
Black-box Optimization with Unknown Constraints via Overparameterized
Deep Neural Networks

Dat Phan-Trong*1 Hung The Tran2 Sunil Gupta1

1Deakin Applied Artificial Intelligence Initiative, Deakin University, Australia
2AI Center, VNPT Media , Vietnam

Abstract

Optimizing expensive black-box functions under
unknown constraints is a fundamental challenge
across a range of real-world domains, such as hy-
perparameter tuning in machine learning, safe con-
trol in robotics, and material or drug discovery. In
these settings, each function evaluation may be
costly or time-consuming, and the system may
need to operate within unknown or difficult-to-
specify safety boundaries. We apply the Expected
Improvement (EI) acquisition function to select the
next samples within a feasible region, determined
by Lower Confidence Bound (LCB) conditions
for all constraints. The LCB approach guarantees
constraint feasibility, while EI efficiently balances
exploration and exploitation, especially when the
feasible regions are much smaller than the overall
search space. To model both the objective function
and constraints, we use Deep Neural Networks
(DNNs) instead of Gaussian Processes (GPs) to
improve scalability and handle complex structured
data. We provide a theoretical analysis showing our
method’s convergence using recent Neural Tangent
Kernel (NTK) theory. Under regularity conditions,
both cumulative regret and constraint violation are
bounded by the maximum information gain, with
equivalent upper bounds to GP-based methods. To
validate our algorithm, we conduct experiments on
synthetic and real-world benchmarks, showing its
benefit over recent methods in black-box optimiza-
tion with unknown constraints.

1 INTRODUCTION

Global optimization of expensive black-box functions
(Black-box Optimization, or BO) is a ubiquitous challenge

*Corresponding author: d.phantrong@deakin.edu.au

in machine learning, control systems, and material design
fields. These tasks often involve non-convex, multi-modal,
and costly-to-evaluate functions, necessitating efficient ex-
ploration of the search space. Bayesian Optimization has
emerged as a widely adopted model-based approach to ad-
dress this. Bayesian Optimization builds a surrogate model,
typically a Gaussian Process (GP), to approximate the un-
known objective function from observed data points. This
model guides the selection of new points, balancing explo-
ration (sampling uncertain regions) and exploitation (fo-
cusing on promising areas). Classical techniques within
Bayesian Optimization include Probability of Improvement
(PI) [Kushner, 1964], Expected Improvement [Mockus et al.,
1978], Gaussian Process Upper Confidence Bound (GP-
UCB) [Srinivas et al., 2009], and information-theoretic ap-
proaches such as Entropy Search (ES) [Hennig and Schuler,
2012] and Predictive Entropy Search (PES) [Hernández-
Lobato et al., 2014].

As real-world problems often involve constraints that are
also black-box in nature, Constrained Black-box Optimiza-
tion (CBO) has become a vital extension of BO. CBO meth-
ods adjust the acquisition function to account for these con-
straints, seeking feasible solutions that satisfy the condi-
tions while optimizing the objective function. A prominent
method in CBO is the Expected Improvement with Con-
straints (cEI), first introduced by Schonlau et al. [1998]
and later extended by Gardner et al. [2014] and Gelbart
et al. [2014]. cEI integrates feasibility into the acquisition
function, directing the optimization process toward regions
where feasible solutions are likely. Letham et al. [2019]
further improved cEI by using a quasi-Monte Carlo approx-
imation to better manage observation noise, enhancing its
effectiveness in noisy environments.

EI-based methods for constrained optimization face several
challenges. When no feasible point exists, the EI cannot
be computed, leading to modifications that focus solely
on finding feasible regions, ignoring the objective func-
tion. Additionally, numerical challenges further limit some
methods like EVR and IECI to small-dimensional problems.

mailto:d.phantrong@deakin.edu.au

To address this, alternative methods have been proposed.
For example, Predictive Entropy Search with Constraints
(PESC, Hernández-Lobato et al., 2015) offers a heuristic
approach that selects feasible candidates directly from the
search space, reducing uncertainty more effectively. How-
ever, the computational challenges associated with quadra-
ture calculations during sampling have limited its practical
applicability. Recently, Takeno et al. [2022] proposed a Min-
Value Entropy Search method that simplifies the sampling
process, making it more tractable.

Numerical optimization has also been taken into considera-
tion as an effective tool for solving the unknown constraint
problem. The idea is to reformulate constraints into simpler
unconstrained problems solved through alternating itera-
tions. The Augmented Lagrangian method is mostly used in
this category. For example, Gramacy et al. [2016] with Aug-
mented Lagrangian Bayesian Optimization (ALBO) and
its improvement Slack-AL [Picheny et al., 2016] use Aug-
mented Lagrangian Function (ALF) to formulate uncon-
strained surrogate problems and then solve them using EI as
an acquisition function. Recently, ADMMBO [Ariafar et al.,
2019] first applied the ADMM technique to transform the
constrained problem into an equivalent unconstrained opti-
mization, then solved an augmented Lagrangian relaxation.
However, this method requires the introduction of additional
variables, leading to increased computational costs.

Recent research has explored penalty functions and primal-
dual methods to handle constraint violations during opti-
mization. For example, Lu and Paulson [2022] introduced a
penalty-function approach that adds a penalty term for con-
straint violations to the objective function, transforming the
constrained problem into an unconstrained one. Similarly,
Zhou and Ji [2022] proposed a primal-dual approach that
balances the trade-off between optimizing the objective and
minimizing constraint violations. While these methods are
promising, their effectiveness is sensitive to the choice of pa-
rameters set, often requiring considerable effort in parameter
tuning during implementation.

Alongside empirical advancements, recent theoretical works
have started to address the absence of formal guarantees in
Constrained Black-box Optimization (CBO). For example,
Lu and Paulson [2022] introduced a penalty-based regret
bound that combines the regret from the objective function
with penalties for constraint violations. Xu et al. [2023]
expanded this analysis by separately evaluating cumulative
regret and constraint violations. In contrast, Nguyen et al.
[2023] provided a theoretical performance guarantee for
CBO under unknown constraints in a decoupled setting,
where cumulative regret is calculated as the sum of both
objective function regret and constraint violations.

Despite the success of previous works using Gaussian Pro-
cesses (GPs) to model both objective functions and con-
straints, GPs struggle with poor computational scalability.

The kernel matrix inversion required in GP methods has cu-
bic complexity, which increases significantly as the number
of constraints grows. In contrast, Deep Neural Networks
(DNNs) have become a popular alternative in various Ma-
chine Learning tasks, offering the ability to extract rich fea-
tures and scale linearly with dataset size, providing a clear
advantage over GPs. Recent research has explored the use of
DNNs in unconstrained optimization, including black-box
function optimization in continuous search spaces [Snoek
et al., 2015] and contextual bandit problems in discrete
search spaces [Zhou et al., 2020, Zhang et al., 2021]. How-
ever, to the best of our knowledge, the challenge of replacing
GPs with neural networks for constrained optimization in-
volving black-box, expensive constraints while providing
theoretical guarantees remains largely unaddressed.

In this paper, we provide a simple approach for black-box
optimization with unknown constraints using deep neural
networks. Our contribution can be summarized in three
folds:

• We propose a DNN-based black-box optimization algo-
rithm with unknown constraints (Neural-CBO), where
both the objective function and constraints are modeled
using deep neural networks. We use EI as the acqui-
sition function to find the next samples in a feasible
region which is determined using Lower Confidence
Bound (LCB) satisfaction conditions to all constraints.
Using LCB-based conditions guarantees that the sug-
gested regions encompass the actual feasible regions
of the constraints (under our problem setting), while
still allowing for constraints exploration. Meanwhile,
EI efficiently balances exploration and exploitation in
optimizing the objective function, especially when the
feasible regions are significantly smaller than the over-
all search space.

• We provide a theoretical analysis of our proposed
Neural-CBO algorithm based on recent advances in
NTK theory. Under certain regularity assumptions,
we show that cumulative regret as well as cumula-
tive constraint violation has an upper bound of the
form O(γT

√
T), where γT is the maximum informa-

tion gain. This result is comparable to previous GP-
based methods. It is worth noting that, our DNN mod-
els only required the network width as m = Ω(T) for
the convergence.

• We conduct benchmarking experiments on synthetic
and real-world tasks to prove our algorithm’s effective-
ness empirically. The numerical results indicate that
our algorithm achieves competitive performance with
well-known approaches.

2 PROBLEM SETTING

In this paper, we tackle the problem of black-box optimiza-
tion, where the search space is subject to constraints im-
posed by other unknown functions. These constraints arise
from real-valued feedback ci(x), and the constraint condi-
tion ci(x) is satisfied if and only if ci(x) ≤ 0. Formally,
this problem is defined as follows:

min
x∈D

f(x), subject to ci(x) ≤ 0, for all i = 1, . . . ,K,

where D ⊂ Rd is a bounded domain, and f and
{ci}Ki=1 : Rd → R are unknown functions that can be evalu-
ated at specific points. We consider this problem in a cou-
pled setting, where both the objective function and con-
straints are evaluated simultaneously.

3 NEURAL-CBO: NEURAL NETWORK
BASED BLACK-BOX OPTIMIZATION
WITH UNKNOWN CONSTRAINTS

In this section, we present Neural-CBO, a neural network-
based approach to CBO. The complete algorithm is detailed
in Algorithm 1. The key innovation of Neural-CBO lies
in leveraging neural networks as substitutes for GPs, tra-
ditionally used in Bayesian Optimization, to model both
the black-box objective function and constraints. We first
describe the structure of the neural network surrogate model,
followed by our algorithm.

3.1 THE NEURAL NETWORK FOR AN
ARBITRARY FUNCTION fa

Given a black-box, expensive function fa, we use a fully
connected neural network, denoted as a(x;W), to model
fa:

a(x;W) =
q⊤
√
m
D(L)(x)W(L) . . .

1√
m
D(1)(x)W(1)x,

(1)
where q ∈ Rm is the last layer weight, W(1) ∈ Rm×d,
W(l) ∈ Rm×m for 2 ≤ l ≤ L is the weight of the l-th
hidden layer. The matrix D(l)(x) is associated with the
ReLU activation function and is defined as:

D(l)(x) = diag{1{⟨w(l)
i ,h(l−1)(x)⟩≥0}} ∈ Rm×m,

with m as the number of neurons in the hidden layer l, and
h(l)(x) is the output of the l-th layer given by

h(l)(x) =
1√
m
D(l)(x)W(l) . . .

1√
m
D(1)(x)W(1)x,

with h(0)(x) = x.

At time t = 0, each weight matrix W(l), 2 ≤ l ≤ L
is initialized as (Ψ 0

0 Ψ), where Ψ is a Gaussian random
matrix with independent and identically distributed (i.i.d.)
standard normal entries. Additionally, the outer weights
q = (q̂,−q̂)⊤ are set as random variables, and each entry
of b is set with an equal probability of being either −1 or 1,
and remain fixed throughout the training process. This ini-
tialization method is commonly employed in the literature,
as seen in works like Du et al. [2018], Arora et al. [2019],
and it can be verified that, with this initialization scheme,
a(x;W0) = 0, for all input x.

The neural network is trained by running the stochastic gra-
dient descent on the streaming data in one pass. In particular,
given the initialization {W(l)

0 }Ll=1 and last layer weight q,
the l-th layer weight matrix at the t-th iteration is updated
by minimizing the L2 loss as:

W
(l)
t+1 = W

(l)
t + αt(yt − a(xt;Wt))

∂a(xt;Wt)

∂W(l)
, (2)

where αt is the step size, and {xt, yt} is the observation at
the t-th optimization iteration.

To estimate the uncertainty of the function fa modeled by
a(x;W), we adopt the variance formula from recent ad-
vances in neural contextual bandits research [Zhou et al.,
2020, Kassraie and Krause, 2022]:

σa,t(x) =
√

ga(x;W0)⊤U
−1
a,t−1ga(x;W0), (3)

where

ga(x;W) = ∇Wa(x;W), and

Ua,t = Ua,t−1 + ga(xt;W0)ga(xt;W0)
⊤ (4)

3.2 NEURAL TANGENT KERNEL

Definition 3.1. Given an L-layer neural network a(x;W)
with input x and parameter W as defined in Equation (1), a
Neural Tangent Kernel (NTK) matrix Ht for a sequence of
weights Wt can be defined as:

Ht[i, j] :=

〈
∂a(xi;Wt)

∂W
,
∂a(xj ;Wt)

∂W

〉
=

L∑
l=1

H
(l)
t [i, j],

where H
(l)
t [i, j] :=

〈
∂a(xi;Wt)

∂W(l) ,
∂a(xj ;Wt)

∂W(l)

〉
is the NTK

from the l-th hidden layer, for all 1 ≤ i, j ≤ T .

Next, we present the common and well-established assump-
tions. The following assumption indicates the smoothness
property of the unknown function fa.

Assumption 3.2. We assume that fa ∈ Hka
(D), where

Hka(D) is the Reproducing Kernel Hilbert Space (RKHS)
associated with a real-valued function fa defined on the do-
main D. This space is induced by the Neural Tangent Kernel

ka, which arises from a neural network a(x;W). In partic-
ular, the RKHS Hka induces an inner product ⟨·, ·⟩Hka

with
the reproducing property: for all fa ∈ Hka

(D), we have
fa(x) = ⟨fa, ka(·,x)⟩Hka

. The induced norm is bounded
and serves as a measure of the smoothness of fa w.r.t the
kernel function ka: ∥fa∥Hka

=
√
⟨fa, fa⟩Hka

≤ Ba.

To ensure that the noise arising from querying unknown
function fa remains bounded and manageable, we impose
the following assumption:

Assumption 3.3. We assume the noises {ζt}Tt=1 where
ζt = ot − fa(xt) are conditionally sub-Gaussian with pa-
rameter Ra > 0, where {ζt}Tt=1 is assumed to capture the
noises induced by querying the black-box, expensive func-
tion fa(·).

∀t ≥ 0, ∀λa ∈ R, E[eλaζt |Fa,t−1] ≤ exp

(
λ2
aR

2
a

2

)
,

where Fa,t−1 are the σ-algebra generated by the random
variables {xi, ζi}t−1

i=1 ∪ {xt}.

3.3 MAXIMUM INFORMATION GAIN

Assume after t steps, the model a(x,W) receives an input
sequence Xt = (x1,x2, . . .xt) and observes noisy rewards
ot = (o1, o2, . . . , ot), where oi = fa(xi) + ζi. The in-
formation gain I(ot; fa) at step t, quantifies the reduction
in uncertainty about fa after observing ot, defined as the
mutual information between ot and fa:

I(ot; fa) := H(ot)−H(ot|fa),

where H denotes the entropy function. Following Srinivas
et al. [2009], the maximum information gain for the objec-
tive fa can be calculated as:

γa,t = max
Xt⊂D,|Xt|=t

1

2
log det

(
I+ λ−1

a Ht

)
,

where λa > 0 is a noise variance and Ht is the kernel
matrix. In our case, Ht can be referred to as the NTK matrix
associated with the NTK kernel defined in Section 3.2.

To manage the approximation error, several technical lem-
mas impose the following condition on the width of the
neural network.

Condition 3.4. Throughout the section, the width of each
hidden layer m satisfies is assumed to satisfy:

m ≥ d9 exp
(
Ω(νLCL log T)

)
, (5)

for some absolute constant C. Besides, the step size αt ≤
ν

t+1 , where ν is a parameter and independent of dimension
d and width m.

Before going to our main algorithm, we provide the con-
fidence bound, which is a key component in many BO al-
gorithms, to guide algorithm design and ensure theoretical
guarantee. The lemma demonstrates that by following the
network width condition stated in Condition 3.4, the pre-
diction of the trained neural network a(·;Wt−1) is concen-
trated at the actual value of the function fa(·).

Lemma 3.5. Let Assumptions 3.2 and 3.3 hold. Using neu-
ral network a(x;W) satisfied Condition 3.4 to model an
arbitrary function fa. Setting the step size at training step
t as αt ≤ ν

(T+1)2 , then for any δ ∈ (0, 1), with probability

at least 1− δ exp
(
Ω(C−Lm1/36)

)
, the following holds for

all x ∈ D and 1 ≤ t ≤ T :

|fa(x)− a(x;Wt−1)| ≤ βa,tσa,t−1(x) +
E(m)

T + 1
,

βa,t =

(
Ba +Ra

√
γt,a + 2 + 2 log(1/δ)

)
,

E(m) = O(C2LL3/2m11/36).

Here, the coefficient βa,t control the uncertainty of
a(x;Wt−1) about fa(x) at x, while E(m) indicates the
approximation error when using the neural network’s output
a(x;W) to learn the underlying function fa.

To facilitate the following algorithm design and discussion,
we introduce the lower confidence and upper confidence
bound functions w.r.t the arbitrary function fa:

LCBa,t(x,Wt) = a(x,Wt)− βa,tσa,t(x)−
E(m)

T + 1
,

UCBa,t(x,Wt) = a(x,Wt) + βa,tσa,t(x) +
E(m)

T + 1
,

where σa,t(x) is calculated using the formulate given in
Equation (3). Then, with high probability, fa is bounded
by LCBa,t(x,Wt) and UCBa,t(x,Wt) as in the following
corollary:

Corollary 3.6. Let Assumption 3.2, Assumption 3.3 and
Condition 3.4 hold. Then with probability at least 1 −
δ exp

(
Ω(C−Lm1/36)

)
, the following holds for all x ∈ D

and 1 ≤ t ≤ T :

fa(x) ∈ [LCBa,t(x,Wt),UCBa,t(x,Wt)].

3.4 NEURAL-CBO ALGORITHM

In the remaining parts of this paper, we refer to v(x;θ)
and {uci(x;ωci)}Ki=1 as the neural network models for the
unknown objective function f and constraints {ci}Ki=1, re-
spectively.

Our algorithm starts by initializing the neural networks
v(x;θ) and {uci(x;ωci)}Ki=1 using the initialization
scheme described in Section 3.1. We use the EI acquisi-
tion function to identify the next samples within the feasible

region, determined by applying LCB-based conditions to
all constraints. LCB conditions guarantee that the suggested
regions include the true feasible regions of the constraints,
allowing for both feasibility and exploration of the constraint
boundaries. Meanwhile, EI effectively balances exploration
and exploitation in the objective, which is especially impor-
tant when the feasible region is significantly smaller than the
overall search space. (Line 4). At each optimization iteration
t, the next evaluation point xt is determined by maximiz-
ing the acquisition function EIf,t(x) subject to the lower
confidence bound constraints for all unknown constraints
{ci(x)}Ki=1:

LCBci,t(x,ωci,t) ≤ 0,∀i ∈ [K].

To handle noisy observations, we utilized the standard
choice of the incumbent, which is the best value of the mean
function so far: µ+

t = maxxk∈Dt−1
v(xk;θt−1), where the

evaluations of both objective function and constraints on
xk yield noisy observations, such as the objective value
yk = f(xk) + ϵk and constraint values {zci,k}Ki=1, with
each constraint observation given by zci,k = ci(xk) + ηci,k
and Dt−1 = {xk, yk, zc1,k, . . . , zcK ,k}t−1

k=1.

The standard approach for noisy EI formulation consid-
ers the difference between the predicted function value
v(x;θt−1) and the current best value of the mean function
so far µ+

t . However, due to the approximation error of the
neural network model, using this standard noisy EI to select
next queries may lead to suboptimal decisions. To mitigate
this issue, we add E(m) as a correction term, leading to the
modified EI formulation:

EIf,t(x) = E[max{0, v(x;θt−1)− µ+
t + E(m)}],

and achieve the closed form expression using similar tech-
nique proposed in Tran-The et al. [2022] as:

EIf,t(x) = ρ(v(x;θt−1)− µ+
t + E(m), σf,t(x)),

where ρ(u, v) =

{
uΦ(uv) + vϕ(uv), if v > 0,

max{u, 0}, if v = 0.

Then, we updated the dataset Dt = Dt−1 ∪
{xt, yt, zc1,t, . . . , zcK ,t}. The parameters θ (for the objec-
tive function) and {ωci}Ki=1 (for the constraints) are then
updated separately by minimizing the L2 loss on the new ob-
servation using stochastic gradient descent (SGD) described
in Equation (2).

Figure 1 demonstrates the minimization of a 1D objective
function f(x) = sin(x) + sin

(
10x
3

)
under the constraint

c(x) = (x− 7)2 − 1 ≤ 0 at the 200th iteration. This exam-
ple highlights the three key components of our approach:
the neural network surrogate model, LCB-based constraint
handling, and the use of EI as the acquisition function for
the objective. The top panels of Figures 1a and 1b display
the predicted mean and variance of the objective as mod-
eled by a deep neural network, illustrating the behavior of

Algorithm 1
Input: The input space D, the optimization budget T , the
number of constraints N

1: Initialize neural network models parameters
θ0, {ωci,0}Ki=1.

2: Initialize Uf,0 = I,Uci,0 = I,∀i ∈ [1 . . .K],
3: for t = 1 to T do
4: Choose xt = argminx∈D EIf,t(x) subject to

LCBci,t(x,ωci,t) ≤ 0,∀i ∈ [K]
5: Observe the noisy evaluations of objective function

yt = f(xt) + ϵt and constraints {zci,t = ci(xt) +
ηci,t}Ki=1.

6: Update observations set Dt = Dt−1 ∪
{xt, yt, zc1,t, . . . , zcK ,t}

7: Update the neural network parameters
θ0, {ωci,0}Ki=1 using Equation (2).

8: Update Uf,t and Uci,t,∀i ∈ [1 · · ·K] separately
using Equation (3).

9: end for

the variance formula in Equation (3) and the operation of
Algorithm 1. These plots show that the variance is lower in
feasible regions and higher in infeasible regions, supporting
the effectiveness of our uncertainty estimation.

To clarify our use of LCB for constraints, we show the con-
fidence intervals for the constraint function in the lower
panels of the figures. These plots demonstrate that the true
constraint c(x) remains within the predicted confidence
bounds, consistent with the theoretical guarantee in Corol-
lary 3.6. Conditioning on the lower confidence bound allows
our algorithm to reliably assess constraint satisfaction and
identify feasible solutions. This accurate LCB estimation ef-
fectively guides the Expected Improvement (EI) acquisition
for the objective, enabling the search to approach the true
feasible minimum.

To justify our use of EI for the objective function, we com-
pare Figure 1a (EI for the objective, LCB for constraints)
with Figure 1b (LCB for both objective and constraints).
These results highlight the advantage of our acquisition strat-
egy: while LCB for constraints reliably guides the search
toward feasible regions, applying LCB to the objective leads
to overly exploratory behavior. In contrast, using EI for the
objective alongside LCB for constraints (LCB-EI) achieves
a more effective balance between exploration and exploita-
tion, which is particularly beneficial when the feasible re-
gion is much smaller than the overall search space.

4 THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis of our al-
gorithm to offer insights on its convergence and sampling
efficiency. Since the constraints are also black-box, we ana-
lyze a bound on the constraint violations.

10

5

0

5

10

Objective: f(x) = sin(x) + sin(10x/3) - Iteration 200 - NN based (LCB+EI)
True function f(x)
Predictive mean
Objective Confidence Interval
Observed points
Next point

2 3 4 5 6 7 8
Input x

0

5

10

15

20

25
Constraint Confidence Interval

True Constraint c(x)
Constraint mean
Constraint Confidence Interval
Constraint threshold
Feasible Region
Observed points
Next point

(a) LCB for constraints, EI for objective.

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

Objective: f(x) = sin(x) + sin(10x/3) - Iteration 200 - NN based (LCB+LCB)
True function f(x)
Predictive mean
Objective Confidence Interval
Observed points
Next point

2 3 4 5 6 7 8
Input x

0

5

10

15

20

25
Constraint Confidence Interval

True Constraint c(x)
Constraint mean
Constraint Confidence Interval
Constraint threshold
Feasible Region
Observed points
Next point

(b) LCB for both constraints and objective.

Figure 1: Minimization results for the 1D objective f(x) = sin(x)+sin
(
10x
3

)
under the constraint c(x) = (x−7)2−1 ≤ 0,

using different acquisition strategies.

4.1 METRICS

To evaluate the performance of black-box optimization meth-
ods, much of the prior research on unconstrained Bayesian
Optimization has focused on minimizing cumulative re-
gret. The cumulative regret after T iterations is defined
as RT =

∑T
t=1 rt, where rt = f(xt) − f(x∗) repre-

sents the instantaneous regret, quantifying the difference
between the value of the unknown function f at the opti-
mal point, x∗ = argmaxx∈D f(x), and the value of the
function at point xt, which is selected by the algorithm at
iteration t. However, since f(x∗) represents the optimal
value under constraints, the algorithm may sometimes sam-
ple infeasible points with lower objective values than f(x∗).
To account for this, following Xu et al. [2023], Nguyen
et al. [2023], we inherited the positive regret definition as
r+t = [f(xt) − f(x∗)]+, where [·]+ := max{0, ·}. Addi-
tionally, to measure constraint satisfaction, constraint vi-
olation is defined as vci,t = [ci(xt)]

+. Then, we intro-
duce the cumulative positive regret for the objective func-
tion, R+

T , and the cumulative violation for each constraint,
Vci,T ,∀i ∈ [K]. These metrics measure the additional cost
incurred due to suboptimal decisions and violations of the
constraints over time by running the algorithm.

Definition 4.1 (Cumulative Positive Regret and Cumulative
Violation).

R+
T =

T∑
t=1

[f(xt)− f(x∗)]+

Vci,T =

T∑
t=1

[ci(xt)]
+

4.2 DETAILED ASSUMPTIONS FOR OBJECTIVE
FUNCTION AND CONSTRAINTS

We apply the general assumption stated in the Assumption
3.2 and 3.3 on both objective function and constraints:

• Objective function: f ∈ Hkf
(D), ∥fa∥Hkf

≤ B,

where kf is corresponding to v(·,θ). The noisy obser-
vation at step t is yt = f(xt) + ϵt, where {ϵi}ti=1 is
sub-Gaussian with parameter Rf and variance λf .

• Constraint: ci ∈ Hkci
(D), ∥ci∥Hkci

≤ Si, where kci

is corresponding to uci(·,ωci),∀i = 1, . . . ,K. The
noisy observation at step t is zci,t = ci(xt) + ηci,t,
where {ηci,t}ti=1 is sub-Gaussian with parameter Rci

and variance λci .

We can now state our main theorem:

Theorem 4.2. Under Assumption 3.2, Assumption 3.3 and
Condition 3.4, set the step size used to train the neural
networks in Algorithm 1 as αt ≤ ν

(T+1)2 , then for any δ ∈
(0, 1), with probability at least 1− δ exp

(
Ω(C−Lm1/36)

)
,

the Cumulative Regret RT and Cumulative Violation Vci,T

after T iterations are bounded as:

Vci,T ≤ 2βci,T

√
SiT

log(Si + 1)
(2γci,T + 1) + 2E(m),

RT ≤ R+
T ≤ 2βf,T

√
BT

log(B + 1)
(2γf,T + 1) + 2E(m),

where E(m) = O(C2LL3/2m11/36). Especially, by choos-
ing m = Ω(d9 exp

(
νLCL log T

)
)), the Cumulative Regret

and Cumulative Violation enjoy the following results:

Vci,T = O(γci,T
√
T), RT = O(γf,T

√
T).

Remark 4.3. Unlike previous works [Zhou et al., 2020,
Zhang et al., 2021] that require a neural network width
of m = Ω(T 6) for convergence when modeling the objec-
tive function, our paper builds on recent analyzes from Xu
and Zhu [2024], which show that only a linear condition
of m = Ω(T) is needed. Furthermore, while Xu and Zhu
[2024] focus on the input domain Sd−1, we can adapt to
inputs x ∈ Rd with 0 < nl < ∥x∥ < nb (where nl and nb

are positive constants) without changing the order of T in
the width condition for m. Similar arguments are noted in
Du et al. [2018], Cao and Gu [2020].

5 EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of our
proposed Neural-CBO algorithm through its application
of synthetic benchmark optimization functions as well
as real-world optimization problems. Our implementation
is available at https://github.com/phantrdat/
neural-cbo.

5.1 BASELINES

For all experiments, we compared our algorithm with well-
known Constrained EI (cEI), the extension of EI into con-
strained BO from Gardner et al. [2014]. Besides, we also
compare our algorithm with recent state-of-the-art algo-
rithms in unknown constrained BO, including ADMMBO
[Ariafar et al., 2019], UCB-C [Nguyen et al., 2023] and
ConfigOpt [Xu et al., 2023]. For our proposed Neural-CBO
algorithm, we employ fully connected deep neural networks
as the surrogate models for both objective function and con-
straints. Due to space constraints, implementation details
of our Neural-CBO algorithm (including the choice of
neural networks hyperparameter and other parameters
in Algorithm 1) along with baseline implementations,
are provided in Appendix A.1.

5.2 SYNTHETIC BENCHMARK FUNCTIONS

We conducted optimization experiments on four synthetic
objective functions: Branin, Ackley, Simionescu and Hart-
mann. The input dimension of each objective function and
the corresponding number of constraints are summarized in
Table 1. We present the expression of each function and

Table 1: The input dimension and number of constraints for
each synthetic objective function.

Obj Branin Simionescu Ackley Hartmann

Dim 2 2 5 6

Constraints 1 1 2 1

its constraints in the Appendix A.2. The noise in function
evaluations follows a normal distribution with zero mean,
and the variance is set to 1% of the function range. All
experiments reported here are averaged over 20 runs, each
with random initialization. We report the (Log10 of) the
Best Positive Regret plus Violation in Figure 2. We present
justification for the choice of this metric as well as results
for other metrics in Appendix A.4.

To ensure statistical significance, we performed one-sided
t-tests to assess whether a baseline outperforms Neural-
CBO in terms of the best positive regret plus violation. The
null hypothesis is H0 : µbaseline ≤ µNeural-CBO, and the al-
ternative hypothesis is Ha : µbaseline > µNeural-CBO, where
µbaseline and µNeural-CBO represent the means of the (Log10
of) Best Positive Regret plus Violation values of the base-
line and our proposed Neural-CBO, respectively. Note that
lower values indicate better performance. We present the
statistical test results for four synthetic benchmark functions
and two real-world tasks (described in Section 5.3 and 5.4)
in Table 2. Each cell in the table shows the p-value from the
t-test as the first value. To account for multiple comparisons,
the Benjamini-Hochberg correction was applied, with the
corrected value provided as the second value. A result is la-
beled as “T” if the null hypothesis is rejected, meaning that
Neural-CBO is statistically better to the compared baselines.
Conversely, a result is labeled “F” if we cannot reject the
null hypothesis, meaning that the baselines and the Neural-
CBO are comparable. The results in Table 2 indicate that in
18 out of 24 comparisons, Neural-CBO achieves statistically
better performance.

We analyze three real-world constrained black-box optimiza-
tion tasks: gas transmission compressor and speed reducer
designs from Kumar et al. [2020], and a third inspired by
He et al. [2018]. Details of each task will follow in the
upcoming sections.

5.3 GAS TRANSMISSION COMPRESSOR DESIGN

The main objective is to minimize operational costs or en-
ergy consumption. This requires identifying the optimal
configuration of the compressor by optimizing four design
variables. The problem involves d = 4 input dimensions
and includes K = 1 constraint. The detailed mathematic

https://github.com/phantrdat/neural-cbo
https://github.com/phantrdat/neural-cbo

0 20 40 60 80 100
Number of evaluations

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g 1

0(
Be

st
 P

os
iti

ve
 R

eg
re

t p
lu

s V
io

la
tio

n) Branin (2)

0 20 40 60 80 100
Number of evaluations

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Simionescu (2)

0 20 40 60 80 100
Number of evaluations

1.0

0.8

0.6

0.4

0.2

0.0

0.2
Gas Transmission (4)

0 50 100 150 200
Number of evaluations

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

Lo
g 1

0(
Be

st
 P

os
iti

ve
 R

eg
re

t p
lu

s V
io

la
tio

n) Ackley (5)

0 50 100 150 200
Number of evaluations

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6
Hartmann (6)

0 20 40 60 80 100
Number of evaluations

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Speed Reducer (7)

Synthetic benchmark functions Real-world use cases

Neural-CBO ConfigOpt cEI UCBC ADMMBO

Figure 2: The plots show (Log10 of) the Best Positive Regret plus Violation up to step t, which is mint∈[T][f(xt) −
f∗]+ +

∑K
k=1[ck(xt)]

+], comparing our proposed algorithm and four baselines. The dimension of each objective function
is shown in the parenthesis. The left group is four synthetic functions introduced in Section 5.2, while the right group is the
optimization results of Gas Transmission Compressor Design and Speed Reducer Design, described in Section 5.3 and 5.4.

formula is provided in Appendix A.3.

5.4 SPEED REDUCER DESIGN

This task involves designing a speed reducer for a small
aircraft engine, focusing on minimizing weight while meet-
ing several constraints, including bending stress on gear
teeth, surface stress, transverse deflections of shafts, and
shaft stresses. The problem includes 7 decision variables
and 11 constraints, resulting in an input dimension of d = 7
and K = 11 constraints. The mathematical formulation is
provided in the Appendix A.3. We report numerical results
of Section 5.3 and 5.4 in Figure 2 and Table 2.

5.5 DESIGNING SENSITIVE SAMPLES FOR
MODEL TAMPERING DETECTION

We examine a scenario where a company offers Machine
Learning as a Service (MLaaS) and hosts its model in the
cloud. In this context, an attacker with system access could
alter the model by changing its weights. To detect such
tampering, He et al. [2018] propose generating a set of test
inputs, called Sensitive Samples {vi}ni=1, whose outputs
from the modified model will differ from those of the orig-
inal. Assuming a pre-trained model sφ(x) may have been
altered after being uploaded, the goal is to find sensitive
samples by solving the optimization problem:

v = argmax
x

∥∥∥∥∂sφ(x)∂φ

∥∥∥∥
F

,

where ∥·∥F denotes the Frobenius norm. A detection is suc-
cessful if at least one of the NS sensitive samples shows a

Table 2: One-sided t-tests to evaluate whether the baseline
outperforms Neural-CBO in terms of the “best positive re-
gret plus violation” metric.

ConfigOpt cEI UCB-C ADMMBO

Branin (3.76e-01, F) (2.70e-01, F) (3.36e-03, T) (2.08e-12, T)

Simionescu (0.30e-01, T) (0.70e-01, F) (1.42e-07, T) (8.53e-15, T)

Ackley (0.21e-03, T) (0.77e-01, F) (3.60e-08, T) (0.16e-02, T)

Hartmann (3.35e-02, T) (2.79e-06, T) (1.80e-11, T) (2.61e-10, T)

Gas Transmission (3.51e-10, T) (2.23e-07, T) (5.34e-04, T) (1.84e-11, T)

Speed Reducer (0.30e-01, F) (5.83e-08, T) (0.89e-01, T) (1.08e-01, F)

0 2 4 6 8
Number of Samples

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

De
te

ct
io

n
Ra

te
s

Sensitive Sample Detection Rates

Neural-CBO ConfigOpt cEI UCBC ADMMBO

Figure 3: Detection Rates w.r.t to the number of samples
for the MNIST dataset. As shown in the figure, Neural-CBO
can generate sensitive samples that achieve nearly 85% of
the detection rate with just 10 samples.

different top-1 prediction between the tampered and orig-
inal models. To prevent attackers from evading detection,
sensitive samples must resemble normal inputs. Therefore,
a human-in-the-loop process is employed, where reviewers
rate the realism of each sample on a scale of (0, 1); higher
scores indicate more realistic samples. These scores serve
as constraints in the optimization, where obtaining human
feedback can be costly.

We utilized a pre-trained MNIST handwritten digit classi-
fication model and compared our method’s performance
against several baselines based on average detection rates
for sensitive samples. Feasible samples were chosen based
on their realistic scores. Figure 3 shows the detection rates
of (feasible) sensitive samples generated by our method
compared to four baselines, demonstrating that our samples
achieved higher detection rates. As expected, the detection
rate improves with more samples and our method is consis-

tently competitive.

6 CONCLUSION

We propose a novel algorithm for black-box optimization
with unknown constraints, utilizing deep neural networks
as surrogate models for both the objective function and
constraints. Our algorithm leverages the bounded nature
of constraint values by applying LCB conditions at each
iteration to ensure feasibility. We also employ EI as the
acquisition function to balance exploration and exploita-
tion, especially in scenarios where feasible regions are sig-
nificantly smaller than the search space. Our theoretical
analysis shows that, under mild conditions regarding neu-
ral network width, our algorithm achieves upper bounds
on cumulative regret and constraint violations comparable
to previous GP-based methods. We validate our approach
through experiments on synthetic and real-world benchmark
tasks involving structural data, with results demonstrating
competitive performance against state-of-the-art methods.

References

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A conver-
gence theory for deep learning via over-parameterization.
In International conference on machine learning, pages
242–252. PMLR, 2019.

Setareh Ariafar, Jaume Coll-Font, Dana Brooks, and Jen-
nifer Dy. Admmbo: Bayesian optimization with unknown
constraints using admm. Journal of Machine Learning
Research, 20(123):1–26, 2019.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ru-
osong Wang. Fine-grained analysis of optimization and
generalization for overparameterized two-layer neural net-
works. In International Conference on Machine Learning,
pages 322–332. PMLR, 2019.

Yuan Cao and Quanquan Gu. Generalization error bounds
of gradient descent for learning over-parameterized deep
relu networks. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 3349–3356,
2020.

Sayak Ray Chowdhury and Aditya Gopalan. On kernelized
multi-armed bandits. In International Conference on
Machine Learning, pages 844–853. PMLR, 2017.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh.
Gradient descent provably optimizes over-parameterized
neural networks. In International Conference on Learn-
ing Representations, 2018.

Jacob R Gardner, Matt J Kusner, Zhixiang Eddie Xu, Kil-
ian Q Weinberger, and John P Cunningham. Bayesian

optimization with inequality constraints. In ICML, vol-
ume 2014, pages 937–945, 2014.

Michael A Gelbart, Jasper Snoek, and Ryan P Adams.
Bayesian optimization with unknown constraints. In Pro-
ceedings of the Thirtieth Conference on Uncertainty in
Artificial Intelligence, pages 250–259, 2014.

Robert B Gramacy, Genetha A Gray, Sébastien Le Diga-
bel, Herbert KH Lee, Pritam Ranjan, Garth Wells, and
Stefan M Wild. Modeling an augmented lagrangian for
blackbox constrained optimization. Technometrics, 58(1):
1–11, 2016.

Zecheng He, Tianwei Zhang, and Ruby B Lee. Verideep:
Verifying integrity of deep neural networks through
sensitive-sample fingerprinting. arXiv preprint
arXiv:1808.03277, 2018.

Philipp Hennig and Christian J Schuler. Entropy search
for information-efficient global optimization. Journal of
Machine Learning Research, 13(6), 2012.

José Miguel Hernández-Lobato, Matthew W Hoffman, and
Zoubin Ghahramani. Predictive entropy search for effi-
cient global optimization of black-box functions. Ad-
vances in neural information processing systems, 27,
2014.

José Miguel Hernández-Lobato, Michael Gelbart, Matthew
Hoffman, Ryan Adams, and Zoubin Ghahramani. Pre-
dictive entropy search for bayesian optimization with
unknown constraints. In International conference on
machine learning, pages 1699–1707. PMLR, 2015.

Parnian Kassraie and Andreas Krause. Neural contextual
bandits without regret. In International Conference on Ar-
tificial Intelligence and Statistics, pages 240–278. PMLR,
2022.

Abhishek Kumar, Guohua Wu, Mostafa Z Ali, Rammo-
han Mallipeddi, Ponnuthurai Nagaratnam Suganthan, and
Swagatam Das. A test-suite of non-convex constrained op-
timization problems from the real-world and some base-
line results. Swarm and Evolutionary Computation, 56:
100693, 2020.

Harold J Kushner. A new method of locating the maximum
point of an arbitrary multipeak curve in the presence
of noise. Journal of Fluids Engineering, 86(1):97–106,
1964.

Benjamin Letham, Brian Karrer, Guilherme Ottoni, and
Eytan Bakshy. Constrained bayesian optimization with
noisy experiments. Bayesian Analysis, 14(2):495–519,
2019.

Congwen Lu and Joel A Paulson. No-regret bayesian
optimization with unknown equality and inequality
constraints using exact penalty functions. IFAC-
PapersOnLine, 55(7):895–902, 2022.

Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas.
The application of bayesian methods for seeking the
extremum. Towards global optimization, 2(117-129):
2, 1978.

Quoc Phong Nguyen, Wan Theng Ruth Chew, Le Song,
Bryan Kian Hsiang Low, and Patrick Jaillet. Optimistic
bayesian optimization with unknown constraints. In The
Twelfth International Conference on Learning Represen-
tations, 2023.

Dat Phan-Trong, Hung Tran-The, and Sunil Gupta. Neu-
ralbo: A black-box optimization algorithm using deep
neural networks. Neurocomputing, 559:126776, 2023.

Victor Picheny, Robert B Gramacy, Stefan Wild, and Se-
bastien Le Digabel. Bayesian optimization under mixed
constraints with a slack-variable augmented lagrangian.
Advances in neural information processing systems, 29,
2016.

Matthias Schonlau, William J Welch, and Donald R Jones.
Global versus local search in constrained optimization
of computer models. Lecture notes-monograph series,
pages 11–25, 1998.

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros,
Nadathur Satish, Narayanan Sundaram, Mostofa Pat-
wary, Mr Prabhat, and Ryan Adams. Scalable bayesian
optimization using deep neural networks. In Interna-
tional conference on machine learning, pages 2171–2180.
PMLR, 2015.

Niranjan Srinivas, Andreas Krause, Sham M Kakade, and
Matthias Seeger. Gaussian process optimization in the
bandit setting: No regret and experimental design. arXiv
preprint arXiv:0912.3995, 2009.

Shion Takeno, Tomoyuki Tamura, Kazuki Shitara, and
Masayuki Karasuyama. Sequential and parallel con-
strained max-value entropy search via information lower
bound. In International Conference on Machine Learning,
pages 20960–20986. PMLR, 2022.

Hung Tran-The, Sunil Gupta, Santu Rana, and Svetha
Venkatesh. Regret bounds for expected improvement
algorithms in gaussian process bandit optimization. In
International Conference on Artificial Intelligence and
Statistics, pages 8715–8737. PMLR, 2022.

Jiaming Xu and Hanjing Zhu. Overparametrized multi-
layer neural networks: Uniform concentration of neural
tangent kernel and convergence of stochastic gradient
descent. Journal of Machine Learning Research, 25(94):
1–83, 2024.

Wenjie Xu, Yuning Jiang, Bratislav Svetozarevic, and Colin
Jones. Constrained efficient global optimization of expen-
sive black-box functions. In International Conference on
Machine Learning, pages 38485–38498. PMLR, 2023.

Fengxue Zhang, Zejie Zhu, and Yuxin Chen. Constrained
bayesian optimization with adaptive active learning of
unknown constraints. arXiv preprint arXiv:2310.08751,
2023.

Weitong Zhang, Dongruo Zhou, Lihong Li, and Quanquan
Gu. Neural thompson sampling. In International Confer-
ence on Learning Representation (ICLR), 2021.

Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural con-
textual bandits with ucb-based exploration. In Interna-
tional Conference on Machine Learning, pages 11492–
11502. PMLR, 2020.

Xingyu Zhou and Bo Ji. On kernelized multi-armed ban-
dits with constraints. Advances in neural information
processing systems, 35:14–26, 2022.

Black-box Optimization with Unknown Constraints via Overparameterized
Deep Neural Networks

Appendix

Dat Phan-Trong*1 Hung The Tran2 Sunil Gupta1

1Deakin Applied Artificial Intelligence Initiative, Deakin University, Australia
2AI Center, VNPT Media , Vietnam

A ADDITIONAL EXPERIMENTAL RESULTS

A.1 BASELINES

In this section, we briefly describe all baselines and our Neural-CBO implementations:

• Constrained EI (cEI) [Gardner et al., 2014] integrates feasibility into the acquisition function by multiplying the
probability of feasibility into EI value at every point in the search space.

• ConfigOpt [Xu et al., 2023]: Optimize LCB-based acquisition function for the objective, which satisfies LCB-based
conditions for constraints. For cEI and ConfigOpt, we used the public implementation provided at GitHub repository:
https://github.com/PREDICT-EPFL/ConfigOPT.

• ADMMBO [Ariafar et al., 2019]: Reformulates the constrained optimization problem into an unconstrained one using
the Alternating Direction Method of Multipliers (ADMM) framework. As the official implementation of ADMMBO
is written in Matlab and available at https://github.com/SetarehAr/ADMMBO, we use our own Python
implementation based on the official implementation.

• UCB-C [Nguyen et al., 2023]: Similar to ConfigOpt, but using a UCB-based acquisition function for the objective, we
utilized the implementation obtained directly from the authors.

Neural-CBO implementation details: As described in Section 3, the network’s weights are initialized with independent
samples drawn from a normal distribution N (0, 1). We also initialize fixed outer weight q to be a symmetric Bernoulli
random variable with equal probability to be −1 or 1. To train the surrogate neural network models, we use a Gradient
Descent optimizer as described in the main paper, with a default learning rate of α = 1e−4. However, α can be tuned
within the range (1e−4, 1e−3) as needed. The network width depends on the tasks and is set to be m = T , where T is the
number of optimization iterations. We choose the network depth L = 2 by default to reduce computational costs. Following
Algorithm 1, we update the neural networks modeling the objective function and constraints using Dt after each optimization
iteration with a single training pass.

In our implementation (as well as in other baselines), we discretized the search space, computed the values of EI (acquisition
function for the objective) and LCB (acquisition function for the constraints) for all candidate points, and then selected
the next evaluation point satisfying Line 4 in Algorithm 1. More details, we randomly sample 10k points and selecting the
one with the highest acquisition function value. This approach was chosen as our paper does not focus on handling high-
dimensional cases. Alternatively, a gradient-based approach could optimize the acquisition function using the Lagrangian
method to combine the objective acquisition and constraint acquisition functions into a single unconstrained optimization
problem.

*Corresponding author: d.phantrong@deakin.edu.au
*Corresponding author: d.phantrong@deakin.edu.au

mailto:d.phantrong@deakin.edu.au
https://github.com/PREDICT-EPFL/ConfigOPT
https://github.com/SetarehAr/ADMMBO

To efficiently compute the inversion of matrix Ua,t in variance formula (3), we employ the Sherman-Morrison formula,
taking advantage of the low-rank structure in the outer-products that add up to form that matrix.

A.2 SYNTHETIC BENCHMARK FUNCTIONS

We present the mathematical expressions of four synthetic objective functions and their accompanying constraints used for
benchmarking in Section 5.2 of the main paper as follows:

Branin: We adopt this function from Letham et al. [2019].

f(x) =

(
x2 −

5.1

4π2
x2
1 +

5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos(x1) + 10,

s.t. c(x) = (x1 − 2.5)2 + (x2 − 7.5)2 − 50 ≤ 0

where x1 ∈ [−5, 10] and x2 ∈ [0, 15].

Simionescu:

f(x) = 0.1x1x2

s.t. c(x) = x2
1 + x2

2 −
[
1 + 0.2 cos

(
8 arctan

(
x2

x1

))]2
≤ 0

Ackley: We inherited this function from Zhang et al. [2023].

f(x) = −20 exp

−0.2

√√√√1

d

d∑
i=1

x2
i

− exp

(
1

d

d∑
i=1

cos(2πxi)

)
+ 20 + e

s.t.

{
c1(x) = 1− (∥x− 1∥2 − 5.5)2 ≤ 0

c2(x) = ∥x∥2∞ − 9 ≤ 0
,

where x ∈ [−5, 3]5.

Hartmann This is a constrained version of the standard Hartmann test function that uses ∥x∥2 − 1 ≤ 0 as the constraint.
This problem comes from Letham et al. [2019].

f(x) = −
4∑

i=1

αi exp

−
6∑

j=1

Aij(xj −Pij)
2

s.t. c(x) = ∥x∥2 − 1 ≤ 0

where x ∈ [0, 1]6, and the constants are:

α = (1.0, 1.2, 3.0, 3.2),A =

10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14

,P = 10−4×

1312 1696 5569 124 8283 5886

2329 4135 8307 3736 1004 9991

2348 1451 3522 2883 3047 6650

4047 8828 8732 5743 1091 381

.

A.3 REAL-WORLD APPLICATIONS:

Gas Transmission Compressor Design: The main objective is to minimize operational costs or energy consumption.
This requires identifying the optimal configuration of the compressor by optimizing four design variables. The problem
involves d = 4 input dimensions and includes K = 1 constraint. The mathematics formula for this problem is:

f(x) = 8.61× 105x
1/2
1 x2x

−2/3
3 x

−1/2
4 + 3.69× 104x3 + 7.72× 108x−1

1 x0.219
2 − 765.43× 106x−1

1 ,

s.t c(x) = x4x
−2
2 + x−2

2 − 1 ≤ 0

Speed Reducer Design: This task involves designing a speed reducer for a small aircraft engine, focusing on minimizing
weight while meeting several constraints, including bending stress on gear teeth, surface stress, transverse deflections of
shafts, and shaft stresses. The problem includes 7 decision variables and 11 constraints, resulting in an input dimension of
d = 7 and K = 11 constraints.

f(x) = 0.7854x2
2x1(14.9334x3 − 43.0934 + 3.3333x2

3) + 0.7854(x5x
2
7 + x4x

2
6)

− 1.508x1(x
2
7 + x2

6) + 7.477(x3
7 + x3

6),

s.t.

c1(x) = −x1x
2
2x3 + 27 ≤ 0

c2(x) = −x1x
2
2x

2
3 + 397.5 ≤ 0

c3(x) = −x2x
4
6x3x

−3
4 + 1.93 ≤ 0

c4(x) = −x2x
4
7x3x

−3
5 + 1.93 ≤ 0

c5(x) = 10x−3
6

√
16.91× 106 + (745x4x

−1
2 x−1

3)2 − 1100 ≤ 0

c6(x) = 10x−3
7

√
157.5× 106 + (745x5x

−1
2 x−1

3)2 − 850 ≤ 0

c7(x) = x2x3 − 40 ≤ 0

c8(x) = −x1x
−1
2 + 5 ≤ 0

c9(x) = −x1x
−1
2 − 12 ≤ 0

c10(x) = 1.5x6 − x4 + 1.9 ≤ 0

c11(x) = 1.1x7 − x5 + 1.9 ≤ 0

,

Designing Sensitive Samples for Detection of Model Tampering As described in Section 5.5, we used a pre-trained
MNIST digit classification model and compared our method’s detection performance with several baselines. The model was
tampered with by adding noise to its weights 1,000 times, producing 1,000 distinct versions. While the original model had a
top-1 accuracy of 93%, this dropped to 87.73%± 0.08% after tampering. To reduce computational costs, we downscaled
the images from 28× 28 to 7× 7, optimized in this 49-dimensional space, and then restored them to the original resolution
to generate sensitive samples.

A.4 FURTHER RESULTS

Justification for the metric used in the main paper: In the main paper, we report the (Log10 of) the Best Positive Regret
plus Violation. To justify our choice of metrics, we consider the definitions of positive regret and violation in the context of
a minimization problem and emphasize the following:

• When the selected point lies outside the feasible region and its objective function value exceeds the true optimum, the
combined sum of positive regret and violation is large, effectively penalizing both infeasibility and poor performance.

• If the selected point is infeasible but has an objective function value lower than the true optimum, the violation term
dominates the sum. This ensures that the penalty remains significant, especially when the point is far from the feasible
region.

• When the selected point is within the feasible region, even if its objective function value is suboptimal, it still provides
useful guidance by steering the algorithm toward feasible solutions, promoting further exploration in the correct
direction.

To provide a more comprehensive evaluation of each method, we report results using three metrics: Cumulative Positive
Regret, Cumulative Violation, and Best Positive Regret for Feasible Points. These metrics are illustrated in Figure 4,
Figure 5, and Figure 6, respectively. As shown, Neural-CBO consistently achieves strong performance across all metrics,
demonstrating both rapid convergence to the optimum and effective constraint satisfaction. In particular, for the best positive
regret among feasible points, Neural-CBO reliably identifies feasible minima. Note that the starting points in Figure 6 differ
between methods, as each algorithm may encounter the feasible region at different iterations.

Wall-clock Time Comparison: We provide the wall-clock running time of our algorithm and the considered baselines in
the following table. We revisit six optimization tasks from our paper but increase the number of iterations for Hartmann
(D = 6) and Speed Reducer (D = 7) to niter = 1000, to demonstrate the performance of neural networks when run for a

0 20 40 60 80 100
Number of evaluations

0

500

1000

1500

2000

2500

Cu
m

m
ul

at
iv

e
Po

sit
iv

e
Re

gr
et

 R
+ T

Branin (2)

0 20 40 60 80 100
Number of evaluations

0

20

40

60

80

100

Simionescu (2)

0 20 40 60 80 100
Number of evaluations

0

10

20

30

40

50

60

70

80

Gas Transmission (4)

0 50 100 150 200
Number of evaluations

0

1000

2000

3000

4000

Cu
m

m
ul

at
iv

e
Po

sit
iv

e
Re

gr
et

 R
+ T

Ackley (5)

0 50 100 150 200
Number of evaluations

0

100

200

300

400

500

600

Hartmann (6)

0 20 40 60 80 100
Number of evaluations

0

25000

50000

75000

100000

125000

150000

175000

Speed Reducer (7)

Synthetic benchmark functions Real-world use cases

Neural-CBO ConfigOpt cEI UCBC ADMMBO

Figure 4: The plots show Cumulative Positive Regret up to step t, which is
∑T

t=1[f(xt)− f∗]+, comparing our proposed
algorithm and four baselines. The dimension of each objective function is shown in the parenthesis. The left group is
four synthetic functions introduced in Section 5.2, while the right group is the optimization results of Gas Transmission
Compressor Design and Speed Reducer Design, described in Section 5.3 and 5.4.

large number of iterations. While GP-based methods appear more efficient in terms of runtime with a small number of
iterations, this advantage diminishes as the number of iterations increases - an often necessary condition in high-dimensional
or challenging problems to approach the global optimum. Due to their cubic time complexity with respect to the number of
data points, GPs exhibit significant scalability limitations. In contrast, neural networks enjoy nearly linear scaling in runtime,
highlighting their suitability and efficiency for higher number of iterations.

0 20 40 60 80 100
Number of evaluations

0

200

400

600

800

1000

1200

Cu
m

m
ul

at
iv

e
Vi

ol
at

io
n

V T

Branin (2)

0 20 40 60 80 100
Number of evaluations

0

5

10

15

20

Simionescu (2)

0 20 40 60 80 100
Number of evaluations

0

20

40

60

80

100
Gas Transmission (4)

0 50 100 150 200
Number of evaluations

0

500

1000

1500

2000

Cu
m

m
ul

at
iv

e
Vi

ol
at

io
n

V T

Ackley (5)

0 50 100 150 200
Number of evaluations

0

10

20

30

40

50

Hartmann (6)

0 20 40 60 80 100
Number of evaluations

0

5000

10000

15000

20000

25000

30000

35000
Speed Reducer (7)

Synthetic benchmark functions Real-world use cases

Neural-CBO ConfigOpt cEI UCBC ADMMBO

Figure 5: The plots show Cumulative Violation up to step t, which is
∑T

t=1[f(xt)−f∗]+, comparing our proposed algorithm
and four baselines. The dimension of each objective function is shown in the parenthesis. The left group is four synthetic
functions introduced in Section 5.2, while the right group is the optimization results of Gas Transmission Compressor
Design and Speed Reducer Design, described in Section 5.3 and 5.4.

Objective DIM N_ITERS Neural-CBO ConfigOpt cEI UCBC ADMMBO

Branin 2 100 40.63 ± 1.77 6.76 ± 4.54 6.31 ± 1.14 34.74 ± 5.15 342.24 ± 11.10

Simionescu 2 100 54.41 ± 2.13 18.19 ± 0.52 20.77 ± 7.31 19.94 ± 1.25 253.81 ± 5.45

Gas Transmission 4 200 125.83 ± 1.87 6.66 ± 0.46 8.56 ± 0.43 30.01 ± 1.45 468.67 ± 12.40

Ackley 5 200 85.26 ± 2.80 31.78 ± 4.71 31.44 ± 1.40 117.09 ± 40.86 309.13 ± 411.46

Hartmann 6 1000 561.06 ± 24.00 927.45 ± 45.09 472.24 ± 25.50 2321.70 ± 781.94 7196.00 ± 141.70

Speed Reducer 7 1000 721.44 ± 88.25 1003.93 ± 67.57 615.10 ± 30.52 2545.92 ± 512.82 8162.02 ± 133.70

Table 3: Wall-clock runtime (in seconds) of our algorithm and baselines across optimization tasks.

0 20 40 60 80 100
Number of iterations

0

10

20

30

40

Be
st

 Fe
as

ib
le

 M
in

im
um

Branin (2)

0 20 40 60 80 100
Number of iterations

0.06

0.04

0.02

0.00

Simionescu (2)

0 20 40 60 80 100
Number of iterations

0.2

0.0

0.2

0.4

0.6

0.8

Gas Transmission (4)

0 50 100 150 200
Number of iterations

3

4

5

6

7

8

9

Be
st

 Fe
as

ib
le

 M
in

im
um

Ackley (5)

0 50 100 150 200
Number of iterations

3.0

2.5

2.0

1.5

1.0

0.5

0.0
Hartmann (6)

0 20 40 60 80 100
Number of iterations

3000

3250

3500

3750

4000

4250

4500

4750

5000
Speed Reducer (7)

Synthetic benchmark functions Real-world use cases

Neural-CBO ConfigOpt cEI UCBC ADMMBO

Figure 6: The plots show Best Feasible Minimum up to step t, which is min
1≤j≤t

f(xj),∀ci(xj) ≤ 0,∀i = 1 . . .K (where K is

the number of constraints), comparing our proposed algorithm and four baselines. The dimension of each objective function
is shown in the parenthesis. The left group is four synthetic functions introduced in Section 5.2, while the right group is the
optimization results of Gas Transmission Compressor Design and Speed Reducer Design, described in Section 5.3 and 5.4.

B DETAILED THEORETICAL ANALYSIS

In this section, we will provide the proof of Lemma 3.5 and Theorem 4.2. Before presenting the proofs, we briefly remind the
reader of existing terms and introduce new notations for convenience. Remind that ga(x;W) = ∇Wa(x;W). Therefore,
ga(x;W0) and ga(x;Wt) will be the gradients of the neural network a(x;W) (using to model an arbitrary function fa,
defined in Equation (1)) at initialization and at iteration t, respectively. Further, let us define terms as follows:

Ga,t−1 = [ga(x1;W0), . . . ,ga(xt−1;W0)]

Ḡa,t−1 = [ga(x1;Wt−1), . . . ,ga(xt−1;Wt−1)]

Ua,t−1 = I+Ga,t−1G
⊤
a,t−1

Fa,t−1 = [fa(x1), . . . , fa(xt−1)]

(6)

Further, it can be verified that H0 = G⊤
a,t−1Ga,t−1, where H0 is the NTK matrix at initialization defined in Section 3.2.

Now we are ready to bound Lemma 3.5.

B.1 PROOF OF MAIN RESULTS PROVIDED IN SECTION 4

B.1.1 Proof of Lemma 3.5

Lemma 3.5. Let Assumptions 3.2 and 3.3 hold. Using neural network a(x;W) satisfied Condition 3.4 to model an arbitrary
function fa. Setting the step size at training step t as αt ≤ ν

(T+1)2 , then for any δ ∈ (0, 1), with probability at least

1− δ exp
(
Ω(C−Lm1/36)

)
, the following holds for all x ∈ D and 1 ≤ t ≤ T :

|fa(x)− a(x;Wt−1)| ≤ βa,tσa,t−1(x) +
E(m)

T + 1
,

βa,t =

(
Ba +Ra

√
γt,a + 2 + 2 log(1/δ)

)
,

E(m) = O(C2LL3/2m11/36).

Proof. To prove Lemma 3.5, we analyze the left-hand side as follows:

|fa(x)− a(x;Wt−1)|
≤ |fa(x)− ⟨ga(xt;W0),U

−1
a,t−1Ga,t−1ya,t−1⟩|︸ ︷︷ ︸

T1

+ |a(x;Wt−1)− ⟨ga(xt;W0),U
−1
a,t−1Ga,t−1ya,t−1⟩|︸ ︷︷ ︸

T2

Here, T1 represents the difference between the actual function value and the theoretical optimal solution for a linearized
network. Meanwhile, T2 refers to the gap between the neural network’s output a(x;W t−1) at iteration t − 1 and the
theoretical optimal solution for the same linearized network.

Bound term T1 :

First, following Assumption 3.2 in the main paper, we assume that fa is in RKHS Hka
with NTK kernel ka, and ga(x;W0)

can be considered as finite approximation of φ(·), the feature map of the NTK from Rd → Hka
. From Lemma B.5, there

exists f∗
a ∈ Rp such that fa(x) = ⟨ga(x;W0), f

∗
a ⟩ = ga(x;W0)

⊤f∗
a . Then the term T1 can be bounded as:

T1 =
∣∣f(x)− ⟨ga(x;W0);U

−1
a,t−1Ga,t−1ya,t−1⟩

∣∣
=
∣∣f(x)− ga(x;W0)

⊤U−1
a,t−1Ga,t−1ya,t−1

∣∣
≤
∣∣f(x)− ga(x;W0)

⊤U−1
a,t−1Ga,t−1fa,t−1

∣∣+ ∣∣ga(x;W0)
⊤U−1

a,t−1Ga,t−1ϵa,t−1

∣∣
=
∣∣ga(x;W0)

⊤f∗
a − ga(x;W0)

⊤U−1
a,t−1Ga,t−1G

⊤
a,t−1f

∗
a ⟩
∣∣+ ∣∣ga(x;W0)

⊤U−1
a,t−1Ga,t−1ϵa,t−1

∣∣
=
∣∣ga(x;W0)

⊤ (I−U−1
a,t−1Ga,t−1G

⊤
a,t−1

)
f∗
a

∣∣+ ∣∣ga(x;W0)
⊤U−1

a,t−1Ga,t−1ϵa,t−1

∣∣
=
∣∣ga(x;W0)

⊤ (I−U−1
a,t−1 (Ut−1 − I)

)
f∗
a

∣∣+ ∣∣ga(x;W0)
⊤U−1

a,t−1Ga,t−1ϵa,t−1

∣∣
=
∣∣ga(x;W0)

⊤U−1
a,t−1w

∣∣+ ∣∣ga(x;W0)
⊤U−1

a,t−1Ga,t−1ϵa,t−1

∣∣
≤ ∥f∗

a∥ka

∥∥U−1
a,t−1ga(x;W0)

∥∥
ka

+
∣∣ga(x;W0)

⊤U−1
a,t−1Ga,t−1ϵa,t−1

∣∣
≤ ∥f∗

a∥ka

√
ga(x;W0)⊤U

−1
a,t−1ga(x;W0) +

∣∣ga(x;W0)
⊤U−1

a,t−1Ga,t−1ϵa,t−1

∣∣
≤

√
2Baσa,t(x) + σa,t(x)R

√
log det(I+H0) + 2 log(1/δ)

≤
√
2Baσa,t(x) +R

√
γa,t + 2 + 2 log(1/δ)σa,t(x)

=

(√
2Ba +Ra

√
γa,t + 2 + 2 log(1/δ)

)
σa,t(x)

where the first inequality uses triangle inequality and the fact that ya,t−1 = fa,t−1 + ϵa,t−1. The second inequality is from
the reproducing property of function relying on RKHS, and the fourth equality is from the verification noted in Equation (6).
The last inequality directly uses the results from Lemma B.10 and Lemma B.11.

Bound term T2 To bound term T2, we again divide T2 into two terms:

T2 = |a(x;Wt−1)− ⟨ga(xt;W0),U
−1
a,t−1Ga,t−1ya,t−1⟩|

= |a(x;Wt−1)− ⟨ga(x;W0),Wt−1 −W0⟩|︸ ︷︷ ︸
T ′
2

+ |⟨ga(x;W0),Wt−1 −W0⟩ − ⟨ga(xt;W0),U
−1
a,t−1Ga,t−1ya,t−1⟩|︸ ︷︷ ︸

T ′′
2

≤ C2LL3/2m11/36/(T + 1) + C2L
1 L1/2m−1/36

Here, T ′
2 is the difference between the network output and its linear approximation, while T ′′

2 indicates the gap between
the network’s linear approximation and the theoretical optimal solution for a linearized network. The first inequality uses
lemma B.8 and Lemma B.9. Combining the bound of term T1 and T2, then given any δ ∈ (0, 1), with probability at least
1− δ exp

(
Ω(C−Lm1/36)

)
, we have:

|fa(x)− a(x;Wt−1)| ≤
(√

2B +R
√
γt,a + 2 + 2 log(1/δ)

)
σa,t−1(x) +

E(m)

T + 1
,

where E(m) = O(C2LL3/2m11/36).

B.1.2 Proof of Theorem 4.2

Theorem 4.2. Under Assumption 3.2, Assumption 3.3 and Condition 3.4, set the step size used to train the neural networks
in Algorithm 1 as αt ≤ ν

(T+1)2 , then for any δ ∈ (0, 1), with probability at least 1− δ exp
(
Ω(C−Lm1/36)

)
, the Cumulative

Regret RT and Cumulative Violation Vci,T after T iterations are bounded as:

Vci,T ≤ 2βci,T

√
SiT

log(Si + 1)
(2γci,T + 1) + 2E(m),

RT ≤ R+
T ≤ 2βf,T

√
BT

log(B + 1)
(2γf,T + 1) + 2E(m),

where E(m) = O(C2LL3/2m11/36). Especially, by choosing m = Ω(d9 exp
(
νLCL log T

)
)), the Cumulative Regret and

Cumulative Violation enjoy the following results:

Vci,T = O(γci,T
√
T), RT = O(γf,T

√
T).

Proof. We gradually provide the upper bound of the cumulative regret RT and cumulative violation of each constraint Vci,T

as:

Bound Cumulative Regret RT : We utilize some results from Tran-The et al. [2022] presented in Lemma B.1 and Lemma
B.2 in Section B.2 to bound our cumulative regret. We obtain an upper bound for the Cumulative Regret RT as follows:

RT ≤ R+
T =

T∑
t=1

r+t

≤
T∑

t=1

(
C +

√
2π(B +

√
2)
)
(Imt(x) + βf,tσf,t−1(xt))

≤
T∑

t=1

(
C +

√
2π(B +

√
2)
)

Imt(x) +

T∑
t=1

(
C +

√
2π(B +

√
2)
)
βf,tσf,t−1(xt)

≤
(
C +

√
2π(B +

√
2)
) T∑

t=1

Imt(x) +
(
C +

√
2π(B +

√
2)
)
βf,T

T∑
t=1

σf,t−1(x)

≤
(
C +

√
2π(B +

√
2)
) T∑

t=1

Imt(x) +
(
C +

√
2π(B +

√
2)
)
βf,T max

(
T∑

t=1

σf,t−1(x), B

)

≤ 2βf,T

√
BT

log(B + 1)
(2γf,T + 1) + 2E(m)

The first inequality is from Lemma B.1 and the last inequality is due to Lemma B.2 and Lemma B.12.

Bound Cumulative Violation Vci,T :

Vci,T =

T∑
t=1

[ci(xt)]
+

=

T∑
t=1

[ci(xt)− LCBci,t(x,ωci,t) + LCBci,t(x,ωci,t)]
+

≤
T∑

t=1

[ci(xt)− LCBci,t(x,ωci,t)]
+ +

T∑
t=1

[LCBci,t(x,ωci,t)]
+

=

T∑
t=1

[ci(xt)− LCBci,t(x,ωci,t)]
+

≤
T∑

t=1

[UCBci,t(x,ωci,t)− LCBci,t(x,ωci,t)]
+

≤ 2βci,t

T∑
t=1

σci,t(x) +
2E(m)

T + 1

≤ 2βci,T max

(
T∑

t=1

(σci,t(x), Si) +
2E(m)

T + 1

)

≤ 2

(
Si +Ra

√
γa,T + 2 + 2 log(1/δ)

)√
SiT

log(Si + 1)
(2γci,T + 1) + 2E(m)

The first inequality follows by the fact that [a+ b]+ ≤ [a]+ + [b]+,∀a, b ∈ R. The second equality is from the feasibility
condition in Algorithm 1. The second inequality is from Corollary 3.6 and the last inequality is from Lemma 3.5.

B.2 TECHNICAL LEMMAS

The following lemmas provide the upper bound of simultaneous regret rt and the upper bound on cumulative of improvement
Imt(x) function:

Lemma B.1 (Lemma 10, [Tran-The et al., 2022]). There exist constant C > 0 such that

rt ≤ r+t ≤
(
C +

√
2π(B +

√
2)
)
(Imt(x) + βf,tσf,t−1(xt)) ,

where Imt(x) = max(0, f(xt)− µ+
t + E(m)), and µ+

t = maxxk∈Dt−1 v(xk;θt−1) is the best value of the mean objective
function so far.

Lemma B.2 (Lemma 14, [Tran-The et al., 2022]). Pick δ ∈ (0, 1). Then with probability at least 1− δ we have that:

T∑
t=1

Imt(xt) = O(βT

√
TγT) + E(m).

The following lemma gives the concentration of NTK at the initialization of the neural network introduced in Equation (1).

Lemma B.3 (Theorem 1, [Xu and Zhu, 2024]). Under Gaussian initialization, for m ≥ Cd2 exp
(
L2
)

for some constant C,
there exist constants C1, C2 and C3 such that, with probability at least 1− exp

(
−C1m

1/3
)
,∥∥∥H(l)

0 −Φ(l)
∥∥∥
∞

≤ C2

(
CL

3

m1/6
+

√
dL logm

m

)
,∀1 ≤ l ≤ L,

where Φ(l) is a deterministic kernel matrix. For more details about the recursive definition of Φ(l), see Section 4.1 of Xu
and Zhu [2024].

The next lemma shows the bound of difference between the gradient of neural network a(x;W) at step t and initialization.

Lemma B.4 (Proposition 9, [Xu and Zhu, 2024]). Consider the neural network introduced in Equation (1) and assume that
the condition 3.4 holds. With probability 1− exp

(
Ω(C−Lm1/36)

)
, for any sample path {xs, ys}T−1

s=0 , all t ≤ T , we have

sup
x

∥ga(x,Wt)− ga(x;W0)∥2 ≤ C2L
1 L1/2m−1/36

∥ga(x;W0)∥2 ≤ CL
2 L

1/2,

for some constants C1 and C2.

The next lemma shows the reproducing property of function fa being assumed to belong to RKHS induced by NTK kernel
ka of the neural network a(x;W) introduced in Equation (1).

Lemma B.5. Let fa be a member of Hka
with bounded RKHS norm ∥fa∥Hka

≤ Ba. Assume that the network width
of the model used to estimate function fa(·) satisfies the Condition 3.4, then ∀x ∈ D, there exists f∗

a ∈ Rp, where
p = md+m2(L− 2) +m such that:

fa(x) = ⟨ga(x;W0), f
∗
a ⟩ = ga(x;W0)

⊤f∗
a

Proof of Lemma B.5. Due to Lemma B.3, with probability at least 1− exp
(
−C1m

1/3 logL
)
, we have:

∥H0 −Φ∥∞ ≤ C2L

(
CL

3

m1/6
+

√
dL logm

m

)
.

It is noted that following our definition, H0 = G⊤
a,tGa,t. That leads to:

1√
m

∥∥G⊤
a,tGa,t −Φ

∥∥
F
≤ t√

m

∥∥G⊤
a,t−1Ga,t−1 −Φ

∥∥
∞

≤ t

C2
√
mL

(
CL

3

m1/6
+

√
dL logm

m

)
≤ λ0,

Where λ0 is a constant which is independent of m. The second inequality is from the choice of m in Condition 3.4. Then,
we have:

1√
m
G⊤

a,tGa,t ≽
1√
m

(
Φ−

∥∥G⊤
a,tGa,t −Φ

∥∥
F
I
)

≽
1√
m

(Φ− λ0I) ≻ 0,

suggests that G⊤
a,tGa,t is positive definite. Thus, suppose the singular value decomposition of Fa,t−1 is Ga,t =

Pa,tAa,tQ
⊤
a,t, then by choosing f∗

a = Pa,tAa,tQ
⊤
a,tFa,t, we have

G⊤
a,t−1f

∗
a = Qa,tAa,tP

⊤
a,tPa,tAa,tQ

⊤
a,tFa,t = Fa,t,

which indicates that for any x, ⟨g(x;W0), f
∗
a ⟩ = fa(x).

Let z(l)t (x) measure the sensitivity of the output from the l-th hidden layer and defined as:

[z
(l)
t (x)]⊤ =

[
∂a(x;Wt)

∂h
(l)
t (x)

]⊤
= q⊤ 1√

m
D

(L)
t (x)W

(L)
t . . .

1√
m
D

(l+1)
t (x)W

(l+1)
t ,

Then the following lemma provides the bound of the difference between z
(l)
t (x) and z

(l)
0 (x):

Lemma B.6 (Lemma 12, [Xu and Zhu, 2024]). Consider the neural network introduced in Equation (1) and assume that
the condition 3.4 holds. With probability 1− exp

(
Ω(C−L+l

1 m1/36)
)
, for layer l and any sample path {xs, ys}T−1

s=0 , with all
t ≤ T , we have:

sup
x

∥∥∥z(l)t (x)− z
(l)
0 (x)

∥∥∥
2
≤ O(C2L−l

1 m17/36)

sup
x

∥∥∥z(l)0 (x)
∥∥∥
2
≤ CL−l

2

√
m

sup
x

∥∥∥z(l)t (x)
∥∥∥
2
≤ C2L−l−1

3

√
m

for some absolute constant C1, C2, C3.

The following lemma provides the bound on the difference between neural network weights and output at initialization and
at step t:

Lemma B.7 (Lemma 10, [Xu and Zhu, 2024]). Consider the neural network introduced in Equation (1) and assume that the
condition 3.4 holds. Setting the step size at training step t as αt ≤ ν

(T+1)2 , then with probability 1− exp
(
Ω(C−Lm1/36)

)
,

for any sample path {xs, ys}T−1
s=0 , all t ≤ T , we have:∥∥∥W(l)

t −W
(l)
0

∥∥∥
2
≤ m1/3L1/2

T + 1∥∥∥W(l)
0

∥∥∥
2
,
∥∥∥W(l)

t

∥∥∥
2
≤ O(

√
m)

sup
x

∥∥∥h(l)
t (x)− h

(l)
0 (x)

∥∥∥
2
≤ Cl

3

m1/6
,

for some absolute constant C3.

The following lemmas provide bound on the technical terms used in Lemma 3.5.

Lemma B.8. Let a(x;W) is the neural network defined in Equation (1). Then, with probability 1− exp
(
Ω(C−Lm1/36)

)
,

we have:

|a(x,Wt−1)− a(x,W0)− ⟨ga(x,W0),Wt−1 −W0⟩| ≤ O(C2LL3/2m11/36)

Proof of Lemma B.8. Remind that

h(l)(x) =
1√
m
D(l)(x)W(l) . . .

1√
m
D(1)(x)W(1)x,

Then, by direct calculation, we have

∂a(x;W0)

∂W(l)
=

q⊤
√
m
D

(L)
0 (x)W

(L)
0 . . .

1√
m
D

(l)
0 (x)

[
h
(l−1)
0 (x)

]⊤
=

1√
m
[z

(l)
0 (x)]⊤D

(l)
0 (x)

[
h
(l−1)
0 (x)

]⊤
,

and

ga(x;W0) =

[
∂a(x;W0)

∂W(1)
,
∂a(x;W0)

∂W(2)
, . . . ,

∂a(x;W0)

∂W(L)

]
We also rewrite a(x;Wt−1) and a(x;W0) as:

a(x;Wt−1) =
q⊤
√
m
D

(L)
t−1(x)W

(L)
t−1 . . .

1√
m
D

(1)
t−1(x)W

(1)
t−1(x)

=
1√
m
z
(l)
t−1(x)D

(l)
t−1(x)Wt−1h

(l−1)
t−1 (x),

a(x;W0) =
q⊤
√
m
D

(L)
0 (x)W

(L)
0 . . .

1√
m
D

(1)
0 (x)W

(1)
0 (x)

=
1√
m
z
(l)
0 (x)D

(l)
0 (x)W

(l)
0 h

(l−1)
0 (x)

Using the technique in the proof of Lemma 8.2 in Allen-Zhu et al. [2019], there exist diagonal matrices D̂(l)(x) =

D
(l)
t−1(x)−D

(l)
0 (x) ∈ Rm×m,∀1 ≤ l ≤ L with entries in [−1, 1] such that:

a(x,Wt−1)− a(x,W0)

=
1√
m

L∑
l=1

[
L∏

r=l+1

(
D̂(r)(x) +D

(r)
t−1(x)

)
W

(r)
t−1

](
D̂(l)(x) +D

(l)
t−1(x)

)
(W

(l)
t−1 −W

(l)
0)h

(l−1)
0 (x)

=
1√
m

L∑
l=1

ẑ
(l)
t−1

(
D̂(l)(x) +D

(l)
t−1(x)

)(
W

(l)
t−1 −W

(l)
0

)
h
(l−1)
0 (x)

Furthermore, we have

⟨ga(x,W0),Wt−1 −W0⟩ =
1√
m

L∑
l=1

z
(l)
0 (x)D

(l)
0 (x)

(
W

(l)
t−1 −W

(l)
0

)
h
(l−1)
0 (x)

Replacing all below expressions, we get

|a(x,Wt−1)− a(x,W0)− ⟨ga(x,W0),Wt−1 −W0⟩|

=
1√
m

L∑
l=1

ẑ
(l)
t−1(x)

(
D̂(l)(x) +D

(l)
t−1(x)

)(
W

(l)
t−1 −W

(l)
0

)
h
(l−1)
0 (x)

− 1√
m

L∑
l=1

z
(l)
0 (x)D

(l)
0 (x)

(
W

(l)
t−1 −W

(l)
0

)
h
(l−1)
0 (x)

≤ 1√
m

L∑
l=1

∥∥∥ẑ(l)t−1 − z
(l)
0 (x)

∥∥∥
2

∥∥∥W(l)
t−1 −W

(l)
0

∥∥∥
2

∥∥∥h(l−1)
0

∥∥∥
≤ Lm−1/2L1/2m1/3C2Lm17/36/(T + 1)

≤ (C2LL3/2m11/36)/(T + 1).

The first inequality uses triangle inequality. The second inequality is from Lemma B.6 and Lemma B.7.

Lemma B.9. Let a(x;W) is the neural network defined in Equation (1). Then, with probability 1− exp
(
Ω(C−Lm1/36)

)
,

we have:

|⟨ga(x;W0),Wt−1 −W0 −U−1
a,t−1Ga,t−1yt−1⟩| ≤ C2L

1 L1/2m−1/36.

Proof of Lemma B.9. Using the model update formula given in Equation (2), we have

Wt−1 −W0 = (Wt−1 −Wt−2) + (Wt−2 −Wt−3) + · · ·+ (W1 −W0)

=

t−1∑
i=1

(Wi −Wi−1)

=

t−1∑
i=1

αi (yi − a(xi,Wi−1))∇Wa(xi,Wi−1)

=

t−1∑
i=1

αi (yi − a(xi,Wi−1))ga,i−1(xi,Wi−1)

= αḠa,t−1(yt−1 −At−1),

where At−1 = [a(x1,W1), . . . , a(xt−1,Wt−1)] ∈ Rt−1. Then we have:

|Wt−1 −W0 −U−1
a,t−1Ga,t−1yt−1|

= |αḠa,t−1(yt−1 −At−1)−U−1
a,t−1Ga,t−1yt−1|

= |α(Ḡa,t−1 −Ga,t−1)(yt−1 −At−1) + αGa,t−1(yt−1 −At−1)− (I+Ga,t−1G
⊤
a,t−1)

−1Ga,t−1yt−1|
= |α(Ḡa,t−1 −Ga,t−1)(yt−1 −At−1) + αGa,t−1(yt−1 −At−1)−Ga,t−1(I+G⊤

a,t−1Ga,t−1)
−1yt−1|

≤
∥∥α(Ḡa,t−1 −Ga,t−1)(yt−1 −At−1)

∥∥
2
+ α∥Ga,t−1∥2

∥∥yt−1

[
I− (αI+ αG⊤

a,t−1Ga,t−1)
−1
]
−At−1

∥∥
2

≤ |α|
√
t
∥∥(Ḡa,t−1 −Ga,t−1)

∥∥
2
+ |α|

√
t∥(Ga,t−1)∥2

≤ C2L
1 L1/2m−1/36

The first inequality is from the triangle inequality and the last inequality is due to the choice of α = ν
(T+1)2 , where ν is a

parameter and independent of dimension d. Therefore, we have:

|⟨ga(x;W0),Wt−1 −W0 −U−1
a,t−1Ḡa,t−1yt−1⟩|

≤ ∥ga(x;W0)∥2
∥∥Wt−1 −W0 −U−1

a,t−1Ḡa,t−1yt−1

∥∥
2

≤ C2L
1 L1/2m−1/36

Lemma B.10 (Theorem 1, Chowdhury and Gopalan [2017]). Let {ϵa,t}∞t=1 be a real-valued stochastic process such that for
some R ≥ 0 and for all t ≥ 1, ϵa,t is Fa,t−1-measurable and R-sub-Gaussian conditioned on Fa,t−1. Recall H0 defined in
Equation (6). For a given η > 0, with probability 1− δ, the following holds for all t:

ϵ⊤a,t((H0 + ηI)−1 + I)−1ϵa,t ≤ R2
a log det((1 + η)I+H0) + 2R2

a log(1/δ).

Lemma B.11. Let δ ∈ (0, 1). If the network width m satisfies Condition 3.4, then with probability at least 1 − δ, the
following holds for every t ∈ [T]:

log det(I+H0) ≤ 2γa,t + 1,

where γa,t is the maximum information gain associated with the NTK kernel ka.

Proof of Lemma B.11. From the definition of H0 and Lemma B.7 Zhou et al. [2020], we have that

log det(I+H0) = log det

(
I+

T∑
i=1

g(xt;θ0)g(xt;θ0)
⊤

)
= log det(I+H0 + (Φ−H0))

≤ log det(I+H0) + ⟨(I+H0)
−1, (Φ−H0)⟩

≤ log det(I+H0) +
∥∥(I+H0)

−1
∥∥
F
∥(Φ−H0)∥F

≤ 2γa,t + 1,

where the first equality is from the definition of Kt in Definition 6, the first inequality is from the convexity of log det(·)
function, and the second inequality is from the fact that ⟨A,B⟩ ≤ ∥A∥F ∥B∥F . The third inequality is from the choice of
m in Condition 3.4, combined with Lemma B.3 and Lemma 3 in Chowdhury and Gopalan [2017].

Lemma B.12 (Lemma 8, Phan-Trong et al. [2023]). Consider the neural network a(·;θ) introduced in Equation (1) and
suppose the width of the neural network m satisfies Condition 3.4. Then

T∑
i=1

min(σa,t(xt), B) ≤

√
BT

log(B + 1)
(2γa,T + 1).

	Introduction
	Problem Setting
	Neural-CBO: Neural Network Based Black-Box Optimization with Unknown Constraints
	The Neural Network for an Arbitrary Function fa
	Neural Tangent Kernel
	Maximum Information Gain
	Neural-CBO Algorithm

	Theoretical Analysis
	Metrics
	Detailed Assumptions for Objective Function and Constraints

	Experimental Results
	Baselines
	Synthetic Benchmark Functions
	Gas Transmission Compressor Design
	Speed Reducer Design
	Designing Sensitive Samples for Model Tampering Detection

	Conclusion
	Additional Experimental Results
	Baselines
	Synthetic Benchmark Functions
	Real-world Applications:
	Further Results

	Detailed Theoretical Analysis
	Proof of Main Results Provided in Section 4
	Proof of Lemma 3.5
	Proof of Theorem 4.2

	Technical Lemmas

