Under review as a conference paper at ICLR 2025

UNDERSTANDING MISTAKES IN TRANSFORMERS
THROUGH TOKEN-LEVEL SEMANTIC DEPENDENCIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite the high performance of the transformer model, it sometimes produces
incorrect information. To understand the cause of this issue, we explore how se-
mantic dependency is learned within the model. Specifically, we investigate how
tokens in multi-head self-attention transformer models encode semantically de-
pendent information. To help us identify the semantic information encoded within
a token, intuitively, our method analyzes how a token’s value shifts in response to
changes in semantics. BERT, LLaMA and GPT models are analyzed. We have ob-
served some interesting and similar behaviors in their mechanisms for encoding
semantically dependent information: 1). Most tokens primarily retain their origi-
nal semantic information, even as they pass through multiple layers. 2). A token
in the final layer usually encodes truthful semantic dependencies. 3). The seman-
tic dependency within a token is sensitive to both irrelevant context changes and
order of contexts. 4). Mistakes made by the model can be attributed to some to-
kens that falsely encode semantic dependencies. Our findings potentially can help
develop more robust and accurate transformer models by pinpointing the mecha-
nisms behind semantic encoding.

1 INTRODUCTION

Transformer models have revolutionized the field of natural language processing (NLP) since their
introduction by (Vaswani et al.} [2017). By leveraging self-attention mechanisms, transformers en-
able models to capture long-range dependencies in text, leading to significant advancements in tasks
such as machine translation, text summarization, and language generation. Popular language models
such as BERT (Devlin et al., 2018), the GPT series (Radford et al.,|2019; |Brown, 2020), and LLaMA
(Touvron et al.,2023) are based on the transformer architecture and have set new benchmarks. They
showcase the transformer’s capacity to understand and generate human-like text.

Large Language Models (LLMs) have demonstrated remarkable capabilities across various natural
language tasks. However, alongside their benefits, LLMs pose significant risks and challenges (Wei-
dinger et al) |[2021). Research has shown that LLMs may intensify biases in training data (Navigli
et al., 2023; [Taor1 & Hashimoto, 2023), produce toxic content (Gehman et al.| [2020; |Ousidhoum
et al.}2021), generate false information (Lin et al.,2021), and exhibit hallucinations (Ji et al.,[2023]).
Additionally, concerns have been raised about LLMs leaking sensitive training data (Carlini et al.,
2021) and engaging in deceptive behaviors (OpenAl, 2023} Scheurer et al., 2024). Addressing these
issues has led to the development of evaluation methods for LLM performance (Liang et al., [2022)
and strategies aimed at mitigating harmful outputs. (Ganguli et al., [2022; Bai et al., 2022).

Existing research has elucidated several reasons contributing to the errors observed in LLMs. Stud-
ies have suggested that non-linearity, insufficient model averaging, and inadequate regularization in
deep learning models lead to mistakes when encountering crafted adversarial examples (Chakraborty
et al.| 2018} Zhang et al.| [2020). Additionally, Kang et al.[(2024)) indicated that the programmatic
behavior of LLMs may result in vulnerabilities under security attacks, leading to the generation of
harmful content. Wei et al.| (2024) attribute the susceptibility of safety-trained LLMs to compet-
ing objectives and mismatched generalization. Extensive studies also indicate various reasons for
language models generating unfaithful or nonsensical text, including source-reference divergence in
data, imperfect representation learning, erroneous decoding, exposure bias, and parametric knowl-
edge bias (Ji et al., [2023]).

Under review as a conference paper at ICLR 2025

the token aggregates semantic information white rhinos are grey instead of white
0

what is the of white rhinos

model answer: grey

correct answer: grey

white rhinos are grey instead of white

o apple il blue sky what is the of white rhinos
- - - - - model answer: white
@ ’ correct answer: grey
(b): Each token encodes semantically dependent information. (d): Incorrect answer lies in false semantic dependence within a token

white white apples

(DD Cee) ~ | s mives (D)z) - | e

are are red

white grey grey white
are are are are
grey red red grey
(¢): Semantic information propagation is influenced by IRRELEVANT context change and seq order chang

Figure 1: An illustration of our key findings regarding the behavior of tokens in semantic information aggre-
gation and propagation. Different transformer models (i.e., BERT, LLaMA, and GPT) are used.

These studies have identified various reasons that lead to errors and have enhanced our understand-
ing, providing valuable insights into model weaknesses. Building upon these insights, we aim to
delve deeper into the internal mechanisms within the model’s architecture that lead to errors. We
believe that errors produced by LLMs can arise from the way semantic information is propagated
and aggregated across tokens within transformer models.

Semantic information refers to the meaningful content that consists of data or representations that
carry meaning interpretable in a specific context. Semantic dependency can be defined as the rela-
tionship between words in a sentence where the meaning of one word (predicate) depends on another
word (argument) in the sentence (Mel Cuk, 2001). In our case, false semantic dependency means
the meaning of one word is not dependent on another. For example, in sequence “blue sky and red
apple”, the semantic dependency between word “blue” and “apple” are false. Our intuition is that in
transformer models, inputs are tokenized and embedded into vectors representing semantic informa-
tion. These tokens are then processed through multiple attention layers, where semantic information
is propagated between tokens in each layer. This process enables the model to build semantic de-
pendency for generating coherent and contextually relevant outputs. However, inaccuracies in this
propagation process can lead to errors in the model’s predictions. Errors in LLMs outputs typi-
cally manifest as incorrect probability predictions in the final layer. These predictions rely heavily
on the token representations produced by the preceding layers. Therefore, it is plausible that such
errors stem from incorrect propagation or misinterpretation of semantic information across tokens
during the forward pass. Misalignment in semantic information can disrupt the model’s “contextual
understanding”, leading to the generation of inaccurate outputs.

To systematically explore how semantic information is propagated and aggregated within trans-
former models, our objective is how tokens within transformer models propagate and encode se-
mantic information. We propose methods to interpret the information aggregation mechanisms of
transformer models. The philosophy is that when an input token carrying semantic information
is altered, the tokens that receive this information through the transformer will exhibit significant
changes in their outputs, while irrelevant tokens remain relatively unchanged. Therefore, by evalu-
ating the variation in output tokens when introducing perturbations in the input tokens, we can track
the aggregation of semantic information related to various concepts in token representations.

Key Findings In our exploration, we analyzed different transformer models such as BERT,
LLaMA and GPT. We discovered several key findings regarding the behavior of tokens for seman-
tic information aggregation and propagation. Each finding provides insights into how these models
aggregate and propagate semantic information, which could be important for future model design.

Under review as a conference paper at ICLR 2025

1). We found that most tokens primarily retain their original semantic information, even as
they pass through the layers of transformers. For example, in Figure([I[a), the arrows indicate the
semantic information flow from the token at layer O to token at layer L. For the token “aggregates” in
the input token sequence in layer 0, the final layer’s token aggregates a large amount of information
from its input token and a small amount of information from other tokens. The fact that most
tokens still predominantly reflect their initial semantics highlights model’s strong retention property,
which is not inherently expected given the iterative aggregation of semantic information across many
layers.

2). We found that a token in the final layer usually encodes truthful semantic dependency. Note
that semantic dependency refers to the relationship between words in a sentence where the meaning
of one word depends on another word in the sentence. In the case of the input “red apple and blue
sky” shown in Figure [I(b), an output token will encode the semantically dependent information
“red” and “apple” together, rather than encoding semantically independent information like “blue”
and “apple”. Therefore, it usually encodes truthful semantic dependency.

3). We found that The encoded semantic dependency within a token is influenced by both
irrelevant context changes and the order of contexts.. For example, we have two semantically
independent token sequences “white rhinos are gray” and “apples are red” in Figure [T{c), where
“apples are red” serves as irrelevant context to “white rhinos are gray.” On the left side of the figure,
when we add the irrelevant context “apples are red”, the rank of semantic dependency strength
between the token “rhinos” and tokens in its sequence “white rhinos are gray.” varied. On the right
side of the figure, the same thing happens when we maintain the overall input semantic information
unchanged and only change the order of the two token sequences. This demonstrates that even when
two token sequences are semantically independent, irrelevant changes in context and the ordering of
sequences can significantly alter how semantic information is aggregated within each token.

4). The above three findings serve as prerequisite of studying how token-level semantic dependency
influences model mistakes. Finally, we found that when the model makes mistakes, certain tokens
erroneously encode information that should not exhibit semantic dependency. For example,
Figure [T(d) demonstrates that semantic information is aggregated differently in the output token
sequence when the model outputs an incorrect answer. In a question-answering task where the
context sequence “white rhinos are grey instead of white” is paired with the question “What is the
color of white rhinos?”, the correct answer is “grey”. However, when the model incorrectly outputs
“white”, the question’s key terms, such as “color” and “rhinos”, contain more information about
“white” rather than “grey”. This highlights how false relationships between key tokens can lead to
incorrect outputs.

Implications for Future Model Design Our insights into semantic information propagation and
aggregation within tokens of transformer models potentially help design new transformer architec-
tures to be more resilient and semantically coherent. For example, our third finding demonstrates
that irrelevant context and context order significantly influence the semantic dependencies within
tokens. A natural thought for future work could be on regulating transformer models to maintain
consistent semantic dependencies despite irrelevant context variations. This may involve imple-
menting regularization techniques that enforce stable token representations regardless of irrelevant
context or sequence alterations. As another example, our fourth finding reveals that model errors
often result from certain tokens erroneously encoding semantic dependencies that should not exist.
To address this, future research could refine attention mechanisms to better prioritize meaningful
token interactions and reduce the impact of adversarial context. This could be achieved by imple-
menting dynamic reweighting strategies in attention heads and incorporating stricter regularization
techniques can prevent tokens from erroneously encoding unrelated information.

2 MOoST TOKENS PRIMARILY RETAIN THEIR ORIGINAL SEMANTIC
INFORMATION THROUGH TRANSFORMER LAYERS

In this section, we investigate how individual tokens propagate semantic information through the
layers of transformer models. We find that 1). through the transformer’s layers, most final-layer to-
kens still primarily maintain their original semantic information; 2). each final-layer token contains
varying levels of semantic information from the entire sequence.

Under review as a conference paper at ICLR 2025

Transformer Architecture We consider a general L-layer transformer model. Each layer consists
of a multi-head self-attention mechanism (MHA) followed by a position-wise feed-forward network
(FFN), along with residual connections. The input sequence of N tokens is embedded into D-
dimensional vectors and combined with positional encodings to form the initial representations:

0 0 .0 0
z° = (21,25, ..,2y], (1)

where z? € R is the embedding of the i-th token in layer 0.

In transformer-based models, the token sequence is updated through L layers using the following
two steps, where multi-head attention (MHA) and feed-forward networks (FFN) work together to
enrich the text representations:

2 =MHA!(z'") + 27!, 2 =FFN'(2') + 2, (2)

where | = 1,2,..., L. Here, MHA! and FEN! denote the multi-head attention and feed-forward
network operations at layer [, respectively. The residual connections ensure that information flows
directly through layers, facilitating the retention of original semantic information. For the i-th token
in the output of the L-th layer, we have:

L L
zf =2z} + Y MHA[(z"')+) FEN(z), 3)
=1 =1

where MHAé and FFNﬁ represent the operations affecting the i-th token at layer [(Vaswani et al.,
2017). Note that the above equation is used to show that a last-layer token can be written as a
combination of first-layer tokens. We use the formulation proposed in |(Gandelsman et al.| (2024),
which ignores the layer-normalization term.

To validate that the i-th token z* in the output layer L primarily contains information about the
i-th token in the input layer z?, we compare the changes of all tokens in the final layer L with the
changes in z{. The key idea is that if the token z’ is the most affected when the token z? changes,
it mdlcates that removing the information in z? by altering z? leads to the most 31gn1ﬁcant change
in z”. This suggests that the i-th token in the ﬁnal layer encodes most information derived from the
i-th token in the first layer.

Token Perturbation We then generate K perturbed versions of the input token z°(°®) by only

replacing the i-th token z! with randomly sampled tokens from the vocabulary V. Specifically, we

0(k)

sample a new token z; ~ for k times as follows.

original z°0"®) = [29, ... 2% ... 2%]; perturbed z°*) = [2!, ... ,Z?(k), .

79

where z*) ~ Uniform(V) and k € {1,...,K}. 4)

i

Each perturbed sequence of token z°(¥) is processed independently through the L-layer transformer
model, yielding L-layer token Z"(*), Similar the corresponding L-layer token for z°(°"®) is zZ(r2),

Measuring Semantic Information Dependency To quantify how the perturbation of the i-th to-
ken z! in the first layer affects j-th token z? in final layer, we examine the average change of the
7-th token across the K sequences. Specifically, for the j-th token, we calculate the semantic de-
pendency score Az§‘|z?’ which is achieved by calculating average change Azf/]z? between its value

in the original sequence and its values in the perturbed sequences:

A leo - Z H"L(k) L(org,) (5)

)
A higher value of A, . e o indicates that the j-th token in final layer L is more sensitive to change of
the 7-th token. It 1mphes that j-th token should encode more information from the i-th token.

Under review as a conference paper at ICLR 2025

Table 1: Percentage of a token primarily retains its original semantic information.

gsm8k Yelp GLUE DailyMail OpenOrca WikiText
BERT 99.22 98.58 98.48 98.81 98.90 98.84
RoBERTa 92.29 95.16 94.43 95.11 94.38 94.39
ALBERT 96.84 97.36 97.67 96.67 97.65 95.85
DistilBERT 93.84 95.27 95.84 95.70 95.54 94.49
GPT-2 75.19/88.42 77.46/89.94 77.49/92.51 73.11/85.88 69.32/81.68 72.31/84.46
LLama3 96.21 96.68 94.20 95.85 95.78 94.80

To validate that the j-th token zJL in the output layer L primarily contains information about the i-th
token in the input layer z?, we compare the average change A, . z0 for all tokens j € {1,...,N}.
J k2

i
We check whether the average change A, . ,0 is the largest among all A,z ,0, indicating that per-
2 3 J i
turbing the i-th token affects its own output token more than any other token’s output. By comparing
the A,z |0 values for all tokens j € {1,..., N }, we can determine which token in the final layer
5 12

encode most information about i-th token. To quantify this observation across multiple instances,
we calculate the percentage P that the ¢-th token’s perturbation in output layer primarily affects its
corresponding output token in a transformer-based language model fy on M tested token cases as
follows:
M
P(f@) = M Z]l{i:argmaxév Azlf\zo}.
3"

m=1

Experiment We measure the total percentage with various sentences from six datasets, including
gsm8k (Cobbe et al.,[2021), Yelp (Zhang et al.| 2015), GLUE (Wang et al.,|2019), CNN/DailyMail
(Hermann et al., 2015)), OpenOrca (Lian et al.,|2023) and WikiText (Merity et al.,|[2016). For each
model, over 100,000 token cases were evaluated across datasets (each token perturbation is treated
as one case). Noted that we compute changes for nearly all tokens (over 95%) in each sequence,
excluding special tokens such as [CLS] and [SEP],which ensures a comprehensive assessment of the
semantic dependency across the input. The results, displayed in Table[I] show the percentage that a
token primarily retains its original semantic information.

Our Experiment compare models including BERT series (encoder only), GPT(decoder-only, auto-
regressive) and Llama(decoder-only, auto-regressive). Compared to BERT and LLama, there is a
part of tokens that does not preliminary retain its original information in GPT. We also include the
percentage of the token propagate semantic information to both of its next token and itself (shown in
Table[T). From this experiment, we can conclude that most tokens primarily retain their original se-
mantic information, even as they pass through the transformer layers. Additionally, we also observe
that the influence of each input token on other output tokens in the final layer exists almost 100%.

3 A FINAL-LAYER TOKEN ENCODES TRUTHFUL SEMANTIC DEPENDENCY

In the previous section, we observed that most tokens primarily retain their original semantic infor-
mation even they propagate through the transformer layers. However, we also found that perturbing
a specific input token can cause variations in the outputs of other tokens in the final layer. This
suggests that tokens not only retain their own semantic information but also integrate semantic in-
formation from all other tokens. In this section, we aim to verify whether a token usually contains
semantically dependent information. Specifically, we investigate if tokens encode more semantic
information from semantically related words compared to unrelated words in the sequence. We find
that this holds for most tokens.

To check whether tokens effectively encode semantically dependent information, we first randomly
select a word, denoted as w?. We then identify a group Gz? containing the indices of semantically
dependent tokens by leveraging semantic dependency parsing tools SpaCy (Honnibal et al., |2020),
which parse the words in the sentence that are semantically dependent with w?, including both
head and children in parsing tree and the word itself. Spacy works by using a pre-trained neural
network model to predict the syntactic relationships between tokens, which provided than human

annotations. Next, we estimate Gi,0 by changing z! and obtain the indices of top Kiop tokens that

most sensitive to the change of z.. Finally, we calculate the average similarity between these two
sets.

Under review as a conference paper at ICLR 2025

Semantically Dependent Token Groups A group G,o containing the indices of semantically
dependent tokens with z). To identify a semantically dependent token group G0, we can leverage
semantic dependency parsing methods to get the semantic word group Wy,o, then convert it to a
token group. Intuitively, dependency parsing analyzes the grammatical structure of a sentence,
establishing relationships between “head” words and the words that modify them. For example,
in the sentence “The quick brown fox jumps over the lazy dog.”, the word “fox” is semantically
related to word “quick”, “brown” and “jumps” based on their grammatical dependencies.

Given the semantic word group W0 by using existing semantically dependency parsing methods.
Once the semantic word group W0 of the word w? is identified, each word w; in W0 is converted
into its corresponding token indices, and w? also is converted into z?, which obtains G 0

Estimated Semantically Dependent Token Group by Leveraging Token Perturbation To es-
timate the semantically dependent word group G,0 for each token z_, we measure semantic infor-
mation propagation A,z ,0 by Eq. for each token zJL in the final layer L. Then we rank it and

select the largest K, indices within the sequence into a set denoted as G‘zq.

ng = {j | j € indices of maxg,, (A, ,0,j =1,...,N)}. (6)

Calculating Alignment Score To assess the alignment between the most affected tokens and the
semantically related word group G0, we compute the alignment score .S; to measure the overlap

between Gzp and Go:
’Gz? N GZ?
Ktop ’

Sp0 = @)

where ’Gzo N G‘zq represents the number of overlapping tokens between G0 and GZQ.

Experiment We conducted this experiment on several trans-) o
former models, including BERT, RoBERTa, ALBERT, Distil- Table 2: Alignment scores indi-
BERT, Llama3, and GPT-2. We firstly construct a specialized ¢ate how well individual tokens
word dependency dataset using SpaCy. This dataset includes encodes truthful semantic depen-
sentences from the GLUE dataset, where each word (as one dency (%).

case) in the sentence is annotated with its semantically de-

pendent word groups as standard dependency data. For each ~_Model Alignment Score (%)
model, we evaluated over 10,000 cases, where each case cor- BERT 3786
responds to perturbing a single token and computing the align- RoBERT: 82.44
ment score. These results demonstrate that the tokens most ~ ALBERT 88.77
affected by the perturbation of z{ tend to be the ones that are ~ DistilBERT 88.88
semantically related to it. This indicates that tokens particu- ~ GPT-2 93.41

Llama3 92.47

larly integrate semantic information from semantically depen-
dent tokens.

The averaged alignment scores across all cases are presented in Table[2] The overall high alignment
scores across different models, which demonstrates that our method effectively captures the semantic
dependencies between tokens.

4 THE SEMANTIC DEPENDENCY ENCODED IN A TOKEN IS INFLUENCED BY
BOTH IRRELEVANT CONTEXT CHANGES AND ORDER OF CONTEXTS

Intuitively, semantic dependencies between tokens should remain robust regardless of changes in
irrelevant context or the order of independent sentences. We would like to know how the existing
transformer model behaves. Motivated by this curiosity, we conducted an experiment to determine
whether altering the irrelevant context or rearranging the order of independent sentences affects
established semantic dependencies.

'In our experiments, we do not consider the case when w! is converted to subword tokens.

Under review as a conference paper at ICLR 2025

Semantic Dependency Analysis with Irrelevant Context Change To validate whether irrelevant
context influences the semantic dependencies of tokens in a sequence, we selected two semantically
independent sentences randomly sampled from a dataset. Consider two sentences:

“The sky is blue.” vs “The apple is red. The sky is blue.”, i.e., s1 Vs (s2, $1)
“The sky is blue.” vs “The sky is blue. The apple is red.”, i.e., s1 Vs (s1, $2)

We investigated whether the semantic dependencies within “The sky is blue.” remain unchanged
when appended with “The apple is red.” on its left side or right side. Since both contexts are
independent, with no semantic dependencies between them, the semantic dependencies within “The
sky is blue.” should remain unchanged regardless of their surrounding context in the input sequence.

Specifically, given two input token sequences are z°(51) = {z?}fv and z0(%2) = {z respec-

J ‘1
tively. Here, we validate the semantic dependencies within z°(*1). We created two additional token
sequences: z'(Lef) = [70(s2) z0(s1)] and z0Rieh) — [70(s1) z0(s2)] where 290" is obtained by
concatenating z°052) to the left and z°(Ri€") is obtained by concatenating z°(*2) to the right. For

token z{ from z°(*1) we obtain the corresponding estimated semantic dependency token group G °
via Eq. (6). By using the same approach, estimated semantic dependency token groups GLef‘ and
é];égm for z0(¢™) and zO(Rig") can also be obtained. Then the Dependency Alteration Score (DAS)

of éIZ“Sf‘ and G’;a can be calculated as follows: . A
’ ’ R LCS(GESﬁ, G%)
DAS(GLef‘ Goy)=1- — i (8)
where LCS(-) is the length of the longest common subsequence. In our case, it represents the longest
sequence of tokens that appear in the same order in both contexts, despite irrelevant context or order

changes. The score DAS(GLSf‘7 Gsl) measures how the semantic dependency changes when ap-

pending irrelevant context z 0(s2) to the left of the original sequence z°(*1). Similar DAS(Gnght G‘(’1

can be obtained, which measures the changes of semantic dependency when appending 1rrelevant
context z°(*2) to the right.

Semantic Dependency Analysis with Irrelevant Context Order Change For irrelevant context
order change, we observe whether the token dependency in sentence “The sky is blue.” alters when
inputting the sentence with irrelevant context order change, e.g., “The sky is blue. The apple is red.”

and input “The apple is red. The sky is blue.”. We simply use DAS(GLS“, Gnght) to measure how

the semantic dependency changes when appending the irrelevant context z 0(s2) to the left and the
right of the original sequence z°(*1).

Experiment We conducted the semantic dependency analysis across over 5,000 cases to examine
the impact of irrelevant context added to both the left and right sides, as well as the effect of sequence
order changes, in order to determine whether semantic information propagation is context-dependent
and order-dependent. Specifically, we measured the dependency changes when perturbing the token
z?(sl) in the original sequence z°(*1). This involves evaluating the dependency alterations of its
semantically dependent token groups by aligning the top 5 semantically dependent token groups
(L = 5) and by aligning all tokens from the original sequence z°**) (I = Nj). The average
dependency alteration scores are presented in Figure

Figure [2(a) and Figure[2|b) illustrate the changes in semantic dependency when irrelevant context is
appended on the left or right side. It shows that the rank of semantic dependency strength of common
token is significantly affected by the context, while relationships of semantically more related tokens
(Top 5) remain relatively stable.

Figure [2c) further compares the changes in dependency when irrelevant context is added to the
left versus the right side of the original sentence. The results reveal that adding context to the left
side generally results in a greater alteration of semantic dependencies compared to the right side.
This suggests that the order of irrelevant context can differentially impact the model’s semantic
dependency structures.

Under review as a conference paper at ICLR 2025

left context right context left and right order

- Left Top-5
Left

Right Top-5 0.40 Left 035 Order Top-5
Right Right Order
035 030

035

H 8025 H
;
0.15 015 0.15

010 0.10

010
005 0.05 0.05

o, o 0.
BERT ROBERTa ALBERT DIStBERT GPT-2 Llama3 BERT ROBERTa ALBERT DISHIBERT GPT2 Liama3 BERT ROBERTa ALBERT DISCIBERT GPT2 Llama3 BERT RoBERTa ALBERT DISUBERT GPT-2 Lama3

Models Models Models Models

(a) Left context change (b) Right context change (c) Left & right context (d) Order change
Figure 2: Semantic Dependency Alteration Score when irrelevant context or context order changes.

Figure 2Jd) demonstrates the impact of altering the sequence order on semantic dependencies. The
results also show that irrelevant token groups are easily influenced by unrelated contexts, while
semantically more dependent tokens exhibit greater resilience to such alterations.

Overall, our findings indicate that both the introduction of irrelevant context and the modification
of sequence order dramatically influence semantic information dependence within sentences. These
results reinforce the importance of context placement and order in shaping the semantic dependency
structures learned by Transformer-based language models

5 WHEN THE MODEL MAKES MISTAKES, IT FALSELY AGGREGATES
SEMANTICALLY INDEPENDENT INFORMATION WITHIN A TOKEN

Transformer-based language models have demonstrated remarkable capabilities in various natural
language tasks but occasionally produce incorrect answers. We hypothesize that such errors arise
from the model’s tendency to falsely aggregate dependent semantic information across tokens within
transformer layers. Intuitively, in the final layer, the tokens are combined to produce the output
probabilities via a linear prediction layer. However, the linear nature of this prediction layer limits
its discriminative power, making it susceptible to errors when false dependencies are present. When
a model erroneously aggregates semantic information from unrelated or misleading tokens, it can
disproportionately influence the final token probabilities, leading to incorrect predictions. In this
section, we try to verify our hypothesis.

Evaluation of False Dependencies To test our hypothesis that model errors often result from
falsely aggregated independent semantic information within tokens, we simply view model’s wrong
output token and question token as a false dependency for evaluation. Specifically, we compare the
semantic dependencies between tokens in incorrect answers and question tokens against those in
correct answers within a question-answering (QA) task. We analyze instances where the language
model outputs either the correct answer extracted from the context or an incorrect one.

Consider the QA example illustrated in Figure 3] where the context provides the correct answer
“national anthem” and an alternative phrase sign language.” If the BERT model incorrectly outputs
”sign language” instead of “national anthem,” this presents an opportunity to examine the underlying
semantic dependencies that led to the error.

Formally, let Q = {qi} 1 represent the set of tokens in the question, Acorrect = {ao}l,1 represent
the correct answer tokens in the context, and Ayrong = {ao}l | represent the incorrect answer
tokens in the context. For each answer token a;, we measure its semantic information dependence
on each question token q; € () by computing a semantic dependence score A atlad- This score

quantifies the degree to which answer token a; influences the question token q; in the final layer L
of the model. Next, we determine the maximum semantic dependence score for each answer token

by selecting the highest qup a0 across all question tokens Al 0Q = max 9 A atlad:

For both correct and incorrect answers, we compute the highest dependence scores across all respec-
tive answer tokens:

/ _ / /
Acon‘cct\Q r};laf A 07 AAwmng\Q - I?ai{ A k

To evaluate whether the maximum dependence score for incorrect answers exceeds that of correct

answers when a model makes mistakes, we calculate the percentage that AiAwmng\Q is greater than

Under review as a conference paper at ICLR 2025

Question: What did Mary translate ?

Wrong Dependency Heatmap

semantic dependency score A A=2.13 A=4.54 A=4.63
from context token to question token
A=1.38
Context:

" . | [5 10 15 20
The famous singer performed the national anthem : Attention Layer
correct answer

correct samantic dependency: wrong samantic dependency:
“anthem” to “marry” “sign” to “?”

while Mary provided sign language translation
del ‘ —_— . .

wrong model answer (b) Contribution heatmap of attention head group in
d

P y in a questi inst; when model output wrong answer BERT for correct and wrong semantic dependency

(a) Semantic d

Figure 3: A question-answer instance for false semantically dependent information within tokens.

!/

Acoreal 0 given the question and answer pairs where the model makes mistakes. Specifically,

wrong| Q correct| Q

H
P(fo)=> Tqan, sa, 3,
i=1
where H represents the total number of incorrect QA instances.

Experiment We apply our evaluation method to the Stan- T,p1e 3:
ford Question Answering Dataset (SQuAD) 1.1 (Rajpurkar
et al., 2016), which comprises context paragraphs extracted
from Wikipedia articles, along with manually crafted questions
and their corresponding correct answers. Each QA instance

Percentage of model
output matching our information
propagation assumption.

in the dataset provides a context from which the correct an- Model Percentage (%)
swer is a continuous span of text, which means the answer ex- BERT 79.07
ists verbatim in the context. Our analysis involves processing RoBERTa 77:9 4
over 100,000 QA validation cases across various Transformer- ALBERT 71.86
based models, including BERT, RoBERTa, ALBERT, Distil- DistilBERT 81.87
BERT, Llama3, and GPT-2. Llama3 64.56

For each QA instance, we first determine whether the model

outputs an incorrect answer by evaluating the F1 score between the model’s predicted answer and
the ground truth answer. We consider a prediction to be incorrect if the F1 score is below 0.6. Con-
sequently, we collect these incorrect answer cases (where F1 < 0.6) for further analysis to examine
the presence of false dependencies. This selection criterion ensures that we focus on substantial
errors rather than minor discrepancies, thereby providing a robust basis for evaluating semantic de-
pendency misalignments.

In these selected cases, we identify the semantic dependencies between question tokens and both
correct and incorrect answer tokens. For each incorrect answer token, we compute its semantic de-
pendence score on question tokens and compare it with the dependence scores of correct answer
tokens. Specifically, we calculate whether the maximum dependence score of incorrect answer to-
kens exceeds that of correct answer tokens. This comparison allows us to assess whether the model’s
errors are associated with falsely aggregated semantic dependencies from incorrect tokens influenc-
ing question tokens. The results are summarized in Table [3] which generally shows a significant
proportion of model error cases across various models can be attributed to falsely aggregated se-
mantic dependencies.

These findings demonstrate that a substantial majority of model errors are associated with stronger
semantic dependencies from incorrect answer tokens compared to correct ones. For instance, in
BERT’s case, the high percentage implies that when the model selects an incorrect answer, it is
more likely due to the erroneous answer tokens causing a greater semantic influence on the question
tokens than the correct answer tokens. This misalignment in dependency strengths leads the model
to favor incorrect information over the correct, contextually relevant answer.

The variation in probabilities across different models highlights inherent differences in how each
architecture manages semantic dependencies and mitigates the impact of misleading information.
Models like DistilBERT and BERT, with higher probabilities, may have architectural or training

Under review as a conference paper at ICLR 2025

advantages that make them more susceptible to false dependencies when errors occur. On the other
hand, Llama3’s lower percentage suggests a potentially more robust mechanism for distinguish-
ing between relevant and irrelevant semantic information, thereby reducing the likelihood of false
dependencies influencing its outputs.

Localize Attention Head Group Responsible for Semantic Dependency Inspired by |Gandels-
man et al.|(2024), the contribution of /-th MHA on j-th token can be broken down into tokens and
heads.

MHA! (1) Z Zx o abh =Wl At 9)

h=11i=1
Specifically, for any token dependency, i.e., token dependency from i-th token to j-th token, in-
cluding correct or wrong token dependency in QA task mentioned above, we replace the ¢-th the
token with K randomly sampled tokens. Then we measure each head’s contribution on semantic

. . . L.h
information dependency by calculating average change Az L|g0 between original head contribution

and perturbed head contributions as follows:
l h _ l h(k) l,h(org)
Bl = e 3 e -t 1)

As is shown in figure [3(b), we test the dependency contribution score Afiz\a?’ of each attention

head in BERT for both wrong semantic dependency between “sign”and “7”’ and correct semantic
dependency between “anthem” to“marry” in corresponding QA instance in figure [3[a). In this case
we can observe there are a group of attention heads (highlighted with bright color in the contribution
heatmap) mutually contribute to the semantic dependency.

Limitations and Future Work There are some limitations in our current method, which we be-
lieve present valuable opportunities for future work. Firstly, our analysis relies on perturbation-based
approaches to assess token dependencies, which require that the answer tokens appear within the
question. This constraint limits our ability to evaluate scenarios where the model generates answer
tokens that are not directly present in the input question. We aim to expand our ability to effectively
analyze dependencies in such cases to broaden the scope of our evaluations.

Additionally, perturbation inherently involves both the removal of existing information and the in-
troduction of new information. The newly introduced information can lead to varying levels of
variability in the output layer tokens. For example, if a token in the input sentence is replaced with
a semantically similar but slightly different token, the model’s response might vary significantly de-
pending on how it interprets the new context. We mitigate this by employing random sampling of
new tokens to ensure diversity and minimize bias; however, this approach may not fully eliminate all
sources of variability. Future research will focus on refining this calibration. Thirdly, the influence
of the last linear prediction layer can also affect our analysis. Although its discriminative power is
limited due to its linear nature, some false dependencies in the last layer of tokens can be disentan-
gled. As a result, certain false dependencies might be less influential on the final prediction. We
believe that the score could be higher if the impact of the last layer on false dependencies is taken
into account and would like to further explore this in future work.

6 CONCLUSION

In this paper, we delved into the internal mechanisms of transformer models to explore how se-
mantic information is propagated and aggregated across tokens, which can contribute to the errors
produced by large language models (LLMs). We show several key findings. Firstly, most tokens
primarily retain their original semantic information throughout the layers of the transformer, indi-
cating a strong connection to their initial meanings. Secondly, semantically dependent information
tends to be encoded together within a token, reflecting the model’s ability to capture related con-
cepts. Thirdly, we observed that the aggregation of semantic information is influenced by both
irrelevant context changes and the order of token sequences, highlighting potential areas for model
refinement. Lastly, our findings revealed that when models make mistakes, tokens encode incorrect
semantic dependency. We believe these insights offer valuable implications for future transformer
model design.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harm-
lessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
from large language models. In 30th USENIX Security Symposium (USENIX Security 21), pp.
2633-2650, 2021.

Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay, and Debdeep Mukhopad-
hyay. Adversarial attacks and defences: A survey. CoRR, abs/1810.00069, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai,
Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, et al. Layer skip: Enabling early
exit inference and self-speculative decoding. arXiv preprint arXiv:2404.16710, 2024.

Yossi Gandelsman, Alexei A. Efros, and Jacob Steinhardt. Interpreting clip’s image representation
via text-based decomposition, 2024. URL https://arxiv.org/abs/2310.05916/

Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda Askell, Yuntao Bai, Saurav Kadavath, Ben
Mann, Ethan Perez, Nicholas Schiefer, Kamal Ndousse, et al. Red teaming language models to
reduce harms: Methods, scaling behaviors, and lessons learned. arXiv preprint arXiv:2209.07858,
2022.

Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A. Smith. Realtoxic-
ityprompts: Evaluating neural toxic degeneration in language models. In EMNLP (Findings),
volume EMNLP 2020 of Findings of ACL, pp. 3356-3369. Association for Computational Lin-
guistics, 2020.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir Globerson. Dissecting recall of factual
associations in auto-regressive language models. arXiv preprint arXiv:2304.14767, 2023.

Karl Moritz Hermann, Tomdas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. In NIPS, pp. 1693—
1701, 2015.

John Hewitt and Christopher D Manning. A structural probe for finding syntax in word representa-
tions. In Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Pa-
pers), pp. 4129-4138, 2019.

Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane Boyd. spaCy: Industrial-
strength Natural Language Processing in Python. https://spacy.io, 2020. Version 3.0.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
Computing Surveys, 55(12):1-38, 2023.

Robin Jia and Percy Liang. Adversarial examples for evaluating reading comprehension systems.
arXiv preprint arXiv:1707.07328, 2017.

Daniel Kang, Xuechen Li, Ion Stoica, Carlos Guestrin, Matei Zaharia, and Tatsunori Hashimoto.
Exploiting programmatic behavior of llms: Dual-use through standard security attacks. In 2024
IEEE Security and Privacy Workshops (SPW), pp. 132-143. IEEE, 2024.

11

https://arxiv.org/abs/2310.05916
https://spacy.io

Under review as a conference paper at ICLR 2025

Wing Lian, Bleys Goodson, Eugene Pentland, Austin Cook, Chanvichet Vong, and “Teknium”.
Openorca: An open dataset of gpt augmented flan reasoning traces. https://https://
huggingface.co/Open-Orca/OpenOrca, 2023.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of language
models. arXiv preprint arXiv:2211.09110, 2022.

Kaiyuan Liao, Yi Zhang, Xuancheng Ren, Qi Su, Xu Sun, and Bin He. A global past-future early
exit method for accelerating inference of pre-trained language models. In Proceedings of the
2021 conference of the north american chapter of the association for computational linguistics:
Human language technologies, pp. 2013-2023, 2021.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Igor Mel’¢uk. Language: Dependency. Elsevier, 2001.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Roberto Navigli, Simone Conia, and Bjorn Ross. Biases in large language models: origins, inven-
tory, and discussion. ACM Journal of Data and Information Quality, 15(2):1-21, 2023.

OpenAl. GPT-4 technical report. CoRR, abs/2303.08774, 2023.

Nedjma Ousidhoum, Xinran Zhao, Tianqing Fang, Yangqiu Song, and Dit-Yan Yeung. Probing
toxic content in large pre-trained language models. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pp. 42624274, 2021.

Tiago Pimentel, Josef Valvoda, Rowan Hall Maudslay, Ran Zmigrod, Adina Williams, and Ryan
Cotterell. Information-theoretic probing for linguistic structure. arXiv preprint arXiv:2004.03061,
2020.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Jian Su, Kevin Duh, and Xavier Carreras (eds.), Pro-
ceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp.
2383-2392, Austin, Texas, November 2016. Association for Computational Linguistics. doi:
10.18653/v1/D16-1264. URL https://aclanthology.org/D16-1264.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in bertology: What we know about
how bert works. Transactions of the Association for Computational Linguistics, 8:842—-866, 2021.

Jérémy Scheurer, Mikita Balesni, and Marius Hobbhahn. Large language models can strategically
deceive their users when put under pressure. In ICLR 2024 Workshop on Large Language Model
(LLM) Agents, 2024.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran, Yi Tay, and Donald
Metzler. Confident adaptive language modeling. Advances in Neural Information Processing
Systems, 35:17456-17472, 2022.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H Chi, Nathanael
Schirli, and Denny Zhou. Large language models can be easily distracted by irrelevant context.
In International Conference on Machine Learning, pp. 31210-31227. PMLR, 2023.

Rohan Taori and Tatsunori Hashimoto. Data feedback loops: Model-driven amplification of dataset
biases. In International Conference on Machine Learning, pp. 33883-33920. PMLR, 2023.

I Tenney. Bert rediscovers the classical nlp pipeline. arXiv preprint arXiv:1905.05950, 2019.

12

https://https://huggingface.co/Open-Orca/OpenOrca
https://https://huggingface.co/Open-Orca/OpenOrca
https://aclanthology.org/D16-1264

Under review as a conference paper at ICLR 2025

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. CoRR, abs/2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, pp. 5998-6008, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
ICLR. OpenReview.net, 2019.

Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How does 1lm safety training
fail? Advances in Neural Information Processing Systems, 36, 2024.

Laura Weidinger, John Mellor, Maribeth Rauh, Conor Griffin, Jonathan Uesato, Po-Sen Huang,
Myra Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh, et al. Ethical and social risks of harm
from language models. arXiv preprint arXiv:2112.04359, 2021.

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao Peng, and Yao Fu. Retrieval head mechanisti-
cally explains long-context factuality. arXiv preprint arXiv:2404.15574, 2024.

Zhiyong Wu, Yun Chen, Ben Kao, and Qun Liu. Perturbed masking: Parameter-free probing for
analyzing and interpreting bert. arXiv preprint arXiv:2004.14786, 2020.

Wei Emma Zhang, Quan Z Sheng, Ahoud Alhazmi, and Chenliang Li. Adversarial attacks on
deep-learning models in natural language processing: A survey. ACM Transactions on Intelligent
Systems and Technology (TIST), 11(3):1-41, 2020.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
sification. Advances in neural information processing systems, 28, 2015.

13

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 RELATED WORKS

Semantic Information Flow in Transformer Existing work (Liao et al., 2021}, [Schuster et all}
2022}, [Elhoushi et al} [2024) have studied model activation stability in later layers of transformer
models. Specifically, additional layers may contribute minimally to the refinement of token repre-
sentations, which enables techniques like early exit to accelerate inference. However, whether token
in the last layer contains its original semantic information in the input layer has not been studied.
analyze how factual associations are recalled in auto-regressive language models,
highlighting the roles of MLP sublayers in enriching subject representations and attention heads in
extracting attributes. While our study address a gap by studying how semantic information flow
between tokens through attention layers in both non-auto-regressive (BERT) and auto-regressive
models (GPT, Llama).

Irrelevant and Adversarial Context Influence Robustness studies have demonstrated that the
inclusion of irrelevant context or adversarial sentences (Jia & Liang| [2017) in
prompts can lead to a significant decline in model accuracy. They usually works by by analyzing
model performance on various types of adversarial examples and attribute the decline to broader
issues, such as the model’s tendency to rely on surface-level features like word overlap and positional
cues. Our study provide an underlying reason for such performance decline from a token-level
perspective. Specifically, We found the rank of different semantic dependency strength encoded in
a token changes when adding irrelevant context or simply change the order of the context sequence.
Our insight can further help training or finetuning a robust language model in which the rank of
encoded semantic dependency within tokens is stable when given irrelevant or adversarial context
in prompts.

Interpretable Model Error Based on Attention Heads Existing works have studied specific
roles of attention head to explain model errors. identifies specific attention heads,
termed retrieval heads, which are critical for retrieving factual information from long contexts. The
absence or malfunctioning of these retrieval heads may lead to model errors. |Gandelsman et al.|
shows some attention heads in CLIP have property-specific roles (e.g., location or shape),
which are important for model performance. Our study addresses another reason by exploring how
token-level semantic dependency influences model mistakes, which provide another critical per-
spective on understanding and correcting model mistakes under specific question answering cases.

Probing Study for Linguistic Properties in Transformer Probing methods (Rogers et al.| 2021
are widely used to analyze the internal representations of pre-trained language models to determine
whether specific linguistic properties are encoded. [Hewitt & Manning| (2019) demonstrated that
BERT encodes syntactic tree structures in its vector space, allowing a probing classifier to recon-
struct syntactic distances between words using linear transformations. revealed that
BERT encodes high-level linguistic features like entity types, semantic roles, and relations through
probing tasks. |Pimentel et al.|(2020) utilized information-theoretic probing methods to quantify
the mutual information between model representations and linguistic properties, reducing over-
interpretation risks. (2020) proposed a parameter-free probing technique that analyzed
the influence of syntactic subtree structures on MLM predictions.

These works primarily investigate how models encode syntactic and high-level semantic features,
such as entity relations or syntactic structures. In contrast, our study focuses specifically on token-
level semantic dependencies, analyzing fine-grained interactions between individual tokens rather
than task-specific feature aggregation or high-level semantic encoding. Moreover, we introduce an
evaluation framework to measure semantic dependency strength between two tokens without relying
on prior knowledge. Our approach also identifies false semantic dependencies that arise when the
model produces incorrect answers. Unlike static syntactic or semantic structures, our framework
captures the dynamic and context-sensitive semantic dependencies, which can vary irregularly across
diverse scenarios.

14

Under review as a conference paper at ICLR 2025

Table 4: Percentage of a token propagates semantic information to other tokens.

gsm8k Yelp GLUE DailyMail OpenOrca WikiText

BERT 99.44 99.09 99.16 99.20 99.34 99.52
RoBERTa 96.46 96.42 97.04 96.42 95.98 96.07
ALBERT 97.88 97.99 98.35 97.34 98.23 96.63
DistilBERT 9544 95.89 96.37 96.29 96.42 95.93
GPT-2 100.00 100.00 100.00 100.00 100.00 100.00
LLama3 100.00 100.00 100.00 100.00 100.00 100.00

A.2 EXPERIMENT DETAILS

Percentage of a token propagates semantic information to other tokens. We also observe the
change of the specific input word causes influence on other token outputs in the final layer in exper-
iment of Section E} The result over all cases (each token perturbation is treated as one case, over
600,000 cases are evaluated for each model) is shown in Table Even if minor, in models like
BERT, the change is almost 100%, which means each token receives pieces of semantic information
from other tokens. While in auto-regressive models like Llama or GPT, the token only influences
the tokens on this token’s right side. We observe the changes of tokens on each tokens’ left side is 0.
we can also observe the change exists in all tokens on each token’s right side, which suggests each
token receives pieces of semantic information from tokens on its left side.

Why Using Neural Dependency Parsing Tool in Section[3] Noted that our analysis relies on se-
mantic dependency data derived with SpaCy, a pretrained neural network-based dependency parser.
SpaCy generates syntactic dependency trees using robust neural architectures trained on large an-
notated corpora, offering a reliable approximation of semantic dependencies. To our knowledge, no
token-level semantic dependency dataset with comprehensive human annotations exists. Construct-
ing such a dataset would be prohibitively expensive and prone to omissions due to the complexity
of identifying all dependent token relationships manually. Thus, we use neural dependency parsing
tool to generate a specialized semantic dependency datasets for our experiment.

Why Using Longest Common Subsequence in Section[d] Consider a simple example to under-
stand how LCS captures changes in token order: Suppose we have two sequences, A = [1,2,3,4]
and B = [2,3,4,1]. In moving from sequence A to sequence B, the order of the tokens changes
such that the token “1” moves from the beginning to the end. Here, the LCS between A and B is
the subsequence [2, 3, 4], which has a length of 3. This subsequence represents the largest set of
tokens that have retained their original order between the two sequences. Since the total number of
tokens, IV, is 4, the LCS length of 3 indicates that one token (“1”) changed its position relative to
the others. By calculating DAS = 0.25, we find that a quarter of the token order has been altered
due to the change in context. Thus, a lower LCS value (relative to N) results in a higher DAS,
reflecting a more significant change in token dependency patterns. This metric effectively highlights
how sensitive the token dependencies are to contextual modifications, demonstrating the dynamic
nature of semantic processing in natural language systems.

Discussion on Experiment Results in Section The result in Table [3] shows a significant pro-
portion of model error cases across various models can be attributed to falsely aggregated semantic
dependencies in general. Specifically, BERT exhibits a percentage of 79.07%, indicating that in
approximately 79% of its incorrect answer cases, the semantic dependencies from incorrect answer
tokens to question tokens surpass those from correct answer tokens. This suggests that when BERT
makes an error, it is predominantly influenced by misleading semantic information from incorrect
tokens. Similarly, ROBERTa and ALBERT show probabilities of 77.94% and 71.86%, respectively,
reinforcing the trend that false dependencies significantly contribute to model errors across different
Transformer architectures. DistilBERT stands out with the highest percentage of 81.87%, suggesting
an even greater tendency for incorrect dependencies to influence its erroneous answers. Conversely,
the autoregressive model Llama3 exhibits the lowest percentage at 64.56%, indicating a relatively
lower incidence of false dependency aggregation in its incorrect outputs. It leaves an area for further
exploration to understand the underlying mechanism responsible for this performance.

15

Under review as a conference paper at ICLR 2025

A.3 PESUDOCODE FOR SECTION[3

Algorithm 1 Evaluation of False Dependencies

Data: dataset with M instances, Transformer model fy, number of perturbations K

Result: Percentage p that perturbing the i-th token predominantly affects its own output token

Initialize count_correct < 0,

for each incorrect QA instance m = 1 to H do
} N,
Extract question tokens @ = {q)};.%, correct answer tokens Acomeet = {20} N9,

_ 0V Nw .
answer tokens Ayrone = {a} 1,27

for each answer token a3 € A orrect U Ayrong 40
for k =1t K do

Construct perturbed sequence z’(*) by replacing af) with z{;
Compute final layer representations z"(*) « f,(z0(F);

end
Compute original final layer representations z%(°®) < f,(z0(°2));

for each token j = 1to N do

1 K
Calculate Aszlag — -1 Ek::2 ’ j

FLk) _ ZJL(org)‘

5
2

end
Determine maximum dependency score for a:
l — Ng
Aa2|Q = man:1 Aq]L|32
end

Determine maximum dependency score for correct answers:
’ _ Ng
Aconecl\Q - k=1

Determine maximum dependency score for wrong answers:

N
/ _ Nw oAy
AAAwmng | Q - 1”{;1:3,{(Aag

itA) ~>Af - then

correct

count_correct < count_correct + 1;

end

end
Calculate percentage:
count_correct

p(fo) = i

return p(fy);

and incorrect

if £ = 1 then

‘ 22 A ag > // Original token
else

| 2 < RandomToken(V) ; // Perturbed token
end

A.4 LOCALIZE SEMANTIC DEPENDENCY WITHIN ATTENTION LAYERS IN SECTION[3]

To further explore how network contributes to model errors, we have developed a method to iden-
tify the attention heads primarily responsible for specific token dependency. Here, we present the
intuition and detailed equations of how we localize semantic dependency within attention layers.

16

Under review as a conference paper at ICLR 2025

Intuitively, when input token carrying specific semantic information changes, the attention heads
relevant to corresponding semantic information propagation will exhibit significant changes in their
outputs, while the outputs of irrelevant heads will remain relatively unchanged. Therefore, by iden-
tifying heads with the highest variation in their contribution on given token dependency, we can
pinpoint the group of attention heads that are mutually responsible for any token dependency in-
cluding wrong or correct token dependency in QA task.

As mentioned in Eq. @), transformer encoder or transformer decoder is a residual network built
from L layers, each of which contains a multi-head self-attention (MHA) followed by feed forward

network (FFN) block.
In [-th MHA layer, the input stream 2!~ ! is processed separately by H attention heads. Specifically,
the input sequence Z'~1! is separately projected into (), K, V matrix in h-th attention head of I-th

layer as follows:

ILLh _ rzl— I,h ILbh _ rgl— L,h Lh _ rpl— 1,h
Q" =z"'wy', K'W=z""'wWp' Vit =zwy (11)

Then attention weight matrix A5" € RV*N is calculated as follows:

T
A" = softmax (?/IC%) (12)

The output of each attention head is
Olh — ALPyLA (13)

For multi-head attention, the outputs of each head are concated and projected to Z! € RV where
Wo is output weight matrix.

MHA'(z/~!) = Concat(0O"!, 02, ..., 0" YW, (14)

The class token and the other tokens share the same computation process. Inspired by |Gandelsman
et al.| (2024), the contribution of /-th MHA on j-th token can be broken down into tokens and heads.
We can observe that given a token, each context token contribute to this token by adding operation
for semantic information aggregation, which generate context related token representation.

H N
1 1— 1 _ l,h L,h L,k lL,h _1—-1
MHAL(Z) =33 ")" = o W] (15)
h=11=1

specifically, for any token dependency, i.e., token dependency from i-th token to j-th token, includ-
ing correct or wrong token dependency in QA task mentioned above, we replace the i-th the token
with K randomly sampled tokens. Then we measure each head’s contribution on semantic infor-

mation dependency by calculating average change Alz’f‘zo between original head contribution and
g 144
perturbed head contributions as follows:

Abh L

L‘z

2P ®) _ xi,h(org)H (16)

As is shown in figure [3(b), we test the dependency contribution score Al’z‘ag of each attention

head in BERT for both wrong semantic dependency between “sign”and «“”’ and correct semantic
dependency between “anthem” to“marry” in corresponding QA instance. In this case we can observe
there are a group of attention heads (highlighted with bright color in the contribution heatmap)
mutually contribute to the semantic dependency. We can also find the head group responsible for
wrong dependency is clearly more bright than correct dependency, showing a different pattern.

17

Under review as a conference paper at ICLR 2025

Discussion In our experiment, we found the model’s attention head performance for semantic
information storage is different in various QA cases, thus unable to unify a group of specific heads
for general model mistakes. We will further explore the general pattern in the future. Additionally,
Geva et al.|(2023)) have shown MLPs also encode enriched representations that propagate attributes.
Such representations may inadvertently amplify irrelevant or erroneous semantic information. We
aim to extend our analysis to quantify the contribution of MLPs to semantic dependency in the
future.

18

Under review as a conference paper at ICLR 2025

A.5 SYMBOL LIST

Table 5: Symbol List and Their Explanations

Symbol Explanation
7l The embedding of the i-th token in the [-th layer.
z, The embedding of the j-th token in the I-th layer.
7. The original embedding of the i-th token in the I-th layer.
ZiL(k) The k-th perturbed embedding of the i-th token in the [-th layer.
AL |20 Semantic dependency score, which measures how the perturbation of token
T i at layer 0 affects token j at the final layer L.
N The number of tokens in a token sequence.
K The i-th token in layer O is perturbed K times to calculate average change
of the i-th token in layer L. K = 5 in our experiments.
M The number of total perturbed token cases across all sequences we evaluate.
P(fy) Percentage P of the cases that the transformer-based language model fy
matches our finding.
W0 True semantically dependent word group for the i-th word in layer O based
on semantic dependency parsing.
G0 Truthful semantically dependent token group for the ¢-th token in layer O
based on semantic dependency parsing.
qu Estimated semantically dependent token group for the ¢-th token using to-
ken perturbation.
Kiop The number of top tokens most sensitive to the perturbation of the input
token. K is set to the size of G,0. In the experiment, we evaluate the
overlap of G0 and top 5 tokens when the size are under 5.
S0 Alignment score between the truthful (G,0) and estimated (ézo) semanti-

cally dependent token groups.

Asl ASz
ng’ Gz?

Estimated semantically dependent token group for the ¢-th token corre-
sponding to token sequences s; and so.

ALeft A Right
Gz? ’ Gz?

Estimated semantically dependent token group for the ¢-th token corre-
sponding to concatenated sequences (S2, $1) and (s1, S2).

DAS(") Dependency Alteration Score, measuring the impact of irrelevant context
or sequence order changes on semantic dependencies in a sequence.

L The number of chosen semantically dependent tokens in the original token
sequence z(*1). e.g., L = 5 when choosing top 5 semantically dependent
tokens for evaluation.

ql The embedding of the i-th question token in the [-th layer.

al The embedding of the j-th answer token in the {-th layer.

Agt a0 Semantic dependency score in QA task, which measures how the perturba-

T tion of i-th answer token at layer 0 affects j-th question token at the final
layer L.

Al 010 Highest semantic dependence score above all semantic dependency be-

tween all question tokens and ¢-th answer tokens in a QA task.

/ /
Acorrccl\ Q’° Awmng\Q

Highest semantic dependence score above all semantic dependency be-
tween question tokens and answer tokens (correct or wrong) in a QA task.

19

	Introduction
	Most Tokens Primarily Retain Their Original Semantic Information Through Transformer Layers
	A Final-layer Token Encodes Truthful Semantic Dependency
	The Semantic Dependency Encoded in a Token Is Influenced by Both Irrelevant Context Changes and Order of Contexts
	When the Model Makes Mistakes, It Falsely Aggregates Semantically Independent Information within a Token
	Conclusion
	Appendix
	related works
	Experiment Details
	Pesudocode for Section 5
	localize semantic dependency within attention layers in Section 5
	Symbol List

