevant for simulating the Doppler effect.

B.4. Microphone Array

Similarly, Table 7 summarizes the key parameters for simulating the reception of microphone array.
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Table 6. Parameter Specifications for Simulating Doppler Effect

Parameter Description Units Value/Range Sampling

Sampling Rate (fs) Rate at which the signal is sampled Hz 16000 Fixed
Initial Distance (d0) Starting distance between transmitter and

receiver
m 0.5 – 100 Uniform

Relative Speed (v) Relative velocity between transmitter and
receiver

m/s -50 – 50 Uniform

Sound Speed (c) Speed of sound m/s 343 Fixed
1D Interpolation Method Interpolation technique for resampling N/A Linear Fixed

Table 7. Parameter Specifications for Simulating the Reception of Microphone Array

Parameter Description Units Value/Range Sampling

Inter-microphone Distance (dmic) Distance between left and right microphone cm 8 – 15 Uniform
Direction of Arrival (θ) The direction in which the sound source ar-

rive at the microphone array
degree 0 – 180 Uniform

C. Training Hyperparameters
The main training hyperparameters configured are summarized in Table 8.

Table 8. Training Hyperparameters

Parameter Value

GPUs 4 NVIDIA A100
Global Batch Size 32
Epochs 7
Optimizer AdamW
Optimizer Parameters β1 = 0.9, β2 = 0.95, ϵ = 1e-8
Learning Rate Schedule WarmupDecayLR
Weight Decay 0.1
Warm-up Min Learning Rate 0
Warm-up Max Learning Rate 0.0001
Warm-up Ratio 0.05
LoRA Rank 8
LoRA Alpha 32
LoRA Dropout 0.05

D. Ablation Study of LoRA Rank
We keep the LoRA rank relatively low, 8, to preserve the LLM’s language ability, as most representation learning occurs in
the audio encoder. This choice is aligned with the model-agnostic property of our model. Higher ranks showed minimal
benefit but increased cost (see Table 9).

E. Detailed Analysis of Doppler Effect on LOS Detection Performance
Figure 11 demonstrates how varying Doppler speeds affect LOS detection for the models Llama and Qwen. The analysis
covers speed bins from -50 to +50 m/s. Both models show consistently stable performance across these speed ranges.
Notably, performance variations are evident in conditions of higher speeds, underscoring the models’ varied sensitivity to
distortions caused by the Doppler effect.
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Table 9. Ablation Study of LoRA Rank

Setting Task Performances (Merged)

Model
Architecture

LoRA
Rank

LOS Detection
BCA (↑)

Doppler Estimation
MAEf (↓)

DoA Estimation
MAEt (↓)

Multipath Analysis
TCA (↑)

Range Estimation
REP (↓)

Our Encoder +
Qwen2-7B

4 0.919 0.869 1.631 0.881 1.943

8 0.924 0.181 0.907 0.903 1.599

16 0.908 0.193 0.840 0.881 1.561

32 0.910 0.187 0.731 0.890 1.724

[-50, -3
5)

[-35, -2
5)

[-25, -1
5)

[-15, -5
)

[-5, 5)
[5, 15)

[15, 25)
[25, 35)

[35, 50)

Speed Bins (m/s)

0.84

0.86

0.88

0.90

0.92

0.94

B
C

A

Llama
Qwen

Figure 11. Impact of Doppler Speed on LOS detection.

F. Real-World Deployment
The data collection setup, as illustrated in Figure 12, consists of four omni-directional SPK0641HT4H digital microphones
deployed throughout a vehicle cabin (specifically in a NIO ES6, a smart vehicle with Audio Assistant support). Two
microphones (Mic. 1 and Mic. 2) are positioned in the front seat area, with one on the left and one on the right, as
shown in Figure 12(a). The remaining two microphones are positioned in the back seat area, following the same left-right
configuration, depicted in Figure 12(b) and 9(c).

The microphones are driven and sampled by an XMOS XU216 data acquisition board (visible in Figure 12(a)), which
ensures synchronization across all four channels. Operating at a sampling rate of 16 kHz, the board streams the synchronized
audio signals to a laptop via USB UAC 2.0 protocol for data collection and storage.

For comprehensive evaluation, we place a speaker at various test locations. For exterior testing, we deploy the speaker
outside at all four car doors (Figure 12(d) shows an example of one door placement). The speaker was also positioned at
various interior locations including the front seat (Figure 12(e)) and back seat (Figure 12(f)).

For data collection, we gather 200 samples for the LOS detection task, evenly split between interior (100 samples) and
exterior (100 samples) positions. For the left/right detection task, we collected 400 samples in total, with 100 samples from
each of the four seating positions (left-front, right-front, left-back, and right-back seats).

G. Prompt Format
To ensure the generality and broad applicability, we adopt a standardized prompt format commonly used in the field, similar
to those employed by models such as Llama and Qwen. The basic format for single-audio tasks is structured as follows:

<|im_start|>system{\n}
You are a helpful assistant.
<|im_end|>{\n}
<|im_start|>user{\n}
Audio 1: <|audio_bos|><|AUDIO|><|audio_eos|>{\n}
{Question}
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Data Acq. 

Board

Mic. 1 Mic. 2

(a) Mic. 1 and 2, and data acq. board

Mic. 3

(b) Mic. 3

Mic. 4

(c) Mic. 4

Speaker

(d) Speaker outside the car

Speaker

(e) Speaker at front seat

Speaker

(f) Speaker at back seat

Figure 12. Illustration of microphone and speaker deployment in the NIO ES6 vehicle. Microphones (Mic. 1–4) are positioned in the
front and back seat areas, while the speaker is placed at various locations for replaying audios.

<|im_end|>{\n}
<|im_start|>assistant{\n}
{Answer}
<|im_end|>

The format uses “You are a helpful assistant” as the default system prompt. The placeholders {Question} and {Answer}
are replaced with the specific question and answer pairs from the dataset. For tasks requiring two audio inputs, we extend
the format by adding a second audio segment:

<|im_start|>system{\n}
You are a helpful assistant.
<|im_end|>{\n}
<|im_start|>user{\n}
Audio 1: <|audio_bos|><|AUDIO|><|audio_eos|>{\n}
Audio 2: <|audio_bos|><|AUDIO|><|audio_eos|>{\n}
{Question}
<|im_end|>{\n}
<|im_start|>assistant{\n}
{Answer}
<|im_end|>

H. Comparison Between Real and Synthesized CIRs
To qualitatively validate the diversity of our synthesized CIRs, we retrieve the closest match for several real CIRs using
similarity search. Representative examples are shown in Figure 13.

I. Example QA Pairs
Table 10 presents the example QA pairs for five different tasks, including both close and open types.
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(a) LOS Example 1
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(b) LOS Example 2

0 200 400 600 800 1000
Sample Index

1.0

0.5

0.0

0.5

1.0

A
m

pl
itu

de

Real CIR

0 200 400 600 800 1000
Sample Index

1.0

0.5

0.0

0.5

1.0
Best-Matched Synthesized CIR

(c) NLOS Example 1
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(d) NLOS Example 2

Figure 13. Comparison between real and synthesized CIRs in both LOS and NLOS scenarios. For each example, we select a real CIR (left)
and retrieve the most similar synthesized CIR (right) using a similarity search. Two LOS and two NLOS cases are shown to demonstrate
the diversity and realism of our synthesized CIRs.
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Table 10. Example QA Pairs for Tasks.

Task Form Example Question Example Answer

LOS
Detection

Close Audio 1: <Audio> Does the audio contain a line-
of-sight path?

{Yes. | No.}

Open Audio 1: <Audio> Is there a clear LOS path in the
audio, or not?

No, the audio doesn’t have a clear LOS path. I think the
source reaches the receiver through indirect paths.

Doppler
Effect

Close Audio 1: <Audio> Audio 2: <Audio> You are pro-
vided with a two-channel audio recording. The first
channel is the origin the sound. The second channel
is the received audio. Please determine whether the
sound source is approaching or receding.

{Approaching. | Receding.}

Close Audio 1: <Audio> Audio 2: <Audio> You are
provided with a two-channel audio recording. The
first channel is the origin the sound. The second
channel is the received audio. Please estimate the
Doppler shift percentage.

{XX%.}

Open Audio 1: <Audio> Audio 2: <Audio> How can
the percentage of Doppler shift be estimated from a
two-channel audio recording, where the first channel
represents the original sound and the second channel
captures the received audio?

The estimated Doppler shift is approximately 2.5%. The
sound seems to approach you due to a noticeable increase
in frequency.

DoA
Estimation

Close Audio 1: <Audio> Audio 2: <Audio> Given a
two-channel audio recording, where the first channel
is from the left microphone and the second from the
right, which microphone receives the sound first?

{Left. | Right. | Front.}

Close Audio 1: <Audio> Audio 2: <Audio> Given a
two-channel audio recording, where the first channel
is from the left microphone and the second from the
right. Please estimate the time difference of arrival.

{XX samples.}

Open Audio 1: <Audio> Audio 2: <Audio> In a smart
home system, two microphones are placed d = 10 cm
apart on the ceiling to localize a sound source, such
as a speaker, in the living room. Given the recorded
audio signals from both microphones and assuming
the speed of sound c = 343 m/s with sampling rate fs
= 16000 Hz, what is the Direction of Arrival (DoA)
of the sound source?

Let’s solve this step by step:\n 1. From the audio signals
analysis, we estimate the time delay:\n N = -4 samples\n
2. Convert the time delay to time (τ ) in milliseconds:\n
τ = N / fs = -4 / 16000 = -0.25 ms\n 3. Apply the
DoA formula:\n θ = arccos((π × c) / d) = arccos((-0.25
/ 1000 × 343) / 0.1)\n \n 4. Simplify the calculation:\n
θ ≈ arccos(-0.8575) = 0.5404 radians\n \n 5. Convert
radians to degrees:\n θdeg = (θ / π) × 180 ≈ 30.96
degrees\n \n Final Answer:\n The estimated Direction
of Arrival (DoA) angle is approximately 30.96 degrees.

Multipath
Analysis

Close Audio 1: <Audio> How severe is the multipath
effect in this audio?

{Rich. | Moderate. | Negligible.}

Open Audio 1: <Audio> Could you evaluate the effect of
multipath interactions within the given audio piece?

The multipath effect is very rich in this audio, with ex-
tensive reverberation creating a complex sound profile.

Range
Estimation

Close Audio 1: <Audio> You are given audio data con-
taining both the transmitted pulse and the echo.
Please estimate the time of flight.

{XX ms.}

Open Audio 1: <Audio> You are given acoustic data that
includes a transmitted sound pulse and its reflection.
Please estimate the distance to the object.

The time of flight for the sound pulse is 59.0 ms. As-
suming the speed of sound in air is 343 m/s, the round
trip distance to the temperature inversion layer is calcu-
lated as 343 multiplied by 59.0 / 1000, equaling 20.2
meters. The altitude of the layer is half of this value,
which equals 10.1 meters.
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