
Q‑MP2-OS: Møller−Plesset Correlation Energy by Quadrature
Giuseppe M. J. Barca,* Simon C. McKenzie, Nathaniel J. Bloomfield, Andrew T. B. Gilbert,
and Peter M. W. Gill*

Cite This: J. Chem. Theory Comput. 2020, 16, 1568−1577 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: We present a quadrature-based algorithm for computing the opposite-
spin component of the MP2 correlation energy which scales quadratically with basis
set size and is well-suited to large-scale parallelization. The key ideas, which are rooted
in the earlier work of Hirata and co-workers, are to abandon all two-electron integrals,
recast the energy as a seven-dimensional integral, approximate that integral by
quadrature, and employ a cutoff strategy to minimize the number of intermediate
quantities. We discuss our implementation in detail and show that it parallelizes
almost perfectly on 840 cores for cyclosporine (a molecule with roughly 200 atoms),
exhibits N( )2 scaling for a sequence of polyglycines, and is principally limited by the
accuracy of its quadrature.

1. INTRODUCTION

Møller−Plesset (MP) perturbation theory1 provides one of the
simplest, and most widely used, corrections to the Hartree−
Fock (HF) approximation. Despite being introduced to
modern quantum chemistry almost 50 years ago,2 it remains
popular today, both in its own right and as a component of
double-hybrid density functional theory (DFT) methods.
Its strengths and weaknesses have been thoroughly

documented3−9 and are now well understood. As a result, it
is known that, when applied to large-gap systems with
medium-size basis sets, the second-order theory (MP2) gives
a useful estimate of the correlation energy at a relatively
modest computational cost.
Unfortunately, that cost formally scales as N( )5 , where N is

the size of the basis set, and in the 1990s, systematic efforts
were made to reduce this steep scaling so that MP2 theory
could be applied to large systems. Many ideas were explored
but the exploitation of the Laplace representation by Almlöf
and Has̈er,10,11 the application of resolution-of-the-identity
(RI) methods by Feyereisen et al.,12 the examination of
pseudospectral techniques by Martıńez and Carter,13 and the
systematic use of multipole approximations by Hetzer, Pulay,
and Werner14 are particularly notable.
Over the past decade, driven by the tantalizing potential of

petascale computers, such ideas have been supplemented with
parallelizable versions of the theory15−22 and these enabled, for
example, the RI-MP2/cc-pVTZ energy of a molecule with 240
atoms to be calculated in less than 5 min on the K
supercomputer.20

Various groups have explored the advantages of approximat-
ing the two-electron integrals in terms of lower-rank quantities.
The seminal work of Feyereisen et al. has already been
mentioned, but much more recently, Ishimura and Ten-no
expressed the two-electron integrals in the molecular orbital
(MO) basis as the product of the potential and of the charge
distribution of virtual-occupied MO pairs and then evaluated
such products by quadrature, as needed.23 In a related vein,
Song and Martıńez expanded each integral in the atomic
orbital (AO) basis as the tensor product of five second-rank
objects and exploited this representation to obtain an
algorithm with N( )3 scaling.24,25

Hirata and co-workers have taken an even more extreme
path toward the use of low-rank quantities, recasting the MP2
energy as the stochastically estimated integral of a high-
dimensional but trivial function.26−28

Finally, we note that, by revisiting the screening problem,
the Ochsenfeld group has developed a highly efficient scheme
for avoiding the evaluation of negligible two-electron AO
integrals, eventually obtaining an implementation whose cost
scales linearly with N.29

Looking to the future, it seems certain that useful MP2
schemes will need to embody many of these ideas: the use of
low-rank ingredients to minimize data flow, the application of
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aggressive cutoffs to achieve low cost scaling, and the adoption
of strategies with high inherent parallelizability. In the present
paper, we discuss a new algorithm for the opposite-spin (OS)
component of the MP2 energy which embraces this
philosophy. The underlying theory is discussed in section 2,
an efficient implementation is discussed in section 3,
parallelization, scaling, and accuracy results are discussed in
section 4, and conclusions are discussed in section 5. Unless
stated otherwise, atomic units are used throughout.

2. THEORY
The total MP2 correlation energy can be separated into
opposite- and same-spin components

= +E E E(2)
OS
(2)

SS
(2)

(1)

and, using Mulliken notation for integrals, the opposite-spin
(OS) component can be written

∑ ∑ ∑ ∑
ϵ ϵ ϵ ϵ

= −
| ̅ ̅ | ̅ ̅

+ ̅ − − ̅

̅ ̅

E
ia j b ia j b( )( )

i

N

j

N

a

N

b

N

a b i j
OS
(2)

o o v v

(2)

where No and Nv are the numbers of occupied and virtual α-
spin orbitals, ϵi and ϵa are the occupied and virtual α-spin
orbital energies, and the overbar is used to indicate the β-spin
counterparts.
The two-electron integrals in the MO basis are related to

those in the AO basis by the transformation

∑ μν λσ| ̅ ̅ = ̅ ̅ |
μνλσ

μ ν λ σia j b C C C C( ) ( )
N

i a j b
(3)

where C and C̅ are the α and β MO coefficient matrices, N is
the number of AO basis functions, and the AO integrals are
given by

∬μν λσ
ϕ ϕ ϕ ϕ

| =
| − |

μ ν λ σr r r r

r r
r r( )

( ) ( ) ( ) ( )
d d

1 1 2 2

1 2
1 2

(4)

Substituting the Laplace−Almlöf representation

∫ϵ ϵ ϵ ϵ
ϵ ϵ ϵ ϵ

+ ̅ − − ̅
= [ − − ̅ + + ̅ ]

∞
t t

1
exp ( ) d

a b i j
a b i j

0

(5)

the opposite-spin energy can be written

∫∑ ∑ μν λσ αβ γδ= − ̅ ̅ | |
μνλσ αβγδ

μα νβ λγ σδ

∞
E X t Y t X t Y t t( ) ( ) ( ) ( ) ( )( ) d

N N

OS
(2)

0

(6)

where the density-matrix-like functions are

∑ ϵ= +μα μ αX t C C t( ) exp( )
i

N

i i i

o

(7)

∑ ϵ= −νβ ν βY t C C t( ) exp( )
a
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j
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(9)
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̅

Y t C C t( ) exp( )
b

N

b b b

v

(10)

Integrating over one of the electrons in each of the two-
electron integrals in eq 6, we obtain the seven-dimensional
integral

∫

∫ ∫

∑ ∑= − ̅ ̅ ×
μνλσ αβγδ

μα νβ λγ σδ

μν λσ αβ γδ

∞
E X t Y t X t Y t t

D U U Dr r r r r r

( ) ( ) ( ) ( ) d

( ) ( ) d ( ) ( ) d

N N
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(2)

0

1 1 1 2 2 2 (11)

where

ϕ ϕ=μν μ νD r r r( ) ( ) ( ) (12)

∫ ϕ ϕ
=

′ ′
| − ′|

′λσ
λ σU r

r r

r r
r( )

( ) ( )
d

(13)

Equation 11 is analogous to the 13-dimensional integral of
Willow et al.26 except that it is cast in terms of AO rather than
MO quantities. Moreover, in the spirit of Friesner’s
pseudospectral method,30 the Coulomb operators have been
replaced with potentials making the resulting integrand
smoother and more amenable to numerical integration.
We now introduce a quadrature for the t integration

∑
ϵ ϵ ϵ ϵ

ω ϵ ϵ ϵ ϵ
+ ̅ − − ̅

≈ [ − − ̅ + + ̅ ]t
1

exp ( )
a b i j k

K

k a b i j k

(14)

and define discretized versions of the X and Y matrices

ω ω= ̅ = ̅μα μα λγ λγX X t X X t( ) ( )k
k k

k
k k

1/4 1/4
(15)

ω ω= ̅ = ̅νβ νβ σδ σδY Y t Y Y t( ) ( )k
k k

k
k k

1/4 1/4
(16)

Likewise, we introduce a quadrature for the spatial integrations
over the density-potential products

∫ ∑≈μν λσ μν λσD U D Ur r r( ) ( ) d
p

G
p p

(17)

where

=μν μνD w D r( )p
p p (18)

=λσ λσU w U r( )p
p p (19)

and wp are the quadrature weights.
Combining these quadratures with eq 11 yields the 11-fold

sum
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which can be reordered to give
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where we have introduced

∑=αν
μ

μα μνS X Dkp
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k p

(24)
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νβ αβV Y Ukq
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Equations 21−23 encode a quadrature-based scheme, which
we term Q-MP2-OS, for calculating the opposite-spin MP2
energy.
In addition to the connection to pseudospectral methods, Q-

MP2-OS shares similarities with the tensor hypercontraction
(THC) approach to computing the opposite-spin MP2 energy.
Both rely on the Laplace technique to deal with the orbital
energy denominator, and both use grids to decompose the
two-electron integral tensor into products of lower-rank
objects. They differ, however, on what intermediates are
formed and what strategies are used to realize an efficient
implementation. THC employs density fitting and partitions
the molecule into blocks to allow for localized inversion of the
fitting-metric matrix. This reduces the formal scaling to N( )3 ,
although subcubic, N( )2.5 , scaling has been demonstrated for
systems up to 10 000 basis functions.25 Optimized, molecule-
dependent grids have also been developed to reduce the
number of grid points and, thus, the cost prefactor.31 Q-MP2-
OS, on the other hand, relies exclusively on cutoff strategies to
reduce the scaling to quadratic, as discussed in section 3.

3. IMPLEMENTATION
In this section, we describe an efficient implementation of our
Q-MP2-OS method. Section 3.1 considers the grids adopted
for the quadratures introduced in eqs 14 and 17. Section 3.2
introduces several screening techniques that significantly
reduce the computational cost. Our algorithm is presented in
section 3.3.
3.1. Quadratures. 3.1.1. t Quadrature. For the t

quadrature in eq 14 we use the results of Takatsuka et al.,32

who fit 1/x to a sum of exponential functions

∑ ω α≈ [− ]
x

x
1

exp
k

K

k k
(27)

The roots, αk, and weights, ωk, are determined by nonlinear
minimax optimizations in the intervals x ∈ [1, R] for several
values of R. A simple scaling of these roots and weights by 1/A
allows the resulting quadratures to be applied to arbitrary
intervals y = Ax ∈ [A, AR].
We adopt the frozen-core and frozen-virtual approximation

and denote the lowest and highest energies of the active

orbitals by ϵmin and ϵmax. In principle, we are concerned with
the range [Emin, Emax], where

ϵ ϵ= − = ΔE 2( ) 2min HOMO LUMO (28)

ϵ ϵ= −E 2( )max max min (29)

In practice, for the systems considered here, we found little
benefit in tuning the domain using these values and, for all
calculations, we used a K = 6 formula scaled to the range [0.05,
20].

3.1.2. r Quadrature. Molecular quadratures arise frequently
in density functional theory (DFT),33−43 and we take
inspiration from this community to develop a quadrature
grid for use in Q-MP2-OS, which we denote as MG (“minimal
grid”).
The molecular grid comprises atom-centered grids, each of

which is a product of radial and angular grids defined by
Euler−Maclaurin34 and Lebedev44,45 (EML) quadrature rules,
respectively. Becke weights33 were used to avoid multiple
counting. Adopting the standard grid (SG) approach,35,41,43 we
systematically pruned each Lebedev grid in order to minimize
the total number of grid points.
A single MG grid was developed and used for H, C, N, and

O atoms. Reference data were EOS
(2) ionization potentials,

electron affinities, and atomization energies of the HnX
hydrides, and our accuracy criterion was 1 kcal mol−1. Under
these constraints, the optimal parent grid was found to be
EML(14,38) with an element-independent Bragg−Slater
radius of 1.23. Starting with the core, the 14 Lebedev grids
were pruned to

{ }6, 6, 6, 6, 18, 18, 18, 38, 38, 38, 0, 0, 0, 0

The resulting MG atomic grid has only 192 points, far fewer
than (for example) the 3816 points of the carbon SG-1 atomic
grid.

3.2. Screening. Formally, the computational costs of eqs
24 and 25 scale as GN( )3 and eq 26 scales as G N( )2 2 . In
order to reduce these quartic costs, we invoke several screening
strategies that avoid the computation of negligible quantities
and reduce the scaling of computing the Q-MP2-OS energy to
only GN( ).

3.2.1. pq-Screening. In a 1959 study on the one-
dimensional Schrödinger equation with a periodic and
symmetric potential, Kohn proved46 that the Wannier
functions for such a system decay exponentially and, therefore,
the related first-order density matrix ρ(r1, r2) also decays
exponentially. This phenomenon, now often known as the
“nearsightedness” of the first-order density matrix, extends not
only to n-dimensional crystals and more general potentials, but
also to molecular insulators. In particular, for large insulating
systems, it has been established47−59 that the first-order density
matrix behaves as

ρ ∼ −Λrr r( , ) exp( )1 2 12 (30)

where r12 = |r1 − r2| and Λ ∝ Δ .56,60,61

If we consider the generalized first-order matrix

∑ ϕ ϕΞ =
μν

μν μ νt X tr r r r( , , ) ( ) ( ) ( )
N

1 2 1 2
(31)
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we note that Ξ(r1,r2,0) = ρ(r1,r2) and observe that Ξ(r1,r2,t)
preserves the exponential decay with respect to r12 even for t ≠
0, i.e.

Ξ ∼ −Λt rr r( , , ) exp( )1 2 12 (32)

Equation 32 has important implications for our algorithm. In
fact, using eq 31, the OS energy in eq 21 can be recast in the
form

∑ ∑ ∑≈ − = − Ξ ϒE E t tr r r r( , , ) ( , , )
pq

G

pq
pq

G

k

K

p q k p q kOS
(2)

(33)

where ϒ tr r( , , )p q k is a bounded function with respect to
rpq = |rp − rq|. Equations 32 and 33 therefore imply

∼ −ΛE rexp( )pq pq (34)

which shows that the magnitude of the contributions Epq to the
EOS
(2) energy arising from a pair of quadrature points (rp, rq)

decays exponentially with rpq.
Based on eq 34, pq pairs that are sufficiently far apart can be

screened and the evaluation of their corresponding Epq
contributions skipped. However, screening pq pairs is
inefficient, and instead, we partition the total molecular grid
into batches P and screen PQ pairs. For simplicity, we choose a
batch to be the EML grid centered on a nucleus.
Figure 1 plots the PQ-pair energy

∑ ∑=
∈ ∈

E EPQ
p P q Q

pq
(35)

against the internuclear distance, rPQ = |rP − rQ|, for the linear
polyglycine Gly18. Exponential decay is clear.
For each PQ pair, we define a critical radius

τ
= +

[ ]
Λ

r r
Eln /PQ

PQ
PQ

crit (36)

where τ is a user-defined accuracy threshold, while the
exponential decay rate, Λ, is an unknown. We determine the
parameter Λ by using an adaptive procedure to compute the
line of maximum steepness that envelopes all log(EPQ) values
as they are evaluated. For given Λ and τ values, there exists a
global critical radius, rcrit, for which all PQ-batch pairs with rPQ
> rcrit can be neglected. We estimate rcrit by taking the
maximum of the rcrit

PQ values.
This pq-screening reduces the number of pq pairs that have

to be considered from G( )2 to G( ). Algorithmic details
concerning the pq-screening strategy are reported in section
3.3.

3.2.2. k-Screening. The time required to compute the Q-
MP2-OS energy is directly proportional to the number K of
quadrature roots tk. For a given PQ batch pair, the contribution
to the energy from tk is

∑ ∑= ̅
∈ ∈

E T TPQ
k

p P q Q
pq
k

qp
k

(37)

If the roots are in increasing order, one finds that |EPQ
k |

decays quickly with respect to k. Figure 2 demonstrates this for

Gly3 and shows that the largest tk can sometimes be skipped
during the calculation on a given PQ batch pair. For safety, we
always compute the first three tk’s. Subsequently, if the energy
contribution EPQ

k falls below the threshold τ, we skip all
remaining tk’s. In practice, a threshold of 10

−6 often results in t6
being skipped.

3.2.3. μν-Screening. Shell-pair screening63 is employed to
reduce the number of shell pairs from N( )2 to N( ). A shell
pair is considered significant if its Gaussian product prefactor

αβ
α β

= −
+

| − |μνG A Bexp 2
Ä

Ç

ÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑ (38)

falls above a given cutoff threshold. We use parentheses to
denote sums over only significant shell pairs, e.g. ∑(μν).

3.2.4. (μν)-Screening on P. Further screening is possible
because only (1) shell pairs are significant at a given batch P

Figure 1. Exponential decay of the energy contributions EPQ arising
from PQ pairs in Gly18 using the 6-31G* basis set. Λ = 0.840.

Figure 2. Violin distributions62 of the energy contributions EPQ
k for

each PQ pair and tk in Gly3 using the 6-31G* basis set.
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of grid points. Thus, for that batch, the Dμν
p matrix contains

only (1) significant elements. These elements correspond to
basis-function pairs significant on batch P that we denote as
(μν)P and which satisfy the following equation:

∑ τ| | ≥μνD
p

P
p

(39)

3.2.5. αν-Screening. The Kohn decay discussed in section
3.2.1 causes the Sαν

kp to decay exponentially with the distance
between α and ν. However, we have found that even more αν
pairs can be neglected, and indeed, if we keep only the αν pairs
obtained using traditional shell-pair screening, there is little
loss of accuracy in the energy.
To demonstrate this, we consider the error

∑ ∑ ∑ ∑Δ = − − ̅ ̅αν
χκ αν

χκ κχ
λδ αν

λδ δλ
≠ ≠

E E S V S V
k

K

pq

G N
kp kq

N
kq kp

OS
(2)

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

i

k

jjjjjjj
y

{

zzzzzzz
i

k

jjjjjj
y

{

zzzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
(40)

introduced by neglecting a single αν pair. These errors are
plotted against the Gaussian product Gαν prefactor in Figure 3

for triglycine (Gly3) using the uncontracted 3-21G basis set.
The scatter plot initially decays rapidly but then decays much
more slowly. As a result, an error of 10−4Eh in the energy can
be achieved using a shell-pair cutoff threshold of 10−8 but, if
one desires greater accuracy, all αν pairs need to be included.
3.3. Algorithm. Pseudocode for computing the Q-MP2-

OS energy is shown in the algorithm in Scheme 1. Our
algorithm begins by computing the Xμα

k , X̅λγ
k , Yνβ

k , and Y̅σδ
k

matrices via eqs 15 and 16, and stores these in main memory.
Each CPU core computes and stores these quantities as the
computational time is negligible compared to the remainder of
the algorithm. Although our implementation does not do so,
these read-only quantities could be computed only once per

node. Significant shell-pair data are also distributed to each
node.
Lines 6−10 of the algorithm in Scheme 1 form a list of all

the PQ batch-pair distances, which are simply the internuclear
distances. The PQ pairs are then sorted (line 11) by decreasing

Figure 3. Relationship between energy errors ΔEαν and Gaussian
prefactors Gαν in Gly3 using an uncontracted 3-21G basis set. Dashed
lines show that an αν shell-pair cutoff of 10−8 yields an energy error of
10−4Eh.

Scheme 1. Algorithm for Calculating the Q-MP2-OS Energy
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value of rPQ. Although trivial, this sort is important because, as
discussed in section 3.2.1, the EPQ values decay exponentially
with rPQ. We also initialize our estimate of rcrit to 0.
Once the PQ list has been formed, each CPU core pops a

PQ pair from the bottom of the list, where the PQ pairs with
the smallest rPQ values reside.
Each core then forms the D(μν)

p , U(μν)
p , D(μν)

q , and U(μν)
q

quantities for its PQ pair, considering only the N( )
significant (μν) pairs. The storage requirement for each matrix
is ×N( ) (1) (the number of grid points within a batch is
constant), and the total FLOP cost of this step for the entire
calculation is GN( ), i.e., quadratic with system size.
In lines 22−27 of the algorithm in Scheme 1, each core

forms the S(αν)
p , V(να)

q , Tpq and the S̅(λδ)
q , V̅(δλ)

q , T̅qp matrices for
its PQ pair. The tk’s are treated sequentially, allowing reuse of
the memory associated with these quantities.
By exploiting the screening described in section 3.2.4, we

form S (Scheme 1, line 22) by summing over only the shells
associated with significant shell pairs on P, i.e., (μν)P.
Furthermore, by invoking the αν-screening, we need to form
S elements only for (αν)P, which we assume to be equivalent
to the (μν)P list. This assumption becomes less valid with the
addition of diffuse functions, and to retain the desired target
accuracy, one must tighten the threshold τ in eq 39.
Immediately after forming S, we form V. However, looking

ahead to line 24 (Scheme 1), we note that the summation is
restricted to (αν)P because S(αν)P

p must be significant. For this
reason, we only need to form the V elements for (αν)P and we
can therefore invoke the μν-screening to sum over only the
(αβ)P elements of U, on line 23. The storage required for the
S(αν)P
p and V(αν)P

q matrices is only (1), and their total FLOP

cost is only G( ).
On line 24 (Scheme 1), we sum over αν pairs to obtain Tpq,

which is done via a BLAS matrix−matrix multiplication call.
Once the Tpq and T̅qp matrices are formed, they are summed to
give EPQ

k , which is the fraction of the EPQ energy arising from
the current tk. In this way, the EPQ

k components are
accumulated in the batch-pair energy EPQ until either all tk’s
have been treated or a specific |EPQ

k | becomes smaller than a
user-defined threshold τ, triggering the k-screening discussed
in section 3.2.2. Each CPU process computes its EPQ
contribution to the energy independently of the others.
Finally, we compute the current PQ pair’s critical radius, rcrit

PQ,
using eq 36 and estimate the global critical radius, rcrit, as the
maximum of its previous value and the new rcrit

PQ. If rPQ is larger
than rcrit, we gather the energies from all outstanding CPU
cores and terminate the calculation; if not, we pop another PQ
pair from the bottom of the PQ list and assign it to a now idle
CPU core.

4. RESULTS

In this section, we present speedup, scaling, and accuracy
results for our Q-MP2-OS implementation in a development
version of Q-Chem.64 All calculations used the following
default cutoff thresholds for the screenings described in section
3.2: (i) 10−6 for both the pq- and k-screening, (ii) 10−10 for
both the μν- and αν-screening, and (iii) 10−12 for the Dμν

p -
screening.
Unless otherwise specified, all results were obtained using

the 6-31G* basis set and the MG quadrature grids described in
section 3.1.2. Furthermore, for all our comparisons with RI-

MP2-OS,65 we employed cc-pVDZ-RI as the density fitting
basis.66

All calculations were run on the Raijin supercomputer at the
Australian National Computational Infrastructure, using Intel
Xeon E5-2690v4 @ 2.60 GHz (Broadwell) processors.

4.1. Speedup. Figure 4 shows the speedup (strong scaling)
of Q-MP2-OS with respect to the number of cores for

cyclosporine (C62H111N11O12). These results highlight one of
the main strengths of our approach: the Q-MP2-OS algorithm
exhibits near-perfect parallelizability.
The calculation performed with 840 cores achieves ∼99% of

the ideal speedup, and the 1% deterioration for this calculation
arises, not because of increased communication between the
CPU processes, but because the number of cores becomes too
large compared to the number of significant PQ pairs in this
molecule. In such circumstances, each core receives only a few
(4−5) PQ pairs and the parallel work load becomes
unbalanced.

4.2. Computational Scaling. Figure 5 shows wall times
and computational scalings of Q-MP2-OS and its major
algorithmic components for a sequence of polyglycines (Glyn, n
= 3, ..., 48). These results show the costs of the D and U
matrices are N( )2 , as discussed in section 3.3, and the costs
of the S, V, and T matrices are N( ).
For the polyglycines considered, the bottleneck of Q-MP2-

OS is the formation of the S and V intermediates and, hence,
the total computational time (labeled with black circles in
Figure 5) grows subquadratically. However, for sufficiently
large molecules, the computation of the U matrices will
become the computational bottleneck and the Q-MP2-OS
method will scale quadratically with system size.
Figure 6 compares the computational costs of RI-MP2-OS

and Q-MP2-OS calculations on Gly42, Gly45, and Gly48 using a
single core. The RI-MP2-OS65 calculations were performed
using the implementation in Q-Chem and show quartic
scaling. The Q-MP2-OS calculations, on the other hand, scale
quadratically, but with a large prefactor. These contrasting
behaviors lead to a crossover near Gly47, and for larger

Figure 4. Speedup of the Q-MP2-OS implementation with respect to
number of CPU cores for the cyclosporine molecule
(C62H111N11O12).
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polyglycines, Q-MP2-OS is faster than RI-MP2-OS even
before exploiting its embarrassing parallelizability.
In addition to its favorable scaling and parallelizability, Q-

MP2-OS also has relatively modest disk and memory
requirements. Most implementations of RI-MP2-OS require
quadratic memory, and cubic disk to store the auxiliary
integrals. These integrals need to be accessed repeatedly,
leading to significant disk I/O and degrading the paralleliz-
ability of the method. In contrast, our implementation of Q-
MP2-OS requires only quadratic memory to store the X and Y
matrices and involves no disk access other than reading in the
MO coefficients at the start of the calculation.
4.3. Accuracy. The cutoff strategies described in section

3.2 allow us to reduce the computational complexity of the
MP2-OS energy from N( )4 to N( )2 . However, these
strategies and the various quadratures introduce errors into the
final energies which must be assessed. Our target is chemical
accuracy, i.e., <1 kcal mol−1.

We calculated the incrememental polymerization energies
for the polyglycine polymerization reaction Glyn−1 + Gly →
Glyn + H2O for a range of n values. Results in Table 1 compare

the deviations of the RI-MP2-OS and Q-MP2-OS polymer-
ization energies from those obtained with traditional MP2-OS.
The energy errors of Q-MP2-OS are an order of magnitude
larger than those of RI-MP2-OS; however, they fall well below
our target of chemical accuracy. The Q-MP2-OS absolute error
with respect to the total MP2-OS energy for the 3-glycine
calculation is 2.1 kcal mol−1, dropping to 0.01 kcal mol−1 when
the larger SG-1 grid is adopted. These absolute errors can be
compared with those of RI-MP2 calculations for the same
system using the cc-pVDZ-RI and cc-pVTZ-RI auxiliary basis
sets, which are 0.8 and 0.1 kcal mol−1, respectively. Absolute
errors in the total energies for both RI-MP2-OS and Q-MP2-
OS grow linearly with system size, although this is not shown
in Table 1.
To assess the accuracy of Q-MP2-OS over a wider range of

reactions, we selected a variety of proton affinities (PA26),
problematic DFT reactions (DC13), intramolecular dispersion
reactions (IDISP), and isomerization energies of large
molecules (ISOL24) from the GMTKN55 database.67 Results
are shown in Table 2. All RI-MP2-OS errors fall well below
chemical accuracy. The Q-MP2-OS errors are larger, and
although they often achieve our target, there are some
exceptions. It is well-known that dispersion and isomerization
energies are particularly difficult to evaluate using numerical

Figure 5. Wall times and computational scaling of our Q-MP2-OS
implementation and of its major algorithmic components, for a
sequence of polyglycines (Glyn). Calculations were parallelized over
56 CPU cores.

Figure 6. RI-MP2-OS65 and Q-MP2-OS wall times and scalings for
calculations on Gly42, Gly45, and Gly48. Calculations were performed
on a single core.

Table 1. Polyglycine Polymerization Energies Using MP2-
OS, RI-MP2-OS, and Q-MP2-OS with an MG Grida

n MP2-OS ΔRI-MP2-OS ΔQ-MP2-OS

2 −17.561 +0.002 −0.069
3 −17.754 +0.000 −0.074
4 −18.082 +0.002 −0.055
5 −18.102 +0.002 −0.031
6 −18.172 +0.002 −0.057
7 −18.173 +0.002 −0.040

aAll energies are quoted in kcal mol−1.

Table 2. Variety of Proton Affinities (PA26), Problematic
DFT Reactions (DC13), Isomerization Energies of Large
Molecules (ISOL24), and Intramolecular Dispersion
Reactions (IDISP) Computed Using MP2-OS, RI-MP2-OS,
and Q-MP2-OSa

ΔQ-MP2-OS

MP2-OS ΔRI-MP2-OS MG SG-1

PA26 #16 +223.615 −0.003 +0.438 +0.029
PA26 #17 +208.198 +0.009 +0.549 +0.042
PA26 #18 +209.830 −0.007 +0.619 −0.055
PA26 #24 +210.297 −0.012 −0.013 −0.035
PA26 #25 +239.910 +0.001 −0.521 −0.246
PA26 #26 +241.587 −0.003 +0.216 +0.051
DC13 #10 +108.696 −0.024 −0.365 +0.040
IDISP #2 −65.848 −0.044 −4.070 +0.132
IDISP #4 +19.331 −0.684 −4.521 −0.076
ISOL24 #1 +67.056 +0.027 +2.505 +0.008
ISOL24 #4 +53.920 −0.154 +10.580 −0.304

aThe Q-MP2-OS calculations used either the MG or SG-1 quadrature
grid. All energies are in kcal mol−1.
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quadrature.35 For the associated IDISP and ISOL24 reactions,
the MG grid fails to satisfy our target accuracy of 1 kcal mol−1.
However, the larger SG-1 quadrature grid allows us to achieve
chemical accuracy across all reactions considered.

5. CONCLUSIONS

We have presented an algorithm for calculating the MP2-OS
energy that is well-suited to large-scale parallel machines. Our
initial implementation scales quadratically with system size and
exhibits almost ideal parallel speedups even with more than
800 cores.
Our algorithm relies on three-dimensional quadrature, and

we have discovered that, for our application, relatively modest
grids are sufficient compared to those used in DFT
calculations. This is consistent with what had been previously
observed in the context of pseudospectral methods.68 We have
developed a small grid for the H, C, N, and O atoms that is
often capable of yielding chemical accuracy, and we note that
further work is required to optimize grids for other accuracy
targets and basis sets.

6. FUTURE WORK

Further algorithmic improvements are possible for the Q-MP2-
OS implementation. Only the elements of the X and Y matrices
associated with significant shell pairs are accessed, and storing
only these would reduce the memory footprint to N( ).
Furthermore, the D and U matrices can be computed by
considering only the (1) shell pairs which are significant at
the current batch of points rather than all N( ) significant
shell pairs. This could potentially reduce the Q-MP2-OS cost
to N( ).
Furthermore, the present article discussed only the OS part

of MP2; this is because the treatment of same-spin (SS) MP2
energies is somewhat more involved, requiring decoupling of
the basis function indices of the D matrix elements.
We are currently developing a Q-MP2 algorithm that

includes both the above-mentioned computational enhance-
ments and the MP2-SS part, and that can be accelerated using
graphics processing units. We are also working on extending
our combination of quadrature and screening techniques to
self-consistent field (SCF) methods, F12 corrections for MP2,
higher-order MP approaches, and coupled-cluster theory.
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(13) Martıńez, T. J.; Carter, E. A. Pseudospectral Møller-Plesset
perturbation theory through third order. J. Chem. Phys. 1994, 100,
3631−3638.
(14) Hetzer, G.; Pulay, P.; Werner, H. J. Multipole approximation of
distant pair energies in local MP2 calculations. Chem. Phys. Lett. 1998,
290, 143−149.
(15) Katouda, M.; Kobayashi, M.; Nakai, H.; Nagase, S. Two-Level
hierarchical parallelization of second-order Møller-Plesset perturba-
tion calculations in divide-and-conquer method. J. Comput. Chem.
2011, 32, 2756−2764.
(16) Del Ben, M.; Hutter, J.; VandeVondele, J. Second-order Møller-
Plesset perturbation theory in the condensed phase: An efficient and
massively parallel Gaussian and plane waves approach. J. Chem. Theory
Comput. 2012, 8, 4177−4188.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.9b01142
J. Chem. Theory Comput. 2020, 16, 1568−1577

1575

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Giuseppe+M.+J.+Barca"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-5109-4279
http://orcid.org/0000-0001-5109-4279
mailto:giuseppe.barca@anu.edu.au
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Peter+M.+W.+Gill"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:p.gill@sydney.edu.au
mailto:p.gill@sydney.edu.au
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Simon+C.+McKenzie"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nathaniel+J.+Bloomfield"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Andrew+T.+B.+Gilbert"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01142?ref=pdf
https://dx.doi.org/10.1103/PhysRev.46.618
https://dx.doi.org/10.1103/PhysRev.46.618
https://dx.doi.org/10.1002/qua.560080831
https://dx.doi.org/10.1002/qua.560080831
https://dx.doi.org/10.1002/qua.560080831
https://dx.doi.org/10.1007/BF00698753
https://dx.doi.org/10.1007/BF00698753
https://dx.doi.org/10.1016/0009-2614(85)80934-9
https://dx.doi.org/10.1016/0009-2614(85)80934-9
https://dx.doi.org/10.1016/0009-2614(86)80686-8
https://dx.doi.org/10.1016/0009-2614(86)80686-8
https://dx.doi.org/10.1063/1.455312
https://dx.doi.org/10.1063/1.455312
https://dx.doi.org/10.1063/1.455312
https://dx.doi.org/10.1063/1.472352
https://dx.doi.org/10.1063/1.472352
https://dx.doi.org/10.1063/1.481608
https://dx.doi.org/10.1063/1.481608
https://dx.doi.org/10.1063/1.481764
https://dx.doi.org/10.1063/1.481764
https://dx.doi.org/10.1016/0009-2614(91)80078-C
https://dx.doi.org/10.1016/0009-2614(91)80078-C
https://dx.doi.org/10.1007/BF01113535
https://dx.doi.org/10.1007/BF01113535
https://dx.doi.org/10.1016/0009-2614(93)87156-W
https://dx.doi.org/10.1016/0009-2614(93)87156-W
https://dx.doi.org/10.1016/0009-2614(93)87156-W
https://dx.doi.org/10.1063/1.466350
https://dx.doi.org/10.1063/1.466350
https://dx.doi.org/10.1016/S0009-2614(98)00491-6
https://dx.doi.org/10.1016/S0009-2614(98)00491-6
https://dx.doi.org/10.1002/jcc.21855
https://dx.doi.org/10.1002/jcc.21855
https://dx.doi.org/10.1002/jcc.21855
https://dx.doi.org/10.1021/ct300531w
https://dx.doi.org/10.1021/ct300531w
https://dx.doi.org/10.1021/ct300531w
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.9b01142?ref=pdf


(17) Kristensen, K.; Kjaergaard, T.; Høyvik, I.-M.; Ettenhuber, P.;
Jørgensen, P.; Jansik, B.; Reine, S.; Jakowski, J. The divide-expand-
consolidate MP2 scheme goes massively parallel. Mol. Phys. 2013,
111, 1196−1201.
(18) Katouda, M.; Nakajima, T. MPI/OpenMP hybrid parallel
algorithm of resolution of identity second-order Møller-Plesset
perturbation calculation for massively parallel multicore super-
computers. J. Chem. Theory Comput. 2013, 9, 5373−5380.
(19) Werner, H.-J.; Knizia, G.; Krause, C.; Schwilk, M.; Dornbach,
M. Scalable electron correlation methods I.: PNO-LMP2 with linear
scaling in the molecular size and near-inverse-linear scaling in the
number of processors. J. Chem. Theory Comput. 2015, 11, 484−507.
(20) Katouda, M.; Naruse, A.; Hirano, Y.; Nakajima, T. Massively
parallel algorithm and implementation of RI-MP2 energy calculation
for peta-scale many-core supercomputers. J. Comput. Chem. 2016, 37,
2623−2633.
(21) Schaf̈er, T.; Ramberger, B.; Kresse, G. Quartic scaling MP2 for
solids: A highly parallelized algorithm in the plane wave basis. J. Chem.
Phys. 2017, 146, 104101.
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