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Abstract

Structural ambiguity in natural language, where001
a single sentence permits multiple meanings002
arising from syntax hierarchy, is a crucial chal-003
lenge for language understanding. Visual con-004
text offers a valuable source of additional infor-005
mation for resolving such ambiguity, making006
Vision & Language Models (VLMs) a promis-007
ing solution. As a first step towards evaluating008
the ability of VLMs to capture such structural009
ambiguity, we constructed a large-scale bench-010
mark covering a variety of ambiguity types011
and including both classification and genera-012
tion tasks. Quantitative results on recent mod-013
els reveal clear limitations, and our analysis014
identifies persistent challenges in aligning vi-015
sual and structural semantics, offering insights016
for future research.017

1 Introduction018

Structural ambiguity, where a sentence supports019

multiple interpretations due to its syntactic struc-020

ture, remains a key challenge in natural lan-021

guage understanding. For example, task-oriented022

dialogue systems require accurate interpretation023

of user instructions for executing them cor-024

rectly (Bodonhelyi et al., 2024). Unlike lexical025

ambiguity, structural ambiguity arises beyond the026

word level and demands deeper integration of lin-027

guistic reasoning and contextual understanding. Re-028

solving it not only prevents misinterpretation, but029

also grants the systems capacities for syntactic rea-030

soning and deeper linguistic understanding.031

Disambiguation typically requires additional032

contextual information, such as dialogue history,033

prosody, or visual input (DeVault and Stone, 2009;034

Widiaputri et al., 2023; Kuribayashi and Baldwin,035

2025). Among these sources, visual input is partic-036

ularly valuable, as it is one of the most informative037

and pervasive modalities available to real-world038

systems (Hutmacher, 2019). Figure 1 illustrates039

a use case of such visual information in a task-040

Bring me a 
yellow cap and 

sneakers

Are the 
sneakers 
yellow 
too?

yellow cap and sneakers

Figure 1: Use case of a task-oriented dialogue system
equipped with visual disambiguation ability. The sys-
tem grounds multiple candidate interpretations from an
ambiguous instruction and requests clarification.

oriented system. Given the ambiguous instruction 041

"Bring me a yellow cap and sneakers", the sys- 042

tem identifies two possible interpretations based 043

on the visual scene, where only the cap is clearly 044

yellow, but two kinds of sneakers exist. Recognis- 045

ing the ambiguity, the system infers that the colour 046

attribute is underspecified and asks for clarification. 047

When we address such tasks using Vision & Lan- 048

guage Models (VLMs), the models must recognise 049

that the given sentence or image may have multiple 050

interpretations, and appropriately identify where 051

the ambiguity lies. While previous studies (Thrush 052

et al., 2022; Yuksekgonul et al., 2022) have ex- 053

plored the limitations of VLMs in understanding 054

linguistic structure, ambiguity arising from syn- 055

tactic interpretation has not been sufficiently dis- 056

cussed. Existing datasets that address structural am- 057

biguity (Berzak et al., 2015; Mehrabi et al., 2023) 058

face challenges in terms of both scale and quality, 059

making it difficult to comprehensively evaluate the 060

capabilities of recent VLMs. 061

As a first step towards enabling VLMs to resolve 062

such ambiguity, this study proposes a new bench- 063

mark for evaluating how VLMs solve structural 064

ambiguity using visual information. We also assess 065

the extent to which existing VLMs can handle such 066
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challenges.067

By following previous work, we categorise struc-068

tural ambiguity into seven types and construct a069

large-scale dataset consisting of ambiguous sen-070

tences, their possible interpretations, and corre-071

sponding visual scenes. To generate the visual072

scenes, we used a large-scale image generation073

model (Betker et al., 2023), and the outputs were074

manually evaluated for quality.075

Using this benchmark, we conducted a com-076

prehensive evaluation of existing VLMs and also077

tested whether humans can successfully resolve078

the same ambiguity. Our results reveal that while079

most of the tasks in the benchmark are solvable by080

humans, existing VLMs exhibit a significant per-081

formance gap, indicating an explicit limitation in082

their current ability to resolve structural ambiguity083

using visual context.084

2 Related Work085

2.1 VLMs086

The core idea behind VLMs is to pre-train on large-087

scale datasets using contrastive learning, aligning088

images and their corresponding captions so that089

they share similar representations in a joint embed-090

ding space. Models following this paradigm, such091

as CLIP and SigLIP (Radford et al., 2021; Zhai092

et al., 2023), have demonstrated strong zero-shot093

image classification performance. The text and im-094

age encoders from these models are often reused095

as backbone components in downstream applica-096

tions, including text-to-image generation (Rom-097

bach et al., 2021; Ramesh et al., 2023) and multi-098

modal response generation (Laurençon et al., 2024).099

Our research evaluates both these contrastive and100

derived generation models for resolving structural101

ambiguity using visual context.102

2.2 VLMs and Compositional Understanding103

Despite their impressive performance, VLMs have104

been shown to struggle with capturing struc-105

tural compositionality, the way words combine106

to form meaning in a sentence. For instance,107

CLIP (Radford et al., 2021) has difficulty correctly108

associating adjectives with their intended target109

nouns (Tang et al., 2023). Other studies have pro-110

posed benchmarks that test compositional under-111

standing by altering word order to shift sentence112

meaning (Thrush et al., 2022; Yuksekgonul et al.,113

2022). Our research extends this line of inquiry by114

evaluating VLM’s ability to resolve structural ambi-115

guity, a challenge that goes beyond compositional 116

understanding alone and requires distinguishing be- 117

tween multiple valid syntactic interpretations of the 118

same input. 119

2.3 Visual Disambiguation 120

Resolving structural ambiguity with visual input 121

presents unique challenges, particularly due to the 122

specificity of linguistic context, which makes it 123

difficult to reuse existing datasets. The Language 124

and Visual Ambiguity (LAVA) corpus is one of the 125

few datasets explicitly designed to address struc- 126

tural ambiguity, using handcrafted visual anno- 127

tations (Berzak et al., 2015). It has served as a 128

foundational resource for subsequent studies in the 129

field. However, its limited size and annotation qual- 130

ity have posed challenges for broader applicabil- 131

ity (Mehrabi et al., 2023; Yamaki et al., 2023). The 132

Text-to-Image Ambiguity Benchmark (TAB) ex- 133

panded upon LAVA by improving the quality and 134

quantity of textual annotations, aiming to support 135

structural disambiguation in text-to-image genera- 136

tion (Mehrabi et al., 2023). Nevertheless, due to the 137

nature of its generation task, the benchmark lacks 138

annotated visual references, limiting its use in eval- 139

uating how models interpret visual input. Building 140

on recent advances in generation models (Betker 141

et al., 2023; OpenAI, 2023), our work aims to col- 142

lect more comprehensive and well-aligned data, 143

enabling a clearer evaluation of VLMs’ ability to 144

use visual information for resolving structural am- 145

biguity. 146

3 Data Construction 147

Our motivation lies in constructing a benchmark 148

containing structural ambiguity that can be appro- 149

priately resolved by referencing both linguistic and 150

visual information to improve the performance of 151

VLMs. According to this motivation, we built a 152

benchmark which incorporates both classification 153

and generation tasks, corresponding to seven am- 154

biguity types inspired by those defined in the TAB 155

dataset. In this section, we describe the procedure 156

used to construct the benchmark. 157

3.1 Ambiguity Type Definition 158

Our categorisation builds on the ambiguity types 159

defined in TAB. We exclude one category unre- 160

lated o linguistic structure ("fairness") and subdi- 161

vide the original conjunction category into three 162

(Appendix A). As a result, we define seven cate- 163

gories of structural ambiguity, which were selected 164
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The wolf 
approaches the 
girl eating a 

chicken
VP

PP

Anaph

Ellip

Adj

Vb

Conj

The girl stands 
next to a cage 

with a dog

The horse passed 
by the fence and 
the tree; it was 

tall

The gardener 
trimmed the 

hedge. Also the 
sheep

The yellow 
ball and bat 
were left in 
the yard

An elephant 
and a bird 

flying

The musicians 
tune the guitar 
or the piano 

and the drums

Figure 2: Example sentence and corresponding visual interpretations from each type defined in Section 3.1

to balance linguistic representativeness with visual165

clarity, ensuring that each ambiguity can be ef-166

fectively grounded in image-text pairs. Figure 2167

presents one example for each category along with168

its alternative interpretations.169

• Verb Phrase Attachment (VP): Ambiguity170

arises when a verb phrase could attach to more171

than one part of the sentence. (e.g. The wolf172

approaches the girl eating a chicken)173

• Preposition Phrase Attachment (PP): A prepo-174

sitional phrase can modify multiple possible175

heads (e.g. The girl stands next to a cage with176

a dog)177

• Anaphora (Anaph): A pronoun or referring178

expression has more than one plausible an-179

tecedent. (e.g. The horse passed by the fence180

and the tree; it was tall)181

• Ellipsis (Ellip): An omitted phrase can be in-182

terpreted in multiple ways. (e.g. The gardener183

trimmed the hedge. Also the sheep)184

• Adjective Scope (Adj): An adjective can mod-185

ify either a single noun or an entire coordi-186

nated noun phrase. (e.g. The yellow ball and187

bat were left in the yard)188

• Verb Scope (Vb): A verb-derived modifier189

may apply to one or more coordinated ele-190

ments. (e.g. An elephant and a bird flying)191

• Conjunction Scope (Conj): Coordinating con- 192

junctions (e.g. and, or) group sentence ele- 193

ments in more than one way. (e.g. The mu- 194

sicians tune the guitar or the piano and the 195

drums) 196

3.2 Data Collection 197

Building on the structure of TAB, we generate new 198

ambiguous-disambiguated text pairs using GPT- 199

41 (OpenAI, 2023). Each ambiguous sentence is 200

paired with two or three disambiguated counter- 201

parts, following the format introduced in TAB (e.g. 202

concatenation: “The boy approaches the chair with 203

a bag. The bag is on the chair.”). The dataset in- 204

cludes 700 ambiguous sentences (100/type), each 205

paired with 2 to 3 disambiguated interpretations 206

(e.g. for Conjunction Scope, every sentence has 207

three interpretations), resulting in 1503 disam- 208

biguated sentence pairs with corresponding images. 209

For each disambiguated caption, we generate an 210

image using DALL-E 32 (Betker et al., 2023). To 211

introduce visual diversity, images out of half of the 212

sentences are cartoon-style, the rest photo-realistic 213

(for prompts used for generation models, refer to 214

Appendix B.). In cases where certain prompts (e.g. 215

involving violence or political figures) were re- 216

1We used the gpt-4o-mini API variant from December
3 to 9, 2024.

2We used the API from December 11, 2024, to April 5,
2025.
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jected by the generation model, we rephrased them217

to preserve the intended ambiguity while ensuring218

compatibility. (Appendix C).219

4 Experimental Settings220

To assess how well current VLMs can resolve struc-221

tural ambiguity, we conduct experiments using our222

dataset across two tasks: classification and gener-223

ation. These tasks are designed to evaluate model224

performance and highlight specific limitations in225

aligning visual and linguistic information.226

4.1 Classification227

VLMs trained for zero-shot classification via large-228

scale contrastive pretraining aim to align represen-229

tations of images and their corresponding textual230

descriptions. This setting allows us to evaluate how231

well subtle semantic differences are reflected and232

matched across the visual and textual modalities.233

4.1.1 Task Specifics234

The classification task involves correctly matching235

disambiguated captions with the corresponding im-236

ages. We report classification accuracy (Acc) as237

the evaluation metric. Below, we describe the setup238

assuming two disambiguated interpretations per239

ambiguous caption (note: for conjunction scope240

ambiguity, there are three options).241

• Text-to-Image (T2I): Given an ambiguous cap-242

tion A, we assume two disambiguated ver-243

sions C1, C2, and their corresponding images244

I1, I2. In a trial, the model receives one cap-245

tion (e.g., C1) and both images (I1, I2). The246

model succeeds if it assigns a higher similarity247

score to the correct image (e.g., sim(C1, I1)248

> sim(C1, I2)). Accuracy is computed as the249

proportion of successful trials over the dataset.250

• Image-to-Text (I2T): In this direction, the251

model is given one image (e.g., I1) and both252

captions (C1, C2). A trial is considered suc-253

cessful if the model assigns a higher similarity254

score to the correct caption. Accuracy is com-255

puted in the same manner as T2I.256

• Dual: This task evaluates whether a dis-257

ambiguated image-caption pair is correctly258

matched in both directions. The model is259

given both images and both captions, and the260

match is counted as successful if, for a given261

pair (C1, I1), both sim(C1, I1) > sim(C1, I2)262

and sim(I1, C1) > sim(I1, C2). The accu- 263

racy is calculated as the proportion of cor- 264

rectly matched pairs (0, 1, or 2 per instance). 265

4.1.2 Evaluated Models 266

Given their strong zero-shot capabilities and broad 267

applicability, our evaluation focuses primarily on 268

contrastive VLMs based on the CLIP paradigm. 269

Specifically, we evaluate the following models: 270

CLIP (Radford et al., 2021), SIGLIP (Zhai et al., 271

2023), and its variants. As a result, our targets are 272

CLIP3 (Radford et al., 2021), OpenCLIP4 (Cherti 273

et al., 2023), MetaCLIP5 (Xu et al., 2024), EVA- 274

CLIP6 (Sun et al., 2023), SigLIP7 (Zhai et al., 275

2023), and SigLIP28 (Tschannen et al., 2025), with 276

the versions as large as possible. 277

4.1.3 Human Evaluation 278

For comparison, we also report human performance 279

on the classification task. Two annotators evaluated 280

the entire dataset, with each annotator handling 281

half of the samples shuffled across ambiguity types. 282

To avoid potential memory effects, the two were 283

given disjoint subsets for the T2I and I2T condi- 284

tions. Overall human performance is reported as 285

the aggregate number of correct decisions across 286

both annotators. For the Dual condition, a sam- 287

ple was considered correct only if both annotators 288

selected the correct match independently in their 289

respective directions. 290

4.2 Generation 291

The generation task assesses whether a model can 292

revise or preserve a caption based on accompany- 293

ing visual input. This includes rewriting ambiguous 294

capions to resolve structural ambiguity, preserving 295

accurate disambiguated captions, or correcting cap- 296

tions that mismatch the image. This task setup 297

reflects practical use cases where a model must in- 298

terpret language in the context of a visual scene 299

and adjust output accordingly. 300

4.2.1 Task Details 301

Each input to the model consists of a caption, an 302

image, and an instruction prompt. Depending on 303

the input, the model is expected to either preserve 304

3openai/clip-vit-large-patch14-336
4hf-hub:laion/CLIP-ViT-g-14-laion2B-s12B-b42K
5facebook/metaclip-h14-fullcc2.5b
6BAAI/EVA-CLIP-18B
7google/siglip-so400m-patch14-384
8google/siglip2-so400m-patch16-512
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the caption, revise it to correct a mismatch, or dis-305

ambiguate it using the visual context. We define306

three input scenarios:307

• Ambiguous caption + disambiguating image:308

The caption contains structural ambiguity, and309

the model must rewrite it into a disambiguated310

one that aligns with the image.311

• Disambiguated caption + matching image:312

The caption is already correct. The model313

should preserve the semantic structure, option-314

ally rephrasing it without altering its meaning.315

• Disambiguated caption + mismatching image:316

The caption does not match the visual input.317

The model must revise it to reflect the content318

of the image.319

To guide the model, we design two types320

of instruction prompts: one general (PROMPT-321

GENERAL), and one elaborated (PROMPT-322

ELABORATED) with explicit mention of the ambi-323

guity type. This allows us to assess whether models324

benefit from task-specific guidance during disam-325

biguation. The full list of prompts and hyper pa-326

rameters is provided in the Appendix D.327

4.2.2 Metrics328

The generation task is evaluated by comparing the329

model-generated caption with a gold (reference)330

caption that aligns with the intended structural se-331

mantics of the input image. We adopt two comple-332

mentary evaluation metrics.333

BERTScore BERTScore (Zhang et al., 2020)334

computes similarity between text sequences us-335

ing contextualized embeddings from pre-trained336

language models, capturing semantic similarity be-337

yond surface-level matching. Unlike traditional338

metrics such as BLEU (Papineni et al., 2002),339

which rely on exact n-gram overlap, BERTScore340

evaluates how well the generated caption captures341

the meaning of the gold caption. Given the seman-342

tic focus of our task, we find BERTScore particu-343

larly suitable.344

Smatch Smatch (Cai and Knight, 2013) mea-345

sures the similarity between two Abstract Meaning346

Representation (AMR) graphs (Banarescu et al.,347

2013), which encode the meaning of sentences in a348

predicate-logic-like form. This allows comparison349

of deeper structural semantics, abstracting away350

superficial textual differences. We convert captions351

into AMR graphs using amrlib9. While the AMR 352

parser is not flawless, Smatch provides an addi- 353

tional perspective on how well models preserve or 354

recover the underlying meaning. We use it to gauge 355

the alignment between generated and gold captions 356

beyond surface-level text similarity. 357

4.2.3 Evaluated Models 358

We evaluate one closed-source model (GPT- 359

4o (OpenAI, 2023)) alongside 7 open-source mod- 360

els (Gemma310 (Team, 2025), LLaVA1.611 (Liu 361

et al., 2024), Qwen2.5-VL12 (Bai et al., 2025), Pix- 362

tral13 (Agrawal et al., 2024), Idefics314 (Laurençon 363

et al., 2024), and Chameleon15 (Team, 2024)). Due 364

to hardware limitations, we were unable to test the 365

largest versions of each open model. However, pre- 366

vious evaluations suggest that the smaller variants 367

used here demonstrate broadly similar performance 368

patterns, with only slight degradations in accuracy. 369

Our goal is to analyse general trends in how these 370

models handle structural ambiguity. The inclusion 371

of GPT-4o allows us to benchmark performance 372

at the higher end of model capability, providing a 373

reference point for future research. 374

5 Results 375

5.1 Classification 376

Table 1 presents the classification results. As out- 377

lined in the Appendix E, the expected accuracy by 378

random chance is 50% for ambiguity types with 379

two possible interpretations, and approximately 380

33% for the Conjunction Scope (Conj) type, which 381

involves three options. For the Dual task, where 382

success requires correct matches in both directions 383

(T2I and I2T), the random baseline is 25% for two- 384

option types and approximately 11% (1/9) for Conj. 385

Across most two-option ambiguity types, both 386

T2I and I2T performance hovers near the random 387

baseline, indicating that current VLMs struggle to 388

reliably resolve structural ambiguity. In contrast, 389

human performance mostly exceeds 0.9, demon- 390

strating that the task is well-posed and that the 391

benchmark captures structurally resolvable cases. 392

We observe a performance gap between task 393

directions: I2T generally outperforms T2I, and 394

9https://github.com/bjascob/amrlib
10google/gemma-3-12b-it
11llava-hf/llava-v1.6-vicuna-13b-hf
12Qwen/Qwen2.5-VL-7B-Instruct
13mistral-community/pixtral-12b
14HuggingFaceM4/Idefics3-8B-Llama3
15facebook/chameleon-7b
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Model VP PP Anaph Ellip Vb Adj Conj All
Text-to-Image (T2I)

CLIP 0.525 0.510 0.493 0.495 0.515 0.525 0.377 0.484
SigLIP 0.505 0.530 0.502 0.559 0.545 0.530 0.347 0.492
SigLIP2 0.530 0.550 0.522 0.515 0.510 0.495 0.390 0.494

MetaCLIP 0.515 0.505 0.493 0.550 0.525 0.535 0.357 0.488
OpenCLIP 0.505 0.510 0.498 0.540 0.475 0.505 0.380 0.480
EVA-CLIP 0.500 0.495 0.507 0.520 0.510 0.525 0.387 0.485

Human 0.985 0.970 0.881 0.926 0.905 0.920 0.930 0.931
Image-to-Text (I2T)

CLIP 0.505 0.565 0.517 0.540 0.570 0.535 0.520 0.535
SigLIP 0.570 0.590 0.552 0.515 0.645 0.545 0.463 0.548
SigLIP2 0.515 0.595 0.562 0.545 0.585 0.510 0.517 0.545

MetaCLIP 0.500 0.540 0.567 0.545 0.565 0.570 0.510 0.540
OpenCLIP 0.540 0.545 0.532 0.525 0.590 0.605 0.573 0.560
EVA-CLIP 0.490 0.550 0.522 0.579 0.605 0.590 0.543 0.554

Human 0.965 0.925 0.945 0.896 0.895 0.945 0.933 0.929
Dual

CLIP 0.260 0.335 0.274 0.327 0.300 0.325 0.190 0.281
SigLIP 0.325 0.310 0.274 0.322 0.400 0.310 0.187 0.300
SigLIP2 0.285 0.355 0.294 0.287 0.240 0.245 0.160 0.259

MetaCLIP 0.290 0.280 0.264 0.327 0.320 0.335 0.183 0.279
OpenCLIP 0.310 0.330 0.303 0.312 0.330 0.325 0.237 0.302
EVA-CLIP 0.290 0.285 0.338 0.322 0.385 0.315 0.203 0.299

Human 0.960 0.915 0.851 0.847 0.855 0.915 0.913 0.896

Table 1: Classification results. The best score across per type is doublelined and per model is boldfaced.

Dual accuracy often exceeds the respective base-395

line. This directional asymmetry is particularly pro-396

nounced in the Conj type, where T2I performance397

remains near chance while I2T shows a marked im-398

provement, resulting in Dual accuracy substantially399

higher than the random chance. One possible ex-400

planation is that the two modalities have different401

bias which don’t work in accordance with structural402

ambiguity403

Finally, it is worth noting that EVA-CLIP, de-404

spite its 18B parameter size, does not show notable405

superiority over smaller models. This may imply406

that current contrastive pre-training alone, regard-407

less of model scale, is not yet sufficient to handle408

structural ambiguity effectively.409

5.2 Generation410

Table 2 presents the results of the generation task.411

Although all models were instructed to perform412

the same task using the equivalent information,413

the stability of generated responses differed signif-414

icantly. Gemma3, Idefics3, and Chameleon often415

produced unstable outputs, such as off-topic an-416

swers or captions containing multiple conflicting417

interpretations. In particular, Gemma3 occasion-418

ally failed to recognize the provided image, result-419

ing in the weakest performance. Meanwhile, other 420

models generated more stable responses, scoring 421

around 0.8 in BERTScore, indicating sound perfor- 422

mance, though with room for improvement. No- 423

tably, while it might be expected that GPT-4o, with 424

the largest parameter size, would excel at a task 425

requiring multi-step inference such as disambigua- 426

tion, LLaVA1.6 (13B) outperformed it, and the best 427

performance came from Qwen2.5 (7B). This sug- 428

gests that disambiguation ability currently shows 429

little correlation with model size, and structural 430

ambiguity has not yet been a core focus of large- 431

scale VLM training. Prompts with more elaborated 432

descriptions of the ambiguity type generally led to 433

improved performance, but not to a degree consid- 434

ered reliably effective. Additionally, while Smatch 435

scores followed a similar trend to BERTScore, the 436

overall performance on Smatch was lower, indi- 437

cating further limitations in structural-level under- 438

standing. 439

6 Discussion 440

To better understand model behaviour, we further 441

analyse embedding similarities and alignment pat- 442

terns across modalities. We identify two primary 443

limitations that contribute to the overall low accu- 444
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Model VP PP Anaph Ellip Vb Adj Conj All
BERTScore

GPT-4o 0.824
(+0.004)

0.806
(+0.010)

0.870
(+0.017)

0.827
(+0.011)

0.738
(+0.004)

0.797
(+0.010)

0.741
(+0.008)

0.793
(+0.009)

Gemma3 0.678
(+0.175)

0.625
(+0.183)

0.615
(+0.188)

0.605
(+0.015)

0.668
(+0.090)

0.654
(+0.131)

0.543
(+0.208)

0.617
(+0.149)

LLaVA1.6 0.852
(+0.003)

0.828
(+0.023)

0.846
(+0.078)

0.808
(+0.029)

0.784
(+0.022)

0.838
(-0.007)

0.755
(+0.019)

0.808
(+0.023)

Qwen2.5 0.859
(+0.002)

0.866
(-0.008)

0.911
(-0.006)

0.863
(+0.006)

0.875
(-0.029)

0.846
(-0.023)

0.822
(+0.030)

0.858
(+0)

Pixtral 0.834
(+0.009)

0.829
(+0.012)

0.830
(+0.054)

0.846
(+0.021)

0.765
(-0.002)

0.804
(+0)

0.755
(+0.079)

0.802
(+0.031)

Idefics3 0.677
(+0.023)

0.666
(+0.018)

0.665
(+0.043)

0.666
(+0.011)

0.646
(+0.007)

0.663
(+0.009)

0.591
(+0.035)

0.646
(+0.023)

Chameleon 0.667
(+0.074)

0.679
(+0.069)

0.698
(0.043)

0.621
(+0.024)

0.580
(+0.060)

0.683
(+0.038)

0.602
(+0.107)

0.642
(+0.065)

Smatch

GPT-4o 0.670
(+0.020)

0.630
(+0.020)

0.700
(+0.030)

0.640
(+0.020)

0.520
(+0)

0.680
(+0.020)

0.520
(+0.020)

0.623
(+0.019)

Gemma3 0.360
(+0.340)

0.290
(+0.350)

0.330
(+0.240)

0.240
(+0.010)

0.370
(+0.220)

0.400
(+0.310)

0.270
(+0.350)

0.323
(+0.260)

LLaVA1.6 0.730
(-0.010)

0.670
(+0.040)

0.700
(+0.100)

0.610
(+0.040)

0.570
(-0.020)

0.710
(-0.050)

0.560
(+0.040)

0.650
(+0.020)

Qwen2.5 0.720
(-0.010)

0.710
(+0)

0.770
(+0)

0.680
(+0.030)

0.730
(-0.020)

0.770
(-0.020)

0.620
(+0.060)

0.714
(+0.006)

Pixtral 0.690
(+0)

0.640
(+0.030)

0.660
(+0.070)

0.690
(+0.030)

0.610
(+0.020)

0.760
(+0.030)

0.630
(+0.080)

0.669
(+0.037)

Idefics3 0.470
(+0.020)

0.450
(+0.010)

0.490
(+0.040)

0.480
(+0.010)

0.370
(+0.010)

0.520
(+0.010)

0.370
(+0.030)

0.450
(+0.019)

Chameleon 0.450
(+0.060)

0.420
(+0.050)

0.480
(+0.040)

0.330
(+0.030)

0.300
(+0.050)

0.500
(+0.020)

0.390
(+0.10)

0.410
(+0.037)

Table 2: Generation results. Inside the brackets are score differences by PROMPT-ELABORATED. The best
performance per type is boldfaced.

racy of current VLMs:445

• A lack of sensitivity to structural differences446

in textual meaning447

• Overreliance on surface-level visual features448

that distract from the disambiguation-relevant449

semantics.450

6.1 Structural Meaning not Reflected in451

Embeddings452

Our classification results indicate that current mod-453

els struggle to resolve structural ambiguity, often454

performing near random chance. While generation455

performance is higher particularly in BERTScore,456

Smatch which emphasises structural accuracy re-457

veals persistent gaps. One possible hypothesis is458

that current text encoders are not sufficiently sen-459

sitive to syntactic distinctions between lexically460

similar sentences.461

Table 1 shows that I2T accuracy consis-462

tently outperformed T2I. Prior work such as463

Winoground (Thrush et al., 2022), attributes this 464

to stronger text encoders or modality-specific bi- 465

ases. Our findings support this, showing that the 466

text modality may carry systematic biases that limit 467

semantic separation. 468

OpenCLIP Qwen2.5
Type amb-dis dis-dis amb-dis dis-dis
VP 0.971 0.994 0.970 0.993
PP 0.971 0.983 0.969 0.989

Anaph 0.987 0.993 0.990 0.999
Ellip 0.953 0.949 0.940 0.941
Vb 0.952 0.976 0.951 0.996
Adj 0.963 0.986 0.973 0.998
Conj 0.966 0.988 0.988 0.997
All 0.966 0.983 0.970 0.990

Table 3: Cosine similarity between the captions. amb-
dis signifies the comparison between the ambiguous
caption and its disambiguated version, and dis-dis signi-
fies the similarity between the disambiguated candidates
from the same ambiguous sentence.
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Image A

1

3

6

10

1 The girl approaches the table on which there is a black 
laptop. The girl has blonde hair and is wearing a blue blouse 

and a green flower skirt

3 The girl approaches the table holding a black laptop. 
The girl has blonde hair and is wearing a blue blouse and a 

green flower skirt

6 The girl approaches the table on 
which there is a black laptop. 

10 The girl approaches the table with a laptop. 
The laptop is on the table

0.373

0.370

0.364

0.359

Figure 3: Error case analysis from OpenCLIP model. The left side shows a cosine similarity heatmap between
two images and ten caption variants, including the original ambiguous caption ("The girl approaches the table
with a black laptop."), two disambiguated captions via concatenation (concat_a, concat_b), and two via rewriting
(rewritten_a, rewritten_b), each with and without added visual description. The visual description is: "The girl has
blonde hair and is wearing a blue blouse and a green flower skirt." The right panel shows cosine similarity rankings
of the ten captions relative to the image embedding

To further investigate, we compute cosine sim-469

ilarities between the captions (Table 3), which re-470

veals that disambiguated captions are often too sim-471

ilar to both their ambiguous originals and to each472

other in embedding space. This overlap likely con-473

tributes to poor classification performance explains474

why Smatch scores are lower in generation, given475

its sensitivity to structural mismatches.476

6.2 Visual Detail Dominance477

Visual modality allows a wider range of surface ex-478

pressions than text, often distracting models from479

structural cues. In Figure 3, OpenCLIP fails to480

match a disambiguated PP caption (concat_a) with481

its image. We analysed rewritten variants with482

and without added superficial visual descriptions.483

Cosine similarity reveals clustering based on vi-484

sual detail rather than syntactic meaning. Even an485

incorrect caption with visual cues outperformed486

the correct one without, indicating that the mod-487

els prioritise superficial information over structural488

information, hindering effective disambiguation.489

These findings imply that VLMs may overfit to490

descriptive visual features and fail to generalise491

across expression styles. Effective disambiguation492

will require models to abstract visual meaning be- 493

yond literal object descriptions and better integrate 494

this with structural cues from text. 495

7 Conclusion 496

We introduced a benchmark for evaluating VLMs 497

on structural ambiguity resolution using visual in- 498

formation. Covering seven ambiguity types, our 499

dataset supports both classification and generation 500

tasks to assess model behaviour. Results show that 501

classification performance remains near random 502

chance, and although generation outputs score well 503

for BERTScore, structural evaluation with Smatch 504

reveals major gaps. Analysis indicates that se- 505

mantic differences between captions are poorly re- 506

flected in embedding space, and that models often 507

focus on superficial visual details rather than disam- 508

biguating cues. These findings highlight the need 509

for improved cross-modal reasoning and structural 510

sensitivity. Future work should aim to develop mod- 511

els that abstract beyond surface-level features and 512

align syntactic interpretation more reliably with 513

visual context. 514
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Limitations515

• While our human evaluation on our data sug-516

gests its plausibility in Table 1, more thorough517

analysis is required regarding the data’s statis-518

tics. Specifically, diversity in both ambiguous519

sentences and images would be an important520

factor justifying our collected dataset in as-521

sessing the VLMs’ disambiguation ability.522

• While our results suggested that model size523

isn’t yet an important factor for the models’524

disambiguation ability, further experiments525

could be done on various sizes from the same526

model to see more detailed performance differ-527

ence. Also, more evaluation would be needed528

on closed model such as Gemini (Reid et al.,529

2024).530
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A Revision of Ambiguity Type from TAB 703

TAB (Mehrabi et al., 2023) dataset has defined the 704

following seven types of ambiguity: 705

• Anaphora: Ambiguity arises when pronouns 706

or similar expressions refer to a previously 707

mentioned entity, but there are multiple possi- 708

ble referents. (e.g. The girl looks at the bird 709

and the butterfly; it is red.) 710

• Ellipsis: Ambiguity caused by omitted ele- 711

ments in a sentence, resulting in multiple pos- 712

sible interpretations. (e.g. The lion eats the 713

chicken. Also the cat.) 714

• Fairness: Ambiguity occurs when the caption 715

lacks specific attributes of an object, result- 716

ing in multiple possible visual interpretations. 717

(e.g. The man dusting the floor.) 718

• Miscellaneous: Ambiguity arising from ob- 719

jects having multiple possible roles or proper- 720

ties. (e.g. The chicken is ready to eat.) 721

• Syntax-PP: Ambiguity arises when it’s un- 722

clear which part of the sentence a preposi- 723

tional phrase is modifying. (e.g. The woman 724

approached the chair with a bag.) 725
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• Syntax-VP: Ambiguity arises when it’s un-726

clear which part of the sentence a verb phrase727

is modifying (e.g. The man looked at a boy728

talking to a telephone.)729

• Conjunction: Ambiguity caused by the scope730

of verbs or adjectives connected to multiple731

nouns via conjunctions like "and" or "or". (e.g.732

The girl holds the green chair and bag.)733

Among the original ambiguity types, Fairness734

was found to be exclusively related to image gener-735

ation and was therefore unsuitable for our research,736

which focuses on semantic diversity rather than737

visual representation. Additionally, the Miscella-738

neous category contained too few instances—only739

three samples were present in the entire TAB740

dataset—to support meaningful experiment. As741

a result, we excluded both of these types from our742

study. Furthermore, we redefined the Conjunction743

category as a scope ambiguity problem and sub-744

divided it into three finer-grained types: adjective745

scope, verb scope, and conjunction scope.746

B Prompts used for Generation Models747

for Data Collection748

For data collection, we used the following prompts749

• Text Generation: Hi, I’m making a dataset750

by extending the following examples. Output751

sentences in the following format: - An am-752

biguous sentence having 2 or 3 possible mean-753

ings: Avoid repeating common phrases and754

use a wide range of vocabulary and creative755

expression, a variety of synonyms and idioms.756

- Disambiguated sentences corresponded to757

ambiguous sentence: Do not say something758

else but just 2 or 3 sentences. These sentences759

are connected slash. - If I’m not satisfied, I760

will give you feedback. If I say good, then761

generate another round. - Create a text filled762

with detail that allows one to easily visualize763

the scene. The topic is {AMB_TYPE}. From764

now on, I will show you some of the exam-765

ples.766

• Image Generation: Follow the prompt and767

styles to create a faithful image.768

Prompt: {args.prompt}769

Styles: {args.style}770

For text generation, previous samples from TAB771

were given to the generation model to grant it772

a sense of sentences it was supposed to create. 773

{AMB_TYPE} was formatted with the name and a 774

description of the ambiguity type as follows: 775

• vp: VP Attachment Ambiguity, occuring 776

when it is unclear which part of a sentence 777

a verb phrase is intended to modify 778

• pp: PP Attachment Ambiguity, occurring 779

when it is unclear which part of a sentence 780

a prepositional phrase is intended to modify 781

• anaph: Anaphoric Ambiguity, which occurs 782

when it is unclear which antecedent a particu- 783

lar anaphor refers to within a given context 784

• ellip: Ellipsis Ambiguity, involving the omis- 785

sion of words or phrases that are understood 786

from the context 787

• adjscope: Adjective Scope Ambiguity, occur- 788

ring when it is unclear how far the influence 789

of an adjective extends within a sentece 790

• verbscope: Verb Scope Ambiguity, occurring 791

when it is unclear how far the influence of a 792

verb extends within a sentence 793

• conjscope: Conjunction Scope Ambiguity, oc- 794

curring when it is unclear how far the in- 795

fluence of a conjunction coordinate such as 796

AND/OR extends within a sentence 797

Image generation prompts were carefully made 798

to have the same semantic structure as that of the 799

texts used for the experiments. For image styles, 800

"coloured cartoon" and "coloured photograpy" 801

were used. 802

C Example Cases of Inappropriate Texts 803

in TAB 804

While TAB was originally designed for image gen- 805

eration tasks, some of its samples included inappro- 806

priate content that was rejected by the generation 807

model. One common issue involved violent verbs, 808

such as kill, threaten, or hit (e.g., The girl killed the 809

boy with a gun.). Another issue was the inclusion 810

of real-world political figures from the contempo- 811

rary era, which also triggered rejection (e.g., Biden 812

sits next to a girl worshipping Trump.). 813

To address these issues, we made the following 814

modifications: violent verbs were replaced with 815

neutral alternatives (e.g., greet), and named politi- 816

cal figures were replaced with descriptive phrases 817
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(e.g., the old man and the blonde man) to preserve818

the intended ambiguity while avoiding rejection by819

the model.820

D Prompts and Hyper Parameters for821

Generation Experiment822

Instruction prompts given to the generation models823

for our experiment in Section 4.2 are designed to824

convey the identical meaning across the models825

assessed. However since some models had differ-826

ent requirements for the format, we adjusted them827

accordingly:828

• GPT-4o: I am giving you an image and its829

caption. The caption might contain in itself830

structural ambiguity.831

Your job is to output the final caption with832

modification if necessary.833

Your job process is gonna be as follows:834

1. If the caption is unambiguous, then look835

at the image to see if the caption matches836

the image semantics. If so, the final cap-837

tion stays the same from the original.838

Don’t change it.839

2. If the caption isn’t ambiguous but doesn’t840

match the image semantics, then rewrite841

the caption to match the image content.842

Do it like the following example:843

e.g. The man approached the844

chair with a bag. the bag is in845

the man’s arms.846

But if the bag in the image is on847

the chair, then just change it like:848

The man approached the chair849

with a bag. the bag is on the850

chair.851

You should not focus on the visual details852

too much.853

3. If the caption is ambiguous, then disam-854

biguate it by looking at the given image.855

Your output should be a single sentence, the856

final caption.857

• Chameleon: Look at this caption858

{input_caption} and the image <image>.859

And rewrite the caption in the following860

process:861

1. If there is no structural ambiguity, output862

the caption as it is.863

2. However, if the caption is unambiguous 864

but doesn’t match the image semantics, 865

rewrite it. 866

3. If there is structural ambiguity, output 867

the modified caption given the image in- 868

formation. 869

Your output should be a single sentence, the 870

final caption. 871

• Others: I am giving you an image and its 872

caption. The caption might contain in itself 873

structural ambiguity. Your job is to output the 874

final caption with modification if necessary 875

by looking at the image. 876

877

Job process: 878

1. If there is no ambiguity, output the cap- 879

tion as it is. 880

2. However, if the caption is unambiguous 881

but doesn’t match the image semantics, 882

rewrite it. 883

3. If there is structural ambiguity, output 884

the modified caption given the image in- 885

formation. 886

Your output should be a single sentence, the 887

final caption. 888

889

[Image] 890

891

Caption: {input_caption} 892

893

Above prompts are input prompts without 894

E Random Chance 895
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Task Model VP PP Anaph Ellip Vb Adj Conj All

T2I

CLIP 0.5 0.5 0.498 0.495 0.5 0.5 0.333 0.468
SigLIP 0.5 0.5 0.498 0.495 0.5 0.5 0.333 0.468

SigLIP2 0.5 0.5 0.498 0.495 0.5 0.5 0.333 0.466
MetaCLIP 0.5 0.5 0.498 0.495 0.5 0.5 0.333 0.468
OpenCLIP 0.5 0.5 0.498 0.495 0.5 0.5 0.333 0.466
EVA-CLIP 0.5 0.5 0.498 0.495 0.5 0.5 0.333 0.466

I2T

CLIP 0.5 0.5 0.498 0.495 0.5 0.5 0.333 0.568
SigLIP 0.5 0.5 0.498 0.495 0.5 0.5 0.333 0.468

SigLIP2 0.5 0.5 0.498 0.495 0.5 0.5 0.333 0.466
MetaCLIP 0.5 0.5 0.498 0.495 0.5 0.5 0.333 0.468
OpenCLIP 0.5 0.5 0.498 0.495 0.5 0.5 0.333 0.466
EVA-CLIP 0.5 0.5 0.498 0.495 0.5 0.5 0.333 0.466

Dual

CLIP 0.23 0.295 0.274 0.262 0.26 0.32 0.103 0.240
SigLIP 0.275 0.255 0.239 0.238 0.275 0.3 0.093 0.230

SigLIP2 0.255 0.245 0.259 0.267 0.22 0.315 0.077 0.224
MetaCLIP 0.225 0.235 0.279 0.277 0.285 0.315 0.077 0.231
OpenCLIP 0.215 0.215 0.249 0.277 0.29 0.31 0.333 0.220
EVA-CLIP 0.24 0.28 0.239 0.252 0.31 0.28 0.07 0.228

Table 4: Classification results based on random chance trials. The input text is the original ambiguous sentence.
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