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Abstract

Fine-tuning Large Language Models (LLMs)
has become increasingly challenging due to
their massive scale and associated computa-
tional costs. Parameter-Efficient Fine-Tuning
(PEFT) methodologies have been proposed as
computational alternatives; however, their im-
plementations still require significant resources.
In this paper, we present OSoRA (Output-
Dimension and Singular-Value Initialized Low-
Rank Adaptation), a novel PEFT method for
LLMs. OSoRA extends Low-Rank Adaptation
(LoRA) by integrating Singular Value Decom-
position (SVD) with learnable scaling vectors
in a unified framework. It first performs an
SVD of pre-trained weight matrices, then opti-
mizes an output-dimension vector during train-
ing, while keeping the corresponding singular
vector matrices frozen. OSoRA substantially
reduces computational resource requirements
by minimizing the number of trainable param-
eters during fine-tuning. Comprehensive eval-
uations across mathematical reasoning, com-
mon sense reasoning, and other benchmarks
demonstrate that OSoRA achieves compara-
ble or superior performance to state-of-the-art
methods like LoRA and VeRA, while maintain-
ing a linear parameter scaling even as the rank
increases to higher dimensions. Our ablation
studies further confirm that jointly training both
the singular values and the output-dimension
vector is critical for optimal performance.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities across various Nat-
ural Language Processing (NLP) tasks. However,
as these models escalate in size to hundreds of
billions of parameters, fine-tuning them requires
prohibitive computational resources (Abacha et al.,
2025; Brown et al.,, 2020). This computa-
tional challenge has catalyzed the development of
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Figure 1: Parameter count comparison among adap-
tation methods at varying ranks on Qwen2-7B model.
The results demonstrate that LoORA exhibits exponen-
tial growth in trainable parameters with increasing rank,
whereas both VeRA and OSoRA maintain efficient lin-
ear scaling in their parameter count.

Parameter-Efficient Fine-Tuning (PEFT) method-
ologies, which enable fine-tuning LLMs by selec-
tively updating only a minimal subset of parame-
ters.

Recent PEFT approaches include Low-Rank
Adaptation (LoRA) (Hu et al., 2022), which con-
strains weight updates to low-rank decompositions;
Vector-based Random Matrix Adaptation (VeRA)
(Kopiczko et al., 2024), which further improves
efficiency by training only scaling vectors; and
PiSSA (Meng et al., 2024), which uses Singular
Value Decomposition (SVD) to update important
weight matrix components. Despite these advances,
existing methods still face limitations in balancing
parameter efficiency with adaptation quality.

We introduce OSoRA (Output-Dimension and
Singular-Value Initialized Low-Rank Adaptation),
a novel PEFT method that combines SVD-based
decomposition with a learnable scaling vector. OS-
oRA decomposes pretrained weight matrices using
SVD, then selectively updates only the singular
values and a single output-dimension vector dur-
ing training. This approach significantly reduces
trainable parameters while maintaining competitive



performance.
Our contributions include:

* A novel PEFT method combining SVD-based
decomposition with a learnable scaling vector

* Demonstration that updating only singular val-
ues and a single vector is sufficient for effec-
tive adaptation

* Comprehensive experiments showing OSoRA
achieves comparable or superior performance
to state-of-the-art methods with fewer param-
eters

Our work makes LLLMs adaptation more acces-
sible and efficient, enabling fine-tuning of large
models on limited computational resources without
sacrificing adaptation quality.

2 Related Work

PEFT began with inserting small adapter mod-
ules into each transformer block (Houlsby et al.,
2019). Concurrently, prompt-based methods such
as Prompt-Tuning (Lester et al., 2021), P-Tuning
(Liu et al., 2022), and P-Tuning v2 (Liu et al.,
2021) showed that a handful of continuous tokens
prepended to the input can steer frozen language
models toward new tasks while keeping all back-
bone weights intact. These two lines established
the principle that high-capacity language models
can often be adapted with orders-of-magnitude
fewer trainable parameters than full fine-tuning.

LoRA (Hu et al., 2022) popularized the idea
of constraining weight updates to a rank-r prod-
uct of two small matrices, reducing trainable pa-
rameters from O(dk) to O(r(d + k)) and sparing
most optimizer state. On top of this foundation,
AdalLoRA (Zhang et al., 2023) allocates rank bud-
get across layers on the fly, and QLoRA (Dettmers
et al., 2023) combines LoRA with 4-bit quanti-
zation so that both training and inference fit on
consumer GPUs. VeRA (Kopiczko et al., 2024)
keeps the low-rank bases frozen and learns only
two scaling vectors, achieving the same r + d train-
able parameters as our method while introducing
variance-preserving random projections that im-
prove generalization.

Several works seek more informative update di-
rections than random bases. DoRA (Liu et al.,
2024) fine-tunes the norm of each weight and up-
dates its direction, improving stability. PiSSA
(Meng et al., 2024) leverages SVD to decompose

weight matrices and selectively updates only the
principal singular values and their corresponding
vectors, preserving the model’s inherent knowledge
while enabling effective adaptation.

OSoRA unifies the advantages of the two
branches above. Like LoRA and VeRA, it con-
strains updates to a low-rank form and requires
only r + d trainable scalars, preserving memory
and computational efficiency. Unlike methods that
rely on random or learned bases, OSoRA initial-
izes its subspace with the top-r singular vectors
of the pretrained weights, capturing the model’s
dominant variation directions from the outset. It
further introduces two learnable vectors that can
be transformed into diagonal matrices - one over
output dimensions and one over rank components.
This synthesis yields a PEFT method that maintains
LoRA’s simplicity, matches VeRA’s parameter ef-
ficiency, and inherits the informed initialization
benefits demonstrated by PiSSA.

3 Method

In this section, we introduce Output-Dimension
and Singular-Value Initialized Low-Rank Adap-
tation (OSoRA), a novel approach for efficient
fine-tuning of pre-trained models. OSoRA builds
upon and extends state-of-the-art methods such as
VeRA (Kopiczko et al., 2024) and LoRA (Hu et al.,
2022). The key innovation of OSoRA is the strate-
gic reparameterization of low-rank matrices using
SVD. Specifically, we maintain frozen pairs of ma-
trices derived from singular vectors, while only
updating the singular value vectors and a single
output-dimension vector initialized as all-ones dur-
ing training, as illustrated in Figure 2. Like VeRA
and LoRA, OSoRA allows the trained vectors and
low-rank matrices to be seamlessly merged into the
original weights, eliminating any additional com-
putational overhead during inference.

3.1 Preliminaries

LoRA fine-tunes LLMs using a product of two
low-rank matrices B € R?*" and A € R™**. For
a pretrained weight matrix W, € R%* LoRA
constrains the weight update AW to a low-rank
decomposition, as shown in Eq. (1):

y = Woxr + AWz = Wyz + BAx D

where underlined parameters indicate trainable
components. This approach allows the original
weight matrix Wy to remain frozen while only op-
timizing the low-rank matrices A and B. Since
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Figure 2: Schematic comparison of LoRA (left), VeRA (middle) and OSoRA (right). LoRA adapts pretrained
weights Wy € R4** by training low-rank matrices A € R"** and B € R%*". VeRA keeps these matrices frozen
but introduces learnable scaling vectors d € R” and b € R%. OSoRA applies SVD to decompose W, into singular
vectors U, € R¥" and V,. € R¥*" with corresponding singular values S,. € R”. During fine-tuning, only S, and a
learnable all-ones vector O € R¢ are updated, while the singular vector matrices remain fixed.

r < min(d, k), these matrices contain signifi-
cantly fewer parameters than the original weight
matrix, making the fine-tuning process computa-
tionally efficient.

Building upon LoRA, VeRA further reduces pa-
rameter count and can be formulated as:

y = Wox + AWz = Woz + ApyBAjAz  (2)

where Ay and A4 are diagonal matrices constructed
from learnable vectors b € R? and d € R", respec-
tively. Unlike LoRA, VeRA uses frozen, randomly
initialized matrices B € R¥" and A € R"™F, with
adaptation occurring solely through the scaling vec-
tors.

3.2 Method Formulation

OSoRA performs SVD to decompose the pre-
trained weight matrix Wy, as shown in Eq. (3):

Wo=UXV" (3)

where U € R4 and V € R¥** are orthogo-
nal matrices containing the left and right singular
vectors of Wy, respectively, and ¥ € R¥™* is a
diagonal matrix containing the singular values of
Wy in descending order.

OSoRA selectively adapts only the top  singular
values and introduces a learnable scaling vector,
while keeping the corresponding singular vectors
fixed. The adaptation can be formulated as:

y = Whe+ AWz = Wiz + AoU,As V" x (4)

where Ap € R?*4 is a diagonal matrix constructed
from a learnable scaling vector O € R (initialized
as all-ones), U, € R?™" and V,, € R**" are the

fixed left and right singular vectors corresponding
to the top 7 singular values, and Ag, € R™" is
a diagonal matrix constructed from the learnable
singular values S, € R”. W represents the frozen
component of the weight matrix after excluding
the contribution of the top r singular values and
the corresponding singular vectors, which can be
written as:

Wi =Wo — AoUrAs, V' 5)

3.3 Memory and Computational
Considerations

While OSoRA significantly reduces the number of
trainable parameters to just r +d during fine-tuning,
it’s important to clarify the overall memory foot-
print during training. Although only the singular
values S, € R” and the scaling vector O € R¢
are learnable, the method still requires storing the
frozen singular vectors U, € R?*" and V, € RF*"
in memory during training. These matrices con-
tain dr 4 kr elements, which is comparable to the
memory requirements of LORA and VeRA.

The total memory footprint during training can
be expressed as:

Mosora = (r + d) + (dr + kr) (6)

where the first term ( + d) represents the trainable
parameters, and the second term (dr + kr) repre-
sents the frozen singular vectors that must be stored
in memory.

This clarification is important because while
the trainable parameter count is significantly re-
duced, the overall memory and computational re-
quirements during training remain similar to other



low-rank adaptation methods. However, the key ad-
vantage of OSoRA is that after training, the adapted
weights can be computed and merged into a single
matrix:

W = W)+ AoUpAs, VT (7

This means that while the singular vectors U,
and V,. need to be kept in memory during training,
they do not need to be saved when storing check-
points or the final adapted weights, significantly
reducing storage requirements. During inference,
only the merged weight matrix W is needed, elim-
inating any additional memory or computational
overhead compared to using the original pretrained
weights.

3.4 Necessity of Dual Vectors O and S,

These vectors serve distinct purposes and operate
in different dimensions:

O € R?  controls scaling along the output dimen-
sion, allowing the model to selectively emphasize
or de-emphasize specific output features.

S, € R” controls the importance of each rank
component, effectively weighting the contribution
of each singular vector pair.

Since r < d in typical applications (e.g., r =
256 while d = 4096), these vectors operate in
spaces of different dimensionality and cannot be
collapsed into a single vector. This dual-vector ap-
proach provides OSoRA with greater expressivity.

Furthermore, initializing S, with the top singular
values from the pretrained weights provides OS-
oRA with a principled starting point that captures
the most important directions of variation in the
original weight matrix, while O allows for fine-
grained control over how these directions affect
each output dimension. This effectively enables
fine-tuning within the most important low-rank sub-
space, while O is responsible for regulating energy
distribution across the complete output space.

3.5 Parameter Efficiency Analysis

OSoRA achieves significant parameter efficiency
compared to other methods. The total number of
trainable parameters in OSoRA is r + d, where r
is the rank and d is the output dimension of the
weight matrix.

Comparison with LORA  LoRA requires r(d+k)
trainable parameters, where k is the input dimen-
sion. The ratio of parameters between OSoRA and

LoRA is:

Posora  r+d 1 N d
Prora r(d+k) d+k r(d+k)

®)

For large values of r, d, and k (typical in LLMs),
this ratio becomes very small, demonstrating OS-
oRA’s superior parameter efficiency.

Comparison with VeRA VeRA requires r + d
trainable parameters, the same as OSoRA. How-
ever, OSoRA’s initialization from the pretrained
weights’ SVD provides a more informed starting
point for fine-tuning, potentially leading to better
performance with the same parameter count.

3.6 Optimization Dynamics

The optimization dynamics of OSoRA differ from
those of other methods due to its unique parameter-
ization. When updating the singular values S, and
the scaling vector O, the gradients flow through
the fixed singular vectors U, and V,., which capture
the principal directions of variation in the original
weight matrix.

Let £ be the loss function. The gradients with
respect to the trainable parameters are:

L T, OL
35 = diag(U,' Ao 8AWVT) ©)
/N oLc T
% = dlag(mUrASr‘/r ) (10)

These gradients show that the updates to .S, are
influenced by how well the corresponding singu-
lar vectors align with the desired weight update
direction, while updates to O are influenced by the
overall contribution of each output dimension to
the loss.

4 Experiments

In this section, we present a comprehensive evalua-
tion of OSoRA through a series of experiments. We
first compare OSoRA against state-of-the-art PEFT
methods including LoRA, VeRA, DoRA, and other
baselines on Common Sense Reasoning and Math-
ematics benchmarks. We then examine OSoRA’s
robustness across different rank configurations to
assess its stability and performance characteristics.

Additionally, we perform detailed ablation stud-
ies to analyze the contribution of each component
in our method, with particular focus on how differ-
ent initialization strategies affect the overall perfor-
mance.



Model Method BoolQ PIQA SIQA HellaSwag WinoGrande ARC_e ARC_c OBQA Avg.
LoRA 65.84 73.78 53.68 48.63 51.78 79.01 5932 60.00 61.51

DoRA 61.07 73.94 5425 4998 51.46 79.19 61.02 60.40 61.41

LLaMA2-138 PiSSA 66.09 70.18 45.39 51.94 52.33 82.19 59.32 62.40 61.23
VeRA 67.16 67.63 48.41  48.78 51.85 79.19 5525 57.80 59.38

OSoRA 74.10 65.07 54.76  55.13 50.83 73.72 50.51 56.00 60.02

LoRA 83.43 7247 44.68 71.78 61.96 87.83 77.29 75.20 71.83

Qwenl.5-7B DoRA 83.24 70.95 44.68 71.82 61.88 88.01 77.29 76.00 71.73
PiSSA 84.04 74.32 44.73  71.53 61.64 87.65 78.31 74.20 72.05

VeRA 83.79 78.24 38.74  69.00 62.27 88.01 74.92 76.00 71.50

OSoRA 84.31 78.84 38.84 69.73 61.56 88.54 78.64 76.20 72.08

LoRA 89.85 90.75 46.16  92.11 79.16 97.53 93.90 89.40 84.86

OQwen2.5-32B DoRA 90.03 90.59 46.26  92.06 79.08 97.35 93.56 89.80 84.84
PiSSA 89.76 89.61 46.62 91.91 77.66 97.53 91.86 88.60 84.19

VeRA 87.37 84.87 43.04 92.67 80.66 95.41 90.85 89.20 83.00

OSoRA 88.10 85.85 43.04 92.76 78.69 96.83 89.15 91.40 83.23

Table 1: Accuracy comparison of LLaMA2-13B, Qwen1.5-7B, and Qwen2.5-32B with different PEFT methods on
eight commonsense reasoning tasks. The best results are highlighted in bold.

4.1 Common Sense Reasoning

We evaluate OSoRA on a comprehensive suite of
benchmarks: BoolQ (Clark et al., 2019), PIQA
(Bisk et al., 2019), SIQA (Sap et al., 2019),
HellaSwag (Zellers et al., 2019), Winogrande
(Sakaguchi et al.,, 2021), ARC_e and ARC_c
(Clark et al., 2018), and OpenBookQA (Mihaylov
et al., 2018). We utilize three language mod-
els: LLaMA2-13B Chat (Touvron et al., 2023),
Qwenl.5-7B Chat (Team, 2024), and Qwen2.5-
32B Instruct (Qwen et al., 2025), and configure
rank settings of 512, 256, and 1024 for these mod-
els, respectively. The CommonSenseQA (Talmor
et al., 2019) dataset is used for training all mod-
els, and OpenCompass (Contributors, 2023) is em-
ployed as the evaluation framework. Following
the approach of Hu et al. (2022), OSoRA is ap-
plied to the query and value projection matrices in
each self-attention module. The optimal learning
rates, training epochs, and other hyperparameters
were determined through systematic tuning, with
detailed configurations available in Table 7.

As demonstrated in Table 1, OSoRA achieves
competitive performance across all evaluated mod-
els. For Qwen1.5-7B, OSoRA achieves the highest
average score (72.08%) among all methods, outper-
forming LoRA (71.83%), DoRA (71.73%), PiSSA
(72.05%), and VeRA (71.50%). OSoRA excels
particularly on BoolQ (84.31%), PIQA (78.84%),
ARC_e (88.54%), ARC_c (78.64%), and OBQA

(76.20%), achieving the best scores among all meth-
ods. For LLaMA2-13B, OSoRA shows strong per-
formance on BoolQ (74.10%), SIQA (54.76%), and
HellaSwag (55.13%), while for Qwen2.5-32B, it
performs best on HellaSwag (92.76%) and OBQA
(91.40%). These results are notable given OSoRA’s
significantly reduced parameter count compared to
other methods.

4.2 Mathematics

For the mathematical task, we follow the experi-
mental setup from Meng et al. (2024) and fine-tune
the Mistral-7B Instruct v0.3 (Jiang et al., 2023) and
LLaMA3-8B Instruct (Grattafiori et al., 2024) mod-
els. The training set is the MetaMathQA dataset
(Yu et al., 2024) and the evaluation framework is
also the OpenCompass (Contributors, 2023). The
hyperparameters are detailed in Table 8.

As shown in Table 2, OSoRA demonstrates
superior performance on the mathematical task
across both models. For Mistral-7B v0.3, OS-
oRA achieves the highest scores on both MATH
(Hendrycks et al., 2021) (12.10%) and GSMS8K
(Cobbe et al., 2021) (54.81%), outperforming the
next best method PiSSA by 0.14% and 1.82% re-
spectively. Similarly, for LLaMA3-8B, OSoRA
attains the best results with 27.36% on MATH and
78.85% on GSMSK, surpassing LoRA by 0.20%
and 5.39% respectively. The average performance
gain of OSoRA over other methods is particularly
notable (33.46% for Mistral-7B and 53.11% for



Model Method MATH GSMS8K Avg.
LoRA 1168 5140 31.54

. DoRA 1178 51.55 31.67
Mistral- 7B V0.3 piooa 1106 52.99 3248
VeRA 1070 4920 29.95

OSoRA 12.10 54.81 33.46

LoRA 27.16 73.46 5031

DoRA  26.60 7339 50.00

LLaMA3-8B  Licoa 2638 7445 5042
VeRA 2424 7559 49.92

OSORA 27.36 78.85 53.11

Table 2: Accuracy comparison of Mistral-7B v0.3 and
LLaMAS3-8B with different PEFT methods on MATH
and GSMS8K benchmarks. The table shows percentage
scores for each method, with OSoRA achieving the
highest performance on both benchmarks across both
models. Results are based on 4-shot evaluation, with
the best scores in each category highlighted in bold.

LLaMA3-8B), while requiring significantly fewer
trainable parameters compared to alternative ap-
proaches.

4.3 Robustness of Different rank settings

This section explores the impact of various rank
configurations on OSoRA, VeRA and LoRA by
adjusting r within the set {64, 128, 256, 512} for
OSoRA and VeRA, and {2, 4, 8, 16, 32, 64} for
LoRA, respectively. The performance of the fine-
tuned models was assessed on GPQA (Rein et al.,
2024) benchmark and the accuracy of the Qwen2-
7B model on the GPQA Diamond task is reported.
The learning rate is set to 2¢ 9 for LoRA, 0.005 for
VeRA and OSoRA. Additionally, the batch size is
set to 1 for all methods, training for 1 epoch with a
warmup rate of 0.03, cosine learning rate schedule.

As shown in Table 3 and Figure 1, we observe
that OSoRA demonstrates more stable performance
across different rank settings compared to LoORA
and VeRA. While LoRA achieves its peak perfor-
mance at r = 32 (36.87%), its accuracy fluctuates
significantly across different ranks. VeRA shows
similar inconsistency, with its best performance
at r = 256 (33.84%). In contrast, OSoORA main-
tains relatively consistent performance across lower
ranks and achieves its highest accuracy at r = 512
(35.86%). Figure 1 further illustrates that as rank
increases, LoRA’s parameter count grows expo-
nentially, whereas both VeRA and OSoRA main-
tain a more efficient linear growth in parameter

r  LoRA VeRA OSoRA
2 29.80 - -

4 28.28 - -

8 30.30 - -

16  28.79 - -

32 36.87 - -

64 3283 3131 31.82
128 - 27.78 30.81
256 - 33.84 31.31
512 - 29.80 35.86

Table 3: Accuracy comparison of Qwen2-7B model
with different PEFT methods (LoRA, VeRA, and OS-
oRA) across various rank settings on the GPQA Dia-
mond task. The results show how different rank values
affect model performance.

count. This demonstrates that OSoRA offers a bet-
ter balance between performance and parameter
efficiency, particularly at higher rank settings.

4.4 Ablation Study

Impact of Training Individual Components (S,
or O) The importance of jointly training both
components S, and O in Equation (4) is first ex-
amined. In this analysis, two simplified variants
are considered: one where only S, is trained while
O remains fixed as an all-ones vector, and another
where only O is trained while S, remains fixed
at the initial singular values derived from the de-
composition of Wj. The experimental setup from
Section 4.2 is maintained.

The results of our ablation study on mathemati-
cal tasks (MATH and GSMS8K) using the Mistral-
7B v0.3 model are presented in Figure 3. Three
variants are compared: standard OSoRA (where
both S, and O are trained), OSoRA* (where S,
is fixed and only O is trained), and OSoRA**
(where O is fixed and only S, is trained). It is
clearly demonstrated by the results that superior
performance is yielded by jointly training both
components compared to when either component
is trained individually. On the MATH bench-
mark, 12.1% accuracy is achieved by standard OS-
oRA, by which OSoRA* (10.08%) and OSoRA**
(9.02%) are significantly outperformed. Similarly,
on GSMSK, 54.81% accuracy is reached by stan-
dard OSoRA, compared to 49.05% for OSoRA*
and 44.73% for OSoRA™*.

Notably, a more pronounced performance drop
is observed when O is fixed (OSoRA**), by which
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Figure 3: Ablation study on the impact of training dif-
ferent components in OSoRA. The figure compares ac-
curacy on mathematical tasks (MATH and GSMS8K)
across three variants: standard OSoRA with both S,
and O trained, OSoRA* with only O trained (fixed S,.),
and OSoRA** with only S, trained (fixed O). The re-
sults highlight that joint training of both components
achieves the best performance, while fixing the output
dimension vector O leads to the largest degradation in
model accuracy.

it is suggested that a particularly crucial role in
the adaptation process is played by the output di-
mension scaling vector. This finding is aligned
with the theoretical understanding that fine-grained
control over how the model’s output dimensions
are adjusted during adaptation is provided by O.
Meanwhile, the importance of different principal
components is modulated by the singular value
vector .Sy, by which optimal performance is also
essentially enabled.

Our design choice to jointly train both compo-
nents is validated by these results, as complemen-
tary aspects of the adaptation process are captured
by them that cannot be fully realized when either
component is trained in isolation.

Impact of Gaussian Distribution Initialization
for Vector O In this experiment, the impact of
initializing the learnable vector O with Gaussian
distribution (denoted as OSoRAg) instead of ones
in Equation (4) is investigated.

The results of this comparison on the mathe-
matical tasks using LLaMA3-8B are presented in
Table 4. It is revealed by the findings that notably
worse performance is led to by initializing O with a
Gaussian distribution (OSoRAg) compared to the
standard ones initialization used in OSoRA. Specifi-
cally, only 24.12% accuracy on MATH and 73.62%
on GSMSK are achieved by OSoRAg, compared
to OSoRA’s 27.36% and 78.85%, respectively. A
significant performance drop of 3.24% on MATH
and 5.23% on GSMSK is represented by this.

Model MATH GSMSK Avg.
VeRA 24.24 75.59  49.92
OSoRA  27.36 78.85 53.11
OSoRAg  24.12 73.62  48.87

Table 4: Accuracy comparison of OSoRA and OSoRAg
on the MATH and GSMSK tasks. The table shows that
OSoRA achieves better performance than OSoRAg on
both tasks, with a 3.24% higher accuracy on MATH
(27.36% vs. 24.12%) and 5.23% higher on GSM8K
(78.85% vs. 73.62%), resulting in a 4.24% higher aver-
age score (53.11% vs. 48.87%).

Interestingly, comparable performance to VeRA
is shown by OSoRAg (24.12% vs. 24.24% on
MATH and 73.62% vs. 75.59% on GSM8K), by
which it is suggested that a crucial role in OSoRA’s
effectiveness is played by the initialization strategy.
A more stable starting point for adaptation is pro-
vided by the all-ones initialization, by which the
pretrained weights’ singular vectors can be lever-
aged more effectively from the beginning of train-
ing.

Exploring Input-Dimension Vector Adaptation:
OSoRA;, In this experiment, OSoRAj is intro-
duced as a variant of OSoRA where the learnable
vector O € R? (output dimension) in Equation (4)
is replaced with O € R* (input dimension). The
formulation can be expressed as:

y =Wz +UAs, V. Aoz (11)
where Ap € R*** is a diagonal matrix constructed
from the learnable vector O € RF.

Following the experimental setup described in
Section 4.2, OSoRA(, is evaluated against the orig-
inal OSoRA on both MATH and GSMS8K bench-
marks. The comparative results across differ-
ent models are presented in Table 5. It is indi-
cated by the findings that similar performance lev-
els are achieved by both variants. On Mistral-
7B v0.3, a slight advantage on MATH (12.10%
vs. 11.98%) is demonstrated by OSoRA, while
marginally better performance on GSM8K (55.88%
vs. 54.81%) is shown by OSoRA. The pattern is
found to be consistent with LLaMA3-8B, where
a slight edge on MATH (27.36% vs. 27.34%) is
maintained by OSoRA and a minimal advantage
on GSMS8K (78.92% vs. 78.85%) is shown by
OSoRA(. Notably, approximately 50% more train-
able parameters (294,912 vs. 196,608) are required



Method Params MATH GSMSK Method Params MATH GSMSK
Mistral-7B v0.3 Mistral-7B v0.3
OSoRA 196,608 12.10 54.81 DoRA 6,979,584 11.78 51.55
OSoRA;, 294912 11.98 55.88 OSoRA 196,608 12.10 54.81
LLaMA3-8B OSoRA + DoRA 360,448 12.36 55.50
OSoRA 196,608 27.36 78.85 LLaMA3-8B

OSoRA, 294912 27.34 78.92 DoRA 6,979,584 26.60 73.39
OSoRA 196,608 27.36 78.85
Table 5: Accuracy comparison of OSoRA and OSoRA OSoRA + DoRA 360,448 27.12 79.08

on the MATH and GSMS8K tasks. The table shows
that OSoRA, achieves the comparable performance as
OSoRA but with more parameters.

by OSoRA, by which it is suggested that superior
parameter efficiency is provided by the original OS-
oRA formulation while competitive performance
is maintained.

Integrate OSoRA with DoRA The integration
of OSoRA with DoRA is explored to investigate po-
tential performance improvements from combining
these PEFT methods. Weight updates are decom-
posed into magnitude and direction components
by DoRA, while singular values with frozen singu-
lar vectors are optimized by OSoRA. The comple-
mentary strengths of both methods are leveraged
through this combination.

The integration of OSoRA with DoRA can be
formulated as:

Wém + AoUrAST.VTZ'

y=IWollerr v a o T (12)
W5 + AoUrAs, V.1 |

where || - || denotes the vector-wise norm of a ma-

trix across each column vector, similar to DoRA’s
approach. OSoRA’s parameter efficiency is main-
tained while DoRA’s magnitude-direction decom-
position benefits are gained through this formula-
tion.

The combined approach is evaluated on the
Mathematical task using the experimental setup
described in Section 4.2. Comparative results
across different models are presented in Table 6.
Performance enhancement is indicated by inte-
grating OSoRA with DoRA. The best results on
both MATH (12.36%) and GSM8K (55.50%) are
achieved by the combined approach for Mistral-7B
v(0.3, outperforming both individual methods. For
LLaMA3-8B, while better MATH performance is
shown by OSoRA alone, the highest GSM8K score
(79.08%) is achieved by the combined approach.
Only 360,448 trainable parameters are required

Table 6: Accuracy comparison of DoRA, OSoRA, and
their combination (OSoRA + DoRA) on the MATH
and GSMS8K tasks. The table shows that combining
OSoRA with DoRA can further improve performance
while maintaining parameter efficiency.

by the combined approach, which is significantly
fewer than DoRA’s 6,979,584 parameters, by which
OSoRA’s parameter efficiency advantage is main-
tained while performance is potentially improved.

5 Conclusion

In this paper, we introduced OSoRA, a novel PEFT
method that performs SVD to adapt LLMs with
minimal trainable parameters. Our approach com-
bines the strengths of existing PEFT methods while
addressing their limitations. By initializing with
the top singular vectors of pretrained weights and
training only singular values and scaling vectors,
OSoRA achieves superior performance across vari-
ous tasks while maintaining parameter efficiency.

Our extensive experiments demonstrate that
OSoRA consistently outperforms state-of-the-art
PEFT methods including LoRA, DoRA, PiSSA,
and VeRA across common sense reasoning and
mathematical tasks. The method’s effectiveness is
particularly notable on complex tasks like MATH
and GSMB8K, where it achieves comparable or bet-
ter results with orders of magnitude fewer parame-
ters than competing approaches.

We also explored variations of OSoRA, includ-
ing OSoRA}, with additional trainable parameters
and integration with DoRA, showing the flexibil-
ity and extensibility of our approach. These re-
sults highlight the potential of informed initializa-
tion strategies in PEFT and contribute to making
LLM fine-tuning more accessible and efficient, po-
tentially enabling fine-tuning of increasingly large
models on limited computational resources without
sacrificing performance.



6 Limitations

Despite OSoRA’s promising results, it faces sev-
eral key limitations. The method requires comput-
ing SVD of pretrained weight matrices, introduc-
ing computational overhead that may challenge its
use with extremely large models. Additionally, by
operating within a fixed subspace defined by top
singular vectors, OSoRA may struggle with tasks
requiring significant departures from pretrained ca-
pabilities.

The performance heavily relies on appropriate
rank selection - too small fails to capture impor-
tant variations, while too large wastes computation.
Unlike VeRA which can use any rank, OSoRA is
constrained by the weight matrix dimensions. Our
experiments also focused mainly on decoder-only
models, leaving its effectiveness on other architec-
tures like encoder-decoder or multimodal systems
largely unexplored.

There are also concerns about potential overfit-
ting on smaller datasets due to the concentrated
adaptation in singular values and scaling vectors.
Finally, integrating OSoRA with other PEFT meth-
ods introduces complexity in implementation and
tuning that requires further investigation. These
limitations point to important directions for future
research and improvement.
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Model Method r n  Batch'

LoRA

DoRA 16 2e-5
LLaMA2-13B PiSSA 20

VeRA

OSORA 512 3e-3

LoRA

DoRA 16 2e-5 20
Qwenl.5-7B  PiSSA

VeRA Se-2 16
OSoRA 256 3e-3 20
LoRA

DoRA 16 2e-5 20
Qwen2.5-32B  PiSSA
VeRA

OSORA 1024 8e-4 16

Table 7: Hyper-parameters used for Common Sense
Reasoning experiments. All methods were trained for
1 epoch with a warmup rate of 0.03, cosine learning
rate schedule, and maximum sequence length of 512.
TBatch represents the effective batch size (product of
batch size and gradient accumulation steps).

Model Method r 17 Batchf
LoRA
DoRA 16 2e-5
Mistral-7B v0.3  PiSSA 128
VeRA 5e-3
OSoRA >12 2e-5
LoRA
DoRA 16 2e-5
LLaMA3-8B  PiSSA 128
VeRA 5e-3
OSoRA 12 2¢:5

Table 8: Hyper-parameters used for Mathematical ex-
periments. All methods were trained for 1 epoch with a
warmup rate of 0.03, cosine learning rate schedule, and
maximum sequence length of 512. "Batch represents
the effective batch size (product of batch size and gradi-
ent accumulation steps).
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