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ABSTRACT

Graph generation is a fundamental task in machine learning, and it is critical for nu-
merous real-world applications, biomedical discovery and social science. Existing
diffusion-based graph generation methods have two limitations: (i) they conduct
diffusion process directly in complex graph space (i.e., node feature, adjacency
matrix, or both), resulting in hard optimization with network evaluations; (ii) they
usually neglect to sufficiently cover the whole distribution of target unlabeled graph
set and thus fail to make semantic controllable generation. In this paper, we first
propose a unified latent-based graph generative framework, Score-Based Graph
Generative Model (SGGM), powered by Self-Guided Latent Diffusion (SLD) to
address both limitations. Specifically, we pretrain a variational graph autoencoder
to map raw graph of high-dimensional discrete space to low-dimensional topology-
injected latent space, and apply score-based generative model there, yielding a
smoother, faster and more expressive graph generation procedure. To sufficiently
cover the whole semantical distribution of unlabeled graph set, we propose SLD
to make controllable self-guidance of the sample generation with gradients from
the designed assigning function towards the hierarchical pseudo label, produced by
iteratively clustering on the latent embeddings. In addition, we conduct periodic
update on the pseudo label in training process to achieve mutual adaptation between
self-guidance and score-based generation. Experiments show that our SGGM pow-
ered by SLD outperforms previous graph generation baselines on both generic and
molecular graph datasets, demonstrating the generality and extensibility along with
further theoretical proofs.

1 INTRODUCTION

Graph generative models (Zhu et al., 2022; Bonifati et al., 2020; Thompson et al., 2021; Vignac &
Frossard, 2021; Tang et al., 2021; O’Bray et al., 2022) are important for many real-world graph-
structured applications (Deng et al., 2020; Dwivedi et al., 2022) including molecular graph generation
in drug discovery (Zhang et al., 2020; Guo et al., 2022; Luo & Ji, 2021; Maziarz et al., 2021; Fu
et al., 2021; Gao et al., 2021; Ahn et al., 2021; Xu et al., 2021a; Hasanzadeh et al., 2022; Adams
et al., 2022; Godwin et al., 2022; Adams et al., 2022; Liu et al., 2021c), modeling physical and social
interactions (Du et al., 2021; Brandstetter et al., 2021), and completing knowledge graphs. Graph
generation is a challenging problem due to the complex discrete structures of graph data (Hamilton
et al., 2017; Wu et al., 2020; Zhou et al., 2020; Yang et al., 2020). Graph generative models were
originally studied based on the assumed structural prior (Müller et al., 1995). Then researchers
found that graph generative models can be directly learned from the observation of graph set, which
motivated various generative approaches (Guo & Zhao, 2020; Shirzad et al., 2022; Yang et al., 2022),
such as VGAE (Kipf & Welling, 2016; Simonovsky & Komodakis, 2018), GraphRNN (You et al.,
2018), GraphGAN (Wang et al., 2019; Yang et al., 2019), GraphEBM (Liu et al., 2021b), Graph
Normalizing Flows (Liu et al., 2019).

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020b) is a class of
generative models that have demonstrated impressive results on extensive tasks (e.g., computer
vision, natural language processing, and life science) with dense theoretical founding. They treat
generation tasks as a noising-denoising or destroying-restoring procedure with corresponding forward
and reverse processes. Recent graph generation approaches begin to combine diffusion models to
generate realistic graphs given target graph set. Some of them directly utilize the perturbations on
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discrete graph space for general purpose (Niu et al., 2020a; Song et al., 2022; Gnaneshwar et al.,
2022) while many others design specific diffusion processes aiming for desired properties, mostly
proposed in life science (Anand & Achim, 2022; Trippe et al., 2022; Jumper et al., 2021; Luo et al.,
2021a). Some choose to incorporate the geometrical properties of molecular graph (Hoogeboom
et al., 2022; Xu et al., 2021b) into the diffusion process. Another line of works replace the diffusion
object with torsion angles (Jing et al., 2022) or atomic coordinates (Shi et al., 2021).

Despite these diffusion-based graph generative models have achieved great performance in certain
area, we argue that there are still two limitations in existing works: (i) they directly perturb nodes (Xu
et al., 2021b; Gnaneshwar et al., 2022), adjacency matrix (Niu et al., 2020a), or both (Jo et al., 2022)
in discrete graph space of diffusion process, and thereby can not sufficiently capture the semantical
information in target graph set, leading to hard optimization with thousands of network evaluations;
and (ii) their diffusion processes neglect to cover the whole distribution of graph set and thus are
uncontrollable with limited expressiveness. To address these limitations, we first propose a unified
latent-based score-based graph generative framework, namely Score-Based Graph Generative Model
(SGGM), to overcome limitation (i). Further, we devise a new controllable diffusion mechanism
Self-Guided Latent Diffusion (SLD) to overcome limitation (ii).

Instead of directly operating on nodes or edges in complex discrete graph space, Score-Based
Graph Generative Model (SGGM) is the first to move the graph diffusion process from high-
dimensional discrete graph space to low-dimensional topology-injected latent space by pretraining a
VGAE with Normal prior, and then applies score-based models in this latent space. This procedure
enables a smoother and faster diffusion process since SGGM only needs to optimize the score-based
models in a smaller and more expressive latent space, and learns a residual distribution of latent
variables with respect to the Normal prior. To guarantee an informative mapping between the latent
and graph space, SGGM carefully designs its decoder with global and local matching constraints.
Controllable diffusion methods (Dhariwal & Nichol, 2021; Nichol et al., 2022; Ho & Salimans,
2021) usually inject informative semantical guidance (e.g., class label) to guide the diffusion process.
However, they can not be applied when labeled data is unavailable. Although customized molecule-
to-conformation diffusion methods (Xu et al., 2021b; Jing et al., 2022; Hoogeboom et al., 2022)
can generate conformations with desired properties, they only condition on instance-level molecular
graph structure and thereby fail to cover the whole semantical distribution of (graph) data set. And
their extensibility is also limited due to the specific design. The proposed Self-Guided Latent
Diffusion (SLD) can tackle these problems. SLD first induces the hierarchical pseudo label for self-
guidance through clustering the latent embeddings. Then it guides the latent generation towards the
pseudo label with gradients from the designed assigning function, and iteratively injects semantical
guidance in the reverse diffusion process. Notably, SLD is extensible to model many target (graph)
set, including synthetic graphs, citation and social networks. To achieve mutual adaptation between
self-guidance and score-based generation, we propose to conduct periodic update on the pseudo-label
set in training process. Based on topology-injected latent, SGGM is unified with SLD, and we further
theoretically and empirically prove the effectiveness of the proposed algorithm.

Here, we summarize our main technical contributions as follows:

• We first propose a unified latent-based graph generative framework, Score-Based Graph Gen-
erative Model (SGGM), to move the diffusion process from high-dimensional discrete graph
space to low-dimensional latent space, enabling smooth, fast and expressive generation.

• We first propose a new self-guided mechanism, called Self-Guided Latent Diffusion (SLD),
to enable a controllable and hierarchical graph generation procedure. It can effectively covers
the whole semantical distribution of the unlabeled graph set with the designed pseudo-label
assigning function.

• We theoretically prove the effectiveness of our SGGM with SLD, which also significantly
outperforms previous diffusion-based and non-diffusional baselines on both generic and
molecular graph generation datasets.

2 RELATED WORK

Diffusion Models Diffusion models are new and promising deep generative models (De Bortoli
et al., 2021; Dockhorn et al., 2021; Karras et al., 2022; Watson et al., 2022; Nichol & Dhariwal,
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2021; Huang et al., 2021; Chen et al., 2021; Austin et al., 2021; Gu et al., 2022; Dhariwal & Nichol,
2021). The essential idea of diffusion probabilistic model (Sohl-Dickstein et al., 2015) (usually
referred to as diffusion model) is to use a prefixed forward and a learnable reverse diffusion process
to destroy and recover the data structure, respectively. In Denoising Diffusion Probabilistic Model
(DDPM) (Ho et al., 2020), the forward and reverse processes are Markov chains with transition
kernels in the same functional form, and it trains the reverse process by maximizing a lower bound
of the log-likelihood. Some works focus on optimize the forward and reverse chains to improve
model performance (Ho et al., 2020; Kingma et al., 2021; Bao et al., 2021; Song et al., 2020a).
Further, Score-Based Generative Models (SGMs) study the diffusion models in continuous-time
setting using stochastic differential equations (SDE) (Song et al., 2020b; 2021; Liu et al., 2021a;
De Bortoli et al., 2021; Vahdat et al., 2021). SDE is utilized to transform data distribution to a known
prior distribution by smoothly injecting noise, and a corresponding reverse-time SDE to reverse the
transition by slowly removing the noise. In short, diffusion models experience a development process
of DPM→DDPM→SGM. With respect to the utilization of diffusion models in graph generation,
there are more practical problems to be addressed compared with that in computer vision tasks. A
critical problem is that existing diffusion models directly the input of discrete graph space in diffusion
process, and thus can not sufficiently capture the semantical information in target graph set, leading
to hard optimization with thousands of network evaluations. Hence in our proposed framework
SGGM, we leverage the variational graph autoencoder (Kipf & Welling, 2016; Simonovsky &
Komodakis, 2018) to move the graph diffusion process from the high-dimensional discrete graph to
the topology-injected latent space, and conduct a smoother and faster diffusion process there.

Graph Generative Models Graph generative models were originally proposed to generate diverse
graphs based on the structural prior of target graph set (Müller et al., 1995). Modern graph generative
models adopt some general generative models (Goodfellow et al., 2014; Creswell et al., 2018; Gui
et al., 2021; Li et al., 2018; Vahdat & Kautz, 2020) to directly learn from the observed graph set.
GraphRNN (You et al., 2018), GraphGAN (Wang et al., 2019), GraphEBM (Liu et al., 2021b) utilize
Autoregressive model, Generative Adversarial Nets and Enery-Based Model respectively in graph
generation tasks. However, these methods can not learn meaningful representation from observed
graphs to manipulate the properties of generated graphs. In contrast, Graph Normalizing Flows (GNF)
(Liu et al., 2019) and Variational Graph Autoencoder (VGAE) (Kipf & Welling, 2016) both adopt
an encoder-decoder framework. GNF applies reversible message passing mechanism to encode and
decode graphs, but the expressiveness of GNF is limited by the assumption of reversibility. VGAE
utilizes a graph convolutional network as encoder to learn representations that encode node-level
information as well as graph-level topological information, and a simple inner product as decoder.
These approaches fail to make controllable generation especially with unlabeled graph set. In this
paper, we first unify an enhanced VGAE architecture with diffusion models to accomplish the first
latent-based graph generation. Further, we propose SLD, a self-guided latent diffusion mechanism
to enable our SGGM to have a controllable graph generation procedure, and sufficiently cover the
whole semantical distribution of target (unlabeled) graph set.

3 METHODOLOGY

Notations and Problem Definition. A graph with N nodes is defined as G = (X,A, E), where
A ∈ {0, 1}N×N is the adjacent matrix (i.e. Ai,j = 1 if there is a connection between node i and
j). X ∈ RN×dn denotes the nodes features, X = [x1,x2, ...,xN ] and xi is the feature of node i.
E ∈ RN×N×de denotes features of edges (i.e. Ei,j,: is the feature of edge between node i and j).
For variational graph autoencoder, we use θenc and θdec to denote the parameters of encoder fenc
and decoder fdec respectively. The latent variables produced by the encoder is Z ∈ RN×F with
Z = [z1, z2, · · · , zN ]. For diffusion models, we use Z0 to denote the input latent variable, and Zt

for t ∈ [0, T ] to denote the variable in the diffusion models at time t. The aim of graph generation
task is to learn a graph generative model that captures the distribution of target graph set in training
process, and thus the learned model can generate realistic graph G in evaluation.

Now we presents SGGM, a first unified latent-based graph generative framework to address graph
generation tasks, which is illustrated in subsection 3.1. In subsection 3.2, we introduce a novel
self-guided diffusion mechanism SLD to help SGGM modeling the whole distribution of target graph
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set. And we provide the optimization detail in training process and summarize the entire algorithm.
The overall framework SGGM with SLD is summarized in Fig.1.
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Figure 1: Schematic illustration of the proposed SGGM with SLD.

3.1 SCORE-BASED GRAPH GENERATIVE MODEL

Motivations. Based on the generative diffusion models, diffusion-based graph generative models
follow a nosing-denoising or destroying-restoring procedure in a graph space. Existing approaches
choose to add noises on the input nodes, perturb input adjacency matrix or corrupt both of them,
and then learn to recover the original inputs by modeling complex dependency between nodes and
edges. Such forward-backward training process is hard to optimize since it is conducted on a high-
dimensional complex discrete space, and thus requires costly sampling with thousands of network
evaluations. Besides, most of diffusion-based graph generative models propose a specific architecture
for certain domain (e.g, molecular conformation generation), which limits the extensibility. Therefore,
we need to design a unified diffusion-based framework that is not only easy to optimize, but also
extensible to more graph generation tasks.

From Graph Space to Topology-Injected Latent Space. We here introduce our unified diffusion-
based graph generative framework in detail. The overall pipeline experiences a summarized procedure
of graph-to-latent, latent-to-latent, and latent-to-graph. This framework first combines VGAE with
score-based generative models to solve various graph generation tasks from a unified perspective.
To relax the diffusion-based graph generation process, SGGM pretrains a VGAE to map raw graph
G = (X,A, E) of high-dimensional discrete space to low-dimensional topology-injected latent H.
The encoding process can be summarized as follows:

H = fenc(X, E ; θenc), (1)

where fenc can be variants of graph neural networks, e.g., GCN, GAT, and GIN. θenc denotes all
the parameters in the encoding process. For each node latent hi in H , it is obtained by layer-wise
message passing. For l ∈ 0, 1, ...L, we perform the following transformation at layer l (h0 = x0):

ml
i =

∑
j∈N (i)

Ml(h
l−1
i ,hl−1

j , Ei,j ; θlenc), hl
i = Ul(h

l−1
i ,ml

i), ∀i, (2)

where N (i) denotes the nodes connected to node i, Ml and Ul are message passing function and
update function, respectively. After L layers, we use the final representations to produce latent
variable Z0 with reparameterization trick (Tomczak & Welling, 2018):

µ(H) = W1H, log σ(H) = W2H, (3)

Z0 = N (Z0|µ(H), σ2(H)), (4)
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where W1,W2 ∈ RN×N . In this way, we make this mapping process differentiable and enables an
end-to-end training architecture.

Diffusion in Topology-Injected Latent Space. After acquiring topology-injected latent space, a
score-based diffusion process is conducted to model the residual distribution of the latent variable
with respect to the Normal prior. By optimizing in a smaller space, the generative diffusion process
can be smoother and faster. Conversely, diffusion models can also help VGAE to parameterize the
prior over the latent variables, boosting the performance and expressiveness of graph generation.
Formally, considering the mismatch between latent distribution pθ(Z0) and the Normal prior, the
forward diffusion process is formulated as the following:

dZ = f(t)Zdt+ g(t)dw, Z0 ∼ pθ(Z0) (5)

with prefixed drift and diffusion coefficient f(t) and g(t), resulting in a tractable prior ZT ∼ N (0, I).
Therefore, it effectively reduces the mismatch between the marginal distribution of Z0 and Normal
prior. And the backward diffusion process progressively transforms ZT to Z0 using the reverse SDE:

dẐ = (f(t)Ẑ − g(t)2∇Ẑ log qt(Ẑ))dt+ g(t)dw̄. (6)

Compared with previous methods that conduct diffusion in raw discrete graph space, SGGM can
lead to more expressive and meaningful graph generation conditioned on topological information.
The diffusion process and the encoder in SGGM are trained together by aligning the approximate
posterior qθenc

(Z0|G) to the diffusion prior pθ(Z0) with Kl divergence:

Ldiff = DKL(qθenc(Z0|G)||pθ(Z0)) (7)
= Eqθenc (Z0|G) log qθenc(Z0|G)− Eqθenc (Z0|G) log pθ(Z0) (8)

And the cross entropy term in Eq.(8) can be further simplified as:

Et∼U(0,T )

[
g(t)2

2
Eq(Z0,Zt|G)[||∇ log q(Zt|Z0)− sθ(Zt, t)||22]

]
+ C (9)

with q(Z0,Zt|G) = qθenc(Z0|G)q(Zt|Z0) and q(Zt|Z0) is gaussian distributed according to Equa-
tion (5). The motivation of this objective is the intractability of the classical score-matching objectives
for diffusion in latent space, which is theoretically proved in Appendix.A.2.

From Topology-Injected Latent Space to Graph Space. To recover the original graph, we apply
both global and local matching constraints on our graph decoder, which is different from original
VGAE. It is critical to carefully design the graph decoder since its influence will pass back to the
score-based diffusion process. To this end, we not only force the latent embedding to decode the
direct links (adjacency matrix) by minimizing global reconstruction loss, but also recover its node
feature X and degree of nodes Xd for local structural reconstruction. Given the latent variable
Z0 = [z0, z1, · · · , zN ] as the input of the decoder fdec where θdec denotes all the parameters in the
decoding process, and we can formulate the decoding process as follows:

Â, X̂, X̂d = fdec(Z0,X,A; θdec), (10)

Â = σ(ZT
0 Z0), X̂ = ÂReLU(ÂZ0W3)W4, X̂d = ReLU(X̂W5), (11)

where W3, W4, and W5 are all linear transformation matrices. X̂ , Â, and X̂d are the reconstructed
node features, reconstructed topological connections, and predicted degree of nodes, respectively.
Based on outputs, we make the following regularization:

Lrec = Eqθenc (Z|G)

− log

N∏
i=1

N∏
j=1

pθdec(Âi,j |zi, zj) + α||X − X̂||2 + β||Xd − X̂d||2
 , (12)

where α and β are weights for balancing the terms. Particularly, incorporating degree prediction
helps recovering the local structures. And such global and local matching constraints tailored for
diffusion process will also make graph generation more expressive. The above is all the processes of
our unified latent-based graph diffusion framework SGGM. Next, we will introduce a new self-guided
mechanism, which is unified with SGGM based on the topology-injected latent.
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3.2 SELF-GUIDED LATENT DIFFUSION

Motivations. Controllable diffusion-based generation (Ramesh et al., 2022; Dhariwal & Nichol,
2021; Ho & Salimans, 2021; Nichol et al., 2022) is to introduce informative guidance in reverse
process, which has shown promising results in vision tasks. Nevertheless, they usually condition
on the class label to make controllable generation, and thereby fail to effectively model the whole
semantical distribution of the unlabeled graph set. Despite some diffusion-based conditional graph
generation methods have been proposed (Xu et al., 2021b; Jing et al., 2022; Hoogeboom et al.,
2022), they mostly aims for molecule-to-conformation generation conditioned on instance-level
graph structure and thereby also fail in modeling the whole semantical distribution. Besides, they are
limited in extensibility due to the specific design. Hence, we propose a new self-guidance mechanism
SLD to cover the whole distribution of unlabeled target graph set, and thus enable controllable and
hierarchical graph generation, further improving expressiveness of the proposed SGGM.

Self-Guided Latent Diffusion. Specifically, we conduct iterative K-means clustering on all the
latent embeddings of the graph set, and consequently assign a hierarchical pseudo class label vector c
for each graph latent variable Z0:

c = (c1, c2, · · · , cD), 1 ≤ ci ≤ Pi, ∀i ≤ D, (13)

where ci and Pi denote the label index and the total number of classes in i-th hierarchy, respectively.
After categorizing latent variables in SGGM with pseudo label, we bring this informative guidance
into the diffusion process. For better understanding the mechanism of our proposed self-guided
latent diffusion, we theoretically provide a detailed explanation, please refer to Appendix.A.3. Such
self-guidance can improve the sample quality and diversity by guiding the generation process for
Z0 towards the region of class c. At each generation step, the score function of class conditional
diffusion model sθ(Zt, t, c) is modified to incorporate the gradient information of log qt(c|Z):

ŝθ(Zt, t, c) = sθ(Zt, t, c)− w∇Z log qt(c|Zt), (14)

and use ŝθ(Zt, t, c) in generation instead, where w controls the magnitude of the guidance. An
alternative way is to directly estimate ∇Z log q(c|Zt), but it need to first train a class-conditional
diffusion model, and then train a classifier to predict c for each (Zt, t) to calculate the gradient
information. Such sophisticated procedure will enlarge the network evaluation steps. Hence, we
adopt a classifier-free approach instead and use Bayes rule to calculate the self-guidance, by jointly
learning an unconditional and a pseudo-label-conditional score function. With the conditional score
sθ(Zt, t, c) ≈ ∇ log q(Zt|c) and unconditional score sθ(Zt, t) ≈ ∇ log q(Zt), the guidance can be
calculated as Eq.(15) and the resulting reverse SDE in Eq.(6) can be rewritten as Eq.(16):

∇Z log qt(c|Z) = ∇Z log qt(Z|c)−∇Z log qt(Z) ≈ sθ(Zt, t, c)− sθ(Zt, t) (15)

dẐ = (f(t)Ẑ − g(t)2[(1− w)(sθ(Ẑt, t, c) + wsθ(Ẑt, t)]dt+ g(t)dw̄. (16)

Then we use a single neural network to parameterize both models, where for the unconditional
model we can simply input a zero vector 0 for the pseudo label c when estimating the score, i.e.,
sθ(Zt, t) = sθ(Zt, t,0). In this way, SLD iteratively injects global semantical guidance into the
reverse diffusion process and further improves SGGM with controllable generation. Besides, SLD
can further cover the whole semantical distribution in sampling generation procedure with sufficient
expressiveness. Notably, the proposed SLD is also extensible to any target graph set modeling, which
is particularly superior to existing conditional molecule-to-conformation diffusion methods (Xu et al.,
2021b; Jing et al., 2022; Huang et al., 2022).

Periodic Update on Pseudo-Label Set. Nevertheless, there exists a disalignment between self-
guidance and score-based generation procedure. Here, we explain why this disalignment comes
up. The produced global pseudo label set {{ci,d}Pi

i=1}Dd=1 in SLD is induced by iterative K-means
clustering on embedding vectors in latent space of SGGM, which is determined value and thus
invariant. D is the total number of hierarchies. In contrast, as the training process goes on, the
latent space out of the encoder in SGGM will progressively shifts. Therefore, the invariant pseudo
label and shifted latent space will consequently result in the disalignment, and further deteriorate the
performance of SGGM. To decrease the alignment, we propose to apply the periodic update on the
pseudo-label set by conducting iterative K-means clustering based on updated encoder every certain
training steps. In the evaluation procedure, we use the pseudo-label set in the last training step to
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make self-guided graph generation. And we provide the overall optimization objective for SGGM
with SLD and summarize the loss terms in Eq.(8) and Eq.(12) as the following:

L(G; θ, θenc, θdec) = Ldiff + Lrec. (17)

Overall objective is an upper bound for the negative log-likelihood of generated sample, and we
further provide an efficient alternative formulation of the objective, as demonstrated in Appendix.A.1.
To clear the training pipeline, we summarize the entire procedure in Algorithm 1.

Algorithm 1 Algorithm of SGGM powered by SLD
Input: Target graph set G = {G1,G2, · · · ,GK}, score-based models sθ, variational graph autoen-
coder (fenc, fdec), training steps S, update step size U , sampling steps M , sampling step size δt.
Output: Trained models sθ, fenc, fdec.

1: Initialize the fenc and fdec by pretraining on G.
2: Hierarchically cluster to obtain global pseudo label set {{ci,d}Pi

i=1}Dd=1.
3: for s = 1 to S do
4: if s = U then
5: Update global pseudo label set {{ci,d}Pi

i=1}Dd=1.
6: end if
7: Sample a mini-batch graph {Gi}Qi=1 ∈ G.
8: for i = 1 to Q do
9: Map graph Gi to latent Z with Eq.(1), (3), and (4).

10: for j = 1 to M do
11: Use δt and Z to make forward diffusion on latent with Eq.(5).
12: end for
13: for j = 1 to M do
14: Use δt, {{ci,d}Pi

i=1}Dd=1, sθ and Z to make self-guided reverse diffusion with Eq.(16).
15: end for
16: Map latent Z to graph by reconstructing (Â, Ĥ) with Eq.(10) and (11).
17: end for
18: Update parameters of sθ, fenc, fdec according to Eq.(17).
19: end for
20: Return: sθ, fenc, fdec

4 EXPERIMENTS AND ANALYSIS

Graph Dataset Details. In this paper, we adopt six widely-used graph datasets to evaluate our
method, following previous works (You et al., 2018; Jo et al., 2022; Xu et al., 2021b; Du et al.,
2021). These graph datasets includes various domains, such as synthetic graphs, social networks, and
molecular graphs: Ego-small has 200 small ego graphs that collected from a large citeseer graph
dataset (Sen et al., 2008); Community-small collects 100 randomly generated social community
graphs; Enzymes has 587 protein graphs which represent the protein tertiary structures of the
enzymes from the BRENDA database (Schomburg et al., 2004); Grid has 100 standard 2D grid
graphs; QM9 (Ramakrishnan et al., 2014) has 133,885 molecular graphs with 4 node types; and
ZINC250k (Irwin et al., 2012) has 249,455 molecular graphs with 9 node types.

Evaluation Metrics. We use two main categories of metrics for model evaluation, following You
et al. (2018); Du et al. (2021) for fair comparisons. One is the statistics-based evaluation metrics
for generic graph generation, another is the quality-based evaluation metrics. Four Statistics-based
evaluation metrics are introduced as follows: node degree distribution denotes the empirical node
degree distribution of a graph, which represents its local connectivity patterns; clustering coefficient
distribution denotes the empirical clustering coefficient distribution of a graph; and orbit count
distribution denotes the distribution of the counts of node 4-orbits of a graph. Four Quality-based
evaluation metrics are introduced as follows: Fréchet ChemNet Distance (FCD) (Preuer et al., 2018)
is to evaluate the distance between the training and generated graph sets using the activations of
the penultimate layer of the ChemNet; Neighborhood subgraph pairwise distance kernel (NSPDK)
MMD (Costa & De Grave, 2010) calculates the MMD between the generated and test molecules
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which considers both the node and edge features for evaluation. These two metrics are utilized to
effectively measure how close the generated molecules rely on the distribution and how exactly the
model capture the distribution of target graph sets. Besides, validity w/o correction is to calculate the
fraction of valid molecules without correcting valency or resampling edge. Time is to measure the
spending time for generating 10,000 molecules in the form of RDKit molecules.

Baseline Methods We compare our proposed method against following general graph generative
models. DeepGMG (Li et al., 2018) and GraphRNN (You et al., 2018) adopt RNN-based architectures
while GraphAF (Shi et al., 2020) and GraphDF (Luo et al., 2021b) apply flow-based architectures.
Above models are all autoregressive, generating graph step by step. GraphVAE (Simonovsky &
Komodakis, 2018), GraphEBM Liu et al. (2021b), GDSS (Jo et al., 2022) and EDP-GNN (Niu et al.,
2020a) utilize VAE, EBM, and score-based models respectively while GNF (Liu et al., 2019) and
MoFlow (Zang & Wang, 2020) deploy flow-based model. Above models are all one-shot, generating
the entire graph in one step. From a perspective of architecture, our SGGM first incorporates VGAE
with score-based model to address graph generation tasks and is also an efficient one-shot generative
model. More implementation details and hyperparameter settings are in Appendix.B.1.

Table 1: Comparison results of generic graph generation on Ego-small, Community-small, Enzymes, and Grid
datasets. We calculate the MMD distances between the test datasets and generated graphs. All reported results
of previous baselines are quoted from published papers (Niu et al., 2020b; Luo et al., 2021b; Jo et al., 2022)
or reproduced by published codes. Best results are highlighted in bold (the smaller the better) and underline
denotes the second best. Due to the space limitation, we show the standard deviations of results in Appendix.B.2.

Methods
Ego-small Community-small Enzymes Grid

Real, 4 ≤ |V | ≤ 18 Synthetic, 12 ≤ |V | ≤ 20 Real, 10 ≤ |V | ≤ 125 Synthetic, 100 ≤ |V | ≤ 400

Deg. Clus. Orbit Avg. Deg. Clus. Orbit Avg. Deg. Clus. Orbit Avg. Deg. Clus. Orbit Avg.

DeepGMG 0.040 0.100 0.020 0.053 0.220 0.950 0.400 0.523 - - - - - - - -
GraphRNN 0.090 0.220 0.003 0.104 0.080 0.120 0.040 0.080 0.017 0.062 0.046 0.042 0.064 0.043 0.021 0.043
GraphAF 0.03 0.11 0.001 0.047 0.18 0.20 0.02 0.133 1.669 1.283 0.266 1.073 - - - -
GraphDF 0.04 0.13 0.01 0.060 0.06 0.12 0.03 0.070 1.503 1.061 0.202 0.922 - - - -
GraphVAE 0.130 0.170 0.050 0.117 0.350 0.980 0.540 0.623 1.369 0.629 0.191 0.730 1.619 0.0 0.919 0.846
GNF 0.030 0.100 0.001 0.044 0.200 0.200 0.110 0.170 - - - - - - - -
EDP-GNN 0.052 0.093 0.007 0.051 0.053 0.144 0.026 0.074 0.023 0.268 0.082 0.124 0.455 0.238 0.328 0.340
GDSS 0.021 0.024 0.007 0.017 0.045 0.086 0.007 0.046 0.026 0.061 0.009 0.032 0.111 0.005 0.070 0.062

SGGM 0.025 0.028 0.009 0.021 0.041 0.079 0.010 0.043 0.030 0.073 0.013 0.039 0.114 0.0 0.065 0.060
SGGM+SLD 0.014 0.019 0.007 0.013 0.035 0.071 0.006 0.037 0.022 0.062 0.007 0.030 0.103 0.0 0.053 0.052

Generic Graph Generation. We show the comparison results about generic graph generation
in Tab.1, and we conclude that the proposed SGGM significantly outperform most of the previous
baselines including both diffusion-based and non-diffusional graph generative models. Besides,
equipped with SLD, our SGGM can achieve higher performance, demonstrating the strength of the
proposed self-guidance mechanism. Notably, compared with previous state-of-the-art diffusion-based
models EDP-GNN and GDSS, our SGGM with SLD has superior performances in both small and
large graph generation tasks. This phenomenon shows that our model is able to sufficiently cover
the whole distribution of target graph set, including those containing complex global or fine-grained
graph structures. Visualization results of small, middle, and large generated graphs are in Appendix.C.
More implementation details are in Appendix.B.1.

Molecular Graph Generation. We further show the comparison results with previous baselines
about molecular graph generation, for evaluating the extension to distribution modeling of specific
graph set. Results are listed in Tab.2, we conclude that our SGGM with SLD also outperform previous
general graph generative baselines. The first observation is our model achieves the best validadity
when the post-hoc valency correction is disabled, showing that our latent-based framework with
carefully-designed decoder helps with learning precise chemical structural information. The second
observation is SGGM with SLD significantly outperforms most of the baselines in NSPDK MMD
and FCD, demonstrating that the proposed SLD assists SGGM in covering the whole distribution
of the target molecular graph set in both topological and chemical space. More results of validity,
uniqueness, and novelty along with the standard deviations in Appendix.B.2. Notably, SGGM costs
fewer time in sampling procedure than most of previous methods, especially diffusion-based methods
due to the smoother and faster latent diffusion process. We also visualize some generated molecular
graphs in Fig.2 and observe that the generated graphs reveal the obvious hierarchy in structures,
further proving the expressiveness of our model. More implementation details are in Appendix.B.1.
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Table 2: Comparison results of molecular graph generation on QM9 and ZINC250k datasets. Results are the
mean value of 3 different runs and all reported results of baselines are quoted from published papers (Niu et al.,
2020b; Luo et al., 2021b; Jo et al., 2022) or reproduced by published codes. Due to the space limitation, we
show the results of validity, uniqueness, and novelty along with the standard deviations in Appendix.B.2

Method
QM9 ZINC250k

Val. w/o corr. (%)↑ NSPDK↓ FCD↓ Time (s)↓ Val. w/o corr. (%)↑ NSPDK↓ FCD↓ Time (s)↓

GraphAF 67.62 0.020 5.268 2.52e3 68.47 0.044 16.289 5.80e3

GraphDF 82.67 0.063 10.816 5.35e4 89.03 0.176 34.202 6.03e4

MoFlow 91.36 0.017 4.467 4.60 63.11 0.046 20.931 2.45e1
EDP-GNN 47.52 0.005 2.680 4.40e3 82.97 0.049 16.737 9.09e3

GraphEBM 8.22 0.030 6.143 3.71e1 5.29 0.212 35.471 5.46e1

GDSS 95.72 0.003 2.900 1.14e2 97.01 0.019 14.656 2.02e3

SGGM 95.91 0.006 2.745 4.93e1 97.28 0.018 13.931 1.01e3

SGGM+SLD 97.35 0.004 2.593 5.43e1 98.32 0.014 11.379 1.12e3

Figure 2: Visualization of generated molecular graphs on ZINC250k dataset with the proposed
self-guided latent diffusion. Blue, red, black boxes denote different hierarchies.

Ablation Study and Extensibility Analysis. To clarify the contribution of different modules in
our model and further show the extensibility of our model, we conduct experiments and show the
results in Tab.3. In ablation part, we find that designed matching constraints and SLD can both
improve the baseline (combination of VGAE and SGM without additions), and SLD contributes more.
In extension part, we observe that our SGGM with SLD extended with geometrical and torsional
diffusion can obtain further promotion, demonstrating the great extensibility of our model.

Table 3: Ablation study and extensibility analysis.

Datasets Ablation Extension

Baseline + Designed Matching + SLD + Geometry (Xu et al., 2021b) + Torsion (Jing et al., 2022)

ZINC250k 96.72 97.28 98.32 98.32 + 0.3 98.32 + 0.4
QM9 95.42 95.91 97.35 97.35 + 0.5 97.35 + 0.4

5 CONCLUSION

In this paper, we first propose a unified latent-based graph generative framework, Score-Based
Graph Generative Model (SGGM), powered by Self-Guided Latent Diffusion (SLD) to address graph
generation tasks. We first map raw graph of high-dimensional discrete space to low-dimensional
topology-injected latent space, and apply score-based generative model there, yielding a smoother,
faster and more expressive graph generation procedure. To sufficiently cover the whole distribution of
graph set, we propose SLD to make controllable self-guidance of the graph generation with gradients
from the designed assigning function towards the hierarchical pseudo label, produced by iteratively
clustering on the latent embeddings. We theoretically prove the effectiveness of our model and we
significantly outperform previous baselines on both generic and molecular graph datasets. For the
future work, we will continue to promote the self-guided diffusion mechanism and further improve
the expressiveness of graph generative models.
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A PROOFS

A.1 DERIVATION OF EQUIVALENT EFFICIENT OPTIMIZATION OBJECTIVE

We first demonstrate that our loss function is an upper bound of the negative log-likelihood.

− log p(G) ≤ KL(p(Z|G; θenc)||q(Z|G; θdec)− log p(G)
= −Ep(Z|G;θenc) log q(Z|G; θdec)− log p(G) + Ep(Z|G;θenc) log p(Z|G; θenc)
= −Ep(Z|G;θenc) log q(G,Z; θdec) + Ep(Z|G;θenc) log p(Z|G; θenc)
= −Ep(Z|G;θenc) log q(G|Z; θdec)− Ep(Z|G;θenc) log pθ(Z) + Ep(Z|G;θenc) log p(Z|G; θenc)
= −Ep(Z|G;θenc) log q(G|Z; θdec) +DKL(p(Z|G)||pθ(Z))

= Lrec + Ldiff

(18)

The second term in Ldiff is the negative entropy of the latent variable and has a simply expression
w.r.t. the posterior variance:

Ep(Z|G;θenc) log p(Z|G; θenc) = −H(µ(G; θenc) +Σ
1
2 (G; θenc)E), (19)

with E ∼ N (0, INF×NF ). For simplicity, we drop G, θenc and omit the constant that is irrelevant of
the model, we have

H(µ+ΣE) = log |Σ|
2

− 1

2
Ex∼N (µ,Σ)(x− µ)TΣ−1(x− µ)

=
log |Σ|

2
− 1

2
Ex∼N (µ,Σ)Tr((x− µ)TΣ−1(x− µ))

=
log |Σ|

2
− 1

2
Ex∼N (µ,Σ)Tr(Σ

−1(x− µ)(x− µ)T )

=
log |Σ|

2
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Tr(Ex∼N (µ,Σ)Σ

−1(x− µ)(x− µ)T )

=
log |Σ|

2

(20)

Using Eq.9 as the first term in Ldiff , thus one can efficiently estimate Ldiff .

A.2 INTRACTABILITY OF CLASSICAL SCORE-MATCHING OBJECTIVES

We demonstrates the intractability of classical score-matching objectives. We can not directly
optimize the classic score-matching objectives, due to the intractability of SGM prior pθ(Z). The
explicit score-matching objectives has the form:

LESM = Et∼U(0,T )

[
Eq(Zt)[||sθ(Zt, t)−∇ log qt(Zt)||22]

]
, (21)

with the estimation sθ(Zt, t). But ∇ log qt(Zt) depends on pθ(Z0) and thus intractable:

qθ(Zt) =

∫
q(Zt|Z0)qθ(Z0)dZ0. (22)

One can develop the connection between explicit score-matching objective with the denosing score-
matching objective which is the standard objective in SGMs, and we provide a detailed derivation
here:

LESM = Et∼U(0,T )

[
Eq(Zt)||sθ(Zt, t)||22 − 2Eq(Zt)⟨sθ(Zt, t),∇ log qt(Zt)⟩

]
+ C1

= Et∼U(0,T )

[
||sθ(Zt, t)||2L2

− 2Eq(Zt)⟨sθ(Zt, t),
∇qt(Zt)

qt(Zt)
⟩
]
+ C1,

(23)

where

C1 = Et∼U(0,T )Eq(Zt)||
∇qt(Zt)

qt(Zt)
||22 (24)
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The latent space is assumed to be continuous with positive density function, and thus:

Eq(Zt)⟨sθ(Zt, t),
∇Zt · qt(Zt)

qt(Zt)
⟩ =

∫
⟨sθ(Zt, t),∇Zt · qt(Zt)⟩dZt

=

∫
⟨sθ(Zt, t),∇Zt ·

∫
qt(Zt|Z0)q(Z0)dZ0⟩dZt

=

∫
⟨sθ(Zt, t),

∫
∇Zt

· qt(Zt|Z0)q(Z0)dZ0⟩dZt

=

∫ ∫
⟨sθ(Zt, t),∇Zt

· qt(Zt|Z0)q(Z0)⟩dZ0dZt

=

∫ ∫
⟨sθ(Zt, t), q(Z0)q(Zt|Z0)∇Zt

· log qt(Zt|Z0)⟩dZ0dZt

=

∫ ∫
q(Z0)q(Zt|Z0)⟨sθ(Zt, t),∇Zt

· log qt(Zt|Z0)⟩dZtdZ0

= Eq(Z0)Eq(Zt|Z0)⟨sθ(Zt, t),∇Zt
· log qt(Zt|Z0)⟩.

(25)
Plugging the Eq.25 into LESM , we have:
LESM = Et∼U(0,T )

[
||sθ(Zt, t)||2L2

− 2Eq(Z0)Eq(Zt|Z0)⟨sθ(Zt, t),∇Zt
· log qt(Zt|Z0)⟩

]
+ C1

= Et∼U(0,T )

[
Eq(Zt,Z0)||sθ(Zt, t)−∇Zt

· log qt(Zt|Z0)||22
]
+ C2

= LDSM + C2

(26)
As a result, we can calculate the difference between explicit score-matching and denosing score-
matching objectives.

C2 = E||∇ log qt(Zt)||22 − E||∇Zt · log qt(Zt|Z0)||22 (27)
If one directly diffuse the observed data with prefixed diffusion coefficient, then C2 is indeed a
constant. But if the diffusion is performed on the learned latent space with prior pθ(Z0), then C2

will depend on the learnable parameter θ, even if the forward diffusion is fixed:

qθ(Zt) =

∫
q(Zt|Z0)qθ(Z0)dZ0 (28)

and thus the denosing score matching is also intractable. But the objectives we use, as Eq.9, do not
include the term qθ(Zt) and thus tractable.

A.3 DETAILED EXPLANATION OF SELF-GUIDANCE

Here we present a continuous-time setting of self-guidance mechanism: After embedding, we have
latent Z0 with pseudo label c, with joint distribution p(Z, c). In the forward SDE, only the latent Z
is diffused:

dZ = f(t)Zdt+ g(t)dw, Z ∼ p(Z|c) (29)
By designing the drift coefficient f(t), the resulting noise ZT is determined entirely by a independent
Brownian motion and forget the initial distribution Z0. For example, we can design:∫ T

0

f(s)ds = ∞ (30)

So the reverse process start with a known prior with label c. To reverse the process, we need the
reverse SDE with the following form:

dẐ = (f(t)Ẑ − g(t)2∇Ẑ log qt(Ẑ|c))dt+ g(t)dw̄. (31)

In other word, we need to estimate the conditional score function ∇Ẑ log qt(Ẑ|c) to generate sample
with label c. Using probability chain rule, one can decompose the conditional score function as:

∇Ẑ log qt(Ẑ|c) = ∇Ẑ log qt(c|Ẑ)−∇Ẑ log qt(Ẑ) (32)
and estimate each part. Real-world graph sets usually do not have explicit label, and thus our model
leverages pseudo label to improve the sample quality and cover the whole distribution of target
unlabeled graph set by performing self-guidance, as described in section 3.2.
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B ADDITIONAL DETAILS AND EXPERIMENTS

B.1 IMPLEMENTATION DETAILS AND HYPERPARAMETERS

Implementation Details of Generic Graph Generation In generic graph generation tasks, we
follow the standard setting of existing works (You et al., 2018; Liu et al., 2019; Niu et al., 2020b; Jo
et al., 2022). Specifically, we report the result means of 30 runs, 3 different runs for 10 independently
trained models on Ego-small and Community-small datasets. And due to the costly training procedure
of GraphVAE and EDP-GNN, we report the result means of 3 different runs on Enzymes and Grid
datasets. As for the baseline methods implementation, we follow the hyperparameter settings that
provided by original works. For SGGM with SLD, we first initilize the node features with the
one-hot embedding of the degrees, and then pretrain a variational graph autoencoder. The pretrained
autoencoder will initialize a hierarchical pseudo label set by iteratively clustering on all the latent
embeddings of the training dataset. The number of classes and hierarchies are detailed in Tab.4 and
the hierarchical psuedo label set will be further utilized in SGGM for self-guided diffusion generation
with periodic update. We perform the grid search to choose the proper numbers for the hierarchies
and classes. After we train SGGM with SLD, we the best MMD with the lowest average of three
graph statistics, degree, clustering coefficient, and orbit. For the datasets with small graphs, we use
two-layer graph encoder and decoder and a two-layer convolution for score matching while they are
of more layers for modeling large graphs, please refer to Tab.4 for further details.

Implementation Details of Molecular Graph Generation In the experiments of molecular graph
generation, each molecule is represented by a graph with the node features X ∈ {0, 1}N×F and
the adjacency matrix A∈{0, 1, 2, 3}N×N , where N denotes the number of atoms in the molecule,
and F denotes the number of atom types. The entries of A represent the bond types, i.e. single,
double, or triple bonds. Following the standard process of existing works (Shi et al., 2020; Luo et al.,
2021b; Jo et al., 2022), the molecules are kekulized by the RDKit library Landrum et al. (2016) and
hydrogen atoms are deleted. The whole training pipeline of molecular graph generation is similar to
that of generic graph generation, which has been introduced in last paragraph. For further detailed
hyperpameter settings, please refer to Tab.4. The novelty value can influence the FCD and NSPDK
MMD values. With respect to the evaluation, we choose the hyperparameters that exhibit the best
FCD value among those which show the novelty that exceeds 85%. As demonstrated in section 4, we
conduct the experiments for extensibility analysis. The geometrical and torsional diffusion processes
that used in experiments are implemented according to the published code of their original works
(Xu et al., 2021b; Jing et al., 2022).
Table 4: We provide hyperparameters of SGGM with SLD that used in the generic graph generation
tasks and the molecule generation tasks.

Hyperparameter Ego-small Community-small Enzymes Grid QM9 ZINC250k

sθ
Number of convolutional layers 2 3 5 5 2 2
Hidden dimension 32 32 32 32 16 16

fenc
Number of graph layers 2 2 3 3 2 2
Hidden dimension 32 32 32 32 16 16

fdec
Number of graph layers 2 2 3 3 2 2
Hidden dimension 32 32 32 32 16 16

Hierachical label Number of hierarchies 2 2 3 3 3 3
Number of update epochs 50 50 50 50 5 5
Number of classes {6, 2} {6, 2} {12, 4, 2} {12, 4, 2} {12, 4, 2} {12, 4, 2}

Loss Objective Weight α 1 1 1 1 1 1
Weight β 0.5 0.5 0.5 0.5 0.5 0.5

Train

Optimizer Adam Adam Adam Adam Adam Adam
Learning rate 1× 10−2 1× 10−2 1× 10−2 1× 10−2 5× 10−3 5× 10−3

Weight decay 1× 10−4 1× 10−4 1× 10−4 1× 10−4 1× 10−4 1× 10−4

Batch size 128 128 64 8 1024 1024
Number of epochs 5000 5000 5000 5000 300 500
Number of sampling steps 600 600 600 600 600 600

B.2 ADDITIONAL EXPERIMENTAL RESULTS

In this subsection, we provide additional experimental results for illustration: generic and molecular
graph generation results with the standard deviation; visualization of small, middle, and large graphs
generation results.
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Table 5: We report the MMD distance between the test datasets and generated graphs with the
standard deviation on the Ego-small and the Community-small datasets.

Ego-small Community-small

Real, 4 ≤ |V | ≤ 18 Synthetic, 12 ≤ |V | ≤ 20

Deg. Clus. Orbit Deg. Clus. Orbit

SGGM 0.025 ± 0.005 0.028 ± 0.004 0.009 ± 0.005 0.041 ± 0.015 0.079 ± 0.134 0.010 ± 0.003
SGGM+SLD 0.014 ± 0.006 0.019 ± 0.006 0.007 ± 0.004 0.035 ± 0.017 0.071 ± 0.015 0.006 ± 0.003

Table 6: We report the MMD distance between the test datasets and generated graphs with the
standard deviation on the Enzymes and the Grid datasets.

Enzymes Grid

Real, 10 ≤ |V | ≤ 125 Synthetic, 100 ≤ |V | ≤ 400

Deg. Clus. Orbit Deg. Clus. Orbit

GraphRNN 0.017 ± 0.007 0.062 ± 0.020 0.046 ± 0.031 0.064 ± 0.017 0.043 ± 0.022 0.021 ± 0.007
GraphAF 1.669 ± 0.024 1.283 ± 0.019 0.266 ± 0.007 - - -
GraphDF 1.503 ± 0.011 1.061 ± 0.011 0.202 ± 0.002 - - -
GraphVAE 1.369 ± 0.020 0.629 ± 0.005 0.191 ± 0.020 1.619 ± 0.007 0.0 ± 0.000 0.919 ± 0.002
EDP-GNN 0.023 ± 0.012 0.268 ± 0.164 0.082 ± 0.078 0.455 ± 0.319 0.238 ± 0.380 0.328 ± 0.278
GDSS 0.026 ± 0.008 0.061 ± 0.010 0.009 ± 0.005 0.111 ± 0.012 0.005 ± 0.000 0.070 ± 0.044

SGGM 0.030 ± 0.005 0.073 ± 0.008 0.013 ± 0.005 0.114 ± 0.010 0.0 ± 0.0 0.065 ± 0.024
SGGM+SLD 0.022 ± 0.004 0.062 ± 0.006 0.007 ± 0.002 0.103 ± 0.006 0.0 ± 0.0 0.053 ± 0.014

Table 7: Graph generation results are the means and the standard deviations of 3 runs on the QM9
dataset. Validity is the fraction of the generated molecules that do not violate the chemical valency
rule. Uniqueness is the fraction of the valid molecules that are unique. Novelty is the fraction of the
valid molecules that are not included in the training set.

Method Validity w/o ↑ NSPDK ↓ FCD ↓ Validity (%) ↑ Uniqueness (%) ↑ Novelty (%) ↑correction (%) MMD

GraphAF 67 0.020±0.003 5.268±0.403 100.00 94.51 88.83
GraphDF 82.67 0.063±0.001 10.816±0.020 100.00 97.62 98.10
MoFlow 91.36±1.23 0.017±0.003 4.467±0.595 100.00±0.00 98.65±0.57 94.72±0.77
EDP-GNN 47.52±3.60 0.005±0.001 2.680±0.221 100.00±0.00 99.25±0.05 86.58±1.85
GraphEBM 8.22±2.24 0.030±0.004 6.143±0.411 100.00±0.00 97.90±0.14 97.01±0.17
GDSS 95.72±1.94 0.003±0.000 2.900±0.282 100.00±0.00 98.46±0.61 86.27±2.29

SGGM 95.91±1.73 0.006±0.001 2.745±0.264 100.00±0.00 98.52±0.15 96.61±1.75
SGGM+SLD 97.35±1.21 0.004±0.000 2.593±0.191 100.00±0.00 99.41±0.11 97.49±1.32

Table 8: Graph generation results are the means and the standard deviations of 3 runs on the ZINC250k
dataset. Validity is the fraction of the generated molecules that do not violate the chemical valency
rule. Uniqueness is the fraction of the valid molecules that are unique. Novelty is the fraction of the
valid molecules that are not included in the training set.

Method Validity w/o ↑ NSPDK ↓ FCD ↓ Validity (%) ↑ Uniqueness (%) ↑ Novelty (%) ↑correction (%) MMD

GraphAF 68 0.044±0.006 16.289±0.482 100.00 99.10 100.00
GraphAF+FC 68.47±0.99 0.044±0.005 16.023±0.451 100.00±0.00 98.64±0.69 99.99±0.01
GraphDF 89.03 0.176±0.001 34.202±0.160 100.00 99.16 100.00
GraphDF+FC 90.61±4.30 0.177±0.001 33.546±0.150 100.00±0.00 99.63±0.01 100.00±0.00
MoFlow 63.11±5.17 0.046±0.002 20.931±0.184 100.00±0.00 99.99±0.01 100.00±0.00
EDP-GNN 82.97±2.73 0.049±0.006 16.737±1.300 100.00±0.00 99.79±0.08 100.00±0.00
GraphEBM 5.29±3.83 0.212±0.075 35.471±5.331 99.96±0.02 98.79±0.15 100.00±0.00
GDSS 97.01±0.77 0.019±0.001 14.656±0.680 100.00±0.00 99.64±0.13 100.00±0.00

SGGM 97.28±0.78 0.018±0.001 13.931±0.625 100.00±0.00 98.87±0.14 100.00±0.00
SGGM+SLD 98.32±0.71 0.014±0.001 11.379±0.597 100.00±0.00 99.83±0.11 100.00±0.00
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C GENERATION OF SMALL, MIDDLE AND LARGE GRAPHS

We visualize the graphs of small, middle, and large scales from the training datasets and the generated
graphs of SGGM with SLD for each dataset in Fig.3-5. We randomly choose samples from the
training datasets and the generated graph set for visualization, with e denotes edges number and n
denotes nodes number.

Figure 3: Visualization of the graphs sampled from the Ego-small dataset and the generated graphs of
SGGM with SLD.

Figure 4: Visualization of the graphs sampled from the ENZYMES dataset and the generated graphs
of SGGM with SLD.
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Figure 5: Visualization of the graphs sampled from the Grid dataset and the generated graphs of
SGGM with SLD.
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