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Abstract

Recent developments in large speech foun-
dation models like Whisper have led to their
widespread use in many automatic speech
recognition (ASR) applications. These sys-
tems incorporate ‘special tokens’ in their vo-
cabulary, such as <|endoftext|>, to guide
their language generation process. How-
ever, we demonstrate that these tokens can
be exploited by adversarial attacks to ma-
nipulate the model’s behavior. We pro-
pose a simple yet effective method to learn
a universal acoustic realization of Whis-
per’s <|endoftext|> token, which, when
prepended to any speech signal, encour-
ages the model to ignore the speech and
only transcribe the special token, effec-
tively ‘muting’ the model. Our experiments
demonstrate that the same, universal 0.64-
second adversarial audio segment can suc-
cessfully mute a target Whisper ASR model
for over 97% of speech samples. Moreover,
we find that this universal adversarial audio
segment often transfers to new datasets and
tasks. Overall this work demonstrates the
vulnerability of Whisper models to ‘muting’
adversarial attacks, where such attacks can
pose both risks and potential benefits in
real-world settings: for example the attack
can be used to bypass speech moderation
systems, or conversely the attack can also
be used to protect private speech data. !

1 Introduction

The development of large foundation models
has led to rapid advancements in audio process-
ing, where for example some of the most popu-
lar models are of the Whisper family (Radford
et al., 2022). To guide the generation of natu-
ral language, foundation models typically make
use of ‘special’ tokens in their vocabulary that

!The code is available at: Zip file attached to sub-
mission.

do not exist as real text or real acoustic events.
As an example, most auto-regressive founda-
tion models will have some form of a <start>
token and an <end> token to indicate when
to begin generating the output sequence and
when to stop. However, we demonstrate that
despite their need, these ‘special’ tokens can be
exploited by adversaries to make foundational
models behave in undesired manners. Specif-
ically, we show that the <endoftext> special
token can be exploited by adversaries to pre-
vent an Automatic Speech Recognition (ASR)
model, such as Whisper, from transcribing the
source audio, i.e., ‘muting’ the model.

Our proposed acoustic adversarial attack
method is designed to ‘mute’ Whisper, by learn-
ing an extremely short (0.64-second) adversar-
ial acoustic realization of the <endoftext> spe-
cial token (used by Whisper), where the learnt
adversarial audio segment can be prepended to
the target speech signal. Furthermore, our pro-
posed method gives a universal adversarial au-
dio segment, which allows the same 0.64-second
adversarial audio segment to be prepended to
any speech signal, and conceal its contents from
the ASR system, as depicted in Figure 1.

Our experiments, conducted across eight dif-
ferent Whisper ASR models, demonstrate that
the same universal 0.64-second adversarial au-
dio segment can successfully ‘mute’ Whisper
models for more than 97% of unseen speech
samples. We further find that there is a sur-
prising level of transferability of this universal
adversarial audio segment to different speech
domains (we consider four diverse datasets)
and can even transfer to different tasks - the
adversarial audio segment can ‘mute’ Whisper
when used for speech translation as well as
transcription. Muting Whisper has significant
implications in high stakes settings. Automatic
speech recognition (ASR) systems play a cru-
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Figure 1: Universal adversarial audio segment when prepended to any speech signal mutes Whisper, such
that an empty transcription is generated. The <endoftext> token (FOT) is a special token in the Whisper
vocabulary used to indicate the end of the generated transcription.

cial role in detecting and moderating harmful
content such as hate speech (MacAvaney et al.,
2019) in audio or video recordings (Wu and
Bhandary, 2020). Muting Whisper poses a
risk of circumventing this moderation process.
Adversaries could exploit this vulnerability to
release harmful content to the public audience
without detection. Nevertheless, muting Whis-
per also has potential positive implications for
speech privacy protection (Cheng et al., 2024).
In contexts where speech recordings are trans-
mitted over a network, malicious actors may
attempt to extract private data through auto-
mated transcription. In such cases, our pro-
posed method of muting Whisper could serve as
a form of speech privacy protection, similar to
a ‘jamming’ signal. Overall, this work demon-
strates the vulnerability of Whisper models
to muting adversarial attacks, which can have
negative or positive implications.

2 Related Work

Audio Attacks (early research). Initial
research (Gong and Poellabauer, 2017; Cisse
et al., 2017) explored gradient-based ap-
proaches to perturb the input audio to end-
to-end ASR systems (specifically WaveCNN
and HMM-DNN architectures) with the objec-
tive of increasing the word error rate (WER) of
the generated transcriptions. However, Yuan
et al. (2018); Carlini and Wagner (2018); Das
et al. (2018); Qin et al. (2019) offer methods to
perform targeted attacks on ASR systems, such
as DeepSpeech, HMM-DNN and LSTM-based
neural networks, where the aim was to gener-
ate a specific output transcription. Other re-
search (Schonherr et al., 2018; Schonherr et al.,
2018) modified audio adversarial attack meth-
ods to better encourage their imperceptibility.

Practical Audio Attacks. Neekhara et al.
(2019) demonstrate that they can generate uni-

versal adversarial perturbations such that the
same adversarial audio segment can be super-
imposed on different speech signals. However,
these attack approaches cannot be applied to
streaming ASR systems, as they have to be
superimposed on the entire speech signal, so
Li et al. (2020) attempted to address this is-
sue by generating universal adversarial per-
turbations that do not need to be synchro-
nised with the source speech signal (the carrier
audio) when being superimposed. Lu et al.
(2021) extended the targeted universal adver-
sarial attacks to more recent end-to-end ASR
systems including LAS, CTC and RNN-T. Fur-
ther, a range of other creative approaches have
been proposed for generating audio adversarial
samples in practical settings: transferability
from substitute models (Chen et al., 2020; Fan
et al., 2020; Ma et al., 2021); evolutionary at-
tacks (Alzantot et al., 2018; Khare et al., 2019;
Taori et al., 2019; Du et al., 2019; Zheng et al.,
2021); utterance-based attacks (Raina et al.,
2020); and featurization attacks (Carlini et al.,
2016; Zhang et al., 2017; Abdullah et al., 2019).

Attacks on Whisper. All of the above-
mentioned methods are designed for traditional
ASR systems. The recent emergence of a pow-
erful foundation model (Whisper) demands an
update to previously developed attack methods.
Olivier and Raj (2023) perform an initial in-
vestigation into the vulnerabilities of Whisper
to audio adversarial attacks, where they show
that an adversarial signal can be superimposed
on natural speech signals such that Whisper
transcribes incorrectly.

Our Contributions. We extend the re-
search on adversarial attacks for modern ASR
systems such as Whisper, by outlining a
method to develop a truly practical and ef-
fective adversarial attack with a real-world tar-
geted objective. Specifically, this work makes



the following contributions:

o We develop a short (0.64-second) adversarial
audio segment that can be prepended to
a speech signal. Existing research tends
to consider superimposing the adversarial
audio signal, which is not a practical setting
for real-world attacks.

e Our adversarial audio segment is universal,
so the same audio segment can be prepended
to any speech signal.

e Our attack works for a popular, modern and
powerful ASR system: Whisper family of
models.

e The objective of our attack is specifically
to mute the Whisper model; a targeted ob-
jective not before considered and with real-
world implications in privacy and security.

e Our universal adversarial acoustic attack
segment transfers across data domains and
even speech processing tasks.

3 Speech Processing: Whisper

Continuous-time speech is sampled such that
the audio can be represented as a sequence
of samples, x = z1.5. An Automatic Speech
Recognition (ASR) system maps this sampled
speech/audio signal, x, to the text, y = y1.m
uttered in the speech signal - this is the tran-
scription of the audio with M words/tokens.
Whisper’s encoder-decoder architecture, F(-)
with parameters 6 auto-regressively predicts a
vector representing the probability distribution
over the vocabulary of tokens, V), for the next
token y,,, with the speech, x = x1.5 at the en-
coder input and the previously decoded tokens,
Y=, at the decoder input,

yev,

(1)
where typically a greedy decoding process se-
lects the most likely token to generate,

P(ym = y‘x7y*<m) = 'F(Xﬂyim;g)lﬂ

Yr, = arg;nax P(ym = y|X,¥5m)- (2)

During the decoding process various spe-
cial tokens are used by the Whisper model
to guide the token generation. The first
token (input to the decoder) is set as
<|startoftranscript|>, followed by a to-
ken to indicate the language, for example

<en> for English. As the Whisper model is
trained to perform two different speech pro-
cessing tasks (transcription and speech trans-
lation), the next token is used to indicate the
task, e.g., <|transcribe|> or <|translate|>.
Hence we define yj = <|startoftranscript|>
<lang tag> <|task tag|> 2. With this ini-
tialization, further tokens are generated auto-
regressively from the vocabulary, V follow-
ing Equation 1 and Equation 2. The
auto-regressive decoding ends when the
<|endoftext|> special token is predicted.

4 Universal Prepend Attack
4.1 Attack Objective

In this section we propose a practical and effec-
tive approach for an adversary to modify any in-
put speech signal in a manner that results in the
Whisper model being muted (transcribing noth-
ing), without the speech audio sounding obvi-
ously manipulated to human listeners. The ob-
jective of muting Whisper is equivalent to max-
imizing the probability of the model predicting,
y1 as the <|endoftext|> special token. Recall
that the decoder is initialized with a sequence of
special tokens, yj = <|startoftranscript|>
<lang tag> <|task tag]|>.

4.2 Prepend Attack

To perturb a speech signal, x = xy., it is
simplest to prepend a short, adversarial audio
segment of T frames, X = &1.7, such that the
perturbed speech signal is X @ x, where @ rep-
resents concatenation in the raw audio space.
Then, given Whisper’s encoder-decoder model
in Equation 1, the optimal adversarial audio
segment, X, to ‘mute’ Whisper as per the ad-
versarial objective, can be given as finding the
adversarial audio segment that maximizes the
probability of generating the <|endoftext]|>
special token (abbreviated to eot) as the first
transcribed token,

x = argmax P(y; = eot|x @ x,y5). (3)
%

4.3 Universal Attack

Learning an adversarial audio segment, X that
can be prepended to a speech signal, x to con-
ceal its contents from a Whisper ASR model,

2Note that for the English-only variant of Whisper
models, y5 = <|startoftranscript|>



cannot be achieved in real-time (as the attack
segment has to be prepended before the speech
is generated) and requires computational re-
sources. Therefore, it is not practical to learn
an individual adversarial audio segment ) to
conceal the contents of each different speech
signal, x). Hence, we propose learning a uni-
versal adversarial audio segment that is agnos-
tic to any speech signal. For a training dataset
of J speech samples {x(j)}jzl, the universal
prepend attack aims to maximise the likeli-
hood of predicting y; = <|endoftext|> over
all training samples,

J

X = arg max H P(y1 = eot|x & x9), y5). (4)

X j=1
As the Whisper encoder-decoder model is fully
differentiable, standard gradient-based train-
ing approaches can then be used to optimize
for the universal adversarial audio segment,
x. This universal adversarial audio segment
‘mutes’ Whisper when prepended to any speech
signal and is thus effectively an acoustic real-
ization of the <|endoftext|> special token.

4.4 Imperceptibility

For a truly practical adversarial attack, it is im-
portant for the adversarial audio segment gen-
erated to be sufficiently imperceptible such that
it is not flagged as suspicious when prepended
to natural speech signals. We achieve this im-
perceptibility in two dimensions. First, we
ensure that the adversarial audio segment is
extremely short such that there is little time for
a human listener to detect the abnormal speech.
We specifically limit the number of frames in
the adversarial audio segment to T' = 10240,
which corresponds to 0.64-seconds of audio for
a 16kHz sampling frequency. Next, we limit
the ‘power’ of the adversarial audio segment,
to ensure the amplitude of the adversarial au-
dio segment is not significant relative to natu-
ral speech. To limit the power, we introduce
a constraint in the optimization objective of
Equation 4 that limits the amplitude of the
adversarial audio,

121:7]l00 < €, ()

where || - || represents the l-infinity norm. By
default we set e = 0.02, as on the log-mel scale
this empirically represents audio signals with

power lower than typical human speech signals
(refer to Figure 2). The l-infinity norm con-
straint is incorporated during gradient-based
learning of the adversarial audio segment X,
by clamping the values at €. 3 Note that in
practical settings it may be undesirable to have
extremely low values for €, as the adversarial
audio segment may then be contaminated by
low-amplitude background noise.

5 Muting Attack Evaluation

5.1 Attack Performance Evaluation

For a learnt universal acoustic adversarial seg-
ment trained to maximize the probability of the
Whisper model generating the <|endoftext|>
special token as its first token for any speech
signal, as per Equation 4, we can evaluate the
performance of the adversarial attack by com-
puting the percentage of unseen test speech
signals, @, for which the attack is able to suc-
cessfully ‘mute’ the Whisper model,

1 ~x(7
o — 5 zj: ]l{yl(]) = eot} x 100%, (6)

719 = argmax P(y; = ylx & x9), y3),
Yy

where §] = <eot> means that the transcribed
sequence has 0 words, i.e., a perfectly successful
attack. Hence, the larger the value of &, ap-
proaching 100%, the more effective the acoustic
adversarial attack. A further useful metric to
gauge the extent to which a universal attack is
able to ‘mute’ the Whisper model, is the ‘av-
erage sequence length’ (asl) of the predicted
transcription,

asl = % ; len(y*)), (7)

where len(-) gives the number of words in the
transcribed sequence. The lower the value of
asl, the more effective the adversarial attack.

5.2 Adversarial Sensitivity Analysis

Beyond simply measuring the success of the
acoustic adversarial attack in ‘muting’ an ASR
system, it is meaningful to analyze the mech-
anism of the attack that explains its success
and lack of success for specific speech signals.

3Clamping after each gradient update is typical in
Projected Gradient Descent (Madry et al., 2019).



We can analyze the saliency of the input audio
to determine the sensitivity of the Whisper’s
predictions to different parts of the input au-
dio. The frames in the input audio that the
transcription is most sensitive to are the parts
of the audio that dominate Whisper’s decisions.
For a model, F(-) defined in Equation 1, we
can define the m-th saliency of the universal
adversarial audio segment, X, as the gradient
of the m-th transcribed token, 7,

Sm = ||Vs [FRex v 05|, ®

Equivalently we can define the saliency of the
natural speech signal, x as,

sm=||Vx [Fex vy 0], ©

As we are interested primarily in the first gen-
erated token, we set m = 1 in our analysis.

6 Experiments

6.1 Experimental Setup

Data. Results are reported across five di-
verse and popular speech recognition datasets:
LibriSpeech (LBS) (Panayotov et al., 2015),
TED-LIUM3 (TED) (Hernandez et al., 2018),
MGB (Bell et al., 2015); Artie Bias
(Artie) (Meyer et al., 2020) and Fleurs (Con-
neau et al., 2022). Details for each dataset are
provided in Section A.1. The universal acoustic
attack segment is learnt using the development
split of the LBS dataset. The attack is then
evaluated on the LBS test split and to mea-
sure the transferability of the attack it is also
evaluated on the other datasets (TED-LIUMS3,
MGB and Artie Bias). The attack is evalu-
ated for task transferability by also evaluating
on speech transcription and speech translation
tasks using the Fleurs dataset test splits.

Models. Experimental results are given for
the family of Whisper ASR models (Radford
et al., 2023). Model details and their perfor-
mance (Word Error Rate) on the datasets have
been provided for reference in Appendix A.2.

Attack Train Configuration. The univer-
sal acoustic prepend attack segment is trained
on the LibriSpeech development split. The
attack segment is trained as per Equation 4,
where it is prepended to speech samples in the
raw audio space. The attack segment length is

set to be 0.64 seconds and its maximum am-
plitude to € = 0.02, to satisfy the constraint
of Equation 5. Further Hyperparameter set-
tings for training the universal acoustic attack
segment are given in Appendix A.3.

6.2 Results

Universal Acoustic Prepend Attack.
The universal prepend attack segment is
trained (on the LBS development split) to
make the ASR model generate only an
<]endoftext|> token, i.e. transcribe nothing.
Evaluating on the LBS test-split, Table 1 gives
the percentage of successful attacks, @ and
the average sequence length of predicted tran-
scriptions (asl) for the different target speech
recognition models with the same (per model)
trained 0.64-second universal acoustic adversar-
ial segment prepended to every speech sample.
A comparison is made to the no attack setting,
where the speech samples are not modified in
any manner. For every target Whisper model,
the universal acoustic prepend attack is ex-
tremely successful in ensuring the model does
not transcribe the speech signals, with the per-
centage of successful attacks increasing from
more than 97% for the medium models to 99.9%
for the tiny models. Similarly, in all cases the
asl is brought to less than 1.0, whereas for
the unattacked speech the transcriptions have
nearly 18 words on average. We also compare
to a random audio segment prepended to the
speech samples and we find that this behaves
identically to the no attack setting, i.e. a ran-
dom attack cannot ‘mute’ Whisper. Overall,
Table 1 shows that regardless of the model size,
a short 0.64-second universal acoustic adversar-
ial audio segment can be prepended (impercep-
tibly) to almost all speech signals to conceal
the contents from Whisper speech recognition
models.

Figure 2 gives the Mel-spectrogram of a ran-
dom speech sample from the LBS test set with
a 0.64-second universal acoustic adversarial seg-
ment prepended to the speech signal (learnt
for the medium.en model). This validates that
e = 0.02 is an appropriate imperceptibility
setting as it ensures that the power of the ad-
versarial segment is always less than ~ 1.50dB,
which is significantly lower than a typical hu-
man speech signal in the LBS dataset that can
range from 1dB to more than 3.5dB. It is in-



Model | Metric | No Attack  Attack
tiny.en ‘ agsl(%) T e 8?02
O L T S
base.en ‘ agsl((yf) i 5% 050
base ‘ agsf%) i 5% 0.0
small.en ‘ azsl(%) T 10?97 8_81'461
small ‘ ?sl(yf) T . o1
medinm.en | S0 T RO 090
medium ‘ azsl(of) T 107'98 8.75%

Table 1: The percentage of successfully ‘muted’
speech samples, @, where the first generated to-
ken is <|endoftext|>, and the Average Sequence
Length (asl) of transcriptions, for the LBS dataset.
Results are presented for no attack, and for a trained
(per model) universal acoustic adversarial attack,
where the same universal adversarial segment is
prepended to each speech sample.

teresting to note that the acoustic adversarial
segment covers the full range of frequencies
relatively uniformly, which means it is likely
to sound similar to static noise to a human
listener.
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Figure 2: Mel spectrogram of universal acoustic
segment (0.64s) prepended to a (truncated) random
speech sample from LBS dataset.

Attack Success Analysis. We now inves-
tigate the < 3% speech samples for which the
universal acoustic attack fails to perfectly mute
the Whisper model, i.e., the generated tran-
scription is not of zero-length. Table 2 gives
the average sequence length (asl) evaluation of
the generated transcripts for the failed attack

samples (relative to the successful samples) for
LBS. Interestingly, when there is no adversarial
attack, the asl for the failed samples is 2 to
4 times greater than the average ~17 words
in the successful samples’ transcriptions, sug-
gesting that the universal acoustic attack only
struggles to mute the ASR model for longer
input speech signals. Further, for these failed
samples, the attack is still able to reduce the
number of generated words significantly (at
least two-fold), highlighting that the attack is
still effective in muting the ASR model to some
extent, although not entirely.

Model | Samples | No Attack Attack
i successful 17.8 0.0
Y failed 74.6 11.0
medium successful 17.2 0.0
failed 43.2 25.0

Table 2: Average Sequence Length (asl) of gener-
ated transcripts for successful attack samples and
failed attack samples. A successful sample is where
the universal acoustic attack causes the Whisper
model to generate a zero-length transcription.

A natural follow-up question is then, in what
manner does the universal attack shorten the
generated transcripts for the failed samples,
i.e., is it simple truncation or is the model gen-
erating other tokens unrelated to the original
speech signal. Table 3 gives the breakdown
of the word error rate (WER) contributions
from insertions, deletions and substitutions for
the failed samples, where the word error rate
is computed between the predicted no attack
transcriptions and the predicted attack tran-
scriptions. We observe that the attack causes
no significant change in the transcriptions other
than deletions, demonstrating the attack is be-
having as desired in attempting to discourage
speech transcription. Overall, this analysis
shows that even for the few samples (< 3%)
that the universal attack is not able to perfectly
mute the ASR model, the attack is still able to
significantly reduce the transcription length.

Saliency Analysis. Section 5.2 describes
saliency as a tool to measure the sensitivity
of the ASR model to the adversarial and the
natural speech segments of the input audio.
The average saliencies for the LBS dataset are
given in Table 4, with a comparison for the
successful attack samples and the failed attack



Model | WER | INS DEL SUB
tiny 88.38 | 0.36 85.40 2.29
medium | 50.76 | 2.70 43.75 2.94

Table 3: Word Error Rate (WER) and breakdown
(insertions, deletions and substitutions) between
the transcript generated with no attack and the
transcript generated with the universal attack, for
the failed attack samples only. A failed sample
is where the universal attack is unable to make
Whisper generate a zero-length transcription.

samples. It is clear that a successful attack
results in the ASR model being significantly
more sensitive to the adversarial segment, and
conversely more sensitive to the speech signal
when the attack fails. This demonstrates that
the universal acoustic attack is operating as
intended, as a successful attack encourages the
model to attend more to the acoustic realiza-
tion of the <|endoftext|> special token (the
adversarial audio segment). 4 It is also interest-
ing to note that for successful attack samples
the saliency is significantly higher, suggesting
that success of the adversarial attack is very
dependent on the exact learnt universal adver-
sarial segment.

Model | Samples | Adv,5 Speech, s
tin successful 835 4.80
Y failed 101 192
medium successful 3371 143
failed 314 803

Table 4: Average saliency for the adversarial seg-
ment and speech segment (across LBS dataset) for
successful and failed samples. A successful sample
is where the universal attack causes Whisper to
generate a zero-length transcription.

Attack Transferability. The universal at-
tack segment has been trained on a specific
domain of data (LBS data) and there is a risk
that the attack may not necessarily transfer
to different, distributionally shifted speech do-
mains. Therefore, in this section we investi-
gate the impact of transferring the 0.64-second
universal acoustic adversarial segment to dif-
ferent unseen (during training of the attack)
datasets, representing a diverse range of do-
main distributional shifts. Table 5 presents
the results. For all models and datasets, the
universal acoustic attack is able to continue

4Appendix D illustrates the frame-level saliency.

muting the Whisper models for more than 90%
of samples. Although this is slightly lower than
97% success rate for the in-domain LBS dataset,
90% is still a significant success rate, suggesting
that the adversarial segment truly represents
an acoustic realization of the <|endoftext|>
token, which universally prevents the transcrip-
tion of different speech domains.

| Metric | LBS | TED MGB Artie

Ref (%) | 0.0 | 0.0 0.0 0.0
asl 17.8 | 244 89 86

. 2 (%) | 99.7 | 99.9  99.9  100.0
tiny.en ‘ asl ‘ 0.06 ‘ 001 001  0.00
tin 2 (%) | 99.6 | 99.0  99.3  99.2
v asl 0.04 | 056 0.10  0.03
2 (%) | 99.0 | 98.8  99.0  99.3

base.en ‘ asl ‘ 0.20 ‘ 0.32  0.09 003
base 2 (%) | 99.5 | 99.9  99.5  97.4
asl 0.05 | 001 009 017

2 (%) | 986 | 93.1 983 924

small.en ‘ asl ‘ 0.14 ‘ 171 020 049
2 (%) | 987 | 995 935  97.0

small ‘ asl ‘ 0.15 ‘ 021 043 0.6
. 2 (%) | 995 | 99.8  99.7  99.7
medium.en ‘ asl ‘ 0.10 ‘ 001 001 003
. 2 (%) | 978 | 95.2 964  96.9
medium ‘ asl ‘ 0.56 ‘ 1.05 029 024

Table 5: Attack transferability across datasets: the
percentage of successfully ‘muted’ speech samples,
@, and the Average Sequence Length (asl) of gener-
ated transcripts with the universal acoustic attack
learnt on LBS and evaluated on other datasets. Ref
is the average reference transcription length.

Beyond transferability across data distribu-
tions, we also investigate how well the univer-
sal acoustic adversarial attacks transfer across
different speech processing tasks. As the mul-
tilingual Whisper models can be instructed to
perform transcription or speech translation, we
evaluate how effective the adversarial segment
(trained on Whisper for transcription) is in
muting Whisper when used for speech transla-
tion. Table 6 presents attack results for speech
translation from French (fr), German (de), Rus-
sian (ru) and Korean (ko) to English, from the
Fleurs dataset. Two main trends can be iden-
tified. First, the attack transfers extremely
well for the smaller Whisper models, with at-
tack success rate greater than 94%, but for the
larger models the success rate can drop to less
than even 20%. Second, it appears that the
‘further’ the source language from English, the
lower the success rate, e.g., the attack transfers



better for French than Korean in general.

Model | Metric | fr de ru ko
Ref o (%) 0.0 0.0 0.0 0.0
asl 25.3  21.5 19.3 14.7
tiny @ (%) 99.9 94.6 96.8 94.2
asl 0.00 0.82 0.85 1.09
base o (%) 73.1 70.0 34.1 7.9
asl 6.42 6.20 13.05 8.03
small o (%) 53.4 59.1 39.2 65.7
asl 5.01 4.45 6.11 1.68
medium | @ (%) 10.5  50.7 217 155
asl 13.04 4.44 14.46 8.18

Table 6: Attack transferability across tasks: the
percentage of successfully ‘muted’ speech samples,
@, and the Average Sequence Length (asl) of gen-
erated transcripts with the universal acoustic ad-
versarial attack learnt on LBS for the task of tran-
scription and evaluated on the Fleurs dataset for
the task of speech translation to English. Results
are presented for the multi-lingual Whisper models.

Next, we explore transferability of the at-
tack across different Whisper models: this is
explored analytically and empirically in Ap-
pendix C. The key finding is that certain at-
tacks can be trained to transfer across models,
but due to fundamental differences in the acous-
tic representation of the <|endoftext|> token
for different models, it is unlikely a muting
attack will naively transfer to unseen models.

Ablations on Imperceptibility. In this sec-
tion we explore how much stricter impercepti-
bility constraints can be made during the train-
ing of the universal acoustic attack segments.
Figure 3 shows how the attack success percent-
age, @ (successfully mute Whisper) changes
as the audio segment length is decreased from
0.64-seconds. The larger a model, the greater
the decay in attack success. Further, the multi-
lingual models tend to have a much greater de-
cay than their English-only counterparts, with
the attack success rate reaching near 0% for
every multi-lingual model for a segment of 16-
seconds. Figure 4 equivalently presents the im-
pact of reducing the maximum amplitude, e. A
similar trend (although less clear) arises where
the larger and the multi-lingual variants of the
models have a greater drop in success rate with
a smaller e. The relative robustness of the
multi-lingual and larger models in extremely
constrained attack settings can perhaps be ex-
plained simply by the fact these models have
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Figure 3: Ablation on the universal acoustic adver-
sarial attack segment length.
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Figure 4: Ablation on the universal acoustic adver-
sarial attack amplitude constraint, e.

been trained on more data and thus it is more
difficult to find a universal realization of the
<|endoftext|> token.

7 Conclusion

This work proposes a highly effective and prac-
tical method for ‘muting’ Whisper models,
achieving a success rate of over 97%. A uni-
versal 0.64-second adversarial audio segment
is trained to represent an acoustic realization
of the <|endoftext|> token used by Whisper,
such that when this audio segment is prepended
to any speech signal, Whisper does not tran-
scribe the speech, i.e., the model is ‘muted’.
Moreover, this universal acoustic adversarial
segment transfers across different data distribu-
tions and can even transfer to different speech
processing tasks. While this result offers a po-
tential for speech privacy protection, it does
also reveal the critical security implications of
foundation models’ susceptibility to adversarial
attacks. As speech processing systems continue
to develop, addressing these vulnerabilities is
an important direction for future research.



8 Limitations

We identify the following potential limitations
of our work:

o The scope of this work covers specifically
Transformer-based Automatic Speech
Recognition (ASR) systems, such as Whis-
per. However, due to the recent popularity
and performance of Whisper for ASR, this
scope is highly relevant for a large number
of modern speech processing applications.

e We demonstrate that the universal adver-
sarial segment can transfer well across dif-
ferent data distributions and even some-
times languages. It would be useful for
future work to explore the impact on trans-
ferability as specific dimensions of distri-
butional shift are varied in a controlled
manner, e.g. amplitude of speech (long-
distance vs close-distance audio); level of
background noise; or even recording con-
ditions.

e The universal adversarial attack, although
very effective, it is Whisper model spe-
cific. This is of course very much expected
as each model has a very different audio-
space representation. We discuss this in
greater detail in Appendix C. Although we
demonstrate that we can learn a universal
attack that is effective for more than one
Whisper model (by considering multiple
models during training), a defence in the
future could be to simply transcribe the
text using multiple diverse models. How-
ever, we argue that this defence is not
only expensive due to linear inference scal-
ing costs, but is extremely uncommon in
currently deployed ASR systems - it is
more common to use a single ASR sys-
tem. Hence, if a Whisper model is used for
ASR, then an adversary can use the uni-
versal acoustic adversarial segment from
this work to mute the model.

e This work focuses on developing an adver-
sarial attack method to mute the Whisper
model. However, we do not explore detec-
tion or defence approaches explicitly. This
is a research area for future work. How-
ever, we also emphasize that it is currently

very uncommon in many real-world de-
plo