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Abstract

Structural ambiguity in natural language, where
a single sentence permits multiple meanings
arising from syntax hierarchy, is a crucial chal-
lenge for language understanding. Visual con-
text offers a valuable source of additional infor-
mation for resolving such ambiguity, making
Vision & Language Models (VLMs) a promis-
ing solution. As a first step towards evaluating
the ability of VLMs to capture such structural
ambiguity, we constructed a large-scale bench-
mark covering a variety of ambiguity types
and including both classification and genera-
tion tasks. Quantitative results on recent mod-
els reveal clear limitations, and our analysis
identifies persistent challenges in aligning vi-
sual and structural semantics, offering insights
for future research.

1 Introduction

Structural ambiguity, where a sentence supports
multiple interpretations due to its syntactic struc-
ture, remains a key challenge in natural lan-
guage understanding. For example, task-oriented
dialogue systems require accurate interpretation
of user instructions for executing them cor-
rectly (Bodonhelyi et al., 2024). Unlike lexical
ambiguity, structural ambiguity arises beyond the
word level and demands deeper integration of lin-
guistic reasoning and contextual understanding. Re-
solving it not only prevents misinterpretation, but
also grants the systems capacities for syntactic rea-
soning and deeper linguistic understanding.
Disambiguation typically requires additional
contextual information, such as dialogue history,
prosody, or visual input (DeVault and Stone, 2009;
Widiaputri et al., 2023; Kuribayashi and Baldwin,
2025). Among these sources, visual input is partic-
ularly valuable, as it is one of the most informative
and pervasive modalities available to real-world
systems (Hutmacher, 2019). Figure 1 illustrates
a use case of such visual information in a task-
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Figure 1: Use case of a task-oriented dialogue system
equipped with visual disambiguation ability. The sys-
tem grounds multiple candidate interpretations from an
ambiguous instruction and requests clarification.
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oriented system. Given the ambiguous instruction
"Bring me a yellow cap and sneakers", the sys-
tem identifies two possible interpretations based
on the visual scene, where only the cap is clearly
yellow, but two kinds of sneakers exist. Recognis-
ing the ambiguity, the system infers that the colour
attribute is underspecified and asks for clarification.

When we address such tasks using Vision & Lan-
guage Models (VLMs), the models must recognise
that the given sentence or image may have multiple
interpretations, and appropriately identify where
the ambiguity lies. While previous studies (Thrush
et al., 2022; Yuksekgonul et al., 2022) have ex-
plored the limitations of VLMs in understanding
linguistic structure, ambiguity arising from syn-
tactic interpretation has not been sufficiently dis-
cussed. Existing datasets that address structural am-
biguity (Berzak et al., 2015; Mehrabi et al., 2023)
face challenges in terms of both scale and quality,
making it difficult to comprehensively evaluate the
capabilities of recent VLMs.

As a first step towards enabling VLMs to resolve
such ambiguity, this study proposes a new bench-
mark for evaluating how VLMs solve structural
ambiguity using visual information. We also assess
the extent to which existing VLMs can handle such



challenges.

By following previous work, we categorise struc-
tural ambiguity into seven types and construct a
large-scale dataset consisting of ambiguous sen-
tences, their possible interpretations, and corre-
sponding visual scenes. To generate the visual
scenes, we used a large-scale image generation
model (Betker et al., 2023), and the outputs were
manually evaluated for quality.

Using this benchmark, we conducted a com-
prehensive evaluation of existing VLMs and also
tested whether humans can successfully resolve
the same ambiguity. Our results reveal that while
most of the tasks in the benchmark are solvable by
humans, existing VLMs exhibit a significant per-
formance gap, indicating an explicit limitation in
their current ability to resolve structural ambiguity
using visual context.

2 Related Work
2.1 VLMs

The core idea behind VLMs is to pre-train on large-
scale datasets using contrastive learning, aligning
images and their corresponding captions so that
they share similar representations in a joint embed-
ding space. Models following this paradigm, such
as CLIP and SigLIP (Radford et al., 2021; Zhai
et al., 2023), have demonstrated strong zero-shot
image classification performance. The text and im-
age encoders from these models are often reused
as backbone components in downstream applica-
tions, including text-to-image generation (Rom-
bach et al., 2021; Ramesh et al., 2023) and multi-
modal response generation (Laurencon et al., 2024).
Our research evaluates both these contrastive and
derived generation models for resolving structural
ambiguity using visual context.

2.2 VLMs and Compositional Understanding

Despite their impressive performance, VLMs have
been shown to struggle with capturing struc-
tural compositionality, the way words combine
to form meaning in a sentence. For instance,
CLIP (Radford et al., 2021) has difficulty correctly
associating adjectives with their intended target
nouns (Tang et al., 2023). Other studies have pro-
posed benchmarks that test compositional under-
standing by altering word order to shift sentence
meaning (Thrush et al., 2022; Yuksekgonul et al.,
2022). Our research extends this line of inquiry by
evaluating VLM’s ability to resolve structural ambi-

guity, a challenge that goes beyond compositional
understanding alone and requires distinguishing be-
tween multiple valid syntactic interpretations of the
same input.

2.3 Visual Disambiguation

Resolving structural ambiguity with visual input
presents unique challenges, particularly due to the
specificity of linguistic context, which makes it
difficult to reuse existing datasets. The Language
and Visual Ambiguity (LAVA) corpus is one of the
few datasets explicitly designed to address struc-
tural ambiguity, using handcrafted visual anno-
tations (Berzak et al., 2015). It has served as a
foundational resource for subsequent studies in the
field. However, its limited size and annotation qual-
ity have posed challenges for broader applicabil-
ity (Mehrabi et al., 2023; Yamaki et al., 2023). The
Text-to-Image Ambiguity Benchmark (TAB) ex-
panded upon LAVA by improving the quality and
quantity of textual annotations, aiming to support
structural disambiguation in text-to-image genera-
tion (Mehrabi et al., 2023). Nevertheless, due to the
nature of its generation task, the benchmark lacks
annotated visual references, limiting its use in eval-
uating how models interpret visual input. Building
on recent advances in generation models (Betker
et al., 2023; OpenAl, 2023), our work aims to col-
lect more comprehensive and well-aligned data,
enabling a clearer evaluation of VLMs’ ability to
use visual information for resolving structural am-
biguity.

3 Data Construction

Our motivation lies in constructing a benchmark
containing structural ambiguity that can be appro-
priately resolved by referencing both linguistic and
visual information to improve the performance of
VLMs. According to this motivation, we built a
benchmark which incorporates both classification
and generation tasks, corresponding to seven am-
biguity types inspired by those defined in the TAB
dataset. In this section, we describe the procedure
used to construct the benchmark.

3.1 Ambiguity Type Definition

Our categorisation builds on the ambiguity types
defined in TAB. We exclude one category unre-
lated o linguistic structure ("fairness") and subdi-
vide the original conjunction category into three
(Appendix A). As a result, we define seven cate-
gories of structural ambiguity, which were selected
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Figure 2: Example sentence and corresponding visual interpretations from each type defined in Section 3.1

to balance linguistic representativeness with visual
clarity, ensuring that each ambiguity can be ef-
fectively grounded in image-text pairs. Figure 2
presents one example for each category along with
its alternative interpretations.

* Verb Phrase Attachment (VP): Ambiguity
arises when a verb phrase could attach to more
than one part of the sentence. (e.g. The wolf
approaches the girl eating a chicken)

* Preposition Phrase Attachment (PP): A prepo-
sitional phrase can modify multiple possible
heads (e.g. The girl stands next to a cage with
a dog)

* Anaphora (Anaph): A pronoun or referring
expression has more than one plausible an-
tecedent. (e.g. The horse passed by the fence
and the tree; it was tall)

* Ellipsis (Ellip): An omitted phrase can be in-
terpreted in multiple ways. (e.g. The gardener
trimmed the hedge. Also the sheep)

* Adjective Scope (Adj): An adjective can mod-
ify either a single noun or an entire coordi-
nated noun phrase. (e.g. The yellow ball and
bat were left in the yard)

* Verb Scope (Vb): A verb-derived modifier
may apply to one or more coordinated ele-
ments. (e.g. An elephant and a bird flying)

* Conjunction Scope (Conj): Coordinating con-
junctions (e.g. and, or) group sentence ele-
ments in more than one way. (e.g. The mu-
sicians tune the guitar or the piano and the
drums)

3.2 Data Collection

Building on the structure of TAB, we generate new
ambiguous-disambiguated text pairs using GPT-
4! (OpenAl, 2023). Each ambiguous sentence is
paired with two or three disambiguated counter-
parts, following the format introduced in TAB (e.g.
concatenation: “The boy approaches the chair with
a bag. The bag is on the chair.”). The dataset in-
cludes 700 ambiguous sentences (100/type), each
paired with 2 to 3 disambiguated interpretations
(e.g. for Conjunction Scope, every sentence has
three interpretations), resulting in 1503 disam-
biguated sentence pairs with corresponding images.
For each disambiguated caption, we generate an
image using DALL-E 3? (Betker et al., 2023). To
introduce visual diversity, images out of half of the
sentences are cartoon-style, the rest photo-realistic
(for prompts used for generation models, refer to
Appendix B.). In cases where certain prompts (e.g.
involving violence or political figures) were re-

'We used the gpt-40-mini API variant from December
3t09,2024.

>We used the API from December 11, 2024, to April 5,
2025.



jected by the generation model, we rephrased them
to preserve the intended ambiguity while ensuring
compatibility. (Appendix C).

4 Experimental Settings

To assess how well current VLMs can resolve struc-
tural ambiguity, we conduct experiments using our
dataset across two tasks: classification and gener-
ation. These tasks are designed to evaluate model
performance and highlight specific limitations in
aligning visual and linguistic information.

4.1 Classification

VLMs trained for zero-shot classification via large-
scale contrastive pretraining aim to align represen-
tations of images and their corresponding textual
descriptions. This setting allows us to evaluate how
well subtle semantic differences are reflected and
matched across the visual and textual modalities.

4.1.1 Task Specifics

The classification task involves correctly matching
disambiguated captions with the corresponding im-
ages. We report classification accuracy (Acc) as
the evaluation metric. Below, we describe the setup
assuming two disambiguated interpretations per
ambiguous caption (note: for conjunction scope
ambiguity, there are three options).

* Text-to-Image (T2I): Given an ambiguous cap-
tion A, we assume two disambiguated ver-
sions (', C9, and their corresponding images
11, I>. In a trial, the model receives one cap-
tion (e.g., C1) and both images ([1, I2). The
model succeeds if it assigns a higher similarity
score to the correct image (e.g., sim(Cy, 1)
> sim(C4, I2)). Accuracy is computed as the
proportion of successful trials over the dataset.

* Image-to-Text (I2T): In this direction, the
model is given one image (e.g., /1) and both
captions (C, Cs). A trial is considered suc-
cessful if the model assigns a higher similarity
score to the correct caption. Accuracy is com-
puted in the same manner as T2I.

e Dual: This task evaluates whether a dis-
ambiguated image-caption pair is correctly
matched in both directions. The model is
given both images and both captions, and the
match is counted as successful if, for a given
pair (Cl, 1), both sim(Cl, Il) > sz’m(Cl, IQ)

and sim(Iy,Cy) > sim(I1,C2). The accu-
racy is calculated as the proportion of cor-
rectly matched pairs (0, 1, or 2 per instance).

4.1.2 Evaluated Models

Given their strong zero-shot capabilities and broad
applicability, our evaluation focuses primarily on
contrastive VLMs based on the CLIP paradigm.
Specifically, we evaluate the following models:
CLIP (Radford et al., 2021), SIGLIP (Zhai et al.,
2023), and its variants. As a result, our targets are
CLIP? (Radford et al., 2021), OpenCLIP* (Cherti
et al., 2023), MetaCLIP? (Xu et al., 2024), EVA-
CLIP® (Sun et al., 2023), SigLIP’ (Zhai et al.,
2023), and SigLIPZ8 (Tschannen et al., 2025), with
the versions as large as possible.

4.1.3 Human Evaluation

For comparison, we also report human performance
on the classification task. Two annotators evaluated
the entire dataset, with each annotator handling
half of the samples shuffled across ambiguity types.
To avoid potential memory effects, the two were
given disjoint subsets for the T2I and I2T condi-
tions. Overall human performance is reported as
the aggregate number of correct decisions across
both annotators. For the Dual condition, a sam-
ple was considered correct only if both annotators
selected the correct match independently in their
respective directions.

4.2 Generation

The generation task assesses whether a model can
revise or preserve a caption based on accompany-
ing visual input. This includes rewriting ambiguous
capions to resolve structural ambiguity, preserving
accurate disambiguated captions, or correcting cap-
tions that mismatch the image. This task setup
reflects practical use cases where a model must in-
terpret language in the context of a visual scene
and adjust output accordingly.

4.2.1 Task Details

Each input to the model consists of a caption, an
image, and an instruction prompt. Depending on
the input, the model is expected to either preserve

3openai/clip-vit-large-patch14-336
*hf-hub:laion/CLIP-ViT-g- 14-laion2B-s12B-b42K
>facebook/metaclip-h14-fullcc2.5b
*BAAI/EVA-CLIP-18B
google/siglip-s0400m-patch14-384
8g00gle/siglip2-s0400m-patch16-512



the caption, revise it to correct a mismatch, or dis-
ambiguate it using the visual context. We define
three input scenarios:

* Ambiguous caption + disambiguating image:
The caption contains structural ambiguity, and
the model must rewrite it into a disambiguated
one that aligns with the image.

* Disambiguated caption + matching image:
The caption is already correct. The model
should preserve the semantic structure, option-
ally rephrasing it without altering its meaning.

* Disambiguated caption + mismatching image:
The caption does not match the visual input.
The model must revise it to reflect the content
of the image.

To guide the model, we design two types
of instruction prompts: one general (PROMPT-
GENERAL), and one elaborated (PROMPT-
ELABORATED) with explicit mention of the ambi-
guity type. This allows us to assess whether models
benefit from task-specific guidance during disam-
biguation. The full list of prompts and hyper pa-
rameters is provided in the Appendix D.

4.2.2 Metrics

The generation task is evaluated by comparing the
model-generated caption with a gold (reference)
caption that aligns with the intended structural se-
mantics of the input image. We adopt two comple-
mentary evaluation metrics.

BERTScore BERTScore (Zhang et al., 2020)
computes similarity between text sequences us-
ing contextualized embeddings from pre-trained
language models, capturing semantic similarity be-
yond surface-level matching. Unlike traditional
metrics such as BLEU (Papineni et al., 2002),
which rely on exact n-gram overlap, BERTScore
evaluates how well the generated caption captures
the meaning of the gold caption. Given the seman-
tic focus of our task, we find BERTScore particu-
larly suitable.

Smatch Smatch (Cai and Knight, 2013) mea-
sures the similarity between two Abstract Meaning
Representation (AMR) graphs (Banarescu et al.,
2013), which encode the meaning of sentences in a
predicate-logic-like form. This allows comparison
of deeper structural semantics, abstracting away
superficial textual differences. We convert captions

into AMR graphs using amrlib’. While the AMR
parser is not flawless, Smatch provides an addi-
tional perspective on how well models preserve or
recover the underlying meaning. We use it to gauge
the alignment between generated and gold captions
beyond surface-level text similarity.

4.2.3 Evaluated Models

We evaluate one closed-source model (GPT-
40 (OpenAl, 2023)) alongside 7 open-source mod-
els (Gemma3'? (Team, 2025), LLaVA1.6!' (Liu
et al., 2024), Qwen2.5-VL!? (Bai et al., 2025), Pix-
tral'3 (Agrawal et al., 2024), Idefics3!* (Laurengon
et al., 2024), and Chameleon'® (Team, 2024)). Due
to hardware limitations, we were unable to test the
largest versions of each open model. However, pre-
vious evaluations suggest that the smaller variants
used here demonstrate broadly similar performance
patterns, with only slight degradations in accuracy.
Our goal is to analyse general trends in how these
models handle structural ambiguity. The inclusion
of GPT-40 allows us to benchmark performance
at the higher end of model capability, providing a
reference point for future research.

5 Results

5.1 Classification

Table 1 presents the classification results. As out-
lined in the Appendix E, the expected accuracy by
random chance is 50% for ambiguity types with
two possible interpretations, and approximately
33% for the Conjunction Scope (Conj) type, which
involves three options. For the Dual task, where
success requires correct matches in both directions
(T2I and I2T), the random baseline is 25% for two-
option types and approximately 11% (1/9) for Conj.
Across most two-option ambiguity types, both
T2I and 12T performance hovers near the random
baseline, indicating that current VLLMs struggle to
reliably resolve structural ambiguity. In contrast,
human performance mostly exceeds 0.9, demon-
strating that the task is well-posed and that the
benchmark captures structurally resolvable cases.
We observe a performance gap between task
directions: I2T generally outperforms T2I, and

9https ://github.com/bjascob/amrlib
g00gle/gemma-3-12b-it
"ava-hf/llava-v1.6-vicuna-13b-hf
2Qwen/Qwen2.5-VL-7B-Instruct

B mistral-community/pixtral-12b
"“HuggingFaceM4/Idefics3-8B-Llama3
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Model VP PP  Anaph Ellip Vb Adj Conj All
Text-to-Image (T21)

CLIP 0.525 0.510 0.493 0495 0515 0.525 0377 0484
SigLIP 0.505 0.530 0.502 0.559 0.545 0.530 0.347 0.492
SiglLIP2  0.530 0.550 0.522 0.515 0.510 0.495 0.390 0.494

MetaCLIP 0.515 0.505 0.493 0.550 0.525 0.535 0.357 0.488

OpenCLIP 0.505 0.510 0.498 0.540 0.475 0.505 0.380 0.480

EVA-CLIP 0.500 0.495 0.507 0.520 0.510 0.525 0.387 0.485

Human 0.985 0970 0.881 0.926 0.905 0920 0.930 0.931
Image-to-Text (I12T)

CLIP 0.505 0.565 0.517 0.540 0.570 0.535 0.520 0.535
SigLIP 0.570 0.590 0.552 0.515 0.645 0.545 0.463 0.548
SiglLIP2  0.515 0.595 0.562 0.545 0.585 0.510 0.517 0.545

MetaCLIP 0.500 0.540 0.567 0.545 0.565 0.570 0.510 0.540
OpenCLIP 0.540 0.545 0.532 0.525 0.590 0.605 0.573 0.560
EVA-CLIP 0.490 0.550 0.522 0.579 0.605 0.590 0.543 0.554

Human 0.965 0925 0945 0.896 0.895 0945 0.933 0.929

Dual

CLIP 0.260 0.335 0.274 0.327 0300 0.325 0.190 0.281
SigLIP 0.325 0310 0.274 0.322 0.400 0.310 0.187 0.300
SiglLIP2  0.285 0.355 0.294 0.287 0.240 0.245 0.160 0.259

MetaCLIP 0.290 0.280 0.264 0.327 0.320 0.335 0.183 0.279
OpenCLIP 0.310 0.330 0.303 0.312 0.330 0.325 0.237 0.302
EVA-CLIP 0.290 0.285 0.338 0.322 0.385 0.315 0.203 0.299

Human 0.960 0915 0.851 0.847 0.855 0915 0913 0.896

Table 1: Classification results. The best score across per type is doublelined and per model is boldfaced.

Dual accuracy often exceeds the respective base-
line. This directional asymmetry is particularly pro-
nounced in the Conj type, where T2I performance
remains near chance while I2T shows a marked im-
provement, resulting in Dual accuracy substantially
higher than the random chance. One possible ex-
planation is that the two modalities have different
bias which don’t work in accordance with structural
ambiguity

Finally, it is worth noting that EVA-CLIP, de-
spite its 18B parameter size, does not show notable
superiority over smaller models. This may imply
that current contrastive pre-training alone, regard-
less of model scale, is not yet sufficient to handle
structural ambiguity effectively.

5.2 Generation

Table 2 presents the results of the generation task.
Although all models were instructed to perform
the same task using the equivalent information,
the stability of generated responses differed signif-
icantly. Gemma3, Idefics3, and Chameleon often
produced unstable outputs, such as off-topic an-
swers or captions containing multiple conflicting
interpretations. In particular, Gemma3 occasion-
ally failed to recognize the provided image, result-

ing in the weakest performance. Meanwhile, other
models generated more stable responses, scoring
around 0.8 in BERTScore, indicating sound perfor-
mance, though with room for improvement. No-
tably, while it might be expected that GPT-40, with
the largest parameter size, would excel at a task
requiring multi-step inference such as disambigua-
tion, LLaVA1.6 (13B) outperformed it, and the best
performance came from Qwen2.5 (7B). This sug-
gests that disambiguation ability currently shows
little correlation with model size, and structural
ambiguity has not yet been a core focus of large-
scale VLM training. Prompts with more elaborated
descriptions of the ambiguity type generally led to
improved performance, but not to a degree consid-
ered reliably effective. Additionally, while Smatch
scores followed a similar trend to BERTScore, the
overall performance on Smatch was lower, indi-
cating further limitations in structural-level under-
standing.

6 Discussion

To better understand model behaviour, we further
analyse embedding similarities and alignment pat-
terns across modalities. We identify two primary
limitations that contribute to the overall low accu-



Model VP PP Anaph  Ellip Vb Adj Conj All
BERTScore

GPT-40 0.824 0.806 0.870 0.827 0.738 0.797 0.741 0.793
(+0.004) (+0.010) (+0.017) (+0.011) (+0.004) (+0.010) (+0.008)  (+0.009)

Gemma3 0.678 0.625 0.615 0.605 0.668 0.654 0.543 0.617
(+0.175)  (+0.183) (+0.188) (+0.015) (+0.090) (+0.131) (+0.208) (+0.149)

LLaVA1.6 0.852 0.828 0.846 0.808 0.784 0.838 0.755 0.808
' (+0.003)  (+0.023) (+0.078) (+0.029) (+0.022) (-0.007) (+0.019) (+0.023)

Qwen2.5 0.859 0.866 0.911 0.863 0.875 0.846 0.822 0.858

’ (+0.002)  (-0.008)  (-0.006)  (+0.006)  (-0.029)  (-0.023)  (+0.030) (+0)

Pixtral 0.834 0.829 0.830 0.846 0.765 0.804 0.755 0.802
(+0.009) (+0.012) (+0.054) (+0.021) (-0.002) (+0) (+0.079)  (+0.031)

Idefics3 0.677 0.666 0.665 0.666 0.646 0.663 0.591 0.646
(+0.023)  (+0.018) (+0.043) (+0.011) (+0.007) (+0.009) (+0.035) (+0.023)

Chameleon 0.667 0.679 0.698 0.621 0.580 0.683 0.602 0.642
(+0.074) (+0.069)  (0.043)  (+0.024) (+0.060) (+0.038) (+0.107) (+0.065)

Smatch

GPT-40 0.670 0.630 0.700 0.640 0.520 0.680 0.520 0.623
(+0.020)  (+0.020)  (+0.030) (+0.020) (+0) (+0.020)  (+0.020) (+0.019)

Gemma3 0.360 0.290 0.330 0.240 0.370 0.400 0.270 0.323
(+0.340)  (+0.350) (+0.240) (+0.010) (+0.220) (+0.310) (+0.350) (+0.260)

LLaVAL.6 0.730 0.670 0.700 0.610 0.570 0.710 0.560 0.650
: (-0.010)  (+0.040) (+0.100) (+0.040) (-0.020)  (-0.050)  (+0.040) (+0.020)

Qwen2.5 0.720 0.710 0.770 0.680 0.730 0.770 0.620 0.714
’ (-0.010) (+0) (+0) (+0.030)  (-0.020)  (-0.020)  (+0.060)  (+0.006)

Pixtral 0.690 0.640 0.660 0.690 0.610 0.760 0.630 0.669
(+0) (+0.030) (+0.070)  (+0.030) (+0.020) (+0.030) (+0.080) (+0.037)

Idefics3 0.470 0.450 0.490 0.480 0.370 0.520 0.370 0.450
(+0.020) (+0.010) (+0.040) (+0.010) (+0.010) (+0.010) (+0.030) (+0.019)

Chameleon 0.450 0.420 0.480 0.330 0.300 0.500 0.390 0.410
(+0.060)  (+0.050) (+0.040) (+0.030) (+0.050) (+0.020)  (+0.10)  (+0.037)

Table 2: Generation results. Inside the brackets are score differences by PROMPT-ELABORATED. The best

performance per type is boldfaced.

racy of current VLMs:

* A lack of sensitivity to structural differences
in textual meaning

¢ Overreliance on surface-level visual features
that distract from the disambiguation-relevant
semantics.

6.1 Structural Meaning not Reflected in
Embeddings

Our classification results indicate that current mod-
els struggle to resolve structural ambiguity, often
performing near random chance. While generation
performance is higher particularly in BERTScore,
Smatch which emphasises structural accuracy re-
veals persistent gaps. One possible hypothesis is
that current text encoders are not sufficiently sen-
sitive to syntactic distinctions between lexically
similar sentences.

Table 1 shows that I2T accuracy consis-
tently outperformed T2I. Prior work such as

Winoground (Thrush et al., 2022), attributes this
to stronger text encoders or modality-specific bi-
ases. Our findings support this, showing that the
text modality may carry systematic biases that limit
semantic separation.

OpenCLIP Qwen2.5

Type amb-dis dis-dis amb-dis dis-dis
VP 0.971 0994 0970  0.993
PP 0.971 0983 0969  0.989
Anaph 0987 0993 0990  0.999
Ellip 0953 0949 0940 0.941
Vb 0952 0976  0.951 0.996
Adj 0963 0986 0973  0.998
Conj 0966 0988  0.988  0.997
All 0966 0983 0970  0.990

Table 3: Cosine similarity between the captions. amb-
dis signifies the comparison between the ambiguous
caption and its disambiguated version, and dis-dis signi-
fies the similarity between the disambiguated candidates
from the same ambiguous sentence.
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Figure 3: Error case analysis from OpenCLIP model. The left side shows a cosine similarity heatmap between
two images and ten caption variants, including the original ambiguous caption ("The girl approaches the table
with a black laptop."), two disambiguated captions via concatenation (concat_a, concat_b), and two via rewriting
(rewritten_a, rewritten_b), each with and without added visual description. The visual description is: "The girl has
blonde hair and is wearing a blue blouse and a green flower skirt." The right panel shows cosine similarity rankings

of the ten captions relative to the image embedding

To further investigate, we compute cosine sim-
ilarities between the captions (Table 3), which re-
veals that disambiguated captions are often too sim-
ilar to both their ambiguous originals and to each
other in embedding space. This overlap likely con-
tributes to poor classification performance explains
why Smatch scores are lower in generation, given
its sensitivity to structural mismatches.

6.2 Visual Detail Dominance

Visual modality allows a wider range of surface ex-
pressions than text, often distracting models from
structural cues. In Figure 3, OpenCLIP fails to
match a disambiguated PP caption (concat_a) with
its image. We analysed rewritten variants with
and without added superficial visual descriptions.
Cosine similarity reveals clustering based on vi-
sual detail rather than syntactic meaning. Even an
incorrect caption with visual cues outperformed
the correct one without, indicating that the mod-
els prioritise superficial information over structural
information, hindering effective disambiguation.
These findings imply that VLMs may overfit to
descriptive visual features and fail to generalise
across expression styles. Effective disambiguation

will require models to abstract visual meaning be-
yond literal object descriptions and better integrate
this with structural cues from text.

7 Conclusion

We introduced a benchmark for evaluating VLMs
on structural ambiguity resolution using visual in-
formation. Covering seven ambiguity types, our
dataset supports both classification and generation
tasks to assess model behaviour. Results show that
classification performance remains near random
chance, and although generation outputs score well
for BERT Score, structural evaluation with Smatch
reveals major gaps. Analysis indicates that se-
mantic differences between captions are poorly re-
flected in embedding space, and that models often
focus on superficial visual details rather than disam-
biguating cues. These findings highlight the need
for improved cross-modal reasoning and structural
sensitivity. Future work should aim to develop mod-
els that abstract beyond surface-level features and
align syntactic interpretation more reliably with
visual context.



Limitations

* While our human evaluation on our data sug-
gests its plausibility in Table 1, more thorough
analysis is required regarding the data’s statis-
tics. Specifically, diversity in both ambiguous
sentences and images would be an important
factor justifying our collected dataset in as-
sessing the VLMSs’ disambiguation ability.

* While our results suggested that model size
isn’t yet an important factor for the models’
disambiguation ability, further experiments
could be done on various sizes from the same
model to see more detailed performance differ-
ence. Also, more evaluation would be needed
on closed model such as Gemini (Reid et al.,
2024).
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* Syntax-VP: Ambiguity arises when it’s un-
clear which part of the sentence a verb phrase
is modifying (e.g. The man looked at a boy
talking to a telephone.)

Conjunction: Ambiguity caused by the scope
of verbs or adjectives connected to multiple
nouns via conjunctions like "and" or "or". (e.g.
The girl holds the green chair and bag.)

Among the original ambiguity types, Fairness
was found to be exclusively related to image gener-
ation and was therefore unsuitable for our research,
which focuses on semantic diversity rather than
visual representation. Additionally, the Miscella-
neous category contained too few instances—only
three samples were present in the entire TAB
dataset—to support meaningful experiment. As
a result, we excluded both of these types from our
study. Furthermore, we redefined the Conjunction
category as a scope ambiguity problem and sub-
divided it into three finer-grained types: adjective
scope, verb scope, and conjunction scope.

B Prompts used for Generation Models
for Data Collection

For data collection, we used the following prompts

» Text Generation: Hi, I'm making a dataset
by extending the following examples. Output
sentences in the following format: - An am-
biguous sentence having 2 or 3 possible mean-
ings: Avoid repeating common phrases and
use a wide range of vocabulary and creative
expression, a variety of synonyms and idioms.
- Disambiguated sentences corresponded to
ambiguous sentence: Do not say something
else but just 2 or 3 sentences. These sentences
are connected slash. - If I'm not satisfied, I
will give you feedback. If I say good, then
generate another round. - Create a text filled
with detail that allows one to easily visualize
the scene. The topic is {AMB_TYPE}. From
now on, I will show you some of the exam-
ples.

Image Generation: Follow the prompt and
styles to create a faithful image.

Prompt: {args.prompt}

Styles: {args.style}

For text generation, previous samples from TAB
were given to the generation model to grant it
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a sense of sentences it was supposed to create.
{AMB_TYPE} was formatted with the name and a
description of the ambiguity type as follows:

vp: VP Attachment Ambiguity, occuring
when it is unclear which part of a sentence
a verb phrase is intended to modify

pp: PP Attachment Ambiguity, occurring
when it is unclear which part of a sentence
a prepositional phrase is intended to modify

anaph: Anaphoric Ambiguity, which occurs
when it is unclear which antecedent a particu-
lar anaphor refers to within a given context

ellip: Ellipsis Ambiguity, involving the omis-
sion of words or phrases that are understood
from the context

adjscope: Adjective Scope Ambiguity, occur-
ring when it is unclear how far the influence
of an adjective extends within a sentece

verbscope: Verb Scope Ambiguity, occurring
when it is unclear how far the influence of a
verb extends within a sentence

conjscope: Conjunction Scope Ambiguity, oc-
curring when it is unclear how far the in-
fluence of a conjunction coordinate such as
AND/OR extends within a sentence

Image generation prompts were carefully made
to have the same semantic structure as that of the
texts used for the experiments. For image styles,
"coloured cartoon" and "coloured photograpy"
were used.

C Example Cases of Inappropriate Texts
in TAB

While TAB was originally designed for image gen-
eration tasks, some of its samples included inappro-
priate content that was rejected by the generation
model. One common issue involved violent verbs,
such as kill, threaten, or hit (e.g., The girl killed the
boy with a gun.). Another issue was the inclusion
of real-world political figures from the contempo-
rary era, which also triggered rejection (e.g., Biden
sits next to a girl worshipping Trump.).

To address these issues, we made the following
modifications: violent verbs were replaced with
neutral alternatives (e.g., greet), and named politi-
cal figures were replaced with descriptive phrases



(e.g., the old man and the blonde man) to preserve
the intended ambiguity while avoiding rejection by
the model.

D Prompts and Hyper Parameters for
Generation Experiment

Instruction prompts given to the generation models
for our experiment in Section 4.2 are designed to
convey the identical meaning across the models
assessed. However since some models had differ-
ent requirements for the format, we adjusted them
accordingly:

* GPT-40: I am giving you an image and its
caption. The caption might contain in itself
structural ambiguity.

Your job is to output the final caption with
modification if necessary.
Your job process is gonna be as follows:

1. If the caption is unambiguous, then look
at the image to see if the caption matches
the image semantics. If so, the final cap-
tion stays the same from the original.
Don’t change it.

. If the caption isn’t ambiguous but doesn’t
match the image semantics, then rewrite
the caption to match the image content.
Do it like the following example:

e.g. The man approached the
chair with a bag. the bag is in
the man’s arms.

But if the bag in the image is on
the chair, then just change it like:
The man approached the chair
with a bag. the bag is on the
chair.

You should not focus on the visual details
too much.

. If the caption is ambiguous, then disam-
biguate it by looking at the given image.

Your output should be a single sentence, the
final caption.

e Chameleon: Look at this caption
{input_caption} and the image <image>.
And rewrite the caption in the following
process:

1. If there is no structural ambiguity, output
the caption as it is.
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However, if the caption is unambiguous
but doesn’t match the image semantics,
rewrite it.

. If there is structural ambiguity, output
the modified caption given the image in-
formation.

Your output should be a single sentence, the
final caption.

e Others: I am giving you an image and its
caption. The caption might contain in itself
structural ambiguity. Your job is to output the
final caption with modification if necessary
by looking at the image.

Job process:

1. If there is no ambiguity, output the cap-
tion as it is.

. However, if the caption is unambiguous
but doesn’t match the image semantics,
rewrite it.

If there is structural ambiguity, output
the modified caption given the image in-
formation.

Your output should be a single sentence, the
final caption.

[Image]

Caption: {input_caption}

Above prompts are input prompts without

E Random Chance



Task Model VP PP  Anaph Ellip Vb Adj  Conj All
CLIP 0.5 0.5 0498 0495 05 0.5 0333 0.468
SigLIP 0.5 0.5 0498 0495 05 0.5 0333 0468

SigLIP2 0.5 0.5 0.498 0495 05 0.5 0.333 0.466

T2 MetaCLIP 0.5 0.5 0498 0495 05 0.5 0333 0468
OpenCLIP 0.5 0.5 0.498 0495 05 0.5 0.333 0.466
EVA-CLIP 0.5 0.5 0498 0495 05 0.5 0333 0.466

CLIP 0.5 0.5 0498 0495 05 0.5 0333 0.568
SigLIP 0.5 0.5 0498 0495 05 0.5 0.333 0468

DT SigLIP2 0.5 0.5 0498 0495 05 0.5 0333 0.466
MetaCLIP 0.5 0.5 0498 0495 05 0.5 0.333 0468
OpenCLIP 0.5 0.5 0498 0495 05 0.5 0333 0.466
EVA-CLIP 0.5 0.5 0498 0495 05 0.5 0333 0.466

CLIP 023 0295 0274 0262 026 032 0.103 0.240
SigLIP 0275 0.255 0.239 0.238 0.275 03 0.093 0.230
Dual SigLIP2  0.255 0.245 0.259 0.267 0.22 0315 0.077 0.224

MetaCLIP 0.225 0.235 0.279 0.277 0.285 0.315 0.077 0.231
OpenCLIP 0.215 0.215 0.249 0277 029 031 0333 0.220
EVA-CLIP 024 028 0239 0252 031 028 007 0.228

Table 4: Classification results based on random chance trials. The input text is the original ambiguous sentence.
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