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ABSTRACT

Multi-label classification tasks such as OCR and multi-object recognition are a
major focus of the growing machine learning as a service industry. While many
multi-label APIs are available, it is challenging for users to decide which API
to use for their own data and budget, due to the heterogeneity in their prices and
performance. Recent work has shown how to efficiently select and combine single-
label APIs to optimize performance and cost. However, its computation cost is
exponential in the number of labels, and is not suitable for settings like OCR. In
this work, we propose FrugalMCT, a principled framework that adaptively selects
the APIs to use for different data in an online fashion while respecting the user’s
budget. It allows combining ML APIs’ predictions for any single data point, and
selects the best combination based on an accuracy estimator. We run systematic
experiments using ML APIs from Google, Microsoft, Amazon, IBM, Tencent,
and other providers for tasks including multi-label image classification, scene text
recognition and named entity recognition. Across these tasks, FrugalMCT can
achieve over 90% cost reduction while matching the accuracy of the best single
API, or up to 8% better accuracy while matching the best API’s cost.

1 INTRODUCTION

Many machine learning users are starting to adopt machine learning as a service (MLaaS) APIs
to obtain high-quality predictions. One of the most common tasks these APIs target is multi-label
classification. For example, one can use Google’s computer vision API (Goo) to tag an image with a
wide range of possible labels for $0.0015, or Microsoft’s API (Mic) for $0.0010. Another example is
to extract all text strings from an image for $0.005 via iFLYTEK’s API (Ifl) or $0.021 via Tencent’s
API (Ten). In practice, these APIs also provide different performance on different types of input data
(e.g., English vs Chinese text). The heterogeneity in APIs’ performance and prices makes it hard for
users to decide which API, or combination of APIs, to use for their own datasets and budgets.

Recent work (Chen et al., 2020) proposed FrugalML, an algorithmic framework that adaptively
decides which APIs to call for a data point to optimize accuracy and cost. Their approach learns a fast
decision rule for each possible output label that can significantly improve cost-performance over the
individual APIs. However, FrugalML requires a large amount of training data and involves solving a
non-convex optimization problem with complexity exponential in the number of distinct labels. This
prevents it from being used for tasks with large number of labels, such as multi-label classification.
Furthermore, FrugalML ignores correlation between different APIs’ predictions, potentially limiting
its accuracy. For example, APIs A and B may output {person, car} and {car, bike} separately for
an image whose true keywords are {person, car, bike}. FrugalML would select one of the two label
sets, but combining them results in the true label set and thus higher accuracy. Thus, this paper aims
to solve these significant limitations and address the question: how do we design efficient ML API
selection strategies for multi-label classification tasks to maximize accuracy within a budget?

We propose FrugalMCT, a principled framework that learns the strengths and weaknesses of differ-
ent combinations of multi-label classification APIs, and efficiently selects the optimal combinations
of APIs to call for different data items and budget constraints. As shown in Fig. 1 (a), FrugalMCT
directly estimates the accuracy of each API combination on a particular input based on the features
and predicted labels of that input. Then it uses a fast service selector based on the estimated accuracy
to balance accuracy and budget. For example, we might first call API A on an input. If A returns
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Figure 1: Demonstration of FrugalMCT. (a): FrugalMCT workflow. (b): Performance of Fru-
galMCT on COCO, a multi-label image dataset, using real commercial ML APIs. (c), (d): Exam-
ples of FrugalMCT’s behavior on different inputs. In (c), FrugalMCT estimates that the accuracy
of a cheap open source SSD model from GitHub is high, and thus directly returns its predictions. In
(d), FrugalMCT estimates that combining SSD’s results with the Everypixel API has a much higher
estimated accuracy, and thus it invokes EveryPixel and combines its results with SSD’s results.

person and teddy bear and the accuracy predictor gives relatively high estimated accuracy (Fig. 1
(c)), then we stop and report {person, teddy bear} as the label set. If A returns person and tennis
racket, and we predict that combining it with API B’s output gives a much higher accuracy, then we
invoke API B and combine their prediction to obtain {person, sports ball, tennis racket} (Fig. 1 (d)).

Contributions. FrugalMCT is an end-to-end approach that integrates the selection of APIs and
the combination of their outputs for individual user queries. It leverages our key finding that current
commercial APIs have complementary strengths and weaknesses, and that we can reliably predict
which APIs are likely to work well for a new query based on easy-to-generate metadata about its
input. FrugalMCT then executes an efficient online algorithm to determine which combination
of APIs to call for different user queries. We show that the online algorithm enjoys an accuracy
provably close to the offline method as well as a small computational cost. All components in
FrugalMCT are trainable, making it easy to customize for different applications. To our knowledge,
FrugalMCT is the first work on how to effectively select and combine multi-label ML APIs.

Empirically, FrugalMCT produces substantially better prediction performance than individual APIs
and than FrugalML adapted for multi-label tasks (Fig. 1 (b)). Extensive experiments with real com-
mercial APIs on several tasks, including multi-label image classifications, scene text recognition,
and named entity recognition, show that FrugalMCT typically provides over 60% (as high as 98%)
cost reduction when aiming to match the best commercial API’s performance. Also, when targeting
the same cost as the best commercial API, FrugalMCT can improve performance up to 8%.

We will release our dataset of 295,212 samples annotated by commercial multi-label APIs as the
largest dataset and resource for studying multi-label ML prediction APIs.

Related work. MLaaS: With the growing importance and adoption of MLaaS APIs (Ama; Ten;
Goo; IBM; Mic), existing research has largely focused on evaluating individual API for their per-
formance (Yao et al., 2017), robustness (Hosseini et al., 2017), biases (Koenecke et al., 2020) and
applications (Buolamwini & Gebru, 2018; Hosseini et al., 2019; Reis et al., 2018). Recent work on
FrugalML (Chen et al., 2020) studies API calling strategies for single label classification. While
their approach’s computational complexity is exponential in the number of labels, FrugalMCT’s
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complexity does not depend on the number of labels, making it suitable for multi-label prediction
APIs. In addition, FrugalML selects only one API per user query, while FrugalMCT considers the
combination of multiple APIs’ output for each input data. This improves the overall accuracy (as
shown in Sec 4), but also creates unique optimization challenges that we solve.

Ensembles for multi-label classification: Ensemble learning is a natural approach to combine dif-
ferent predictors’ output. Several ensemble methods have been developed, such as using pruned sets
(Read et al., 2008), classifier chains (Read et al., 2011), and random subsets (Tsoumakas & Vlahavas,
2007), with applications in image annotations (Xu et al., 2011), document classification (Chen et al.,
2017), and speech categorization (Liu et al., 2019). Moyano et al. (2018) provide a detailed survey
of this area. Almost all of these ensemble methods require joint training of the base classifiers, but
MLaaS APIs are black box to the users. Also, while ensemble methods focus only on improving
accuracy, FrugalMCT explicitly considers the cost of each API and enforces a budget constraint.

Model cascades: A series of works (Viola & Jones, 2001a;b; Sun et al., 2013; Cai et al., 2015;
Wang et al., 2011; Xu et al., 2014; Chen et al., 2018; Kumar et al., 2018; Chen et al., 2018) explores
cascades (a sequence of models) to balance the quality and runtime of inference. Model cascades use
a single predicted quality score to avoid calling computationally expensive models, but FrugalMCT’
strategies utilize both quality scores and predicted label sets to select an expensive add-on service.

AutoML for multi-label classification: AutoML (Thornton et al., 2013) automates the customiza-
tion of ML pipelines, including the selection, combination, and parametrization of the learning al-
gorithms. There is a rich literature of AutoML techniques for standard single label tasks, and fewer
methods on multi-label predictions (Wever et al., 2021) (e.g. genetic algorithms (de Sá et al., 2017)
and a neural network-based search scheme (Pakrashi & Namee, 2019)). Applying AutoML to use
multiple ML APIs is underexplored, and FrugalMCT can be viewed as the first AutoML approch
designed for automating the selection of multiple mutlti-label ML APIs. While most AutoML sys-
tems exclusively focus on prediction performance, FrugalMCT optimizes accuracy and cost jointly,
which is desirable for cost-sensitive API users.

Multiple choice knapsack and integer programming: Many resource allocation problems can be
modeled as multiple choice knapsack problem (MCKP) (Pamela H. Vance & Toth), 1993), such as
keyword bidding (Zhou & Naroditskiy, 2008) and quality of service control (Lee et al., 1999). While
NP-hard (Sinha & Zoltners, 1979), various approximations have been proposed for MCKP, such as
branch and bound (Pamela H. Vance & Toth), 1993), convex hull relaxation (Akbar et al., 2006)
and bi-objective transformation (Bednarczuk et al., 2018). Inherently an integer linear programming
(ILP) problem, MCKP can also be tackled by ILP solvers, motivated by online adwords searching
(Devanur & Hayes, 2009), resource allocation (Devanur & Hayes, 2019) and general linear program-
ming (Li et al., 2020). The service selector of FrugalMCT can be viewed as a MCKP with the same
item cost vector per item group, which we leverage to obtain a customized fast and online solver.

2 PRELIMINARIES

Notation. We denote matrices and vectors in bold, and scalars, sets, and functions in standard
script. Given a matrix A ∈ Rn×m, we let Ai,j denote its entry at location (i, j). 1(·) represents the
indicator function.

Multi-label classification Tasks. Throughout this paper, we focus on multi-label classification
tasks: assigning a label set Y ⊆ Y to any data point x ∈ X . In contrast to basic supervised learning,
in multi-label learning each data point is associated with a set of labels instead of a single label.
Many MLaaS APIs target such tasks. Consider, for example, image tagging, where X is a set of
images and Y is the set of all tags. Example label sets could be {person, car} or {bag, train, sky}.

MLaaS Market. Consider a MLaaS market consisting of K different ML services for some multi-
label task. For a data point x, the kth service returns to the user a set of labels with their quality
scores, denoted by Yk(x) ⊆ Y × [0, 1]. For example, one API for multi-label image classification
might produce Yk(x) = {(person, 0.8), (car, 0.7)}, indicating the label person with confidence 0.8
and car with confidence 0.7. Let the vector ccc ∈ RK denote the unit cost of all services. For example,
ck = 0.01 means that users need to pay $0.01 every time they call the kth service.
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Figure 2: Overview of FrugalMCT. (a) shows how it works: Given a data point, FrugalMCT first
invokes a base service. An accuracy predictor then estimates the performance of different APIs.
Next, an add-on service is selected based on the predicted accuracy and budget. Finally, the add-on
and base services’ predictions are combined to return FrugalMCT’s prediction. (b) lists notation.

3 FRUGALMCT FRAMEWORK

In this section, we present FrugalMCT, a framework to adaptively select ML APIs for multi-label
classification tasks within a budget. All proofs are left to the appendix. We generalize the scheme in
Figure 1 (a) to K ML services. As shown in Figure 2, FrugalMCT contains three main components:
an accuracy estimator, a service selector, and a label combiner.

Given a data point x, it first calls some base service, denoted by base, which is one of the K
APIs, and obtains Ybase(x). Often, base is a cheap or free service; we discuss how to choose base
in Section 3.4. Next, an accuracy predictor produces a vector âaa(x) ∈ [0, 1]K , whose kth value
estimates the accuracy of the label set produced by the label combiner using base’s and kth API’s
outputs. The service selector s(·) : X 7→ [K] then decides if and which add-on service needs to be
invoked. Finally, a label combiner generates a label set by combining the predictions from the base
and add-on APIs. Take Figure 1 (d) as an example. The image is first passed to the GitHub model,
which produces {(person, 0.46),(tennis racket,0.18)}, by which the accuracy predictor predicts the
accuracy of the label set generated by combining each API’s output with GitHub model’s. The
service selector then decides to further invoke Everypixel, which gives {(person, 0.46), (sports ball,
0.52)}. Finally, the label combiner uses both APIs’ output for the final prediction.

FrugalMCT allows users to customize the accuracy predictor and the label combiner, depending on
the applications. For example, for the image tagging problem, one might use image features (e.g.,
brightness and contrast) to build the accuracy predictor, while word embeddings can be more useful
for named entity recognition. In the following sections, we explain the key of accuracy predictor,
API selector and the label combiner in more detail.

3.1 ACCURACY PREDICTION

The accuracy predictor âaa(·) can be obtained by two steps. The first step is to generate a feature
vector for every data point in the training dataset XTr ≜ {xTr

1 , xTr
2 , · · · , xTr

NTr}. Generally the
feature vector can be any embedding of the data point x and base service prediction Ybase(x). In
this paper we adopt a simple approach: if the label set Y is bounded, a |Y| dimensional vector is
generated using one hot encoding on Ybase(x). For example, given Y = {person, car, bike} and
Ybase(x) = {(person, 0.8), (car, 0.7)}, the generated feature vector is [0.8, 0.7, 0]. For unbounded
Y , word embedding is used to generate a vector for every predicted label, and the sum of them
(weighted by their quality values) becomes the corresponding feature vector.

The next step is to train the accuracy predictor. For each xTr
n ∈ XTr, as its true label sets and

prediction from each API are available, we can construct its true accuracy vector aaa(xTr
n ) ∈ [0, 1]K ,

whose kth element is the accuracy of the label produced by the label combiner using base and kth
service predictions. Then we can train some regressor (e.g., random forest) to map the feature vector
to the accuracy vector. We use standard multi-label accuracy1 (Zhang & Zhou, 2014) as a concrete

1 ∥Y ∩Y ′∥
∥Y ∪Y ′∥ where Y /Y ′ is the true/predicted label set.

4



Under review as a conference paper at ICLR 2022

metric. FrugalMCT can as easily use another metric such as F1-score, precision or subset accuracy.

3.2 THE API SELECTION PROBLEM

A key part of FrugalMCT is the API selector s: given a budget b and the estimated accuracy âaa(x),
which service should be invoked? Let X ≜ {x1, x2, · · · , xN} be the entire unlabeled dataset to be
classified, and S ≜ {1, 2, · · · ,K}X be the set of all functions mapping each data point in X to an
API. Let base be the index of the base service. For any s ∈ S, s(x) = base implies no add-on API
is needed, and s(x) = k 6= base implies kth API is invoked. Our goal is to find some s ∈ S to
maximize the estimated accuracy while satisfying the budget constraint, formally stated as below.
Definition 1. Let ZZZ∗

n,k be the optimal solution to the budget aware API selection problem

max
ZZZ∈RN×K :

1

N

N∑
n=1

K∑
k=1

ZZZn,kâ̂âak(xn)

s.t.
1

N

N∑
n=1

K∑
k=1,k ̸=base

ZZZn,kccck + cccbase ≤ b;

K∑
k=1

ZZZn,k = 1,∀n;ZZZn,k ∈ {0, 1},∀n, k

(3.1)

Then the optimal FrugalMCT strategy is given by s∗(xn) ≜ argmaxkZZZ
∗
n,k.

Here, the objective quantifies the average accuracy, the first constraint models the budget require-
ment, and the last two constraints enforces only one add-on API is picked for each data point. Base
service is needed for every data point and thus its cost cccbase appears for every n in the budget con-
straint. Note that Problem 3.1 is a MCKP (and thus integer linear program) and NP-hard in general.

3.3 AN ONLINE ALGORITHM FOR FRUGALMCT

In many time-sensitive applications, the input data xn (as well as the accuracy vector âaa(xn)) comes
sequentially, and the API needs to be selected before observing the future data. The selection process
also needs to be fast.

To tackle this challenge, we present an efficient online algorithm, which requires O(K) computa-
tions per round and gives a provably near-optimal solution. The key idea is to explicitly balance
between accuracy and cost at every iteration. Specifically, for a given data point xn and p ∈ R,
let us define a strategy sp(xn) ≜ argmaxk âaak(xn)− pccck1k ̸=base and break ties by picking k with
smallest cost. Here, p is a parameter to balance between accuracy âaa(xn) and cost ccc. When p = 0,
sp(xn) selects the API with highest estimated accuracy. When p is large enough sp(xn) enforces to
pick the base API. In fact, larger value of p implies more weights on cost and smaller p favors more
the accuracy. Let r(s) ≜ 1

N

∑N
n=1 âaas(xn)(xn) denote the average accuracy achieved by a strategy s.

We can show, interestingly, an appropriate choice of p leads to small average accuracy loss.
Theorem 1. Assume the probability density of âaa(x) is a continuous function on [0, 1]K . Then with
probability 1, there exists p∗ such that sp

∗
satisfies budget constraint, and r(sp

∗
) ≥ r(s∗)− 1

N .

In words, sp
∗
(xn) gives a solution to the API selection problem with accuracy loss at most 1

N . In
practice, âaa(x) is continuous for standard ML models of accuracy predictors (e.g., logistic regressors)
and thus the assumption holds. In addition, it is computationally efficient: at iteration n, it only re-
quires computing âaak(xn)− pccck1k ̸=base for k = 1, 2, · · · ,K, which takes only O(K) computations.

The remaining question is how to obtain p∗. As we cannot see the future data to compute p∗, a
natural idea is to estimate it using the training dataset. More precisely, given the training dataset
{xTr

1 , xTr
2 , · · · , xTr

NTr}, let p̂, q̂qq be the optimal solution to the following problem

min
p,qqq≥0

(1− δ)(b− cccbase)p+

NTr∑
n=1

qqqn, s.t.
ccck · 1k ̸=base · p

NTr
+ qqqn ≥ âaak(x

Tr
n )

NTr
,∀n, k (3.2)

where δ ∈ (0, 1) is a small buffer to ensure that we don’t exceed the budget (in practice we set
δ ≤ 0.01). Technically, Problem 3.2 is the dual problem to the linear programming by relaxing the
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integer constraint in Problem 3.1 on the training dataset with budget (1 − δ)b, and p̂ corresponds
to the near-optimal strategy for the training dataset. If the training and testing datasets are from the
same distribution, then a small δ can ensure with high probability, p̂ is slightly less than p∗ and thus
sp̂ satisfies the budget constraint. Given p̂, one can use sp̂ to select the APIs in an online fashion.
The details are given in Algorithm 1.

Algorithm 1 FrugalMCT Online API Selection Algorithm.
Input :ccc, b, {xTr

1 , xTr
2 , · · · , xTr

NTr}, {x1, x2, · · · , xN}
Output :FrugalMCT online API selector so(·)

1: Compute p̂ by solving Problem 3.2 and set br = N(b− cccbase).
2: At iteration n = 1, 2, · · · , N :

3: so(xn) =

{
sp̂(xn) if br − cccsp̂(xn) ≥ 0

base o/w
4: br = br − cccsp̂(xn)1sp̂(xn) ̸=base

Here, br is used to ensure the generated solution is always feasible. The following theorem gives the
performance guarantee of the online solution.

Theorem 2. If δ = Θ

(√
logN/ϵ

N +
√

logNTr/ϵ
NTr

)
and the probability density of âaa(x) is a continuous

function on [0, 1]K , then so satisfies the budget constraint, and with probability at least 1−ϵ, r(so) ≥

r(s∗)−O

(√
logN/ϵ

N +
√

logNTr/ϵ
NTr

)
.

Roughly speaking, so leads to an accuracy loss at most O
(√

logN
N +

√
logNTr

NTr

)
compared to the

optimal offline strategy. For large training and testing datasets, such an accuracy loss is often negli-
gible, which is also verified by our experiments on real world datasets.

3.4 BASE SERVICE SELECTION AND LABEL COMBINATION

Now we describe how the base service is selected and how the label combiner works. The base
service can be picked by an offline searching process. More precisely, for each possible base service,
we train a FrugalMCT strategy and evaluate its performance on a validation dataset, and pick the
base service corresponding to the highest performance.

The label combiner contains two phases. First, a new label set associated with its quality function is
produced. The label set is simply the union of that from the base service and add-on service. The
quality score is a weighted sum of the score from both APIs, controlled by w. For example, suppose
the base predicts {(person, 0.8), (car, 0.7)} and the add-on predicts {(car, 0.5), (bike, 0.4)}. Given
w = 0.3, new confidence for person is 0.3 × 0.8 = 0.24, for car is 0.3 × 0.7 + 0.7 × 0.5 = 0.46,
and for bike is 0.7×0.4 = 0.28. Thus the combined set is {(person, 0.24), (car, 0.46), (bike, 0.28)}.
Next, a threshold θ is applied to remove labels with low confidence. For example, given θ = 0.25,
the label person would be removed, and the final predicted label set becomes {car, bike}. The
parameters w and θ are global hyperparameters for each dataset, and can be obtained by an efficient
searching algorithm to maximize the overall performance. The details are left to Appendix A.

4 EXPERIMENTS

We compare the accuracy and incurred costs of FrugalMCT to that of real world ML services for
various tasks. Our goal is to (i) understand when and why FrugalMCT can reduce cost without
hurting accuracy, (ii) investigate the trade-offs between accuracy and cost achieved by FrugalMCT,
and (iii) assess the effect of training data size and accuracy predictors on FrugalMCT’s performance.

Tasks, ML services, and Datasets. We focus on three common ML tasks in different application
domains: multi-label image classification (MIC), scene text recognition (STR), and named entity
recognition (NER). MIC aims at obtaining all keywords associated with an image, STR seeks to
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Table 1: ML services used for each task. Price unit: USD/10,000 queries. A publicly available
(and thus free) GitHub model is also used per task: a single shot detector (SSD) (SSD) pretrained
on Open Images V4 (Kuznetsova et al., 2020) for MIC, a convolutional recurrent neural network
(PP-OCR) (Pad) pretrained on an industrial dataset (Du et al., 2020) for STR, and a convolutional
neural network (spaCy (Spa)) pretrained on OntoNotes (Weischedel et al., 2017) for NER.

Task ML Service Price ML Service Price ML Service Price

MIC Everypixel (Eve) 6 Microsoft (Mic) 10 Google (Goo) 15

STR Google (Goo) 15 iFLYTEK (Ifl) 50 Tencent (Ten) 210

NER Amazon (Ama) 3 Google (GoN) 10 IBM (IBM) 30

Input 
Images
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weight=0.6

weight=0.8

32.3%

45.4%

0.4%

Accuracy
Predictor

Label
Combiner

Service
Selector
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(d)

Figure 3: A FrugalMCT strategy learned on the dataset COCO. (a) shows that FrugalMCT reduces
cost by mostly calling the Everypixel API (45.4%) or the GitHub API (22.1%) only. (b) and (c) show
how the accuracy and cost vary with weight p. The blue point corresponds to 0.006, the learned p̂.
(d) shows the accuracy and cost of FrugalMCT, FrugalML, Microsoft API, and majority vote. (e)
gives the runtime performance of our (online) API selector and three commercial ILP solvers.

recognize all texts in an image, and NER desires to extract all entities in a text paragraph. The ML
services used for each task as well as their prices are summarized in Table 1. For each task we use
three datasets, with details in Appendix C.

Accuracy Predictors. Except when explicitly noted, we use a random forest regressor as the ac-
curacy predictor for all the datasets. For MIC and STR datasets, we map each possible label to an
index, and create a feature vector whose kth element is base service’s quality score for the label
corresponding to k. If a label is not predicted, the corresponding value is 0. For NER datasets, we
map each predicted label to a 96-dimensional vector using a word embedding from spaCy (Spa), and
then use the sum weighted by their corresponding quality scores as the feature vector. The accuracy
predictor is then trained on half of the datasets using the feature vectors generated as above.

Multi-label Image Classification: A Case Study. Let us start with multi-label image classifica-
tion on the COCO dataset. We set budget b = 6, the price of Everypixel, the cheapest commercial
API (except the open source model from GitHub). For comparison, we also use the average quality
score over all predicted labels as the confidence score and adapt FrugalML (Chen et al., 2020) with
the same budget (= 6) as another baseline .

Figure 3 demonstrates the learned FrugalMCT strategy. As shown in Figure 3 (a), the learned
FrugalMCT reduces the cost by mostly using the Everypixel API (45%, 6$) and occasionally calling
Microsoft API (32%, 10$).Note that its performance depends on the threshold value p̂. As shown in
Figure 3 (b) and (c), for small thresholds, FrugalMCT tends to call the more accurate and expensive
APIs. However, it runs out of budget quickly, and for many data points only base service can be used,
leading to low accuracy. For large thresholds, FrugalMCT tends to call cheaper but less accurate
APIs, failing to fully use the budget and thus causing low accuracy too. The p̂ value learned by
FrugalMCT (blue point in Figure 3 (b) and (c)) produces the optimal accuracy given the budget.
Figure 3 (d) shows that FrugalMCT’s accuracy (0.514) is higher than that of the best ML service
(MS, 0.475) and majority vote (Maj 0.501), while its cost is much lower. This is primarily because
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Table 2: Cost savings achieved by FrugalMCT that reaches same accuracy as the best commercial
API. On average the cost saving across the evaluated datasets is 73%.

Dataset Accuracy (%) Best API $ Our $ Save

PASCAL (Everingham et al., 2015) 74.8 10 1.4 86%

MIR (Huiskes & Lew, 2008) 41.2 10 4.2 58%

COCO (Lin et al., 2014) 47.5 10 3 70%

MTWI (He et al., 2018) 67.9 210 30 86%

ReCTS (Zhang et al., 2019) 61.3 210 78 63%

LSVT (Sun et al., 2019) 53.8 210 67 68%

CONLL (Sang & Meulder, 2003) 52.6 3 1.5 50%

ZHNER (ZHN) 61.3 30 0.7 98%

GMB (Bos, 2013) 50.1 30 4.1 80%

FrugalMCT learns when the cheaper APIs perform better and call them aptly. FrugalMCT also
outperforms FrugalML by exploiting the label combination. As shown in Figure 3 (e), the API
selector of FrugalMCT (Alg. 1) is several orders of magnitude faster than commercial ILP solvers,
by leveraging the specific structure of Problem 3.1.

Analysis of Cost Savings. Next, we evaluate how much cost can be saved by FrugalMCT to reach
the highest accuracy produced by a single API on different tasks. As shown in Table 2, FrugalMCT
can typically save more than 60% of the cost. Interestingly, the cost saving can be up to 98% on
the dataset ZHNER. This is probably because (i) the accuracy estimator enables the API selector
to identify when the base service’s prediction is reliable and to avoid unnecessarily calling add-on
services, and (ii) when add-on API is invoked, the apt combination of the base and add-on services
leads to a high accuracy improvement.

Accuracy and Cost Trade-offs. Now we dive deeply into the accuracy and cost trade-offs
achieved by FrugalMCT, shown in Figure 4. We compare with two oblations: “Offline”, where
the full data is observed before making decision, “DAP”, where a dummy accuracy predictor is
used, which, for each API, always returns its mean accuracy on the training dataset. We also com-
pared with an adapted version of the previous state-of-the-art for single label task, FrugalML. To
adapt it to multi-label tasks, we use the average quality score over all predicted labels as a single
score, and cluster all labels into a “superclass”.

Compared to any single API, FrugalMCT allows users to pick any point in its trade-off curve and
offers substantial more flexibility. In addition, FrugalMCT often achieves higher accuracy than any
ML services it calls. For example, on COCO and ZHNER, more than 5% accuracy improvement can
be reached with the same cost of the best API. Note that FrugalMCT also outperforms FrugalML
with the same budget. This is primarily because FrugalMCT (i) utilizes a more principled way to use
the features (learning an accuracy estimator) than FrugalML (directly using the label info), and (ii)
adopts a label combiner designed for multi-label tasks. Ensemble methods such as majority votes
(in the appendix C) produce accuracy similar to FrugalMCT, but their cost is much higher.

Note that there is little performance difference between the online FrugalMCT strategy and the of-
fline approach, due to the carefully designed online algorithm. This directly supports our theory. The
accuracy predictors play an important role in FrugalMCT’s performance. As Table 4 shows, Fru-
galMCT is able to provide nontrivial accuracy estimates which enables its success. It’s interesting to
note that the accuracy predictor doesn’t need to be perfect for FrugalMCT to do well; for example,
the root mean square error (RMSE) of the accuracy predictor is 0.28 on PASCAL, but FrugalMCT
still produces consistently better accuracy than FrugalML. We also evaluated FrugalMCT’s perfor-
mance when the accuracy predictors are obtained via two AutoML toolkits, auto-sklearn (Feurer
et al., 2015) and Auto-PyTorch (Mendoza et al., 2019) instead of random forest, and observe a
similar performance.
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Figure 4: Accuracy cost trade-offs. The offline FrugalMCT (black) observes the full data and then
make decisions. The online FrugalMCT (red) matches the offline performance in all the experiments.
DAP (grey) is an oblation of FrugalMCT where a dummy accuracy predictor is used. FrugalML
(orange) is the previous state-of-the-art method. The task of row 1, 2, 3 is MIC, STR, and NER.
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Figure 5: Testing accuracy v.s.training data size. The fixed budget is 6, 15, 3, respectively.

Effects of Training Sample Size. Finally we study how the training dataset size affects Fru-
galMCT’s performance. As shown in Figure 5, across different tasks, a few thousand training
samples are typically sufficient to learn the optimal FrugalMCT strategy. This is usually more effi-
cient than training a customized ML model from scratch.

5 CONCLUSION

In this paper, we presented FrugalMCT, an algorithmic framework to adaptively select and combine
ML APIs for multi-label classification tasks within a budget constraint. FrugalMCT integrates fore-
casts of API’s accuracy with online constrained optimization to create an end-to-end algorithm with
strong empirical performance and theoretical guarantees. How to efficiently use multi-label APIs
is an important problem in practice for the large number of ML users who have chosen to rely on
commercial prediction APIs, and has not been studied heavily in the ML literature. This work can
help MLaaS users improve both the overall accuracy and cost of their applications. Extensive empir-
ical evaluation using real commercial APIs shows that FrugalMCT significantly improves both cost
and accuracy. To encourage more research on MLaaS, we also release the dataset used to develop
FrugalMCT, consisting of 295,212 samples annotated by commercial multi-label prediction APIs.

9



Under review as a conference paper at ICLR 2022

REFERENCES

Amazon Comprehend API. https://aws.amazon.com/comprehend. [Accessed Oct-
2020].

Everypixel Image Tagging API. https://labs.everypixel.com/api. [Accessed Oct-
2020].

Google NLP API. https://cloud.google.com/natural-language. [Accessed Oct-
2020].

Google Vision API. https://cloud.google.com/vision. [Accessed Oct-2020].

IBM NLP API. https://www.ibm.com/cloud/watson-natural-language-understanding.
[Accessed Oct-2020].

iFLYTEK Text Recognition API. https://global.xfyun.cn/products/wordRecg.
[Accessed Oct-2020].

Microsoft computer vision API. https://azure.microsoft.com/en-us/services/
cognitive-services/computer-vision. [Accessed Oct-2020].

PaddleOCR, a text recgonition tool from GitHub. https://github.com/PaddlePaddle/
PaddleOCR. [Accessed Oct-2020].

SSD, a multi-label image classification tool from GitHub/TensorflowHub. https://tfhub.
dev/google/openimages_v4/ssd/mobilenet_v2/1. [Accessed Oct-2020].

spaCy, a named entity recognition tool from GitHub. https://github.com/explosion/
spaCy. [Accessed Oct-2020].

Tencent Text Recognition API. https://intl.cloud.tencent.com/product/ocr.
[Accessed Oct-2020].

ZHNER dataset. https://github.com/zjy-ucas/ChineseNER/tree/master/
data. [Accessed Oct-2020].

Md. Mostofa Akbar, Mohammad Sohel Rahman, Mohammad Kaykobad, Eric G. Manning, and
Gholamali C. Shoja. Solving the multidimensional multiple-choice knapsack problem by con-
structing convex hulls. Comput. Oper. Res., 33:1259–1273, 2006. doi: 10.1016/j.cor.2004.09.016.
URL https://doi.org/10.1016/j.cor.2004.09.016.

Ewa M. Bednarczuk, Janusz Miroforidis, and Przemyslaw Pyzel. A multi-criteria approach to
approximate solution of multiple-choice knapsack problem. Comput. Optim. Appl., 70(3):
889–910, 2018. doi: 10.1007/s10589-018-9988-z. URL https://doi.org/10.1007/
s10589-018-9988-z.

Johan Bos. The groningen meaning bank. In Proceedings of the Joint Symposium on Semantic
Processing. Textual Inference and Structures in Corpora, JSSP 2013, Trento, Italy, November
20-22, 2013, pp. 2. Association for Computational Linguistics, 2013. URL https://www.
aclweb.org/anthology/W13-3802/.

Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in com-
mercial gender classification. In Sorelle A. Friedler and Christo Wilson (eds.), Conference on
Fairness, Accountability and Transparency, FAT 2018, 23-24 February 2018, New York, NY,
USA, volume 81 of Proceedings of Machine Learning Research, pp. 77–91. PMLR, 2018. URL
http://proceedings.mlr.press/v81/buolamwini18a.html.

Zhaowei Cai, Mohammad J. Saberian, and Nuno Vasconcelos. Learning complexity-aware cascades
for deep pedestrian detection. In 2015 IEEE International Conference on Computer Vision, ICCV
2015, Santiago, Chile, December 7-13, 2015, pp. 3361–3369. IEEE Computer Society, 2015. doi:
10.1109/ICCV.2015.384. URL https://doi.org/10.1109/ICCV.2015.384.

10

https://aws.amazon.com/comprehend
https://labs.everypixel.com/api
https://cloud.google.com/natural-language
https://cloud.google.com/vision
 https://www.ibm.com/cloud/watson-natural-language-understanding
https://global.xfyun.cn/products/wordRecg
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision
https://github.com/PaddlePaddle/PaddleOCR
https://github.com/PaddlePaddle/PaddleOCR
https://tfhub.dev/google/openimages_v4/ssd/mobilenet_v2/1
https://tfhub.dev/google/openimages_v4/ssd/mobilenet_v2/1
https://github.com/explosion/spaCy
https://github.com/explosion/spaCy
https://intl.cloud.tencent.com/product/ocr
https://github.com/zjy-ucas/ChineseNER/tree/master/data
https://github.com/zjy-ucas/ChineseNER/tree/master/data
https://doi.org/10.1016/j.cor.2004.09.016
https://doi.org/10.1007/s10589-018-9988-z
https://doi.org/10.1007/s10589-018-9988-z
https://www.aclweb.org/anthology/W13-3802/
https://www.aclweb.org/anthology/W13-3802/
http://proceedings.mlr.press/v81/buolamwini18a.html
https://doi.org/10.1109/ICCV.2015.384


Under review as a conference paper at ICLR 2022

Guibin Chen, Deheng Ye, Zhenchang Xing, Jieshan Chen, and Erik Cambria. Ensemble appli-
cation of convolutional and recurrent neural networks for multi-label text categorization. In
2017 International Joint Conference on Neural Networks, IJCNN 2017, Anchorage, AK, USA,
May 14-19, 2017, pp. 2377–2383. IEEE, 2017. doi: 10.1109/IJCNN.2017.7966144. URL
https://doi.org/10.1109/IJCNN.2017.7966144.

Lingjiao Chen, Matei Zaharia, and James Y. Zou. Frugalml: How to use ML prediction apis more
accurately and cheaply. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020.

Xuan Chen, JunHao Liew, Wei Xiong, Chee-Kong Chui, and Sim Heng Ong. Focus, segment and
erase: An efficient network for multi-label brain tumor segmentation. In Vittorio Ferrari, Mar-
tial Hebert, Cristian Sminchisescu, and Yair Weiss (eds.), Computer Vision - ECCV 2018 - 15th
European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part XIII, vol-
ume 11217 of Lecture Notes in Computer Science, pp. 674–689. Springer, 2018. doi: 10.1007/
978-3-030-01261-8\_40. URL https://doi.org/10.1007/978-3-030-01261-8_
40.

Alex G. C. de Sá, Gisele L. Pappa, and Alex A. Freitas. Towards a method for automatically
selecting and configuring multi-label classification algorithms. In Proceedings of the Genetic
and Evolutionary Computation Conference Companion, GECCO ’17, pp. 11251132, New York,
NY, USA, 2017. Association for Computing Machinery. ISBN 9781450349390. doi: 10.1145/
3067695.3082053. URL https://doi.org/10.1145/3067695.3082053.

Nikhil R. Devanur and Thomas P. Hayes. The adwords problem: Online keyword matching with
budgeted bidders under random permutations. In Proceedings of the 10th ACM Conference on
Electronic Commerce, EC ’09, pp. 7178, New York, NY, USA, 2009. Association for Computing
Machinery. ISBN 9781605584584. doi: 10.1145/1566374.1566384. URL https://doi.
org/10.1145/1566374.1566384.

Nikhil R. Devanur and Thomas P. Hayes. Near optimal online algorithms and fast approximation
algorithms for resource allocation problems. J. ACM, 66(1), January 2019. ISSN 0004-5411. doi:
10.1145/3284177. URL https://doi.org/10.1145/3284177.

Yuning Du, Chenxia Li, Ruoyu Guo, Xiaoting Yin, Weiwei Liu, Jun Zhou, Yifan Bai, Zilin Yu,
Yehua Yang, Qingqing Dang, and Haoshuang Wang. PP-OCR: A practical ultra lightweight OCR
system. CoRR, abs/2009.09941, 2020. URL https://arxiv.org/abs/2009.09941.

Mark Everingham, S. M. Ali Eslami, Luc Van Gool, Christopher K. I. Williams, John M. Winn, and
Andrew Zisserman. The pascal visual object classes challenge: A retrospective. Int. J. Comput.
Vis., 111(1):98–136, 2015. doi: 10.1007/s11263-014-0733-5. URL https://doi.org/10.
1007/s11263-014-0733-5.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank
Hutter. Efficient and robust automated machine learning. In C. Cortes, N. D. Lawrence, D. D.
Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Processing Systems 28,
pp. 2962–2970. Curran Associates, Inc., 2015.

Mengchao He, Yuliang Liu, Zhibo Yang, Sheng Zhang, Canjie Luo, Feiyu Gao, Qi Zheng, Yongpan
Wang, Xin Zhang, and Lianwen Jin. ICPR2018 contest on robust reading for multi-type web
images. In 24th International Conference on Pattern Recognition, ICPR 2018, Beijing, China,
August 20-24, 2018, pp. 7–12. IEEE Computer Society, 2018. doi: 10.1109/ICPR.2018.8546143.
URL https://doi.org/10.1109/ICPR.2018.8546143.

Hossein Hosseini, Baicen Xiao, and Radha Poovendran. Google’s cloud vision API is not robust
to noise. In Xuewen Chen, Bo Luo, Feng Luo, Vasile Palade, and M. Arif Wani (eds.), 16th
IEEE International Conference on Machine Learning and Applications, ICMLA 2017, Cancun,
Mexico, December 18-21, 2017, pp. 101–105. IEEE, 2017. doi: 10.1109/ICMLA.2017.0-172.
URL https://doi.org/10.1109/ICMLA.2017.0-172.

11

https://doi.org/10.1109/IJCNN.2017.7966144
https://doi.org/10.1007/978-3-030-01261-8_40
https://doi.org/10.1007/978-3-030-01261-8_40
https://doi.org/10.1145/3067695.3082053
https://doi.org/10.1145/1566374.1566384
https://doi.org/10.1145/1566374.1566384
https://doi.org/10.1145/3284177
https://arxiv.org/abs/2009.09941
https://doi.org/10.1007/s11263-014-0733-5
https://doi.org/10.1007/s11263-014-0733-5
https://doi.org/10.1109/ICPR.2018.8546143
https://doi.org/10.1109/ICMLA.2017.0-172


Under review as a conference paper at ICLR 2022

Hossein Hosseini, Baicen Xiao, and Radha Poovendran. Studying the live cross-platform circulation
of images with computer vision API: An experiment based on a sports media event. International
Journal of Communication, 13:1825–1845, 2019.

Mark J. Huiskes and Michael S. Lew. The MIR flickr retrieval evaluation. In Michael S. Lew,
Alberto Del Bimbo, and Erwin M. Bakker (eds.), Proceedings of the 1st ACM SIGMM Interna-
tional Conference on Multimedia Information Retrieval, MIR 2008, Vancouver, British Columbia,
Canada, October 30-31, 2008, pp. 39–43. ACM, 2008. doi: 10.1145/1460096.1460104. URL
https://doi.org/10.1145/1460096.1460104.

Allison Koenecke, Andrew Nam, Emily Lake, Joe Nudell, Minnie Quartey, Zion Mengesha,
Connor Toups, John R. Rickford, Dan Jurafsky, and Sharad Goel. Racial disparities in au-
tomated speech recognition. Proc. Natl. Acad. Sci. USA, 117(14):7684–7689, 2020. doi:
10.1073/pnas.1915768117. URL https://doi.org/10.1073/pnas.1915768117.

Pulkit Kumar, Monika Grewal, and Muktabh Mayank Srivastava. Boosted cascaded convnets for
multilabel classification of thoracic diseases in chest radiographs. In Aurélio Campilho, Fakhri
Karray, and Bart M. ter Haar Romeny (eds.), Image Analysis and Recognition - 15th Interna-
tional Conference, ICIAR 2018, Póvoa de Varzim, Portugal, June 27-29, 2018, Proceedings, vol-
ume 10882 of Lecture Notes in Computer Science, pp. 546–552. Springer, 2018. doi: 10.1007/
978-3-319-93000-8\_62. URL https://doi.org/10.1007/978-3-319-93000-8_
62.

Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper R. R. Uijlings, Ivan Krasin, Jordi Pont-Tuset,
Shahab Kamali, Stefan Popov, Matteo Malloci, Alexander Kolesnikov, Tom Duerig, and Vittorio
Ferrari. The open images dataset V4. Int. J. Comput. Vis., 128(7):1956–1981, 2020. doi: 10.1007/
s11263-020-01316-z. URL https://doi.org/10.1007/s11263-020-01316-z.

Chen Lee, John P. Lehoczky, Ragunathan Rajkumar, and Daniel P. Siewiorek. On quality of service
optimization with discrete qos options. In Proceedings of the Fifth IEEE Real-Time Technology
and Applications Symposium, RTAS’99, Vancouver, British Columbia, Canada, June 2-4, 1999,
pp. 276. IEEE Computer Society, 1999. doi: 10.1109/RTTAS.1999.777680. URL https://
doi.org/10.1109/RTTAS.1999.777680.

Xiaocheng Li, Chunlin Sun, and Yinyu Ye. Simple and fast algorithm for binary integer and online
linear programming. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
6abba5d8ab1f4f32243e174beb754661-Abstract.html.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Pi-
otr Dollár, and C. Lawrence Zitnick. Microsoft COCO: common objects in context. In David J.
Fleet, Tomás Pajdla, Bernt Schiele, and Tinne Tuytelaars (eds.), Computer Vision - ECCV 2014 -
13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V, vol-
ume 8693 of Lecture Notes in Computer Science, pp. 740–755. Springer, 2014. doi: 10.1007/
978-3-319-10602-1\_48. URL https://doi.org/10.1007/978-3-319-10602-1_
48.

Han Liu, Pete Burnap, Wafa Alorainy, and Matthew L. Williams. Fuzzy multi-task learning for
hate speech type identification. In Ling Liu, Ryen W. White, Amin Mantrach, Fabrizio Silvestri,
Julian J. McAuley, Ricardo Baeza-Yates, and Leila Zia (eds.), The World Wide Web Conference,
WWW 2019, San Francisco, CA, USA, May 13-17, 2019, pp. 3006–3012. ACM, 2019. doi: 10.
1145/3308558.3313546. URL https://doi.org/10.1145/3308558.3313546.

Hector Mendoza, Aaron Klein, Matthias Feurer, Jost Tobias Springenberg, Matthias Urban, Michael
Burkart, Maximilian Dippel, Marius Lindauer, and Frank Hutter. Towards automatically-tuned
deep neural networks. In Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren (eds.), Auto-
mated Machine Learning - Methods, Systems, Challenges, The Springer Series on Challenges
in Machine Learning, pp. 135–149. Springer, 2019. doi: 10.1007/978-3-030-05318-5\_7. URL
https://doi.org/10.1007/978-3-030-05318-5_7.

12

https://doi.org/10.1145/1460096.1460104
https://doi.org/10.1073/pnas.1915768117
https://doi.org/10.1007/978-3-319-93000-8_62
https://doi.org/10.1007/978-3-319-93000-8_62
https://doi.org/10.1007/s11263-020-01316-z
https://doi.org/10.1109/RTTAS.1999.777680
https://doi.org/10.1109/RTTAS.1999.777680
https://proceedings.neurips.cc/paper/2020/hash/6abba5d8ab1f4f32243e174beb754661-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6abba5d8ab1f4f32243e174beb754661-Abstract.html
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1145/3308558.3313546
https://doi.org/10.1007/978-3-030-05318-5_7


Under review as a conference paper at ICLR 2022

Jose M. Moyano, Eva Lucrecia Gibaja Galindo, Krzysztof J. Cios, and Sebastián Ventura. Review
of ensembles of multi-label classifiers: Models, experimental study and prospects. Inf. Fusion,
44:33–45, 2018. doi: 10.1016/j.inffus.2017.12.001. URL https://doi.org/10.1016/j.
inffus.2017.12.001.

Arjun Pakrashi and Brian Mac Namee. Cascademl: An automatic neural network architecture evo-
lution and training algorithm for multi-label classification (best technical paper). In Max Bramer
and Miltos Petridis (eds.), Artificial Intelligence XXXVI - 39th SGAI International Conference
on Artificial Intelligence, AI 2019, Cambridge, UK, December 17-19, 2019, Proceedings, vol-
ume 11927 of Lecture Notes in Computer Science, pp. 3–17. Springer, 2019. doi: 10.1007/
978-3-030-34885-4\_1. URL https://doi.org/10.1007/978-3-030-34885-4_1.

(S. Martello Pamela H. Vance and P. Toth). Knapsack problems: Algorithms and computer im-
plementations. SIAM Rev., 35(4):684–685, 1993. doi: 10.1137/1035174. URL https:
//doi.org/10.1137/1035174.

Jesse Read, Bernhard Pfahringer, and Geoffrey Holmes. Multi-label classification using ensembles
of pruned sets. In Proceedings of the 8th IEEE International Conference on Data Mining (ICDM
2008), December 15-19, 2008, Pisa, Italy, pp. 995–1000. IEEE Computer Society, 2008. doi:
10.1109/ICDM.2008.74. URL https://doi.org/10.1109/ICDM.2008.74.

Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. Classifier chains for multi-label
classification. Mach. Learn., 85(3):333–359, 2011. doi: 10.1007/s10994-011-5256-5. URL
https://doi.org/10.1007/s10994-011-5256-5.

Arsénio Reis, Dennis Paulino, Vítor Filipe, and João Barroso. Using online artificial vision ser-
vices to assist the blind - an assessment of microsoft cognitive services and google cloud vi-
sion. In Álvaro Rocha, Hojjat Adeli, Luís Paulo Reis, and Sandra Costanzo (eds.), Trends and
Advances in Information Systems and Technologies - Volume 2 [WorldCIST’18, Naples, Italy,
March 27-29, 2018], volume 746 of Advances in Intelligent Systems and Computing, pp. 174–
184. Springer, 2018. doi: 10.1007/978-3-319-77712-2\_17. URL https://doi.org/10.
1007/978-3-319-77712-2_17.

Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the conll-2003 shared task: Language-
independent named entity recognition. In Walter Daelemans and Miles Osborne (eds.), Proceed-
ings of the Seventh Conference on Natural Language Learning, CoNLL 2003, Held in cooperation
with HLT-NAACL 2003, Edmonton, Canada, May 31 - June 1, 2003, pp. 142–147. ACL, 2003.
URL https://www.aclweb.org/anthology/W03-0419/.

Prabhakant Sinha and Andris A. Zoltners. The multiple-choice knapsack problem. Oper. Res., 27
(3):503–515, 1979. doi: 10.1287/opre.27.3.503. URL https://doi.org/10.1287/opre.
27.3.503.

Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deep convolutional network cascade for facial point
detection. In 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR,
USA, June 23-28, 2013, pp. 3476–3483. IEEE Computer Society, 2013. doi: 10.1109/CVPR.
2013.446.

Yipeng Sun, Dimosthenis Karatzas, Chee Seng Chan, Lianwen Jin, Zihan Ni, Chee Kheng Chng,
Yuliang Liu, Canjie Luo, Chun Chet Ng, Junyu Han, Errui Ding, and Jingtuo Liu. ICDAR 2019
competition on large-scale street view text with partial labeling - RRC-LSVT. In 2019 Inter-
national Conference on Document Analysis and Recognition, ICDAR 2019, Sydney, Australia,
September 20-25, 2019, pp. 1557–1562. IEEE, 2019. doi: 10.1109/ICDAR.2019.00250. URL
https://doi.org/10.1109/ICDAR.2019.00250.

Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Auto-weka: Com-
bined selection and hyperparameter optimization of classification algorithms. In Proceedings
of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD ’13, pp. 847855, New York, NY, USA, 2013. Association for Computing Machin-
ery. ISBN 9781450321747. doi: 10.1145/2487575.2487629. URL https://doi.org/10.
1145/2487575.2487629.

13

https://doi.org/10.1016/j.inffus.2017.12.001
https://doi.org/10.1016/j.inffus.2017.12.001
https://doi.org/10.1007/978-3-030-34885-4_1
https://doi.org/10.1137/1035174
https://doi.org/10.1137/1035174
https://doi.org/10.1109/ICDM.2008.74
https://doi.org/10.1007/s10994-011-5256-5
https://doi.org/10.1007/978-3-319-77712-2_17
https://doi.org/10.1007/978-3-319-77712-2_17
https://www.aclweb.org/anthology/W03-0419/
https://doi.org/10.1287/opre.27.3.503
https://doi.org/10.1287/opre.27.3.503
https://doi.org/10.1109/ICDAR.2019.00250
https://doi.org/10.1145/2487575.2487629
https://doi.org/10.1145/2487575.2487629


Under review as a conference paper at ICLR 2022

Grigorios Tsoumakas and Ioannis P. Vlahavas. Random k -labelsets: An ensemble method for
multilabel classification. In Joost N. Kok, Jacek Koronacki, Ramón López de Mántaras, Stan
Matwin, Dunja Mladenic, and Andrzej Skowron (eds.), Machine Learning: ECML 2007, 18th
European Conference on Machine Learning, Warsaw, Poland, September 17-21, 2007, Proceed-
ings, volume 4701 of Lecture Notes in Computer Science, pp. 406–417. Springer, 2007. doi:
10.1007/978-3-540-74958-5\_38.

Paul Viola and Michael Jones. Robust real-time object detection. In International Journal of Com-
puter Vision, 2001a.

Paul A. Viola and Michael J. Jones. Fast and robust classification using asymmetric adaboost and
a detector cascade. In Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani (eds.),
Advances in Neural Information Processing Systems 14 [Neural Information Processing Systems:
Natural and Synthetic, NIPS 2001, December 3-8, 2001, Vancouver, British Columbia, Canada],
pp. 1311–1318. MIT Press, 2001b.

Lidan Wang, Jimmy J. Lin, and Donald Metzler. A cascade ranking model for efficient ranked
retrieval. In Wei-Ying Ma, Jian-Yun Nie, Ricardo Baeza-Yates, Tat-Seng Chua, and W. Bruce
Croft (eds.), Proceeding of the 34th International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, SIGIR 2011, Beijing, China, July 25-29, 2011, pp. 105–
114. ACM, 2011. doi: 10.1145/2009916.2009934. URL https://doi.org/10.1145/
2009916.2009934.

R. Weischedel, E. Hovy, M. Marcus, and Martha Palmer. Ontonotes : A large training corpus for
enhanced processing. 2017.

Marcel Wever, Alexander Tornede, Felix Mohr, and Eyke Hüllermeier. Automl for multi-label
classification: Overview and empirical evaluation. IEEE Trans. Pattern Anal. Mach. Intell., 43
(9):3037–3054, 2021. doi: 10.1109/TPAMI.2021.3051276. URL https://doi.org/10.
1109/TPAMI.2021.3051276.

Xin-Shun Xu, Yuan Jiang, Liang Peng, Xiangyang Xue, and Zhi-Hua Zhou. Ensemble approach
based on conditional random field for multi-label image and video annotation. In K. Selçuk
Candan, Sethuraman Panchanathan, Balakrishnan Prabhakaran, Hari Sundaram, Wu-chi Feng,
and Nicu Sebe (eds.), Proceedings of the 19th International Conference on Multimedia 2011,
Scottsdale, AZ, USA, November 28 - December 1, 2011, pp. 1377–1380. ACM, 2011. doi: 10.
1145/2072298.2072019. URL https://doi.org/10.1145/2072298.2072019.

Zhixiang Eddie Xu, Matt J. Kusner, Kilian Q. Weinberger, Minmin Chen, and Olivier Chapelle.
Classifier cascades and trees for minimizing feature evaluation cost. J. Mach. Learn. Res., 15(1):
2113–2144, 2014. URL http://dl.acm.org/citation.cfm?id=2670319.

Yuanshun Yao, Zhujun Xiao, Bolun Wang, Bimal Viswanath, Haitao Zheng, and Ben Y. Zhao.
Complexity vs. performance: empirical analysis of machine learning as a service. In Steve
Uhlig and Olaf Maennel (eds.), Proceedings of the 2017 Internet Measurement Conference,
IMC 2017, London, United Kingdom, November 1-3, 2017, pp. 384–397. ACM, 2017. doi:
10.1145/3131365.3131372. URL https://doi.org/10.1145/3131365.3131372.

Min-Ling Zhang and Zhi-Hua Zhou. A review on multi-label learning algorithms. IEEE Trans.
Knowl. Data Eng., 26(8):1819–1837, 2014. doi: 10.1109/TKDE.2013.39. URL https://doi.
org/10.1109/TKDE.2013.39.

Rui Zhang, Mingkun Yang, Xiang Bai, Baoguang Shi, Dimosthenis Karatzas, Shijian Lu, C. V.
Jawahar, Yongsheng Zhou, Qianyi Jiang, Qi Song, Nan Li, Kai Zhou, Lei Wang, Dong Wang,
and Minghui Liao. ICDAR 2019 robust reading challenge on reading chinese text on signboard.
In 2019 International Conference on Document Analysis and Recognition, ICDAR 2019, Sydney,
Australia, September 20-25, 2019, pp. 1577–1581. IEEE, 2019. doi: 10.1109/ICDAR.2019.00253.
URL https://doi.org/10.1109/ICDAR.2019.00253.

Yunhong Zhou and Victor Naroditskiy. Algorithm for stochastic multiple-choice knapsack prob-
lem and application to keywords bidding. In Proceedings of the 17th International Confer-
ence on World Wide Web, WWW ’08, pp. 11751176, New York, NY, USA, 2008. Associa-
tion for Computing Machinery. ISBN 9781605580852. doi: 10.1145/1367497.1367713. URL
https://doi.org/10.1145/1367497.1367713.

14

https://doi.org/10.1145/2009916.2009934
https://doi.org/10.1145/2009916.2009934
https://doi.org/10.1109/TPAMI.2021.3051276
https://doi.org/10.1109/TPAMI.2021.3051276
https://doi.org/10.1145/2072298.2072019
http://dl.acm.org/citation.cfm?id=2670319
https://doi.org/10.1145/3131365.3131372
https://doi.org/10.1109/TKDE.2013.39
https://doi.org/10.1109/TKDE.2013.39
https://doi.org/10.1109/ICDAR.2019.00253
https://doi.org/10.1145/1367497.1367713

