
OSoRA: Output-Dimension and Singular-Value Initialized Low-Rank
Adaptation

Anonymous ACL submission

Abstract001

Fine-tuning Large Language Models (LLMs)002
has become increasingly challenging due to003
their massive scale and associated computa-004
tional costs. Parameter-Efficient Fine-Tuning005
(PEFT) methodologies have been proposed as006
computational alternatives; however, their im-007
plementations still require significant resources.008
In this paper, we present OSoRA (Output-009
Dimension and Singular-Value Initialized Low-010
Rank Adaptation), a novel PEFT method for011
LLMs. OSoRA extends Low-Rank Adaptation012
(LoRA) by integrating Singular Value Decom-013
position (SVD) with learnable scaling vectors014
in a unified framework. It first performs an015
SVD of pre-trained weight matrices, then opti-016
mizes an output-dimension vector during train-017
ing, while keeping the corresponding singular018
vector matrices frozen. OSoRA substantially019
reduces computational resource requirements020
by minimizing the number of trainable param-021
eters during fine-tuning. Comprehensive eval-022
uations across mathematical reasoning, com-023
mon sense reasoning, and other benchmarks024
demonstrate that OSoRA achieves compara-025
ble or superior performance to state-of-the-art026
methods like LoRA and VeRA, while maintain-027
ing a linear parameter scaling even as the rank028
increases to higher dimensions. Our ablation029
studies further confirm that jointly training both030
the singular values and the output-dimension031
vector is critical for optimal performance.032

1 Introduction033

Large Language Models (LLMs) have demon-034

strated remarkable capabilities across various Nat-035

ural Language Processing (NLP) tasks. However,036

as these models escalate in size to hundreds of037

billions of parameters, fine-tuning them requires038

prohibitive computational resources (Abacha et al.,039

2025; Brown et al., 2020). This computa-040

tional challenge has catalyzed the development of041

631 1,262
2,523

5,046

10,093

20,185

118 122 129 143118 122 129 143
0

2,000
4,000
6,000
8,000
10,000
12,000
14,000
16,000
18,000
20,000
22,000

2 8 32 128 512

Pa
ra
m
et
er
s

Th
ou
sa
nd
s

Rank

LoRA

VeRA

OSoRA

Figure 1: Parameter count comparison among adap-
tation methods at varying ranks on Qwen2-7B model.
The results demonstrate that LoRA exhibits exponen-
tial growth in trainable parameters with increasing rank,
whereas both VeRA and OSoRA maintain efficient lin-
ear scaling in their parameter count.

Parameter-Efficient Fine-Tuning (PEFT) method- 042

ologies, which enable fine-tuning LLMs by selec- 043

tively updating only a minimal subset of parame- 044

ters. 045

Recent PEFT approaches include Low-Rank 046

Adaptation (LoRA) (Hu et al., 2022), which con- 047

strains weight updates to low-rank decompositions; 048

Vector-based Random Matrix Adaptation (VeRA) 049

(Kopiczko et al., 2024), which further improves 050

efficiency by training only scaling vectors; and 051

PiSSA (Meng et al., 2024), which uses Singular 052

Value Decomposition (SVD) to update important 053

weight matrix components. Despite these advances, 054

existing methods still face limitations in balancing 055

parameter efficiency with adaptation quality. 056

We introduce OSoRA (Output-Dimension and 057

Singular-Value Initialized Low-Rank Adaptation), 058

a novel PEFT method that combines SVD-based 059

decomposition with a learnable scaling vector. OS- 060

oRA decomposes pretrained weight matrices using 061

SVD, then selectively updates only the singular 062

values and a single output-dimension vector dur- 063

ing training. This approach significantly reduces 064

trainable parameters while maintaining competitive 065

1

performance.066

Our contributions include:067

• A novel PEFT method combining SVD-based068

decomposition with a learnable scaling vector069

• Demonstration that updating only singular val-070

ues and a single vector is sufficient for effec-071

tive adaptation072

• Comprehensive experiments showing OSoRA073

achieves comparable or superior performance074

to state-of-the-art methods with fewer param-075

eters076

Our work makes LLMs adaptation more acces-077

sible and efficient, enabling fine-tuning of large078

models on limited computational resources without079

sacrificing adaptation quality.080

2 Related Work081

PEFT began with inserting small adapter mod-082

ules into each transformer block (Houlsby et al.,083

2019). Concurrently, prompt-based methods such084

as Prompt-Tuning (Lester et al., 2021), P-Tuning085

(Liu et al., 2022), and P-Tuning v2 (Liu et al.,086

2021) showed that a handful of continuous tokens087

prepended to the input can steer frozen language088

models toward new tasks while keeping all back-089

bone weights intact. These two lines established090

the principle that high-capacity language models091

can often be adapted with orders-of-magnitude092

fewer trainable parameters than full fine-tuning.093

LoRA (Hu et al., 2022) popularized the idea094

of constraining weight updates to a rank-r prod-095

uct of two small matrices, reducing trainable pa-096

rameters from O(dk) to O(r(d+ k)) and sparing097

most optimizer state. On top of this foundation,098

AdaLoRA (Zhang et al., 2023) allocates rank bud-099

get across layers on the fly, and QLoRA (Dettmers100

et al., 2023) combines LoRA with 4-bit quanti-101

zation so that both training and inference fit on102

consumer GPUs. VeRA (Kopiczko et al., 2024)103

keeps the low-rank bases frozen and learns only104

two scaling vectors, achieving the same r+ d train-105

able parameters as our method while introducing106

variance-preserving random projections that im-107

prove generalization.108

Several works seek more informative update di-109

rections than random bases. DoRA (Liu et al.,110

2024) fine-tunes the norm of each weight and up-111

dates its direction, improving stability. PiSSA112

(Meng et al., 2024) leverages SVD to decompose113

weight matrices and selectively updates only the 114

principal singular values and their corresponding 115

vectors, preserving the model’s inherent knowledge 116

while enabling effective adaptation. 117

OSoRA unifies the advantages of the two 118

branches above. Like LoRA and VeRA, it con- 119

strains updates to a low-rank form and requires 120

only r + d trainable scalars, preserving memory 121

and computational efficiency. Unlike methods that 122

rely on random or learned bases, OSoRA initial- 123

izes its subspace with the top-r singular vectors 124

of the pretrained weights, capturing the model’s 125

dominant variation directions from the outset. It 126

further introduces two learnable vectors that can 127

be transformed into diagonal matrices - one over 128

output dimensions and one over rank components. 129

This synthesis yields a PEFT method that maintains 130

LoRA’s simplicity, matches VeRA’s parameter ef- 131

ficiency, and inherits the informed initialization 132

benefits demonstrated by PiSSA. 133

3 Method 134

In this section, we introduce Output-Dimension 135

and Singular-Value Initialized Low-Rank Adap- 136

tation (OSoRA), a novel approach for efficient 137

fine-tuning of pre-trained models. OSoRA builds 138

upon and extends state-of-the-art methods such as 139

VeRA (Kopiczko et al., 2024) and LoRA (Hu et al., 140

2022). The key innovation of OSoRA is the strate- 141

gic reparameterization of low-rank matrices using 142

SVD. Specifically, we maintain frozen pairs of ma- 143

trices derived from singular vectors, while only 144

updating the singular value vectors and a single 145

output-dimension vector initialized as all-ones dur- 146

ing training, as illustrated in Figure 2. Like VeRA 147

and LoRA, OSoRA allows the trained vectors and 148

low-rank matrices to be seamlessly merged into the 149

original weights, eliminating any additional com- 150

putational overhead during inference. 151

3.1 Preliminaries 152

LoRA fine-tunes LLMs using a product of two 153

low-rank matrices B ∈ Rd×r and A ∈ Rr×k. For 154

a pretrained weight matrix W0 ∈ Rd×k, LoRA 155

constrains the weight update ∆W to a low-rank 156

decomposition, as shown in Eq. (1): 157

y = W0x+∆Wx = W0x+BAx (1) 158

where underlined parameters indicate trainable 159

components. This approach allows the original 160

weight matrix W0 to remain frozen while only op- 161

timizing the low-rank matrices A and B. Since 162

2

frozen trainable

𝟙

𝟙

Figure 2: Schematic comparison of LoRA (left), VeRA (middle) and OSoRA (right). LoRA adapts pretrained
weights W0 ∈ Rd×k by training low-rank matrices A ∈ Rr×k and B ∈ Rd×r. VeRA keeps these matrices frozen
but introduces learnable scaling vectors d ∈ Rr and b ∈ Rd. OSoRA applies SVD to decompose W0 into singular
vectors Ur ∈ Rd×r and Vr ∈ Rk×r with corresponding singular values Sr ∈ Rr. During fine-tuning, only Sr and a
learnable all-ones vector O ∈ Rd are updated, while the singular vector matrices remain fixed.

r ≪ min(d, k), these matrices contain signifi-163

cantly fewer parameters than the original weight164

matrix, making the fine-tuning process computa-165

tionally efficient.166

Building upon LoRA, VeRA further reduces pa-167

rameter count and can be formulated as:168

y = W0x+∆Wx = W0x+ ΛbBΛdAx (2)169

where Λb and Λd are diagonal matrices constructed170

from learnable vectors b ∈ Rd and d ∈ Rr, respec-171

tively. Unlike LoRA, VeRA uses frozen, randomly172

initialized matrices B ∈ Rd×r and A ∈ Rr×k, with173

adaptation occurring solely through the scaling vec-174

tors.175

3.2 Method Formulation176

OSoRA performs SVD to decompose the pre-177

trained weight matrix W0, as shown in Eq. (3):178

W0 = UΣV ⊤ (3)179

where U ∈ Rd×d and V ∈ Rk×k are orthogo-180

nal matrices containing the left and right singular181

vectors of W0, respectively, and Σ ∈ Rd×k is a182

diagonal matrix containing the singular values of183

W0 in descending order.184

OSoRA selectively adapts only the top r singular185

values and introduces a learnable scaling vector,186

while keeping the corresponding singular vectors187

fixed. The adaptation can be formulated as:188

y = W ′
0x+∆Wx = W ′

0x+ΛOUrΛSrV
⊤
r x (4)189

where ΛO ∈ Rd×d is a diagonal matrix constructed190

from a learnable scaling vector O ∈ Rd (initialized191

as all-ones), Ur ∈ Rd×r and Vr ∈ Rk×r are the192

fixed left and right singular vectors corresponding 193

to the top r singular values, and ΛSr ∈ Rr×r is 194

a diagonal matrix constructed from the learnable 195

singular values Sr ∈ Rr. W ′
0 represents the frozen 196

component of the weight matrix after excluding 197

the contribution of the top r singular values and 198

the corresponding singular vectors, which can be 199

written as: 200

W ′
0 = W0 − ΛOUrΛSrV

⊤
r (5) 201

3.3 Memory and Computational 202

Considerations 203

While OSoRA significantly reduces the number of 204

trainable parameters to just r+d during fine-tuning, 205

it’s important to clarify the overall memory foot- 206

print during training. Although only the singular 207

values Sr ∈ Rr and the scaling vector O ∈ Rd 208

are learnable, the method still requires storing the 209

frozen singular vectors Ur ∈ Rd×r and Vr ∈ Rk×r 210

in memory during training. These matrices con- 211

tain dr + kr elements, which is comparable to the 212

memory requirements of LoRA and VeRA. 213

The total memory footprint during training can 214

be expressed as: 215

MOSoRA = (r + d) + (dr + kr) (6) 216

where the first term (r+ d) represents the trainable 217

parameters, and the second term (dr + kr) repre- 218

sents the frozen singular vectors that must be stored 219

in memory. 220

This clarification is important because while 221

the trainable parameter count is significantly re- 222

duced, the overall memory and computational re- 223

quirements during training remain similar to other 224

3

low-rank adaptation methods. However, the key ad-225

vantage of OSoRA is that after training, the adapted226

weights can be computed and merged into a single227

matrix:228

W = W ′
0 + ΛOUrΛSrV

⊤
r (7)229

This means that while the singular vectors Ur230

and Vr need to be kept in memory during training,231

they do not need to be saved when storing check-232

points or the final adapted weights, significantly233

reducing storage requirements. During inference,234

only the merged weight matrix W is needed, elim-235

inating any additional memory or computational236

overhead compared to using the original pretrained237

weights.238

3.4 Necessity of Dual Vectors O and Sr239

These vectors serve distinct purposes and operate240

in different dimensions:241

O ∈ Rd controls scaling along the output dimen-242

sion, allowing the model to selectively emphasize243

or de-emphasize specific output features.244

Sr ∈ Rr controls the importance of each rank245

component, effectively weighting the contribution246

of each singular vector pair.247

Since r ≪ d in typical applications (e.g., r =248

256 while d = 4096), these vectors operate in249

spaces of different dimensionality and cannot be250

collapsed into a single vector. This dual-vector ap-251

proach provides OSoRA with greater expressivity.252

Furthermore, initializing Sr with the top singular253

values from the pretrained weights provides OS-254

oRA with a principled starting point that captures255

the most important directions of variation in the256

original weight matrix, while O allows for fine-257

grained control over how these directions affect258

each output dimension. This effectively enables259

fine-tuning within the most important low-rank sub-260

space, while O is responsible for regulating energy261

distribution across the complete output space.262

3.5 Parameter Efficiency Analysis263

OSoRA achieves significant parameter efficiency264

compared to other methods. The total number of265

trainable parameters in OSoRA is r + d, where r266

is the rank and d is the output dimension of the267

weight matrix.268

Comparison with LoRA LoRA requires r(d+k)269

trainable parameters, where k is the input dimen-270

sion. The ratio of parameters between OSoRA and271

LoRA is: 272

POSoRA

PLoRA
=

r + d

r(d+ k)
=

1

d+ k
+

d

r(d+ k)
(8) 273

For large values of r, d, and k (typical in LLMs), 274

this ratio becomes very small, demonstrating OS- 275

oRA’s superior parameter efficiency. 276

Comparison with VeRA VeRA requires r + d 277

trainable parameters, the same as OSoRA. How- 278

ever, OSoRA’s initialization from the pretrained 279

weights’ SVD provides a more informed starting 280

point for fine-tuning, potentially leading to better 281

performance with the same parameter count. 282

3.6 Optimization Dynamics 283

The optimization dynamics of OSoRA differ from 284

those of other methods due to its unique parameter- 285

ization. When updating the singular values Sr and 286

the scaling vector O, the gradients flow through 287

the fixed singular vectors Ur and Vr, which capture 288

the principal directions of variation in the original 289

weight matrix. 290

Let L be the loss function. The gradients with 291

respect to the trainable parameters are: 292

∂L
∂Sr

= diag(U⊤
r ΛO

∂L
∂∆W

Vr) (9) 293

294
∂L
∂O

= diag(
∂L

∂∆W
UrΛSrV

⊤
r) (10) 295

These gradients show that the updates to Sr are 296

influenced by how well the corresponding singu- 297

lar vectors align with the desired weight update 298

direction, while updates to O are influenced by the 299

overall contribution of each output dimension to 300

the loss. 301

4 Experiments 302

In this section, we present a comprehensive evalua- 303

tion of OSoRA through a series of experiments. We 304

first compare OSoRA against state-of-the-art PEFT 305

methods including LoRA, VeRA, DoRA, and other 306

baselines on Common Sense Reasoning and Math- 307

ematics benchmarks. We then examine OSoRA’s 308

robustness across different rank configurations to 309

assess its stability and performance characteristics. 310

Additionally, we perform detailed ablation stud- 311

ies to analyze the contribution of each component 312

in our method, with particular focus on how differ- 313

ent initialization strategies affect the overall perfor- 314

mance. 315

4

Model Method BoolQ PIQA SIQA HellaSwag WinoGrande ARC_e ARC_c OBQA Avg.

LLaMA2-13B

LoRA 65.84 73.78 53.68 48.63 51.78 79.01 59.32 60.00 61.51
DoRA 61.07 73.94 54.25 49.98 51.46 79.19 61.02 60.40 61.41
PiSSA 66.09 70.18 45.39 51.94 52.33 82.19 59.32 62.40 61.23
VeRA 67.16 67.63 48.41 48.78 51.85 79.19 55.25 57.80 59.38
OSoRA 74.10 65.07 54.76 55.13 50.83 73.72 50.51 56.00 60.02

Qwen1.5-7B

LoRA 83.43 72.47 44.68 71.78 61.96 87.83 77.29 75.20 71.83
DoRA 83.24 70.95 44.68 71.82 61.88 88.01 77.29 76.00 71.73
PiSSA 84.04 74.32 44.73 71.53 61.64 87.65 78.31 74.20 72.05
VeRA 83.79 78.24 38.74 69.00 62.27 88.01 74.92 76.00 71.50
OSoRA 84.31 78.84 38.84 69.73 61.56 88.54 78.64 76.20 72.08

Qwen2.5-32B

LoRA 89.85 90.75 46.16 92.11 79.16 97.53 93.90 89.40 84.86
DoRA 90.03 90.59 46.26 92.06 79.08 97.35 93.56 89.80 84.84
PiSSA 89.76 89.61 46.62 91.91 77.66 97.53 91.86 88.60 84.19
VeRA 87.37 84.87 43.04 92.67 80.66 95.41 90.85 89.20 83.00
OSoRA 88.10 85.85 43.04 92.76 78.69 96.83 89.15 91.40 83.23

Table 1: Accuracy comparison of LLaMA2-13B, Qwen1.5-7B, and Qwen2.5-32B with different PEFT methods on
eight commonsense reasoning tasks. The best results are highlighted in bold.

4.1 Common Sense Reasoning316

We evaluate OSoRA on a comprehensive suite of317

benchmarks: BoolQ (Clark et al., 2019), PIQA318

(Bisk et al., 2019), SIQA (Sap et al., 2019),319

HellaSwag (Zellers et al., 2019), Winogrande320

(Sakaguchi et al., 2021), ARC_e and ARC_c321

(Clark et al., 2018), and OpenBookQA (Mihaylov322

et al., 2018). We utilize three language mod-323

els: LLaMA2-13B Chat (Touvron et al., 2023),324

Qwen1.5-7B Chat (Team, 2024), and Qwen2.5-325

32B Instruct (Qwen et al., 2025), and configure326

rank settings of 512, 256, and 1024 for these mod-327

els, respectively. The CommonSenseQA (Talmor328

et al., 2019) dataset is used for training all mod-329

els, and OpenCompass (Contributors, 2023) is em-330

ployed as the evaluation framework. Following331

the approach of Hu et al. (2022), OSoRA is ap-332

plied to the query and value projection matrices in333

each self-attention module. The optimal learning334

rates, training epochs, and other hyperparameters335

were determined through systematic tuning, with336

detailed configurations available in Table 7.337

As demonstrated in Table 1, OSoRA achieves338

competitive performance across all evaluated mod-339

els. For Qwen1.5-7B, OSoRA achieves the highest340

average score (72.08%) among all methods, outper-341

forming LoRA (71.83%), DoRA (71.73%), PiSSA342

(72.05%), and VeRA (71.50%). OSoRA excels343

particularly on BoolQ (84.31%), PIQA (78.84%),344

ARC_e (88.54%), ARC_c (78.64%), and OBQA345

(76.20%), achieving the best scores among all meth- 346

ods. For LLaMA2-13B, OSoRA shows strong per- 347

formance on BoolQ (74.10%), SIQA (54.76%), and 348

HellaSwag (55.13%), while for Qwen2.5-32B, it 349

performs best on HellaSwag (92.76%) and OBQA 350

(91.40%). These results are notable given OSoRA’s 351

significantly reduced parameter count compared to 352

other methods. 353

4.2 Mathematics 354

For the mathematical task, we follow the experi- 355

mental setup from Meng et al. (2024) and fine-tune 356

the Mistral-7B Instruct v0.3 (Jiang et al., 2023) and 357

LLaMA3-8B Instruct (Grattafiori et al., 2024) mod- 358

els. The training set is the MetaMathQA dataset 359

(Yu et al., 2024) and the evaluation framework is 360

also the OpenCompass (Contributors, 2023). The 361

hyperparameters are detailed in Table 8. 362

As shown in Table 2, OSoRA demonstrates 363

superior performance on the mathematical task 364

across both models. For Mistral-7B v0.3, OS- 365

oRA achieves the highest scores on both MATH 366

(Hendrycks et al., 2021) (12.10%) and GSM8K 367

(Cobbe et al., 2021) (54.81%), outperforming the 368

next best method PiSSA by 0.14% and 1.82% re- 369

spectively. Similarly, for LLaMA3-8B, OSoRA 370

attains the best results with 27.36% on MATH and 371

78.85% on GSM8K, surpassing LoRA by 0.20% 372

and 5.39% respectively. The average performance 373

gain of OSoRA over other methods is particularly 374

notable (33.46% for Mistral-7B and 53.11% for 375

5

Model Method MATH GSM8K Avg.

Mistral-7B v0.3

LoRA 11.68 51.40 31.54
DoRA 11.78 51.55 31.67
PiSSA 11.96 52.99 32.48
VeRA 10.70 49.20 29.95
OSoRA 12.10 54.81 33.46

LLaMA3-8B

LoRA 27.16 73.46 50.31
DoRA 26.60 73.39 50.00
PiSSA 26.38 74.45 50.42
VeRA 24.24 75.59 49.92
OSoRA 27.36 78.85 53.11

Table 2: Accuracy comparison of Mistral-7B v0.3 and
LLaMA3-8B with different PEFT methods on MATH
and GSM8K benchmarks. The table shows percentage
scores for each method, with OSoRA achieving the
highest performance on both benchmarks across both
models. Results are based on 4-shot evaluation, with
the best scores in each category highlighted in bold.

LLaMA3-8B), while requiring significantly fewer376

trainable parameters compared to alternative ap-377

proaches.378

4.3 Robustness of Different rank settings379

This section explores the impact of various rank380

configurations on OSoRA, VeRA and LoRA by381

adjusting r within the set {64, 128, 256, 512} for382

OSoRA and VeRA, and {2, 4, 8, 16, 32, 64} for383

LoRA, respectively. The performance of the fine-384

tuned models was assessed on GPQA (Rein et al.,385

2024) benchmark and the accuracy of the Qwen2-386

7B model on the GPQA Diamond task is reported.387

The learning rate is set to 2e−5 for LoRA, 0.005 for388

VeRA and OSoRA. Additionally, the batch size is389

set to 1 for all methods, training for 1 epoch with a390

warmup rate of 0.03, cosine learning rate schedule.391

As shown in Table 3 and Figure 1, we observe392

that OSoRA demonstrates more stable performance393

across different rank settings compared to LoRA394

and VeRA. While LoRA achieves its peak perfor-395

mance at r = 32 (36.87%), its accuracy fluctuates396

significantly across different ranks. VeRA shows397

similar inconsistency, with its best performance398

at r = 256 (33.84%). In contrast, OSoRA main-399

tains relatively consistent performance across lower400

ranks and achieves its highest accuracy at r = 512401

(35.86%). Figure 1 further illustrates that as rank402

increases, LoRA’s parameter count grows expo-403

nentially, whereas both VeRA and OSoRA main-404

tain a more efficient linear growth in parameter405

r LoRA VeRA OSoRA

2 29.80 - -
4 28.28 - -
8 30.30 - -
16 28.79 - -
32 36.87 - -
64 32.83 31.31 31.82
128 - 27.78 30.81
256 - 33.84 31.31
512 - 29.80 35.86

Table 3: Accuracy comparison of Qwen2-7B model
with different PEFT methods (LoRA, VeRA, and OS-
oRA) across various rank settings on the GPQA Dia-
mond task. The results show how different rank values
affect model performance.

count. This demonstrates that OSoRA offers a bet- 406

ter balance between performance and parameter 407

efficiency, particularly at higher rank settings. 408

4.4 Ablation Study 409

Impact of Training Individual Components (Sr 410

or O) The importance of jointly training both 411

components Sr and O in Equation (4) is first ex- 412

amined. In this analysis, two simplified variants 413

are considered: one where only Sr is trained while 414

O remains fixed as an all-ones vector, and another 415

where only O is trained while Sr remains fixed 416

at the initial singular values derived from the de- 417

composition of W0. The experimental setup from 418

Section 4.2 is maintained. 419

The results of our ablation study on mathemati- 420

cal tasks (MATH and GSM8K) using the Mistral- 421

7B v0.3 model are presented in Figure 3. Three 422

variants are compared: standard OSoRA (where 423

both Sr and O are trained), OSoRA∗ (where Sr 424

is fixed and only O is trained), and OSoRA∗∗ 425

(where O is fixed and only Sr is trained). It is 426

clearly demonstrated by the results that superior 427

performance is yielded by jointly training both 428

components compared to when either component 429

is trained individually. On the MATH bench- 430

mark, 12.1% accuracy is achieved by standard OS- 431

oRA, by which OSoRA∗ (10.08%) and OSoRA∗∗ 432

(9.02%) are significantly outperformed. Similarly, 433

on GSM8K, 54.81% accuracy is reached by stan- 434

dard OSoRA, compared to 49.05% for OSoRA∗ 435

and 44.73% for OSoRA∗∗. 436

Notably, a more pronounced performance drop 437

is observed when O is fixed (OSoRA∗∗), by which 438

6

10.7 12.1
10.08 9.02

49.2

54.81

49.05
44.73

5

10

15

20

25

30

35

40

45

50

55

VeRA OSoRA OSoRA* OSoRA**

A
cc
.

Method

MATH

GSM8K

Figure 3: Ablation study on the impact of training dif-
ferent components in OSoRA. The figure compares ac-
curacy on mathematical tasks (MATH and GSM8K)
across three variants: standard OSoRA with both Sr

and O trained, OSoRA∗ with only O trained (fixed Sr),
and OSoRA∗∗ with only Sr trained (fixed O). The re-
sults highlight that joint training of both components
achieves the best performance, while fixing the output
dimension vector O leads to the largest degradation in
model accuracy.

it is suggested that a particularly crucial role in439

the adaptation process is played by the output di-440

mension scaling vector. This finding is aligned441

with the theoretical understanding that fine-grained442

control over how the model’s output dimensions443

are adjusted during adaptation is provided by O.444

Meanwhile, the importance of different principal445

components is modulated by the singular value446

vector Sr, by which optimal performance is also447

essentially enabled.448

Our design choice to jointly train both compo-449

nents is validated by these results, as complemen-450

tary aspects of the adaptation process are captured451

by them that cannot be fully realized when either452

component is trained in isolation.453

Impact of Gaussian Distribution Initialization454

for Vector O In this experiment, the impact of455

initializing the learnable vector O with Gaussian456

distribution (denoted as OSoRAG) instead of ones457

in Equation (4) is investigated.458

The results of this comparison on the mathe-459

matical tasks using LLaMA3-8B are presented in460

Table 4. It is revealed by the findings that notably461

worse performance is led to by initializing O with a462

Gaussian distribution (OSoRAG) compared to the463

standard ones initialization used in OSoRA. Specifi-464

cally, only 24.12% accuracy on MATH and 73.62%465

on GSM8K are achieved by OSoRAG , compared466

to OSoRA’s 27.36% and 78.85%, respectively. A467

significant performance drop of 3.24% on MATH468

and 5.23% on GSM8K is represented by this.469

Model MATH GSM8K Avg.

VeRA 24.24 75.59 49.92
OSoRA 27.36 78.85 53.11

OSoRAG 24.12 73.62 48.87

Table 4: Accuracy comparison of OSoRA and OSoRAG
on the MATH and GSM8K tasks. The table shows that
OSoRA achieves better performance than OSoRAG on
both tasks, with a 3.24% higher accuracy on MATH
(27.36% vs. 24.12%) and 5.23% higher on GSM8K
(78.85% vs. 73.62%), resulting in a 4.24% higher aver-
age score (53.11% vs. 48.87%).

Interestingly, comparable performance to VeRA 470

is shown by OSoRAG (24.12% vs. 24.24% on 471

MATH and 73.62% vs. 75.59% on GSM8K), by 472

which it is suggested that a crucial role in OSoRA’s 473

effectiveness is played by the initialization strategy. 474

A more stable starting point for adaptation is pro- 475

vided by the all-ones initialization, by which the 476

pretrained weights’ singular vectors can be lever- 477

aged more effectively from the beginning of train- 478

ing. 479

Exploring Input-Dimension Vector Adaptation: 480

OSoRAk In this experiment, OSoRAk is intro- 481

duced as a variant of OSoRA where the learnable 482

vector O ∈ Rd (output dimension) in Equation (4) 483

is replaced with O ∈ Rk (input dimension). The 484

formulation can be expressed as: 485

y = W ′
0x+ UrΛSrV

⊤
r ΛOx (11) 486

where ΛO ∈ Rk×k is a diagonal matrix constructed 487

from the learnable vector O ∈ Rk. 488

Following the experimental setup described in 489

Section 4.2, OSoRAk is evaluated against the orig- 490

inal OSoRA on both MATH and GSM8K bench- 491

marks. The comparative results across differ- 492

ent models are presented in Table 5. It is indi- 493

cated by the findings that similar performance lev- 494

els are achieved by both variants. On Mistral- 495

7B v0.3, a slight advantage on MATH (12.10% 496

vs. 11.98%) is demonstrated by OSoRA, while 497

marginally better performance on GSM8K (55.88% 498

vs. 54.81%) is shown by OSoRAk. The pattern is 499

found to be consistent with LLaMA3-8B, where 500

a slight edge on MATH (27.36% vs. 27.34%) is 501

maintained by OSoRA and a minimal advantage 502

on GSM8K (78.92% vs. 78.85%) is shown by 503

OSoRAk. Notably, approximately 50% more train- 504

able parameters (294,912 vs. 196,608) are required 505

7

Method Params MATH GSM8K

Mistral-7B v0.3
OSoRA 196,608 12.10 54.81
OSoRAk 294,912 11.98 55.88

LLaMA3-8B
OSoRA 196,608 27.36 78.85
OSoRAk 294,912 27.34 78.92

Table 5: Accuracy comparison of OSoRA and OSoRAk

on the MATH and GSM8K tasks. The table shows
that OSoRAk achieves the comparable performance as
OSoRA but with more parameters.

by OSoRAk, by which it is suggested that superior506

parameter efficiency is provided by the original OS-507

oRA formulation while competitive performance508

is maintained.509

Integrate OSoRA with DoRA The integration510

of OSoRA with DoRA is explored to investigate po-511

tential performance improvements from combining512

these PEFT methods. Weight updates are decom-513

posed into magnitude and direction components514

by DoRA, while singular values with frozen singu-515

lar vectors are optimized by OSoRA. The comple-516

mentary strengths of both methods are leveraged517

through this combination.518

The integration of OSoRA with DoRA can be519

formulated as:520

y = ∥W0∥c
W ′

0x+ ΛOUrΛSrV
⊤
r x

∥W ′
0 + ΛOUrΛSrV

⊤
r ∥c

(12)521

where ∥ · ∥c denotes the vector-wise norm of a ma-522

trix across each column vector, similar to DoRA’s523

approach. OSoRA’s parameter efficiency is main-524

tained while DoRA’s magnitude-direction decom-525

position benefits are gained through this formula-526

tion.527

The combined approach is evaluated on the528

Mathematical task using the experimental setup529

described in Section 4.2. Comparative results530

across different models are presented in Table 6.531

Performance enhancement is indicated by inte-532

grating OSoRA with DoRA. The best results on533

both MATH (12.36%) and GSM8K (55.50%) are534

achieved by the combined approach for Mistral-7B535

v0.3, outperforming both individual methods. For536

LLaMA3-8B, while better MATH performance is537

shown by OSoRA alone, the highest GSM8K score538

(79.08%) is achieved by the combined approach.539

Only 360,448 trainable parameters are required540

Method Params MATH GSM8K

Mistral-7B v0.3
DoRA 6,979,584 11.78 51.55

OSoRA 196,608 12.10 54.81
OSoRA + DoRA 360,448 12.36 55.50

LLaMA3-8B
DoRA 6,979,584 26.60 73.39

OSoRA 196,608 27.36 78.85
OSoRA + DoRA 360,448 27.12 79.08

Table 6: Accuracy comparison of DoRA, OSoRA, and
their combination (OSoRA + DoRA) on the MATH
and GSM8K tasks. The table shows that combining
OSoRA with DoRA can further improve performance
while maintaining parameter efficiency.

by the combined approach, which is significantly 541

fewer than DoRA’s 6,979,584 parameters, by which 542

OSoRA’s parameter efficiency advantage is main- 543

tained while performance is potentially improved. 544

5 Conclusion 545

In this paper, we introduced OSoRA, a novel PEFT 546

method that performs SVD to adapt LLMs with 547

minimal trainable parameters. Our approach com- 548

bines the strengths of existing PEFT methods while 549

addressing their limitations. By initializing with 550

the top singular vectors of pretrained weights and 551

training only singular values and scaling vectors, 552

OSoRA achieves superior performance across vari- 553

ous tasks while maintaining parameter efficiency. 554

Our extensive experiments demonstrate that 555

OSoRA consistently outperforms state-of-the-art 556

PEFT methods including LoRA, DoRA, PiSSA, 557

and VeRA across common sense reasoning and 558

mathematical tasks. The method’s effectiveness is 559

particularly notable on complex tasks like MATH 560

and GSM8K, where it achieves comparable or bet- 561

ter results with orders of magnitude fewer parame- 562

ters than competing approaches. 563

We also explored variations of OSoRA, includ- 564

ing OSoRAk with additional trainable parameters 565

and integration with DoRA, showing the flexibil- 566

ity and extensibility of our approach. These re- 567

sults highlight the potential of informed initializa- 568

tion strategies in PEFT and contribute to making 569

LLM fine-tuning more accessible and efficient, po- 570

tentially enabling fine-tuning of increasingly large 571

models on limited computational resources without 572

sacrificing performance. 573

8

6 Limitations574

Despite OSoRA’s promising results, it faces sev-575

eral key limitations. The method requires comput-576

ing SVD of pretrained weight matrices, introduc-577

ing computational overhead that may challenge its578

use with extremely large models. Additionally, by579

operating within a fixed subspace defined by top580

singular vectors, OSoRA may struggle with tasks581

requiring significant departures from pretrained ca-582

pabilities.583

The performance heavily relies on appropriate584

rank selection - too small fails to capture impor-585

tant variations, while too large wastes computation.586

Unlike VeRA which can use any rank, OSoRA is587

constrained by the weight matrix dimensions. Our588

experiments also focused mainly on decoder-only589

models, leaving its effectiveness on other architec-590

tures like encoder-decoder or multimodal systems591

largely unexplored.592

There are also concerns about potential overfit-593

ting on smaller datasets due to the concentrated594

adaptation in singular values and scaling vectors.595

Finally, integrating OSoRA with other PEFT meth-596

ods introduces complexity in implementation and597

tuning that requires further investigation. These598

limitations point to important directions for future599

research and improvement.600

References601

Asma Ben Abacha, Wen-wai Yim, Yujuan Fu, Zhaoyi602
Sun, Meliha Yetisgen, Fei Xia, and Thomas Lin.603
2025. MEDEC: A Benchmark for Medical Error604
Detection and Correction in Clinical Notes. arXiv605
preprint arXiv:2412.19260.606

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng607
Gao, and Yejin Choi. 2019. PIQA: Reasoning about608
Physical Commonsense in Natural Language. arXiv609
preprint arXiv:1911.11641.610

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-611
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Nee-612
lakantan, Pranav Shyam, Girish Sastry, and Amanda613
Askell. 2020. Language Models are Few-Shot Learn-614
ers. In Advances in Neural Information Processing615
Systems, volume 33, pages 1877–1901. Curran Asso-616
ciates, Inc.617

Christopher Clark, Kenton Lee, Ming-Wei Chang,618
Tom Kwiatkowski, Michael Collins, and Kristina619
Toutanova. 2019. BoolQ: Exploring the Surprising620
Difficulty of Natural Yes/No Questions. In Proceed-621
ings of the 2019 Conference of the North American622
Chapter of the Association for Computational Lin-623
guistics: Human Language Technologies, Volume 1624

(Long and Short Papers), pages 2924–2936, Min- 625
neapolis, Minnesota. Association for Computational 626
Linguistics. 627

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, 628
Ashish Sabharwal, Carissa Schoenick, and Oyvind 629
Tafjord. 2018. Think you have Solved Question An- 630
swering? Try ARC, the AI2 Reasoning Challenge. 631
arXiv preprint arXiv:1803.05457. 632

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 633
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 634
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 635
Nakano, et al. 2021. Training verifiers to solve math 636
word problems. arXiv preprint arXiv:2110.14168. 637

OpenCompass Contributors. 2023. OpenCompass: 638
A Universal Evaluation Platform for Foundation 639
Models. https://github.com/open-compass/ 640
opencompass. 641

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, 642
and Luke Zettlemoyer. 2023. QLoRA: Efficient 643
Finetuning of Quantized LLMs. arXiv preprint 644
arXiv:2305.14314. 645

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, 646
Abhinav Pandey, Abhishek Kadian, Ahmad Al- 647
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, 648
and Alex Vaughan. 2024. The Llama 3 Herd of Mod- 649
els. arXiv preprint arXiv:2407.21783. 650

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 651
Arora, Steven Basart, Eric Tang, Dawn Song, and 652
Jacob Steinhardt. 2021. Measuring Mathematical 653
Problem Solving With the MATH Dataset. In Thirty- 654
Fifth Conference on Neural Information Processing 655
Systems Datasets and Benchmarks Track (Round 2). 656

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 657
Bruna Morrone, Quentin De Laroussilhe, Andrea 658
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. 659
Parameter-efficient transfer learning for nlp. In In- 660
ternational Conference on Machine Learning, pages 661
2790–2799. PMLR. 662

Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen- 663
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu 664
Chen. 2022. LoRA: Low-rank Adaptation of Large 665
Language Models. In International Conference on 666
Learning Representations. 667

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men- 668
sch, Chris Bamford, Devendra Singh Chaplot, Diego 669
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 670
laume Lample, and Lucile Saulnier. 2023. Mistral 671
7B. arXiv preprint arXiv:2310.06825. 672

Dawid J Kopiczko, Tijmen Blankevoort, and Yuki M 673
Asano. 2024. VeRA: Vector-Based Random Matrix 674
Adaptation. In International Conference on Learning 675
Representations. 676

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. 677
The power of scale for parameter-efficient prompt 678
tuning. In Proceedings of the 2021 Conference on 679

9

https://doi.org/10.48550/arXiv.2412.19260
https://doi.org/10.48550/arXiv.2412.19260
https://doi.org/10.48550/arXiv.2412.19260
https://doi.org/10.48550/arXiv.1911.11641
https://doi.org/10.48550/arXiv.1911.11641
https://doi.org/10.48550/arXiv.1911.11641
https://papers.nips.cc/paper_files/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper_files/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper_files/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.48550/arXiv.1803.05457
https://doi.org/10.48550/arXiv.1803.05457
https://doi.org/10.48550/arXiv.1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://doi.org/10.48550/arXiv.2305.14314
https://doi.org/10.48550/arXiv.2305.14314
https://doi.org/10.48550/arXiv.2305.14314
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://openreview.net/pdf?id=7Bywt2mQsCe
https://openreview.net/pdf?id=7Bywt2mQsCe
https://openreview.net/pdf?id=7Bywt2mQsCe
https://openreview.net/pdf?id=nZeVKeeFYf9
https://openreview.net/pdf?id=nZeVKeeFYf9
https://openreview.net/pdf?id=nZeVKeeFYf9
https://doi.org/10.48550/arXiv.2310.06825
https://doi.org/10.48550/arXiv.2310.06825
https://doi.org/10.48550/arXiv.2310.06825
https://openreview.net/pdf?id=NjNfLdxr3A
https://openreview.net/pdf?id=NjNfLdxr3A
https://openreview.net/pdf?id=NjNfLdxr3A
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243

Empirical Methods in Natural Language Processing,680
pages 3045–3059, Online and Punta Cana, Domini-681
can Republic. Association for Computational Lin-682
guistics.683

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo684
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting685
Cheng, and Min-Hung Chen. 2024. DoRA: Weight-686
Decomposed Low-Rank Adaptation. In Forty-First687
International Conference on Machine Learning,688
pages 32100–32121. PMLR.689

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx-690
iao Du, Zhilin Yang, and Jie Tang. 2022. P-tuning:691
Prompt tuning can be comparable to fine-tuning692
across scales and tasks. In Proceedings of the 60th693
Annual Meeting of the Association for Computational694
Linguistics (Volume 2: Short Papers), pages 61–68,695
Dublin, Ireland. Association for Computational Lin-696
guistics.697

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam,698
Zhengxiao Du, Zhilin Yang, and Jie Tang. 2021. P-699
tuning v2: Prompt tuning can be comparable to fine-700
tuning universally across scales and tasks. arXiv701
preprint arXiv:2110.07602.702

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. 2024.703
PiSSA: Principal Singular Values and Singular Vec-704
tors Adaptation of Large Language Models. In Ad-705
vances in Neural Information Processing Systems,706
volume 37, pages 121038–121072. Curran Asso-707
ciates, Inc.708

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish709
Sabharwal. 2018. Can a Suit of Armor Conduct Elec-710
tricity? A New Dataset for Open Book Question An-711
swering. In Proceedings of the 2018 Conference on712
Empirical Methods in Natural Language Processing,713
pages 2381–2391, Brussels, Belgium. Association714
for Computational Linguistics.715

Qwen, An Yang, Baosong Yang, Beichen Zhang,716
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,717
Dayiheng Liu, and Fei Huang. 2025. Qwen2.5 Tech-718
nical Report. arXiv preprint arXiv:2412.15115.719

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-720
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-721
lian Michael, and Samuel R Bowman. 2024. GPQA:722
A Graduate-Level Google-Proof Q&A Benchmark.723
In First Conference on Language Modeling.724

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-725
ula, and Yejin Choi. 2021. WinoGrande: An adver-726
sarial winograd schema challenge at scale. Commu-727
nications of the ACM, 64(9):99–106.728

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan729
Le Bras, and Yejin Choi. 2019. Social IQa: Com-730
monsense reasoning about social interactions. In731
Proceedings of the 2019 Conference on Empirical732
Methods in Natural Language Processing and the733
9th International Joint Conference on Natural Lan-734
guage Processing (EMNLP-IJCNLP), pages 4463–735
4473, Hong Kong, China. Association for Computa-736
tional Linguistics.737

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and 738
Jonathan Berant. 2019. CommonsenseQA: A Ques- 739
tion Answering Challenge Targeting Commonsense 740
Knowledge. In Proceedings of the 2019 Conference 741
of the North American Chapter of the Association for 742
Computational Linguistics: Human Language Tech- 743
nologies, Volume 1 (Long and Short Papers), pages 744
4149–4158, Minneapolis, Minnesota. Association for 745
Computational Linguistics. 746

Qwen Team. 2024. Introducing Qwen1.5. 747

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 748
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 749
Bashlykov, Soumya Batra, Prajjwal Bhargava, and 750
Shruti Bhosale. 2023. Llama 2: Open Founda- 751
tion and Fine-Tuned Chat Models. arXiv preprint 752
arXiv:2307.09288. 753

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, 754
Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo 755
Li, Adrian Weller, and Weiyang Liu. 2024. Meta- 756
math: Bootstrap Your Own Mathematical Questions 757
for Large Language Models. In The Twelfth Interna- 758
tional Conference on Learning Representations. 759

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 760
Farhadi, and Yejin Choi. 2019. HellaSwag: Can 761
a Machine Really Finish Your Sentence? In Proceed- 762
ings of the 57th Annual Meeting of the Association for 763
Computational Linguistics, pages 4791–4800, Flo- 764
rence, Italy. Association for Computational Linguis- 765
tics. 766

Qingru Zhang, Minshuo Chen, Alexander Bukharin, 767
Pengcheng He, Yu Cheng, Weizhu Chen, and 768
Tuo Zhao. 2023. Adaptive Budget Allocation for 769
Parameter- Efficient Fine-Tuning. In International 770
Conference on Learning Representations. 771

A Common Sense Reasoning 772

Hyper-parameters 773

This section details the hyper-parameter configura- 774

tions used in our Common Sense Reasoning exper- 775

iments, including learning rates, batch sizes, and 776

rank settings across different model architectures. 777

B Mathematics Hyper-parameters 778

This section details the hyper-parameter configu- 779

rations used in our mathematical experiments and 780

corresponding ablation studies. 781

10

https://arxiv.org/pdf/2402.09353
https://arxiv.org/pdf/2402.09353
https://arxiv.org/pdf/2402.09353
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://arxiv.org/abs/2110.07602
https://arxiv.org/abs/2110.07602
https://arxiv.org/abs/2110.07602
https://arxiv.org/abs/2110.07602
https://arxiv.org/abs/2110.07602
https://arxiv.org/pdf/2404.02948
https://arxiv.org/pdf/2404.02948
https://arxiv.org/pdf/2404.02948
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.48550/arXiv.2412.15115
https://doi.org/10.48550/arXiv.2412.15115
https://doi.org/10.48550/arXiv.2412.15115
https://arxiv.org/pdf/2311.12022
https://arxiv.org/pdf/2311.12022
https://arxiv.org/pdf/2311.12022
https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381
https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://qwenlm.github.io/blog/qwen1.5/
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://openreview.net/pdf?id=N8N0hgNDRt
https://openreview.net/pdf?id=N8N0hgNDRt
https://openreview.net/pdf?id=N8N0hgNDRt
https://openreview.net/pdf?id=N8N0hgNDRt
https://openreview.net/pdf?id=N8N0hgNDRt
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY

Model Method r η Batch†

LLaMA2-13B

LoRA
16 2e-5

20
DoRA
PiSSA
VeRA

512 3e-3
OSoRA

Qwen1.5-7B

LoRA
16 2e-5 20DoRA

PiSSA
VeRA

256
5e-2 16

OSoRA 3e-3 20

Qwen2.5-32B

LoRA
16 2e-5 20DoRA

PiSSA
VeRA

1024 8e-4 16
OSoRA

Table 7: Hyper-parameters used for Common Sense
Reasoning experiments. All methods were trained for
1 epoch with a warmup rate of 0.03, cosine learning
rate schedule, and maximum sequence length of 512.
†Batch represents the effective batch size (product of
batch size and gradient accumulation steps).

Model Method r η Batch†

Mistral-7B v0.3

LoRA
16 2e-5

128
DoRA
PiSSA
VeRA

512
5e-3

OSoRA 2e-5

LLaMA3-8B

LoRA
16 2e-5

128
DoRA
PiSSA
VeRA

512
5e-3

OSoRA 2e-5

Table 8: Hyper-parameters used for Mathematical ex-
periments. All methods were trained for 1 epoch with a
warmup rate of 0.03, cosine learning rate schedule, and
maximum sequence length of 512. †Batch represents
the effective batch size (product of batch size and gradi-
ent accumulation steps).

11

	Introduction
	Related Work
	Method
	Preliminaries
	Method Formulation
	Memory and Computational Considerations
	Necessity of Dual Vectors O and Sr
	Parameter Efficiency Analysis
	Optimization Dynamics

	Experiments
	Common Sense Reasoning
	Mathematics
	Robustness of Different rank settings
	Ablation Study

	Conclusion
	Limitations
	Common Sense Reasoning Hyper-parameters
	Mathematics Hyper-parameters

