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Abstract

Recent developments in large speech foun-001
dation models like Whisper have led to their002
widespread use in many automatic speech003
recognition (ASR) applications. These sys-004
tems incorporate ‘special tokens’ in their vo-005
cabulary, such as <|endoftext|>, to guide006
their language generation process. How-007
ever, we demonstrate that these tokens can008
be exploited by adversarial attacks to ma-009
nipulate the model’s behavior. We pro-010
pose a simple yet effective method to learn011
a universal acoustic realization of Whis-012
per’s <|endoftext|> token, which, when013
prepended to any speech signal, encour-014
ages the model to ignore the speech and015
only transcribe the special token, effec-016
tively ‘muting’ the model. Our experiments017
demonstrate that the same, universal 0.64-018
second adversarial audio segment can suc-019
cessfully mute a target Whisper ASR model020
for over 97% of speech samples. Moreover,021
we find that this universal adversarial audio022
segment often transfers to new datasets and023
tasks. Overall this work demonstrates the024
vulnerability of Whisper models to ‘muting’025
adversarial attacks, where such attacks can026
pose both risks and potential benefits in027
real-world settings: for example the attack028
can be used to bypass speech moderation029
systems, or conversely the attack can also030
be used to protect private speech data. 1031

1 Introduction032

The development of large foundation models033

has led to rapid advancements in audio process-034

ing, where for example some of the most popu-035

lar models are of the Whisper family (Radford036

et al., 2022). To guide the generation of natu-037

ral language, foundation models typically make038

use of ‘special’ tokens in their vocabulary that039

1The code is available at: Zip file attached to sub-
mission.

do not exist as real text or real acoustic events. 040

As an example, most auto-regressive founda- 041

tion models will have some form of a <start> 042

token and an <end> token to indicate when 043

to begin generating the output sequence and 044

when to stop. However, we demonstrate that 045

despite their need, these ‘special’ tokens can be 046

exploited by adversaries to make foundational 047

models behave in undesired manners. Specif- 048

ically, we show that the <endoftext> special 049

token can be exploited by adversaries to pre- 050

vent an Automatic Speech Recognition (ASR) 051

model, such as Whisper, from transcribing the 052

source audio, i.e., ‘muting’ the model. 053

Our proposed acoustic adversarial attack 054

method is designed to ‘mute’ Whisper, by learn- 055

ing an extremely short (0.64-second) adversar- 056

ial acoustic realization of the <endoftext> spe- 057

cial token (used by Whisper), where the learnt 058

adversarial audio segment can be prepended to 059

the target speech signal. Furthermore, our pro- 060

posed method gives a universal adversarial au- 061

dio segment, which allows the same 0.64-second 062

adversarial audio segment to be prepended to 063

any speech signal, and conceal its contents from 064

the ASR system, as depicted in Figure 1. 065

Our experiments, conducted across eight dif- 066

ferent Whisper ASR models, demonstrate that 067

the same universal 0.64-second adversarial au- 068

dio segment can successfully ‘mute’ Whisper 069

models for more than 97% of unseen speech 070

samples. We further find that there is a sur- 071

prising level of transferability of this universal 072

adversarial audio segment to different speech 073

domains (we consider four diverse datasets) 074

and can even transfer to different tasks - the 075

adversarial audio segment can ‘mute’ Whisper 076

when used for speech translation as well as 077

transcription. Muting Whisper has significant 078

implications in high stakes settings. Automatic 079

speech recognition (ASR) systems play a cru- 080
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Figure 1: Universal adversarial audio segment when prepended to any speech signal mutes Whisper, such
that an empty transcription is generated. The <endoftext> token (EOT ) is a special token in the Whisper
vocabulary used to indicate the end of the generated transcription.

cial role in detecting and moderating harmful081

content such as hate speech (MacAvaney et al.,082

2019) in audio or video recordings (Wu and083

Bhandary, 2020). Muting Whisper poses a084

risk of circumventing this moderation process.085

Adversaries could exploit this vulnerability to086

release harmful content to the public audience087

without detection. Nevertheless, muting Whis-088

per also has potential positive implications for089

speech privacy protection (Cheng et al., 2024).090

In contexts where speech recordings are trans-091

mitted over a network, malicious actors may092

attempt to extract private data through auto-093

mated transcription. In such cases, our pro-094

posed method of muting Whisper could serve as095

a form of speech privacy protection, similar to096

a ‘jamming’ signal. Overall, this work demon-097

strates the vulnerability of Whisper models098

to muting adversarial attacks, which can have099

negative or positive implications.100

2 Related Work101

Audio Attacks (early research). Initial102

research (Gong and Poellabauer, 2017; Cisse103

et al., 2017) explored gradient-based ap-104

proaches to perturb the input audio to end-105

to-end ASR systems (specifically WaveCNN106

and HMM-DNN architectures) with the objec-107

tive of increasing the word error rate (WER) of108

the generated transcriptions. However, Yuan109

et al. (2018); Carlini and Wagner (2018); Das110

et al. (2018); Qin et al. (2019) offer methods to111

perform targeted attacks on ASR systems, such112

as DeepSpeech, HMM-DNN and LSTM-based113

neural networks, where the aim was to gener-114

ate a specific output transcription. Other re-115

search (Schönherr et al., 2018; Schönherr et al.,116

2018) modified audio adversarial attack meth-117

ods to better encourage their imperceptibility.118

Practical Audio Attacks. Neekhara et al.119

(2019) demonstrate that they can generate uni-120

versal adversarial perturbations such that the 121

same adversarial audio segment can be super- 122

imposed on different speech signals. However, 123

these attack approaches cannot be applied to 124

streaming ASR systems, as they have to be 125

superimposed on the entire speech signal, so 126

Li et al. (2020) attempted to address this is- 127

sue by generating universal adversarial per- 128

turbations that do not need to be synchro- 129

nised with the source speech signal (the carrier 130

audio) when being superimposed. Lu et al. 131

(2021) extended the targeted universal adver- 132

sarial attacks to more recent end-to-end ASR 133

systems including LAS, CTC and RNN-T. Fur- 134

ther, a range of other creative approaches have 135

been proposed for generating audio adversarial 136

samples in practical settings: transferability 137

from substitute models (Chen et al., 2020; Fan 138

et al., 2020; Ma et al., 2021); evolutionary at- 139

tacks (Alzantot et al., 2018; Khare et al., 2019; 140

Taori et al., 2019; Du et al., 2019; Zheng et al., 141

2021); utterance-based attacks (Raina et al., 142

2020); and featurization attacks (Carlini et al., 143

2016; Zhang et al., 2017; Abdullah et al., 2019). 144

Attacks on Whisper. All of the above- 145

mentioned methods are designed for traditional 146

ASR systems. The recent emergence of a pow- 147

erful foundation model (Whisper) demands an 148

update to previously developed attack methods. 149

Olivier and Raj (2023) perform an initial in- 150

vestigation into the vulnerabilities of Whisper 151

to audio adversarial attacks, where they show 152

that an adversarial signal can be superimposed 153

on natural speech signals such that Whisper 154

transcribes incorrectly. 155

Our Contributions. We extend the re- 156

search on adversarial attacks for modern ASR 157

systems such as Whisper, by outlining a 158

method to develop a truly practical and ef- 159

fective adversarial attack with a real-world tar- 160

geted objective. Specifically, this work makes 161
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the following contributions:162

• We develop a short (0.64-second) adversarial163

audio segment that can be prepended to164

a speech signal. Existing research tends165

to consider superimposing the adversarial166

audio signal, which is not a practical setting167

for real-world attacks.168

• Our adversarial audio segment is universal,169

so the same audio segment can be prepended170

to any speech signal.171

• Our attack works for a popular, modern and172

powerful ASR system: Whisper family of173

models.174

• The objective of our attack is specifically175

to mute the Whisper model; a targeted ob-176

jective not before considered and with real-177

world implications in privacy and security.178

• Our universal adversarial acoustic attack179

segment transfers across data domains and180

even speech processing tasks.181

3 Speech Processing: Whisper182

Continuous-time speech is sampled such that183

the audio can be represented as a sequence184

of samples, x = x1:N . An Automatic Speech185

Recognition (ASR) system maps this sampled186

speech/audio signal, x, to the text, y = y1:M187

uttered in the speech signal - this is the tran-188

scription of the audio with M words/tokens.189

Whisper’s encoder-decoder architecture, F(·)190

with parameters θ auto-regressively predicts a191

vector representing the probability distribution192

over the vocabulary of tokens, V, for the next193

token ym, with the speech, x = x1:N at the en-194

coder input and the previously decoded tokens,195

y∗
<m at the decoder input,196

P (ym = y|x, y∗
<m) = F(x, y∗

<m; θ)y, y ∈ V,
(1)197

where typically a greedy decoding process se-198

lects the most likely token to generate,199

y∗
m = arg max

y
P (ym = y|x, y∗

<m). (2)200

During the decoding process various spe-201

cial tokens are used by the Whisper model202

to guide the token generation. The first203

token (input to the decoder) is set as204

<|startoftranscript|>, followed by a to-205

ken to indicate the language, for example206

<en> for English. As the Whisper model is 207

trained to perform two different speech pro- 208

cessing tasks (transcription and speech trans- 209

lation), the next token is used to indicate the 210

task, e.g., <|transcribe|> or <|translate|>. 211

Hence we define y∗
0 = <|startoftranscript|> 212

<lang tag> <|task tag|> 2. With this ini- 213

tialization, further tokens are generated auto- 214

regressively from the vocabulary, V follow- 215

ing Equation 1 and Equation 2. The 216

auto-regressive decoding ends when the 217

<|endoftext|> special token is predicted. 218

4 Universal Prepend Attack 219

4.1 Attack Objective 220

In this section we propose a practical and effec- 221

tive approach for an adversary to modify any in- 222

put speech signal in a manner that results in the 223

Whisper model being muted (transcribing noth- 224

ing), without the speech audio sounding obvi- 225

ously manipulated to human listeners. The ob- 226

jective of muting Whisper is equivalent to max- 227

imizing the probability of the model predicting, 228

y1 as the <|endoftext|> special token. Recall 229

that the decoder is initialized with a sequence of 230

special tokens, y∗
0 = <|startoftranscript|> 231

<lang tag> <|task tag|>. 232

4.2 Prepend Attack 233

To perturb a speech signal, x = x1:N , it is 234

simplest to prepend a short, adversarial audio 235

segment of T frames, x̃ = x̃1:T , such that the 236

perturbed speech signal is x̃ ⊕ x, where ⊕ rep- 237

resents concatenation in the raw audio space. 238

Then, given Whisper’s encoder-decoder model 239

in Equation 1, the optimal adversarial audio 240

segment, ˆ̃x, to ‘mute’ Whisper as per the ad- 241

versarial objective, can be given as finding the 242

adversarial audio segment that maximizes the 243

probability of generating the <|endoftext|> 244

special token (abbreviated to eot) as the first 245

transcribed token, 246

ˆ̃x = arg max
x̃

P (y1 = eot|x̃ ⊕ x, y∗
0). (3) 247

4.3 Universal Attack 248

Learning an adversarial audio segment, ˆ̃x that 249

can be prepended to a speech signal, x to con- 250

ceal its contents from a Whisper ASR model, 251

2Note that for the English-only variant of Whisper
models, y∗

0 = <|startoftranscript|>
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cannot be achieved in real-time (as the attack252

segment has to be prepended before the speech253

is generated) and requires computational re-254

sources. Therefore, it is not practical to learn255

an individual adversarial audio segment ˆ̃x(j) to256

conceal the contents of each different speech257

signal, x(j). Hence, we propose learning a uni-258

versal adversarial audio segment that is agnos-259

tic to any speech signal. For a training dataset260

of J speech samples {x(j)}J
j=1, the universal261

prepend attack aims to maximise the likeli-262

hood of predicting y1 = <|endoftext|> over263

all training samples,264

ˆ̃x = arg max
x̃

J∏
j=1

P (y1 = eot|x̃ ⊕ x(j), y∗
0). (4)265

As the Whisper encoder-decoder model is fully266

differentiable, standard gradient-based train-267

ing approaches can then be used to optimize268

for the universal adversarial audio segment,269
ˆ̃x. This universal adversarial audio segment270

‘mutes’ Whisper when prepended to any speech271

signal and is thus effectively an acoustic real-272

ization of the <|endoftext|> special token.273

4.4 Imperceptibility274

For a truly practical adversarial attack, it is im-275

portant for the adversarial audio segment gen-276

erated to be sufficiently imperceptible such that277

it is not flagged as suspicious when prepended278

to natural speech signals. We achieve this im-279

perceptibility in two dimensions. First, we280

ensure that the adversarial audio segment is281

extremely short such that there is little time for282

a human listener to detect the abnormal speech.283

We specifically limit the number of frames in284

the adversarial audio segment to T = 10240,285

which corresponds to 0.64-seconds of audio for286

a 16kHz sampling frequency. Next, we limit287

the ‘power’ of the adversarial audio segment,288

to ensure the amplitude of the adversarial au-289

dio segment is not significant relative to natu-290

ral speech. To limit the power, we introduce291

a constraint in the optimization objective of292

Equation 4 that limits the amplitude of the293

adversarial audio,294

||ˆ̃x1:T ||∞ ≤ ϵ, (5)295

where || · ||∞ represents the l-infinity norm. By296

default we set ϵ = 0.02, as on the log-mel scale297

this empirically represents audio signals with298

power lower than typical human speech signals 299

(refer to Figure 2). The l-infinity norm con- 300

straint is incorporated during gradient-based 301

learning of the adversarial audio segment ˆ̃x, 302

by clamping the values at ϵ. 3 Note that in 303

practical settings it may be undesirable to have 304

extremely low values for ϵ, as the adversarial 305

audio segment may then be contaminated by 306

low-amplitude background noise. 307

5 Muting Attack Evaluation 308

5.1 Attack Performance Evaluation 309

For a learnt universal acoustic adversarial seg- 310

ment trained to maximize the probability of the 311

Whisper model generating the <|endoftext|> 312

special token as its first token for any speech 313

signal, as per Equation 4, we can evaluate the 314

performance of the adversarial attack by com- 315

puting the percentage of unseen test speech 316

signals, ∅, for which the attack is able to suc- 317

cessfully ‘mute’ the Whisper model, 318

∅ = 1
J

∑
j

1{ỹ
∗(j)
1 = eot} × 100%, (6) 319

ỹ
∗(j)
1 = arg max

y
P (y1 = y|ˆ̃x ⊕ x(j), y∗

0), 320

where ỹ∗
1 = <eot> means that the transcribed 321

sequence has 0 words, i.e., a perfectly successful 322

attack. Hence, the larger the value of ∅, ap- 323

proaching 100%, the more effective the acoustic 324

adversarial attack. A further useful metric to 325

gauge the extent to which a universal attack is 326

able to ‘mute’ the Whisper model, is the ‘av- 327

erage sequence length’ (asl) of the predicted 328

transcription, 329

asl = 1
J

∑
j

len(ỹ∗(j)), (7) 330

where len(·) gives the number of words in the 331

transcribed sequence. The lower the value of 332

asl, the more effective the adversarial attack. 333

5.2 Adversarial Sensitivity Analysis 334

Beyond simply measuring the success of the 335

acoustic adversarial attack in ‘muting’ an ASR 336

system, it is meaningful to analyze the mech- 337

anism of the attack that explains its success 338

and lack of success for specific speech signals. 339

3Clamping after each gradient update is typical in
Projected Gradient Descent (Madry et al., 2019).
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We can analyze the saliency of the input audio340

to determine the sensitivity of the Whisper’s341

predictions to different parts of the input au-342

dio. The frames in the input audio that the343

transcription is most sensitive to are the parts344

of the audio that dominate Whisper’s decisions.345

For a model, F(·) defined in Equation 1, we346

can define the m-th saliency of the universal347

adversarial audio segment, ˆ̃x, as the gradient348

of the m-th transcribed token, ỹ∗
m,349

s̃m =
∣∣∣∣∣∣∇ˆ̃x

[
F(ˆ̃x ⊕ x, y∗

<m; θ)ỹ∗
m

]∣∣∣∣∣∣
2

. (8)350

Equivalently we can define the saliency of the351

natural speech signal, x as,352

sm =
∣∣∣∣∣∣∇x

[
F(ˆ̃x ⊕ x, y∗

<m; θ)y∗
m

]∣∣∣∣∣∣
2

. (9)353

As we are interested primarily in the first gen-354

erated token, we set m = 1 in our analysis.355

6 Experiments356

6.1 Experimental Setup357

Data. Results are reported across five di-358

verse and popular speech recognition datasets:359

LibriSpeech (LBS) (Panayotov et al., 2015),360

TED-LIUM3 (TED) (Hernandez et al., 2018),361

MGB (Bell et al., 2015); Artie Bias362

(Artie) (Meyer et al., 2020) and Fleurs (Con-363

neau et al., 2022). Details for each dataset are364

provided in Section A.1. The universal acoustic365

attack segment is learnt using the development366

split of the LBS dataset. The attack is then367

evaluated on the LBS test split and to mea-368

sure the transferability of the attack it is also369

evaluated on the other datasets (TED-LIUM3,370

MGB and Artie Bias). The attack is evalu-371

ated for task transferability by also evaluating372

on speech transcription and speech translation373

tasks using the Fleurs dataset test splits.374

Models. Experimental results are given for375

the family of Whisper ASR models (Radford376

et al., 2023). Model details and their perfor-377

mance (Word Error Rate) on the datasets have378

been provided for reference in Appendix A.2.379

Attack Train Configuration. The univer-380

sal acoustic prepend attack segment is trained381

on the LibriSpeech development split. The382

attack segment is trained as per Equation 4,383

where it is prepended to speech samples in the384

raw audio space. The attack segment length is385

set to be 0.64 seconds and its maximum am- 386

plitude to ϵ = 0.02, to satisfy the constraint 387

of Equation 5. Further Hyperparameter set- 388

tings for training the universal acoustic attack 389

segment are given in Appendix A.3. 390

6.2 Results 391

Universal Acoustic Prepend Attack. 392

The universal prepend attack segment is 393

trained (on the LBS development split) to 394

make the ASR model generate only an 395

<|endoftext|> token, i.e. transcribe nothing. 396

Evaluating on the LBS test-split, Table 1 gives 397

the percentage of successful attacks, ∅ and 398

the average sequence length of predicted tran- 399

scriptions (asl) for the different target speech 400

recognition models with the same (per model) 401

trained 0.64-second universal acoustic adversar- 402

ial segment prepended to every speech sample. 403

A comparison is made to the no attack setting, 404

where the speech samples are not modified in 405

any manner. For every target Whisper model, 406

the universal acoustic prepend attack is ex- 407

tremely successful in ensuring the model does 408

not transcribe the speech signals, with the per- 409

centage of successful attacks increasing from 410

more than 97% for the medium models to 99.9% 411

for the tiny models. Similarly, in all cases the 412

asl is brought to less than 1.0, whereas for 413

the unattacked speech the transcriptions have 414

nearly 18 words on average. We also compare 415

to a random audio segment prepended to the 416

speech samples and we find that this behaves 417

identically to the no attack setting, i.e. a ran- 418

dom attack cannot ‘mute’ Whisper. Overall, 419

Table 1 shows that regardless of the model size, 420

a short 0.64-second universal acoustic adversar- 421

ial audio segment can be prepended (impercep- 422

tibly) to almost all speech signals to conceal 423

the contents from Whisper speech recognition 424

models. 425

Figure 2 gives the Mel-spectrogram of a ran- 426

dom speech sample from the LBS test set with 427

a 0.64-second universal acoustic adversarial seg- 428

ment prepended to the speech signal (learnt 429

for the medium.en model). This validates that 430

ϵ = 0.02 is an appropriate imperceptibility 431

setting as it ensures that the power of the ad- 432

versarial segment is always less than ∼ 1.50dB, 433

which is significantly lower than a typical hu- 434

man speech signal in the LBS dataset that can 435

range from 1dB to more than 3.5dB. It is in- 436
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Model Metric No Attack Attack

tiny.en ∅ (%) ↑ 0.0 99.7
asl ↓ 17.9 0.06

tiny ∅ (%) ↑ 0.0 99.6
asl ↓ 17.9 0.04

base.en ∅ (%) ↑ 0.0 99.0
asl ↓ 17.8 0.20

base ∅ (%) ↑ 0.0 99.5
asl ↓ 17.8 0.05

small.en ∅ (%) ↑ 0.0 98.6
asl ↓ 17.7 0.14

small ∅ (%) ↑ 0.0 98.7
asl ↓ 17.3 0.15

medium.en ∅ (%) ↑ 0.0 99.5
asl ↓ 17.7 0.10

medium ∅ (%) ↑ 0.0 97.8
asl ↓ 17.8 0.56

Table 1: The percentage of successfully ‘muted’
speech samples, ∅, where the first generated to-
ken is <|endoftext|>, and the Average Sequence
Length (asl) of transcriptions, for the LBS dataset.
Results are presented for no attack, and for a trained
(per model) universal acoustic adversarial attack,
where the same universal adversarial segment is
prepended to each speech sample.

teresting to note that the acoustic adversarial437

segment covers the full range of frequencies438

relatively uniformly, which means it is likely439

to sound similar to static noise to a human440

listener.441

Figure 2: Mel spectrogram of universal acoustic
segment (0.64s) prepended to a (truncated) random
speech sample from LBS dataset.

Attack Success Analysis. We now inves-442

tigate the < 3% speech samples for which the443

universal acoustic attack fails to perfectly mute444

the Whisper model, i.e., the generated tran-445

scription is not of zero-length. Table 2 gives446

the average sequence length (asl) evaluation of447

the generated transcripts for the failed attack448

samples (relative to the successful samples) for 449

LBS. Interestingly, when there is no adversarial 450

attack, the asl for the failed samples is 2 to 451

4 times greater than the average ∼17 words 452

in the successful samples’ transcriptions, sug- 453

gesting that the universal acoustic attack only 454

struggles to mute the ASR model for longer 455

input speech signals. Further, for these failed 456

samples, the attack is still able to reduce the 457

number of generated words significantly (at 458

least two-fold), highlighting that the attack is 459

still effective in muting the ASR model to some 460

extent, although not entirely. 461

Model Samples No Attack Attack

tiny successful 17.8 0.0
failed 74.6 11.0

medium successful 17.2 0.0
failed 43.2 25.0

Table 2: Average Sequence Length (asl) of gener-
ated transcripts for successful attack samples and
failed attack samples. A successful sample is where
the universal acoustic attack causes the Whisper
model to generate a zero-length transcription.

A natural follow-up question is then, in what 462

manner does the universal attack shorten the 463

generated transcripts for the failed samples, 464

i.e., is it simple truncation or is the model gen- 465

erating other tokens unrelated to the original 466

speech signal. Table 3 gives the breakdown 467

of the word error rate (WER) contributions 468

from insertions, deletions and substitutions for 469

the failed samples, where the word error rate 470

is computed between the predicted no attack 471

transcriptions and the predicted attack tran- 472

scriptions. We observe that the attack causes 473

no significant change in the transcriptions other 474

than deletions, demonstrating the attack is be- 475

having as desired in attempting to discourage 476

speech transcription. Overall, this analysis 477

shows that even for the few samples (< 3%) 478

that the universal attack is not able to perfectly 479

mute the ASR model, the attack is still able to 480

significantly reduce the transcription length. 481

Saliency Analysis. Section 5.2 describes 482

saliency as a tool to measure the sensitivity 483

of the ASR model to the adversarial and the 484

natural speech segments of the input audio. 485

The average saliencies for the LBS dataset are 486

given in Table 4, with a comparison for the 487

successful attack samples and the failed attack 488
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Model WER INS DEL SUB
tiny 88.38 0.36 85.40 2.29
medium 50.76 2.70 43.75 2.94

Table 3: Word Error Rate (WER) and breakdown
(insertions, deletions and substitutions) between
the transcript generated with no attack and the
transcript generated with the universal attack, for
the failed attack samples only. A failed sample
is where the universal attack is unable to make
Whisper generate a zero-length transcription.

samples. It is clear that a successful attack489

results in the ASR model being significantly490

more sensitive to the adversarial segment, and491

conversely more sensitive to the speech signal492

when the attack fails. This demonstrates that493

the universal acoustic attack is operating as494

intended, as a successful attack encourages the495

model to attend more to the acoustic realiza-496

tion of the <|endoftext|> special token (the497

adversarial audio segment). 4 It is also interest-498

ing to note that for successful attack samples499

the saliency is significantly higher, suggesting500

that success of the adversarial attack is very501

dependent on the exact learnt universal adver-502

sarial segment.503

Model Samples Adv, s̃ Speech, s

tiny successful 835 4.80
failed 101 192

medium successful 3371 143
failed 314 803

Table 4: Average saliency for the adversarial seg-
ment and speech segment (across LBS dataset) for
successful and failed samples. A successful sample
is where the universal attack causes Whisper to
generate a zero-length transcription.

Attack Transferability. The universal at-504

tack segment has been trained on a specific505

domain of data (LBS data) and there is a risk506

that the attack may not necessarily transfer507

to different, distributionally shifted speech do-508

mains. Therefore, in this section we investi-509

gate the impact of transferring the 0.64-second510

universal acoustic adversarial segment to dif-511

ferent unseen (during training of the attack)512

datasets, representing a diverse range of do-513

main distributional shifts. Table 5 presents514

the results. For all models and datasets, the515

universal acoustic attack is able to continue516

4Appendix D illustrates the frame-level saliency.

muting the Whisper models for more than 90% 517

of samples. Although this is slightly lower than 518

97% success rate for the in-domain LBS dataset, 519

90% is still a significant success rate, suggesting 520

that the adversarial segment truly represents 521

an acoustic realization of the <|endoftext|> 522

token, which universally prevents the transcrip- 523

tion of different speech domains. 524

Metric LBS TED MGB Artie

Ref ∅ (%) 0.0 0.0 0.0 0.0
asl 17.8 24.4 8.9 8.6

tiny.en ∅ (%) 99.7 99.9 99.9 100.0
asl 0.06 0.01 0.01 0.00

tiny ∅ (%) 99.6 99.0 99.3 99.2
asl 0.04 0.56 0.10 0.03

base.en ∅ (%) 99.0 98.8 99.0 99.3
asl 0.20 0.32 0.09 0.03

base ∅ (%) 99.5 99.9 99.5 97.4
asl 0.05 0.01 0.09 0.17

small.en ∅ (%) 98.6 93.1 98.3 92.4
asl 0.14 1.71 0.20 0.49

small ∅ (%) 98.7 99.5 93.5 97.0
asl 0.15 0.21 0.43 0.16

medium.en ∅ (%) 99.5 99.8 99.7 99.7
asl 0.10 0.01 0.01 0.03

medium ∅ (%) 97.8 95.2 96.4 96.9
asl 0.56 1.05 0.29 0.24

Table 5: Attack transferability across datasets: the
percentage of successfully ‘muted’ speech samples,
∅, and the Average Sequence Length (asl) of gener-
ated transcripts with the universal acoustic attack
learnt on LBS and evaluated on other datasets. Ref
is the average reference transcription length.

Beyond transferability across data distribu- 525

tions, we also investigate how well the univer- 526

sal acoustic adversarial attacks transfer across 527

different speech processing tasks. As the mul- 528

tilingual Whisper models can be instructed to 529

perform transcription or speech translation, we 530

evaluate how effective the adversarial segment 531

(trained on Whisper for transcription) is in 532

muting Whisper when used for speech transla- 533

tion. Table 6 presents attack results for speech 534

translation from French (fr), German (de), Rus- 535

sian (ru) and Korean (ko) to English, from the 536

Fleurs dataset. Two main trends can be iden- 537

tified. First, the attack transfers extremely 538

well for the smaller Whisper models, with at- 539

tack success rate greater than 94%, but for the 540

larger models the success rate can drop to less 541

than even 20%. Second, it appears that the 542

‘further’ the source language from English, the 543

lower the success rate, e.g., the attack transfers 544

7



better for French than Korean in general.545

Model Metric fr de ru ko

Ref ∅ (%) 0.0 0.0 0.0 0.0
asl 25.3 21.5 19.3 14.7

tiny ∅ (%) 99.9 94.6 96.8 94.2
asl 0.00 0.82 0.85 1.09

base ∅ (%) 73.1 70.0 34.1 7.9
asl 6.42 6.20 13.05 8.03

small ∅ (%) 53.4 59.1 39.2 65.7
asl 5.01 4.45 6.11 1.68

medium ∅ (%) 10.5 50.7 21.7 15.5
asl 13.04 4.44 14.46 8.18

Table 6: Attack transferability across tasks: the
percentage of successfully ‘muted’ speech samples,
∅, and the Average Sequence Length (asl) of gen-
erated transcripts with the universal acoustic ad-
versarial attack learnt on LBS for the task of tran-
scription and evaluated on the Fleurs dataset for
the task of speech translation to English. Results
are presented for the multi-lingual Whisper models.

Next, we explore transferability of the at-546

tack across different Whisper models: this is547

explored analytically and empirically in Ap-548

pendix C. The key finding is that certain at-549

tacks can be trained to transfer across models,550

but due to fundamental differences in the acous-551

tic representation of the <|endoftext|> token552

for different models, it is unlikely a muting553

attack will naively transfer to unseen models.554

Ablations on Imperceptibility. In this sec-555

tion we explore how much stricter impercepti-556

bility constraints can be made during the train-557

ing of the universal acoustic attack segments.558

Figure 3 shows how the attack success percent-559

age, ∅ (successfully mute Whisper) changes560

as the audio segment length is decreased from561

0.64-seconds. The larger a model, the greater562

the decay in attack success. Further, the multi-563

lingual models tend to have a much greater de-564

cay than their English-only counterparts, with565

the attack success rate reaching near 0% for566

every multi-lingual model for a segment of 16-567

seconds. Figure 4 equivalently presents the im-568

pact of reducing the maximum amplitude, ϵ. A569

similar trend (although less clear) arises where570

the larger and the multi-lingual variants of the571

models have a greater drop in success rate with572

a smaller ϵ. The relative robustness of the573

multi-lingual and larger models in extremely574

constrained attack settings can perhaps be ex-575

plained simply by the fact these models have576

Figure 3: Ablation on the universal acoustic adver-
sarial attack segment length.

Figure 4: Ablation on the universal acoustic adver-
sarial attack amplitude constraint, ϵ.

been trained on more data and thus it is more 577

difficult to find a universal realization of the 578

<|endoftext|> token. 579

7 Conclusion 580

This work proposes a highly effective and prac- 581

tical method for ‘muting’ Whisper models, 582

achieving a success rate of over 97%. A uni- 583

versal 0.64-second adversarial audio segment 584

is trained to represent an acoustic realization 585

of the <|endoftext|> token used by Whisper, 586

such that when this audio segment is prepended 587

to any speech signal, Whisper does not tran- 588

scribe the speech, i.e., the model is ‘muted’. 589

Moreover, this universal acoustic adversarial 590

segment transfers across different data distribu- 591

tions and can even transfer to different speech 592

processing tasks. While this result offers a po- 593

tential for speech privacy protection, it does 594

also reveal the critical security implications of 595

foundation models’ susceptibility to adversarial 596

attacks. As speech processing systems continue 597

to develop, addressing these vulnerabilities is 598

an important direction for future research. 599

8



8 Limitations600

We identify the following potential limitations601

of our work:602

• The scope of this work covers specifically603

Transformer-based Automatic Speech604

Recognition (ASR) systems, such as Whis-605

per. However, due to the recent popularity606

and performance of Whisper for ASR, this607

scope is highly relevant for a large number608

of modern speech processing applications.609

• We demonstrate that the universal adver-610

sarial segment can transfer well across dif-611

ferent data distributions and even some-612

times languages. It would be useful for613

future work to explore the impact on trans-614

ferability as specific dimensions of distri-615

butional shift are varied in a controlled616

manner, e.g. amplitude of speech (long-617

distance vs close-distance audio); level of618

background noise; or even recording con-619

ditions.620

• The universal adversarial attack, although621

very effective, it is Whisper model spe-622

cific. This is of course very much expected623

as each model has a very different audio-624

space representation. We discuss this in625

greater detail in Appendix C. Although we626

demonstrate that we can learn a universal627

attack that is effective for more than one628

Whisper model (by considering multiple629

models during training), a defence in the630

future could be to simply transcribe the631

text using multiple diverse models. How-632

ever, we argue that this defence is not633

only expensive due to linear inference scal-634

ing costs, but is extremely uncommon in635

currently deployed ASR systems - it is636

more common to use a single ASR sys-637

tem. Hence, if a Whisper model is used for638

ASR, then an adversary can use the uni-639

versal acoustic adversarial segment from640

this work to mute the model.641

• This work focuses on developing an adver-642

sarial attack method to mute the Whisper643

model. However, we do not explore detec-644

tion or defence approaches explicitly. This645

is a research area for future work. How-646

ever, we also emphasize that it is currently647

very uncommon in many real-world de- 648

ployed ASR settings to perform any form 649

of adversarial detection. Therefore, one 650

primary aim of this work is to raise aware- 651

ness around the vulnerability of Whisper 652

ASR systems to muting universal adver- 653

sarial attacks. We hope this encourages 654

future research in defence methods where 655

required. Note that our proposed muting 656

adversarial attack method can also be used 657

positively by users to protect the privacy 658

of their audio content. 659

9 Risks and Ethics 660

This work proposes a method to learn a univer- 661

sal acoustic adversarial attack, where a 0.64- 662

second audio segment can be prepended to 663

any speech signal and mute Whisper models. 664

There is the risk that this method could be 665

used by an adversary to conceal the content 666

of speech signals from speech moderation sys- 667

tems. However, we argue the aim of this work 668

is to raise awareness around the vulnerability 669

to such muting adversarial attacks of Whisper 670

ASR models that have been deployed across 671

many speech processing applications. By rais- 672

ing this issue, we hope to encourage the re- 673

search community to develop methods that im- 674

prove the robustness and reliability of existing 675

and future ASR systems. Further, the adver- 676

sarial attack method proposed in this work can 677

also be used constructively by users in speech 678

privacy settings, where it is important to pro- 679

tect the content of audio from malicious actors. 680

On the whole, this research contributes to the 681

rich adversarial attack literature to encourage 682

the further development of safe models. 683
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A Experimental Details 862

This section provides greater detail for the ex- 863

periments in the main paper. 864

A.1 Data 865

The LibriSpeech dataset (Panayotov et al., 866

2015) is derived from English audio-books and 867

consists of a total of nearly 1000 hours of au- 868

dio (and transcriptions). In this work, we use 869

specifically the dev-other split (2864 utterances 870

forming 5.3 hours of audio) and the test-other 871

split (2939 utterances forming 5.1 hours of au- 872

dio). The TED-LIUM3 dataset (Hernandez 873

et al., 2018) is formed from English-language 874

TED talks, where the test split consists of 875

1155 utterances and 2.6 hours of audio. The 876

Multi-Genre Broadcast (MGB) Challenge (Bell 877

et al., 2015), an evaluation focused on speech 878

recognition, speaker diarization, and ‘lightly 879

supervised’ alignment of BBC TV recordings. 880

The challenge training data covered the whole 881

range of seven weeks BBC TV output across 882

four channels, resulting in about 1,600 hours 883

of broadcast audio. In addition several hun- 884

dred million words of BBC subtitle text was 885

provided for language modelling. The Artie 886

Bias dataset (Meyer et al., 2020) is a subset 887

of the Mozilla Common Voice (Ardila et al., 888

2020) corpus, where it was designed to detect 889

demographic bias in speech applications. The 890

test-split used in this work consists of 1712 891

utterances forming 2.4 hours of audio. The 892

Few-shot Learning Evaluation of Universal Rep- 893

resentation of Speech (Fleurs) (Conneau et al., 894

2022) is a n-way parallel speech dataset in 102 895

languages, with 12 hours of speech per lan- 896

guage. For this work we evaluate on the test 897

splits of specifically French (fr), German (de), 898

Russian (ru) and Korean (ko). 899

A.2 Models 900

Whisper model checkpoints are available in a 901

range of sizes: Whisper tiny (39M parameters); 902

Whisper base (74M); Whisper small (244M); 903

Whisper medium (769M); and Whisper large 904

(1.55B parameters). The Whisper models are 905

available as English-only (en) or multilingual 906

models. Whisper large is only available as a 907

multilingual model. The Whisper models can 908

be prompted to do speech recognition, voice 909

activity detection, as well as speech transla- 910
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tion and language identification for the multi-911

lingual model variants. This work considers912

a range of sizes of Whisper models for speech913

recognition and the multilingual versions are914

also evaluated for speech translation: tiny(.en),915

base(.en), small(.en) and medium(.en). The916

performance of each model, measured by the917

Word Error Rate (WER), for each dataset is918

given in Table 7. Further, in all experiments we919

use Whisper’s default decoding strategy with920

a beam size of 5.921

Model LBS TED MGB Artie
tiny.en 12.8 5.4 24.5 18.4
tiny 15.0 6.3 29.5 20.8
base.en 9.6 4.6 19.7 13.2
base 11.0 5.0 22.0 15.3
small.en 6.7 4.3 14.1 9.2
small 7.2 4.3 15.0 9.3
medium.en 5.7 4.3 12.4 7.4
medium 5.6 4.0 12.3 6.7

Table 7: Whisper Model Performance - Word Error
Rate (WER), %.

A.3 Attack Train Configuration922

Gradient descent based training is used to learn923

the acoustic adversarial segment to minimize924

the loss, which is defined as the negative of925

the log-likelihood of the probability defined926

in Equation 4. Note that the Whisper model927

weights are frozen. The training hyperpara-928

maters for learning the adversarial attack seg-929

ment are: the use of an AdamW optimizer; a930

learning rate of 1e-3; a batch size of 16 (apart931

from medium(.en), where a batch size of 4 was932

used); and parameter clipping in each gradi-933

ent step, to clamp the learnt attack segment934

values of each frame to a maximum absolute935

value of ϵ = 0.02 to satisfy the imperceptibil-936

ity constraint, as given in Equation 5. The937

larger the target Whisper model, the greater938

the number of training epochs are required to939

guarantee a successful universal attack segment.940

The following number of training epochs are941

used for each Whisper model: tiny(.en) (40942

epochs); base(.en) (40 epochs); small(.en) (120943

epochs); and medium(.en) (160 epochs). Note944

that for the base and base.en models, runs over945

2 seeds and 3 seeds respectively were required946

to find a universal adversarial audio segment947

that was sufficiently powerful (the seed con-948

trols the initialization of the adversarial audio949

segment during its training). Further note that950

it is empirically observed that increasing the951

number of training epochs only increases the 952

strength of the universal attack - there is no 953

risk of overfitting, which is perhaps expected 954

as there are so few values being learnt for the 955

universal attack segments. 956

In typical training setups, there is a risk that 957

excessive training steps can lead to overfitting, 958

compromising test-time evaluation. However, 959

when learning the universal prepend attack 960

in this work, this risk does not exist, as the 961

total number of parameters being learnt are 962

only 10,240 parameters for 0.64-second of audio 963

sampled at 16kHz. This is far smaller than 964

the 100s of millions of parameters typically 965

being trained in the Whisper speech recognition 966

models. As a result, we find that the universal 967

prepend attacks learnt in this work transfer 968

perfectly from the development split of the 969

LBS data on which they are trained, to the 970

test split on which they are evaluated, as per 971

the metrics ∅ and asl, used in this paper. 972

In the main paper we evaluate the Whisper 973

models in their default setting, where there 974

is no use of the <notimestamps> special to- 975

ken, such that the first generated token by 976

the model is always <|0.0|>, and only then 977

the text tokens follow. However, during train- 978

ing/learning of the universal attack, we initial- 979

ized y∗
0 as <startoftranscript> <language> 980

<task> <notimestamps> and train to predict 981

y1 = <|endoftext|>. We find that training 982

the attack with this y∗
0 yields more effective at- 983

tacks for the multilingual Whisper models. The 984

fact that the attack transfers so well from train- 985

ing time to test time (despite the mismatch in 986

decoder input initialization), suggests that we 987

have learnt a genuine acoustic realization of 988

the <|endoftext|> special token. 989

A further point to note is that we conducted 990

separate experiments to confirm that when eval- 991

uating the adversarial attack, for no sample 992

is the voice activity detector (used as part of 993

Whisper’s transcription framework) returning 994

‘no speech’, i.e., the universal acoustic adver- 995

sarial segment is a genuine realization of the 996

<|endoftext|> special token. It is unlikely the 997

voice activity detector would ever be activated 998

at evaluation time as during the training of 999

the universal attack segment the internal voice 1000

activity detector is not present. 1001
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A.4 Computational Requirements1002

Experiments were run on the A100 Nvidia GPU1003

hardware. To learn the 0.64-second universal1004

acoustic adversarial attack using the develop-1005

ment split of the LBS dataset, the number of1006

GPU hours vary with the target model size and1007

the number of training epochs used per model.1008

Table 8 summarizes the training epochs (for1009

a successful attack) and the number of subse-1010

quent required GPU hours for each model size.1011

Further note that the medium models required1012

a maximum batch size of 4 to fit in the GPU1013

RAM, whilst the other models could afford a1014

batch size of 16.1015

Model Epochs # GPU hours
tiny 40 0.45
base 40 0.92
small 120 2.6
medium 160 8.4

Table 8: A100 GPU hours to learn a universal
acoustic adversarial attack per target model using
the development split of the LBS dataset.

A.5 Licensing1016

All datasets used are publicly available or1017

specifically approved for experiments in this1018

work (MGB3). Our implementation utilizes1019

the PyTorch 1.12 framework, an open-source1020

library. We observe the MIT license under1021

which the Whisper’s code and model weights1022

are released.1023

B Complete Experimental Analysis1024

Results1025

Experimental results in the main paper are pre-1026

sented for eight Whisper models. However, the1027

results for the attack success analysis (Table1028

2 and Table 3) and the saliency analysis (Ta-1029

ble 4) are given for only the tiny and medium1030

model. Here we present the full results on all1031

eight different models for completeness. The1032

results maintain the same trends as stated in1033

the analysis in the main paper. The complete1034

attack success analysis results are given in Ta-1035

ble 9 and Table 10, whereas the the complete1036

saliency analysis results are given in Table 11.1037

Model Samples No Attack Attack

tiny.en successful 17.8 0.0
failed 78.5 16.1

tiny successful 17.8 0.0
failed 74.6 11.0

base.en successful 17.5 0.0
failed 50.4 19.4

base successful 17.6 0.0
failed 60.2 11.4

small.en successful 17.5 0.0
failed 31.4 10.5

small successful 17.1 0.0
failed 38.7 11.7

medium.en successful 17.4 0.0
failed 64.8 18.9

medium successful 17.2 0.0
failed 43.2 25.0

Table 9: Average Sequence Length (asl) of gener-
ated transcripts for successful attack samples and
failed attack samples. A successful sample is where
the universal acoustic attack causes the Whisper
model to generate a zero-length transcription (per-
fectly muted).

Model WER INS DEL SUB
tiny.en 80.02 0.00 79.52 0.51
tiny 88.38 0.36 85.40 2.29
base.en 64.46 0.38 61.30 2.53
base 89.57 1.97 81.30 4.53
small.en 75.50 0.24 66.46 8.62
small 72.95 0.40 69.02 3.23
medium.en 72.88 0.38 70.79 1.44
medium 50.76 2.70 43.75 2.94

Table 10: Word Error Rate (WER) and breakdown
(insertions, deletions and substitutions) between
the transcript generated with no attack and the
transcript generated with the universal acoustic
attack, for the failed attack samples only. A failed
sample is where the universal acoustic attack is
unable to make Whisper generate a zero-length
transcription.

1038
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Model Samples Adv, s̃ Speech, s

tiny.en successful 617
±264

1.12
±15.6

failed 61.0
±97.1

65.8
±107

tiny successful 835
±332

4.80
±49.0

failed 101
±33.1

192
±517

base.en successful 3527
±1325

6.05
±46.8

failed 343
±198

91.8
±246

base successful 4946
±1480

13.9
±140

failed 483
±183

509
±683

small.en successful 4339
±1263

26.6
±309

failed 727
±308

375
±619

small successful 3502
±1082

23.1
±102

failed 447
±254

356
±395

medium.en successful 3205
±1099

123
±1185

failed 114
±33.4

812
±1950

medium successful 3371
±1254

143
±548

failed 314
±170

803
±950

Table 11: Average saliency for the adversarial seg-
ment and speech segment (across LBS dataset) for
successful and failed samples. A successful sample
is where the universal acoustic attack causes the
Whisper model to generate a zero-length transcrip-
tion (perfectly muted).

1039

C Transferability Across Models 1040

In this section we explore the transferability 1041

of the learnt universal acoustic adversarial at- 1042

tack segments across different Whisper models. 1043

Table 12 shows that there is no naive transfer- 1044

ability of the adversarial audio segments across 1045

models. We next explain this result analyti- 1046

cally. Based on the analysis, we further explore 1047

empirical methods to try and find adversarial 1048

audio segments that could transfer between 1049

models. 1050

src tgt ∅ (%) asl

tiny base 0.0 17.8
tiny small 0.0 17.3
tiny medium 0.0 17.8
medium small 0.0 17.3
medium base 0.0 17.8
medium tiny 0.0 17.9

Table 12: Transferability of universal acoustic ad-
versarial attack learnt on the source (src) model
and evaluated on the target (tgt) model.

C.1 Analytically understanding the 1051

transferability across models 1052

Let q[k] be the embedding generated by the 1053

final layer of the Transformer decoder, to be 1054

used to predict the next token (in the case of 1055

a muting whisper attack, the first token). For 1056

a vocabulary V , we obtain the logits predicted 1057

by the model, y[|V|] via a projection matrix, 1058

W[|V|×k] 5, 1059

y = Wq, (10) 1060

where a greedy decoder selects the token, ĵ 1061

with the largest logit value, 1062

ĵ = arg max
j

{yj}. (11) 1063

If we define the projection matrix using row 1064

vectors, 1065

W =


—–w1—–
—–w2—–

...
—–w|V|—–

 , (12) 1066

then the greedily selected token can be equiva- 1067

lently selected as, 1068

ĵ = arg max
j

{wT
j q} (13) 1069

5The projection matrix W is the same as the em-
bedding matrix used at the input to the decoder.
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If the first generated token is ĵ = r, then you1070

would expect in a perfect system that the acous-1071

tic realization (audio segment), xr of token r,1072

when input to the encoder, to give,1073

q ≈ wr (14)1074

to maximize its selection for generation. Note1075

that you would expect that if row vectors wr1076

and wj are geometrically close (cosine distance)1077

(i.e. the predicted logit values yr and yj are1078

positively correlated), the acoustic realizations1079

xr and xj are similar too, i.e. token r and1080

token j have a similar acoustic sound. We1081

know that certain tokens have real acoustic1082

sounds (that are model invariant), e.g., normal1083

words like zoo, boy and hi have real acoustic1084

realizations (x) that are independent of specific1085

models. Let D represent the set of tokens that1086

have a real acoustic sound. Then for a model1087

θ, we can define the relative acoustic position1088

of any token r by considering its similarity to1089

each of these real acoustic tokens.1090

ρ(r; θ) =
[
ρ1(r; θ), ρ2(r; θ), . . . , ρ|V|(r; θ)

]
(15)1091

ρi(r; θ) =
{

w̃T
i w̃r if i ∈ D

null if i /∈ D
(16)1092

For a token d ∈ D, where D represents all1093

those tokens that have real sounds (e.g. normal1094

words like hello, zoo, etc.), we would expect1095

their relative positions (to other real sounds)1096

to be very consistent across different models1097

(This has been demonstrated in Table 13). If we1098

define the difference in acoustic representation1099

for any token r as,1100

s(r; θm, θn) = ∥ρ(r; θm) − ρ(r; θn)∥2, (17)1101

then for a token d ∈ D,1102

∀d ∈ D, s(d; θm, θn) ≤ ϵ, (18)1103

where ϵ is an arbitrarily small value.1104

The acoustic realization (sound) of the eot1105

token is not known, such that eot /∈ D, as it’s1106

not a real acoustic sound. However, we can1107

predict which tokens the acoustic realization1108

xeot should be similar to, by considering the1109

geometric position of weot relative to other to-1110

kens with a real sound, belonging to D - we can1111

Token Model Top 5 closest tokens in D as per W

zoo tiny Z, j, k, ch, iz
base Z, j, iz, ch, k
small Z, ch, iz, j, zh

medium Z, j, ch, rr, ez

boy tiny boys, girl, Boy, Bry, NOUN
base boys, girl, Boy, Missy, Cameraman
small boys, girl, Bry, Justin, Boy

medium boys, Boy, moil, ontec

hi tiny Hi, him, HI, iiii, high
base HI, Hi, iiii, Cameraman, Katie
small HI, Hi, pleasant, Julia, Hola

medium Hi, HI, FFFF, Adam, scream

eot tiny Male, Pro, Sa, Vict, Cho
base Arin, JIN, ELLE, ARRATOR, Jared
small WW, pleasant, Gra, Hyun, Missy

medium Everyone, sound, Something, Come, Aw

Table 13: Exploring the geometric relationship be-
tween embedding matrix tokens in W. As expected,
generally similar sounding words are close together.
In some cases, similar domain/meaning words are
also close. Note that there can be slight differences
to the previous table as some tokens in the other
table had a space before them.

compute ρ(eot; θ). For there to exist a mut- 1112

ing adversarial attack audio segment, xeot(θ) 1113

that is transferable across different models, θ, 1114

the acoustic realization of eot has to be the 1115

same/similar for the different models (the way 1116

the acoustic realization of any other real token 1117

in D is the same for all models). We can thus 1118

determine if there exists this true, universal 1119

acoustic realization of eot that is the same for 1120

all models by observing how consistent its rela- 1121

tive position is to tokens in D, as per ρ. For a 1122

pair of models, θm and θn, we expect there to 1123

exist a transferable muting adversarial attack, 1124

xeot if, 1125

s(eot; θm, θn) ≤ τ(θm, θn), (19) 1126

where we can define the threshold τ by consid- 1127

ering the typical changes in similarity for other 1128

tokens with a real sound (belong to D) that 1129

should have a consistent acoustic sound. We 1130

give error for variation by setting the thresh- 1131

old to be two standard deviations above the 1132

average change in similarity across models, 1133

τ(θm, θn) =Er∈D[s(r; θm, θn)] 1134

+ 2 · σr∈D(s(r; θm, θn)) (20) 1135

C.2 Empirical Evaluation of Model 1136

Transferability 1137

We define the set of real acoustic sounds, D as 1138

the tokens which begin with any English letter 1139

(in roman alphabet) or English numeral (0-9). 1140
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Table 14 reports uses the projection matrix,1141

W of each Whisper model to determine the1142

potential of the attack transferability. It is1143

interesting to note that there is generally a low1144

chance of model transferability, as the expected1145

acoustic representation of the eot token is far1146

less consistent than that of tokens with a real1147

acoustic sound. These results demonstrate that1148

there is no real audio representation for the1149

<|endoftext|> token, and as a result the attack1150

is unable to find a genuine acoustic realization.1151

Hence, the acoustic realization being learnt is a1152

specific realization of the <|endoftext|> token1153

of the target model.1154

θm θn s(eot; θm, θn) s(r; θm, θn)
tiny.en base.en 12.13 3.50

±1.40
tiny.en small.en 13.29 4.13

±1.80
tiny.en medium.en 9.14 3.20

±1.37

base.en small.en 19.72 5.61
±1.93

base.en medium.en 6.65 4.32
±1.42

small.en medium.en 13.40 3.81
±1.78

tiny base 6.54 1.24
±0.35

tiny small 4.57 5.46
±1.22

tiny medium 4.21 6.16
±2.04

base small 9.67 5.51
±1.19

base medium 9.41 7.27
±2.12

small medium 3.52 3.03
±1.57

Table 14: Measuring theoretical potential transfer-
ability of muting attacks between models.

Nevertheless, next we explore methods to1155

learn a universal attack segment that is able to1156

transfer across the different models: we explic-1157

itly train the attack audio segment by consid-1158

ering multiple models at the same time during1159

the training of the attack segment. We also1160

explore initializing the attack audio segment1161

with the optimal audio segments for single tar-1162

get models. The results are presented in Table1163

15. As expected from the above analysis, it is1164

clear that it is difficult to learn an attack that1165

can transfer across multiple models. However,1166

we are able to obtain an audio attack segment1167

that can transfer between the tiny and base1168

model (when training to attack tiny, base and1169

small), or between the tiny and medium mod-1170

els. Overall, this section has demonstrated that1171

analytically there is little potential of a mut-1172

ing attack that can transfer between models 1173

because there is no real sound for the acous- 1174

tic realization of the <|endoftext|> token, and 1175

therefore a specific acoustic realization is learnt 1176

for each specific target model. 1177

Trn models Init eval model Performance
∅ asl

tiny.en rand tiny.en 99.7 0.06
base.en 0.0 17.9

tiny.en, base.en rand tiny.en 99.42 0.160
base.en 0.00 17.79

base.en tiny.en 0.00 18.07
base.en 98.81 0.267

tiny.en, base.en,
small.en

rand tiny.en 98.43 0.590

base.en 99.12 0.227
small.en 0.00 17.75

small.en tiny.en 0.00 17.88
base.en 0.00 17.79
small.en 99.22 0.070

tiny.en, base.en,
small.en,
medium.en

rand tiny.en 95.10 1.52

base.en 0.00 17.53
small.en 0.00 17.50
medium.en 98.33 0.670

Table 15: Training universal muting attack on mul-
tiple models. Training epochs is the maximum
number of epochs required for each of the train
(Trn) models when attacked individually. Initializa-
tion of the audio attack segment is either random
or a previously targeted model. The best of 3 seeds
is selected to obtain the most transferable attacks.

D Saliency Analysis Plots 1178

In the results in the main paper, we conduct a 1179

saliency analysis as per Section 5.2, to better 1180

understand the mechanism of the adversarial 1181

attack for when it succeeds relative to when it 1182

fails. In Table 4 we report the average saliency 1183

for the adversarial segment, s̃ and the aver- 1184

age saliency for the speech signal, s. It is also 1185

useful to visualize the frame-level saliency, to 1186

understand how the saliency changes from the 1187

adversarial segment per frame to the speech sig- 1188

nal. In Figure 5 we have selected two random 1189

speech samples: one for which the universal 1190

acoustic attack succeeded, and one for which 1191

it failed. As we would expect, we observe two 1192

very different frame-level saliency patterns. For 1193

a successful attack, the saliency is heavily con- 1194

centrated in the adversarial segment and then 1195

suddenly decays for the speech signal, whereas 1196

for the failed samples, the converse appears to 1197

be true. 1198
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(a) Successful Attack (b) Unsuccessful Attack

Figure 5: Frame-level saliency plot, where the first 0.64-second represents the universal acoustic attack
segment and the remainder is a randomly sampled speech signal (truncated to a total length of 3 seconds)
for the target model Whisper medium.en was un/successfully muted by the universal adversarial attack.

E Spectrogram Plots1199

Log-mel spectrograms give a frequency-time1200

representation of audio signals in a manner that1201

can help to interpret the nature of the audio1202

signal. The main paper gives an example of a1203

log-mel spectrogram for an audio signal where1204

a universal acoustic segment (learnt for the1205

Whisper medium model) has been prepended1206

to a specific speech signal. For reference, in1207

this section we provide the remaining spectro-1208

grams. Figure 6 gives the spectrograms for the1209

universal acoustic adversarial segments learnt1210

for each target Whisper model, where the ad-1211

versarial segment is of length 0.64-seconds and1212

a maximum amplitude of ϵ = 0.02, to satisfy1213

the imperceptibility constraint of Equation 5.1214

Next, in Figure 7 we present the spectrograms1215

for different universal adversarial attack seg-1216

ments with a different strictness of the ampli-1217

tude constraint, ϵ. As would be expected, the1218

stricter the constraint the lower the relative1219

power of the adversarial segment relative to1220

the speech signal.1221
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(a) tiny.en (b) tiny (c) base.en (d) base

(e) small.en (f) small (g) medium.en (h) medium

Figure 6: Mel spectrogram of universal acoustic segment (0.64s) prepended to a random speech sample
from LBS dataset (truncated to a total length of 3s) for different target Whisper models.

(a) ϵ = 0.02 (b) ϵ = 0.01 (c) ϵ = 0.005

Figure 7: Mel spectrogram of universal acoustic segment (0.64s) prepended to a random speech sample
from LBS dataset (truncated to a total length of 3s) for different amplitude constraints ϵ for the target
model Whisper tiny.en.
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