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ABSTRACT

Training energy-based models (EBMs) on high-dimensional data can be both
challenging and time-consuming, and there exists a noticeable gap in sample
quality between EBMs and other generative frameworks like GANs and diffusion
models. To close this gap, inspired by the recent efforts of learning EBMs by
maximizing diffusion recovery likelihood (DRL), we propose cooperative diffusion
recovery likelihood (CDRL), an effective approach to tractably learn and sample
from a series of EBMs defined on increasingly noisy versions of a dataset, paired
with an initializer model for each EBM. At each noise level, the two models
are jointly estimated within a cooperative training framework: samples from the
initializer serve as starting points that are refined by a few MCMC sampling steps
from the EBM. The EBM is then optimized by maximizing recovery likelihood,
while the initializer model is optimized by learning from the difference between
the refined samples and the initial samples. In addition, we made several practical
designs for EBM training to further improve the sample quality. Combining these
advances, our approach significantly boost the generation performance compared to
existing EBM methods on CIFAR-10 and ImageNet datasets. We also demonstrate
the effectiveness of our models for several downstream tasks, including classifier-
free guided generation, compositional generation, image inpainting and out-of-
distribution detection.

1 INTRODUCTION

Energy-based models (EBMs), as a class of probabilistic generative models, have exhibited their
flexibility and practicality in a variety of application scenarios, such as realistic image synthesis (Xie
et al., 2016; 2018a; Nijkamp et al., 2019; Du & Mordatch, 2019; Arbel et al., 2021; Hill et al., 2022;
Xiao et al., 2021; Lee et al., 2023; Grathwohl et al., 2021; Cui & Han, 2023), graph generation (Liu
et al., 2021), compositional generation (Du et al., 2020; 2023), video generation (Xie et al., 2021c),
3D generation (Xie et al., 2021a; 2018b), simulation-based inference (Glaser et al., 2022), stochastic
optimization (Kong et al., 2022), out-of-distribution detection (Grathwohl et al., 2020; Liu et al.,
2020), and latent space modeling (Pang et al., 2020; Zhu et al., 2023; Zhang et al., 2023; Yu et al.,
2023). Despite these successes of EBMs, training and sampling from EBMs remains challenging,
mainly due of the intractability of the partition function in the distribution.

Recently, Diffusion Recovery Likelihood (DRL) (Gao et al., 2021) has emerged as a powerful
framework for estimating EBMs. Inspired by diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Song & Ermon, 2019), DRL assumes a sequence of EBMs for the marginal distributions
of samples perturbed by a Gaussian diffusion process, where each EBM is trained with recovery
likelihood that maximizes the conditional probability of the data at the current noise level given their
noisy versions at a higher noise level. Compared to the regular likelihood, Maximizing recovery
likelihood is more tractable, as sampling from the conditional distribution is much easier than
sampling from the marginal distribution. DRL achieves exceptional generation performance among
EBM-based generative models. However, a noticeable performance gap still exists between the
sample quality of EBMs and other generative frameworks like GANs or diffusion models. Moreover,
DRL requires around 30 MCMC sampling steps at each noise level to generate valid samples, which
can be time-consuming during both training and sampling processes.
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To further close the performance gap and expedite EBM training and sampling with fewer MCMC
sampling steps, we introduce Cooperative Diffusion Recovery Likelihood (CDRL), that jointly
estimates a sequence of EBMs and MCMC initializers defined on data perturbed by a diffusion
process. At each noise level, the initializer and EBM are updated by a cooperative training scheme
(Xie et al., 2018a): The initializer model proposes initial samples by predicting the samples at the
current noise level given their noisy versions at a higher noise level. The initial samples are then
refined by a few MCMC sampling steps from the conditional distribution defined by the EBM. Given
the refined samples, the EBM is updated by maximizing recovery likelihood, and the initializer is
updated to absorb the difference between the initial samples and the refined samples. The introduced
initializer models learn to accumulate the MCMC transitions of the EBMs, and reproduce them by
direct ancestral sampling. Combining with a new noise schedule and a variance reduction technique,
we achieve significantly better performance than the existing methods of estimating EBMs. We
further incorporate classifier-free guidance (CFG) (Ho & Salimans, 2022) to enhance the performance
of conditional generation, and we observe similar trade-offs between sample quality and sample
diversity as CFG for diffusion models when adjusting the guidance strength. In addition, we showcase
that our approach can be applied to perform several useful downstream tasks, including compositional
generation, image inpainting and out-of-distribution detection.

Our main contributions are as follows: (1) We propose cooperative diffusion recovery likelihood
(CDRL) that tractably and efficiently learns and samples from a sequence of EBMs and MCMC
initializers; (2) We make several practical design choices related to noise scheduling, MCMC
sampling, noise variance reduction for EBM training; (3) Empirically we demonstrate that CDRL
achieves significant improvements on sample quality compared to existing EBM approaches, on
CIFAR-10 and ImageNet 32 × 32 datasets; (4) We show that CDRL has great potential to enable
more efficient sampling with sampling adjustment techniques; (5) We demonstrate CDRL’s ability in
compositional generation, image inpainting and out-of-distribution (OOD) detection, as well as its
compatibility with classifier-free guidance for conditional generation.

2 PRELIMINARIES ON ENERGY-BASED MODELS

Let x ∼ pdata(x) be a training example from an underlying data distribution. An energy-based model
defines the density of x by

pθ(x) =
1

Zθ
exp(fθ(x)), (1)

where fθ is the unnormalized log density, or negative energy, parametrized by a neural network
with a scalar output. Zθ is the normalizing constant or partition function. The derivative of the
log-likelihood function of an EBM can be approximately written as

L′(θ) = Epdata

[
∂

∂θ
fθ(x)

]
− Epθ

[
∂

∂θ
fθ(x)

]
, (2)

where the second term is analytically intractable and has to be estimated by Monte Carlo samples
from the current model pθ. Therefore, applying gradient-based optimization for an EBM usually
involves an inner loop of MCMC sampling, which can be time-consuming for high-dimensional data.

3 COOPERATIVE DIFFUSION RECOVERY LIKELIHOOD

3.1 DIFFUSION RECOVERY LIKELIHOOD

Given the difficulty of sampling from the marginal distribution p(x) defined by an EBM, we could
instead estimate a sequence of EBMs defined on increasingly noisy versions of the data and jointly
estimate them by maximizing recovery likelihood. Specifically, assume a sequence of noisy training
examples perturbed by a Gaussian diffusion process: x0,x1, ...,xT such that x0 ∼ pdata; xt+1 =
αt+1xt + σt+1ϵ. Denote yt = αt+1xt for notation simplicity. The marginal distributions of
{yt; t = 1, ..., T} are modeled by a sequence of EBMs: pθ(yt) = 1

Zθ,t
exp(fθ(yt; t)). Then the

conditional EBM of yt given the sample xt+1 at a higher noise level can be derived as

pθ(yt|xt+1) =
1

Z̃θ,t(xt+1)
exp

(
fθ(yt; t)−

1

2σ2
t+1

∥yt − xt+1∥2
)
, (3)
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where Z̃θ,t(xt+1) is the partition function of the conditional EBM dependent on xt+1. Compared with
the marginal EBM pθ(yt), when σt+1 is small, the extra quadratic term in pθ(yt|xt+1) constrains
the conditional energy landscape to be localized around xt+1, making the latter less multi-modal and
easier to sample from with MCMC. In the extreme case when σt+1 is infinitesimal, pθ(yt|xt+1) is
approximately a Gaussian distribution that can be tractably sampled from and has a close connection
to diffusion models (Gao et al., 2021). In the other extreme case when σt+1 → ∞, the conditional
distribution falls back to the marginal distribution, and we lose the advantage of being more MCMC
friendly for the conditional distribution. Therefore, we need to maintain a small σt+1 between
adjacent time steps, and to equip the model with the ability of generating new samples from white
noises, we end up with estimating a sequence of EBMs defined on the diffusion process. We use the
variance-preserving noise schedule (Song et al., 2021b), under which case we have xt = ᾱtx0 + σ̄tϵ,
where ᾱt =

∏T
t=1 αt and σ̄t =

√
1− ᾱ2

t .

We estimate each EBM by maximizing the following recovery log-likelihood function at each noise
level (Bengio et al., 2013):

Jt(θ) =
1

n

n∑
i=1

log pθ(yt,i|xt+1,i), (4)

where {yt,i,xt+1,i} are pair of samples at time steps t and t+ 1. Sampling from pθ(yt|xt+1) can be
achieved by running K steps of Langevin dynamics from the initialization point ỹ0

t = xt+1,i and
iterating

ỹτ+1
t = ỹτ

t +
s2t
2

(
∇yfθ(ỹ

τ
t ; t)−

1

σ2
t+1

(ỹτ
t − xt+1)

)
+ stϵ

τ , (5)

where st is the step size and τ is the index of MCMC sampling step. With the samples, the updating
of EBMs then follows the same learning gradients as MLE (Equation 2), as the extra quadratic term
− 1

2σ2
t+1

∥yt − xt+1∥2 in pθ(yt|xt+1) does not involve learnable parameters. It is worth noting that
maximizing recovery likelihood still guarantees an unbiased estimator of the true parameters of the
marginal distribution of the data.

3.2 AMORTIZING MCMC SAMPLING WITH INITIALIZER MODELS

Although pθ(yt|xt+1) is easier to sample from than pθ(yt), when σt+1 is not infinitesimal, the ini-
tialization of MCMC sampling, xt+1, may still be far from the data manifold of yt. This necessitates
a certain amount of MCMC sampling steps at each noise level (e.g., 30 steps of Langevin dynamics in
Gao et al. (2021)). Naively reducing the number of sampling steps would lead to training divergence
or performance degradation.

To address this issue, we propose to learn an initializer model jointly with the EBM at each noise
level, which maps xt+1 closer to the manifold of yt. Our work is inspired by the CoopNets (Xie
et al., 2018a; 2021b; 2022b), which shows that jointly training a top-down generator via MCMC
teaching will help the training of a single EBM model. We take this idea and generalize it to the
recovery-likelihood model. More discussions are included in Appendix A. Specifically, the initializer
model at noise level t is defined as

qϕ(yt|xt+1) ∼ N (gϕ(xt+1; t), σ̃
2
t I). (6)

It serves as a coarse approximation to pθ(yt|xt+1), as the former is a single-mode Gaussian
distribution while the latter can be multi-modal. A more general formulation would be to in-
volve latent variables zt following a certain simple prior p(zt) into gϕ. Then qϕ(yt, t|xt+1) =
Ep(zt) [qϕ(yt, zt, t|xt+1)] can be non-Gaussian (Xiao et al., 2022). However, we empirically find
that the simple initializer in Equation 6 works well. Compared with the more general formulation,
the simple initializer avoids the inference of zt which may again require MCMC sampling, and leads
to more stable training. Different from Xiao et al. (2022), samples from the initializer just serves as
the starting points and are refined by sampling from the EBM, instead of being treated as the final

samples. We follow (Ho et al., 2020) to set σ̃t =

√
1−ᾱ2

t

1−ᾱ2
t+1

σt. If we treat the sequence of initializers

as the reverse process, such choice of σ̃t corresponds to the lower bound of the standard deviation
given by pdata being a delta function (Sohl-Dickstein et al., 2015).
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3.3 COOPERATIVE TRAINING

We jointly train the sequence of EBMs and intializers in a cooperative fashion. Specifically, at each
iteration, for a randomly sampled noise level t, we obtain an initial sample ŷt from the intializer
model. Then a synthesized sample ỹt from p(yt|xt+1) is generated by initializing from ŷt and
running a few steps of Langevin dynamics (Equation 5). The parameters of EBM are then updated by
maximizing the recovery log-likelihood function (Equation 4). The learning gradient of EBM is

∇θJt(θ) = ∇θ

[
1

n

n∑
i=1

fθ(yt,i; t)−
1

n

n∑
i=1

fθ(ỹt,i; t)

]
. (7)

To train the intializer model that amortizes the MCMC sampling process, we treat the revised sample
ỹt by the EBM as the observed data of the initializer model, and estimate the parameters of the
initializer by maximizing log-likelihood:

Lt(ϕ) =
1

n

n∑
i=1

[
− 1

2σ̃2
t

∥ỹt,i − gϕ(xt+1,i; t)∥2
]
. (8)

That is, the initializer model learns to absorb the difference between ŷt and ỹt at each iteration so
that ŷt is getting closer to the samples from pθ(yt|xt+1). In practice, we re-weight Lt(ϕ) across
different noise levels by removing the coefficient 1

2σ̃2
t

, similar to the “simple loss" in diffusion models.
The training algorithm is summarized in Algorithm 1.

After training, we generate new samples by starting from Gaussian white noise and progressively
samples pθ(yt|xt+1) at decreasingly lower noise levels. For each noise level, an initial proposal is
generated from the intializer model, followed by a few steps of Langevin dynamics from the EBM.
See Algorithm 2 for a summary.

3.4 NOISE VARIANCE REDUCTION

We further propose a simple way to reduce the variance of training gradients. In principle, the
pair of xt (or yt) and xt+1 is generated by xt ∼ N (ᾱtx0, σ̄

2
t I) and xt+1 ∼ N (αt+1xt, σ

2
t+1I).

Alternatively, we can fix the Gaussian white noise e ∼ N (0, I), and sample pair (x′
t,x

′
t+1) by

x′
t = ᾱtx0 + σ̄te

x′
t+1 = ᾱt+1x

′
t + σ̄t+1e. (9)

In other words, both x′
t and x′

t+1 are linear interpolation between the clean sample x0 and a sampled
white noise image e. x′

t and x′
t+1 have the same marginal distributions as xt and xt+1. But x′

t is
deterministic given x0 and x′

t+1, while there’s still variance for xt given x0 and xt+1. This schedule
is related to the ODE forward process used in flow matching (Lipman et al., 2022) and rectified
flow (Liu et al., 2022b).

3.5 CONDITIONAL GENERATION AND CLASSIFIER-FREE GUIDANCE

Ho & Salimans (2022) introduced classifier-free guidance, which greatly enhances the sample quality
of conditional diffusion models and balances between sample quality and diversity by adjusting the
strength of guidance. Given the close connection between EBMs and diffusion models, we show that
it is possible to apply classifier-free guidance in our CDRL as well. Specifically, suppose c is the
context (e.g., a label or a text description). At each noise level we jointly estimate an unconditional
EBM pθ(yt) ∝ exp(fθ(yt; t)) and a conditional EBM pθ(yt|c) ∝ exp(fθ(yt; c, t)). By following
the classifier-free guidance (Ho & Salimans, 2022), we can perform conditional sampling using the
following linear combination of the conditional and unconditional gradients:

∇y log p̃θ(yt|c) = (w + 1)∇y log pθ(yt; c, t)− w∇y log pθ(yt; t) (10)
= (w + 1)∇yfθ(yt; c, t)− w∇yfθ(yt; t), (11)

where w controls the guidance strength. We adopt a single neural network to parameterize both condi-
tional and unconditional models, where for the unconditional model we can simply input a null token
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Algorithm 1 CDRL Training
Input: (1) observed data x0 ∼ pdata(x); (2) Number of noise levels T ; (3) Number of Langevin sampling steps
K per noise level; (4) Langevin step size at each noise level st; (5) Learning rate ηθ for EBM fθ; (6) Learning
rate ηϕ for initializer gϕ;
Output: Parameters θ, ϕ

Randomly initialize θ and ϕ.
repeat

Sample noise level t from {0, 1, ..., T − 1}.
Sample ϵ ∼ N (0, I). Let xt+1 = ᾱt+1x0 + σ̄t+1ϵ, yt = αt+1(ᾱtx0 + σ̄tϵ).
Generate the initial sample ŷt following Equation 6.
Generate the refined sample yt by running K steps of Langevin dynamics starting from ŷt following

Equation 5.
Update EBM parameter θ following the gradients in Equation 7.
Update initializer parameter ϕ by maximizing Equation 8.

until converged

Algorithm 2 CDRL Sampling
Input: (1) Number of noise levels T ; (2) Number of Langevin sampling steps K at each noise level; (3) Langevin
step size at each noise level δt; (4) Trained EBM fθ; (5) Trained initializer gϕ;
Output: Samples x̃0

Randomly initialize xT ∼ N (0, I).
for t = T − 1 to 0 do

Generate initial proposal ŷt following Equation 6.
Update ŷt to ỹt by K iterations of Equation 5.
Let x̃t = ỹt/αt+1.

end for

∅ for the class condition c when outputing the negative energy, i.e. fθ(yt; t) = fθ(yt; c = ∅, t).
Similarly, for the initializer model, we jointly estimate an unconditional model qϕ(yt|xt+1) ∼
N (gϕ(xt+1; t), σ̃

2
t I) and a conditional model qϕ(yt|c,xt+1) ∼ N (gϕ(xt+1; c, t), σ̃

2
t I). We param-

eterize both models in a single neural network. Since both models follow Gaussian distributions, the
scaled conditional distribution with classifier-free guidance is still a Gaussian distribution (Dhariwal
& Nichol, 2021):

q̃ϕ(yt|c,xt+1) = N
(
(w + 1)gϕ(xt+1; c, t)− wgϕ(xt+1; t), σ̃

2
t I

)
. (12)

3.6 COMPOSITIONALITY IN ENERGY-BASED MODEL

One attractive property of EBMs is compositionality: one can combine multiple EBMs conditioned
on individual concepts, and re-normalize it to create a new distribution conditioned on the intersection
of those concepts. Specifically, considering two EBMs pθ(x|c1) ∝ exp(fθ(x; c1)) and pθ(x|c2) ∝
exp(fθ(x; c2)) that are conditioned on two separate concepts c1 and c2 respectively, Du et al.
(2020); Lee et al. (2023) construct a new EBM conditioned on both concepts as pθ(x|c1, c2) ∝
exp(fθ(x; c1) + fθ(x; c2)) based on the production of expert (Hinton, 2002). Specifically, suppose
the two concepts c1 and c2 are conditionally independent given the observed example x. Then we
have

log pθ(x|c1, c2) = log pθ(c1, c2|x) + log pθ(x) + const.

= log pθ(c1|x) + log pθ(c2|x) + log pθ(x) + const.

= log pθ(x|c1) + log pθ(x|c2)− log pθ(x) + const.,

where const. is a constant term independent of x. The composition can be generalized to include an
arbitrary number of concepts. Suppose we have M conditionally independent concepts, then

log pθ(x|ci, i = 1, ...,M) =

M∑
i=1

log pθ(x|ci)− (M − 1) log pθ(x) + const. (13)

We can combine the compositional log-density (Equation 13) with classifier-free guidance (Equa-
tion 11) to further improve the alignment of generated samples with given concepts. The sampling
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gradient of the scaled log-density function is given by

∇x log p̃θ(x|ci, i = 1, ...,M) = ∇x

[
(w + 1)

M∑
i=1

log pθ(x|ci)− (Mw +M − 1) log pθ(x) + const

]

= (w + 1)

M∑
i=1

∇xfθ(x|ci)− (Mw +M − 1)∇xfθ(x). (14)

(a) CIFAR-10 (b) ImageNet (32× 32)

Figure 1: Unconditional generated examples on CIFAR-10 and ImageNet (32× 32) datasets.

Figure 2: Conditional generation on ImageNet (32 × 32) dataset with a classifier-free guidance.
(a) Random image samples generated with different guided weights w = 0.0, 0.5, 1.0 and 3.0; (b)
Samples generated with a fixed noise under different guided weights. The class label is set to be the
category of Siamese Cat. Sub-images presented at the same position depict samples with identical
random noise and class label, differing only in their guided weights; (c) A curve of FID scores across
different guided weights; (d) A curve of Inception scores across different guided weights.

4 EXPERIMENTS

We evaluate the performance of our model across various scenarios. Specifically, Section 4.1
demonstrates the capacity of unconditional generation. Section 4.2 highlights the potential of our
model to further optimize sampling efficiency. The focus shifts to conditional generation and classifier-
free guidance in Section 4.3. Section 4.4 elucidates the power of our model in performing likelihood
estimation and OOD detection, and Section 4.5 showcases compositional generation. Please refer
to Appendix B for implementation details, Appendix C.1 for image inpainting with our trained
models, Appendix D.3 for comparing the sampling time between our approach and other EBM
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Table 1: Comparison of FID scores for unconditional generation on CIFAR-10.

Models FID ↓
EBM based method

NT-EBM (Nijkamp et al., 2022) 78.12
LP-EBM (Pang et al., 2020) 70.15
Adaptive CE (Xiao & Han, 2022) 65.01
EBM-SR (Nijkamp et al., 2019) 44.50
JEM (Grathwohl et al., 2020) 38.40
EBM-IG (Du & Mordatch, 2019) 38.20
EBM-FCE (Gao et al., 2020) 37.30
CoopVAEBM (Xie et al., 2021b) 36.20
CoopNets (Xie et al., 2018a) 33.61
Divergence Triangle (Han et al., 2020) 30.10
VARA (Grathwohl et al., 2021) 27.50
EBM-CD (Du et al., 2021) 25.10
GEBM (Arbel et al., 2021) 19.31
HAT-EBM (Hill et al., 2022) 19.30
CF-EBM (Zhao et al., 2021) 16.71
CoopFlow (Xie et al., 2022b) 15.80
CLEL-base (Lee et al., 2023) 15.27
VAEBM (Xiao et al., 2021) 12.16
DRL (Gao et al., 2021) 9.58
CLEL-large (Lee et al., 2023) 8.61
EGC (Unsupervised) (Guo et al., 2023) 5.36

CDRL (Ours) 4.31
CDRL-large (Ours) 3.68

Models FID ↓
Other likelihood based method

VAE (Kingma & Welling, 2014) 78.41
PixelCNN (Salimans et al., 2017) 65.93
PixelIQN (Ostrovski et al., 2018) 49.46
Residual Flow (Chen et al., 2019) 47.37
Glow (Kingma & Dhariwal, 2018) 45.99
DC-VAE (Parmar et al., 2021) 17.90

GAN based method

WGAN-GP(Gulrajani et al., 2017) 36.40
SN-GAN (Miyato et al., 2018) 21.70
BigGAN (Brock et al., 2019) 14.80
StyleGAN2-DiffAugment (Zhao et al., 2020) 5.79
Diffusion-GAN (Xiao et al., 2022) 3.75
StyleGAN2-ADA (Karras et al., 2020) 2.92

Score based and Diffusion method

NCSN (Song & Ermon, 2019) 25.32
NCSN-v2 (Song & Ermon, 2020) 10.87
NCSN++ (Song et al., 2021b) 2.20
DDPM Distillation (Luhman & Luhman, 2021) 9.36
DDPM++(VP, NLL) (Kim et al., 2021) 3.45
DDPM (Ho et al., 2020) 3.17
DDPM++(VP, FID) (Kim et al., 2021) 2.47

models, Appendix D.4 for understanding the role of EBM and initializer in the generation process and
Appendix D for the ablation study. We designate our approach as “CDRL” in the following sections.

Our experiments primarily involve three datasets: (i) CIFAR-10 (Krizhevsky & Hinton, 2009)
comprises images from 10 categories, with 50k training samples and 10k test samples at a resolution
of 32 × 32 pixels. We use its training set for evaluating our model in the task of unconditional
generation. (ii) ImageNet (Deng et al., 2009) contains approximately 1.28M images from 1000
categories. We use its training set for both conditional and unconditional generation, focusing on a
downsampled version (32× 32) of the dataset. (iii) CelebA (Liu et al., 2015) consists of around 200k
human face images, each annotated with attributes. We downsample each image of the dataset to the
size of 64× 64 pixels and utilize the resized dataset for compositionality and image inpainting tasks.

4.1 UNCONDITIONAL IMAGE GENERATION

We first showcase our model’s capabilities in unconditional image generation on CIFAR-10 and
ImageNet datasets. The resolution of each image is 32× 32 pixels. FID scores (Heusel et al., 2017)
on these two datasets are reported in Tables 1 and 3, respectively, with generated examples displayed
in Figure 1. We adopt the EBM architecture proposed in Gao et al. (2021). Additionally, we utilize
a larger version called “CDRL-large”, which incorporates twice as many channels in each layer.
For the initializer network, we follow the structure of (Nichol & Dhariwal, 2021), utilizing a U-Net
(Ronneberger et al., 2015) but halving the number of channels. Compared to Gao et al. (2021), CDRL
achieves significant improvements in FID scores. Furthermore, CDRL uses the same number of
noise levels (6 in total) as DRL but requires only half the MCMC steps at each noise level, reducing
it from 30 to 15. This substantial reduction in computational costs is noteworthy. With the large
architecture, CDRL achieves a FID score of 3.68 on CIFAR-10 and 9.35 on ImageNet (32 × 32).
These results, to the best of our knowledge, are the state-of-the-art among existing EBM frameworks
and are competitive with other strong generative model classes such as GANs and diffusion models.

4.2 SAMPLING EFFICIENCY

Similar to the sampling acceleration techniques employed in the diffusion model (Song et al., 2021a;
Liu et al., 2022a; Lu et al., 2022), we foresee the development of post-training techniques to further
accelerate CDRL sampling. Although designing an advanced MCMC sampling algorithm could
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be a standalone project, we present a straightforward yet effective sampling adjustment technique
to demonstrate CDRL’s potential in further reducing sampling time. Specifically, we propose to
decrease the number of sampling steps while simultaneously adjusting the MCMC sampling step size
to be inversely proportional to the square root of the number of sampling steps. As shown in Table 2,
while we train CDRL with 15 MCMC steps at each noise level, we can reduce the number of MCMC
steps to 8, 5, and 3 during the inference stage, without sacrificing much perceptual quality.

4.3 CONDITIONAL SYNTHESIS WITH CLASSIFIER-FREE GUIDANCE

We evaluate our model for conditional generation on the ImageNet32 dataset, employing classifier-free
guidance as outlined in Section 3.5. Generation results for varying guided weights w are displayed in
Figure 2. As the value of w increases, the quality of samples improves, and the conditioned class
features become more prominent, although diversity may decrease. This trend is also evident from
the FID and Inception Score (Salimans et al., 2016) curves shown in Figures 2(c) and 2(d). While the
Inception Score consistently increases (improving quality), the FID metric first drops (improving
quality) and then increases (worsening quality), obtaining the optimal value of 6.18 (lowest value) at
a guidance weight of 0.7. Additional image generation results can be found in Appendix C.2.

Table 2: FID for CIFAR-10 with sampling adjust-
ment.

Models
Number of noise
level × Number
of MCMC steps

FID ↓

DRL (Gao et al., 2021) 6× 30 = 180 9.58
CDRL 6× 15 = 90 4.31
CDRL (step 8) 6× 8 = 48 4.58
CDRL (step 5) 6× 5 = 30 5.37
CDRL (step 3) 6× 3 = 18 9.67

Table 3: FID for ImageNet (32× 32) uncondi-
tional generation.

Models FID ↓
EBM-IG (Du & Mordatch, 2019) 60.23
PixelCNN (Salimans et al., 2017) 40.51
EBM-CD (Du et al., 2021) 32.48
CF-EBM (Zhao et al., 2021) 26.31
CLEL-base (Lee et al., 2023) 22.16
DRL (Gao et al., 2021) - (not converge)
DDPM++(VP, NLL) (Kim et al., 2021) 8.42

CDRL (Ours) 9.35

4.4 LIKELIHOOD ESTIMATION AND OUT-OF-DISTRIBUTION DETECTION

A distinctive feature of the EBM is its ability to model the unnormalized log-likelihood directly
using the energy function. This capability enables it to perform tasks beyond generation. In this
section, we first showcase the capability of the CDRL in estimating the density of a 2D checkerboard
distribution. Experimental results are presented in Figure 3, where we illustrate observed samples,
the fitted density, and the generated samples at each noise level, respectively. These results confirm
CDRL’s ability to accurately estimate log-likelihood while simultaneously generating valid samples.

Moreover, we demonstrate CDRL’s utility in out-of-distribution (OOD) detection tasks. For this
endeavor, we employ the model trained on CIFAR-10 as a detector and use the energy at the lowest

Figure 3: The results of density estimation using CDRL for a 2D checkerboard distribution. The
number of noise levels in the CDRL is set to be 5. Top: observed samples at each noise level. Middle:
density fitted by CDRL at each noise level. Bottom: generated samples at each noise level.
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noise level to serve as the OOD prediction score. The AUROC score of our CDRL model, with
CIFAR-10 interpolation, CIFAR-100, and CelebA data as OOD samples, is provided in Table 4.
CDRL achieves strong results in OOD detection comparing with the baseline approaches. More
results can be found in Table 8 in the appendix.

4.5 COMPOSITIONALITY

Table 4: AUROC scores in OOD detection using CDRL and
other explicit density models on CIFAR-10

Cifar-10
interpolation Cifar-100 CelebA

PixelCNN (Salimans et al., 2017) 0.71 0.63 -
GLOW (Kingma & Dhariwal, 2018) 0.51 0.55 0.57
NVAE (Vahdat & Kautz, 2020) 0.64 0.56 0.68
EBM-IG (Du & Mordatch, 2019) 0.70 0.50 0.70
VAEBM (Xiao et al., 2021) 0.70 0.62 0.77
EBM-CD (Du et al., 2021) 0.65 0.83 -
CLEL-Base (Lee et al., 2023) 0.72 0.72 0.77

CDRL (ours) 0.75 0.78 0.84

To evaluate the compositionality of
EBMs, we conduct experiments on
CelebA (64 × 64) datasets with
Male, Smile, and Young as the three
conditional concepts. We estimate
EBMs conditional on each single
concept separately, and assume sim-
ple unconditional initializer models.
Classifier-free guidance is adopted
when conducting compositional gener-
ation (Equation 14). Specifically, we
treat images with a certain attribute
value as individual classes. We ran-
domly assign each image in a training
batch to a class based on the controlled attribute value. For example, an image with Male=True and
Smile=True may be assigned to class 0 if the Male attribute is picked or class 2 if the Smile attribute
is picked. For the conditional network structure, we make EBM fθ conditional on attributes ci and
use an unconditional initializer model gϕ to propose the initial distribution. We focus on showcasing
the compositionality ability of EBM itself, although it is also possible to use a conditional initializer
model similar to Section 3.5. Our results are displayed in Figure 4, with images generated at a guided
weight of w = 3.0. More generation results with different guidance weights can be found in the
Appendix C.2. Images generated with composed attributes following Equation 14 contain features of
both attributes, and increasing the guided weight makes the corresponding attribute more prominent.
This demonstrates CDRL’s ability and the effectiveness of Equation 14.

Figure 4: Results of attribute-compositional generation on CelebA (64 × 64) with guided weight
w = 3. Left: generated samples under different attribute compositions. Right: control attributes
(“
√

”, “×” and “-” indicate “True”, “False” and “No Control” respectively).

5 CONCLUSION AND FUTURE WORK

We propose CDRL, a novel energy-based generative learning framework employing cooperative
diffusion recovery likelihood, which significantly enhances the generation performance of EBMs. We
demonstrate that the CDRL excels in compositional generation, out-of-distribution detection, image
inpainting, and compatibility with classifier-free guidance for conditional generation. One limitation
is that a certain number of MCMC steps are still needed during generation. Additionally, we aim
to scale our model for high-resolution image generation in the future. Our work aims to stimulate
further research on developing EBMs as generative models. However, the prevalence of powerful
generative models may give rise to negative social consequences, such as deepfakes, misinformation,
privacy breaches, and erosion of public trust, highlighting the need for effective preventive measures.
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A RELATED WORK

Energy-Based Learning Energy-based models (EBMs) (Zhu et al., 1998; LeCun et al., 2006; Ngiam
et al., 2011; Hinton, 2012; Xie et al., 2016) define unnormalized probabilistic distributions and are
typically trained through maximum likelihood estimation. Methods such as contrastive divergence
(Hinton, 2002; Du et al., 2021), persistent chain (Xie et al., 2016), replay buffer (Du & Mordatch,
2019) or short-run MCMC sampling (Nijkamp et al., 2019) approximate the analytically intractable
learning gradient. To scale up and stabilize EBM training for high-fidelity data generation, strategies
like multi-grid sampling (Gao et al., 2018), progressive training (Zhao et al., 2021), and diffusion
(Gao et al., 2021) have been adopted. EBMs have also been connected to other models, such as
adversarial training (Arbel et al., 2021; Che et al., 2020), variational autoencoders (Xiao et al., 2021),
contrastive guidance (Lee et al., 2023), introspective learning (Lazarow et al., 2017; Jin et al., 2017;
Lee et al., 2018), and noise contrastive estimation (Gao et al., 2020). To alleviate MCMC burden,
various methods have been proposed, including amortizing MCMC sampling with learned networks
(Kim & Bengio, 2016; Xie et al., 2018a; Kumar et al., 2019; Xiao et al., 2021; Han et al., 2019;
Grathwohl et al., 2021). Among them, cooperative networks (CoopNets) (Xie et al., 2018a) jointly
train a top-down generator and an EBM via MCMC teaching, using the generator as a fast initializer
for Langevin sampling. CoopNets variants have also been studied in Xie et al. (2021b; 2022b). Our
work improves the recovery likelihood learning algorithm of EBMs (Gao et al., 2021) by learning a
fast MCMC initializer for EBM sampling, leveraging the cooperative learning scheme (Xie et al.,
2020). Compared to Xie et al. (2020) that applied cooperative training to an initializer and an EBM
for the marginal distribution of the clean data, our approach only requires learning conditional
initializers and sampling from conditional EBMs, which are much more tractable than their marginal
counterparts. It is worth noting that Xie et al. (2022a) have investigated conditional cooperative
learning, wherein a conditional initializer and a conditional EBM are trained through MCMC
teaching. In contrast, our CDRL trains and samples from a sequence of conditional EBMs and
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conditional initializers on increasingly noisy versions of a dataset for denoising diffusion generation.

Denoising Diffusion Model Diffusion models, initially introduced by Sohl-Dickstein et al. (2015)
and further developed in subsequent works such as Song & Ermon (2020); Ho et al. (2020), generate
samples by progressively denoising them from a high noise level to clean data. These models have
demonstrated significant success in generating high-quality samples from complex distributions,
owing to a range of architectural and algorithmic innovations (Ho et al., 2020; Song et al., 2021a;
Kim et al., 2021; Song et al., 2021b; Dhariwal & Nichol, 2021; Karras et al., 2022; Ho & Salimans,
2022). Notably, Dhariwal & Nichol (2021) emphasize that the generative performance of diffusion
models can be enhanced with the aid of a classifier, while Ho & Salimans (2022) further demonstrate
that this guided scoring can be estimated by the differential scores of a conditional model versus
an unconditional model. Enhancements in sampling speed have been realized through distillation
techniques (Salimans & Ho, 2022) and the development of fast SDE/ODE samplers (Song et al.,
2021a; Karras et al., 2022; Lu et al., 2022). Recent advancements (Rombach et al., 2022; Saharia
et al., 2022; Ramesh et al., 2022) have successfully applied conditional diffusion models to the task
of text-to-image generation, achieving significant breakthroughs.

EBM shares a close relationship with diffusion models, as both frameworks can provide a score
to guide the generation process, whether through Langevin dynamics or SDE/ODE solvers. As
Salimans & Ho (2021) discuss, the distinction between these two models lies in their implementation
approaches: EBMs model the log-likelihood directly, while diffusion models focus on the gradient
of the log-likelihood. This distinction brings advantages to EBMs, such as their compatibility with
advanced sampling techniques (Du et al., 2023), potential conversion into classifiers (Guo et al.,
2023), and capability to detect abnormal samples through estimated likelihood (Grathwohl et al.,
2020; Liu et al., 2020).

The primary focus of this work is to advance the development of EBMs. Our approach connects
with diffusion models (Ho et al., 2020; Xiao et al., 2022) by training a sequence of EBMs and
MCMC initializers to reverse the diffusion process. In contrast to Ho et al. (2020), our framework
employs more expressive conditional EBMs instead of normal distributions to represent the denoising
distribution. Additionally, Xiao et al. (2022) also suggest multimodal distributions, trained by
generative adversarial networks (Goodfellow et al., 2020), for the reverse process.

B TRAINING DETAILS

B.1 NETWORK ARCHITECTURES

We adopt the EBM architecture from (Gao et al., 2021), starting with a 3 × 3 convolution layer
with 128 channels (The number of channels is doubled to 256 in the CDRL-large configuration).
We use several downsample blocks for resolution adjustments, each containing multiple residual
blocks. All downsampling blocks, except the last one, include a 2× 2 average pooling layer. Spectral
normalization is applied to all convolution layers for stability, while ReLU activation is applied to the
final feature map. The energy output is obtained by summing the values over spatial and channel
dimensions. The architectures of EBM building blocks are shown in Table 5, and the hyperparameters
of network architecture are displayed in Table 6.

For the initializer network, we follow (Nichol & Dhariwal, 2021) to utilize a U-Net (Ronneberger
et al., 2015) while halving the number of channels. This reduction effectively decreases the size of the
initializer model. For an image with a resolution of 32× 32 pixels, we have feature map resolutions
of 32× 32, 16× 16, and 4× 4. When dealing with 64× 64 images, we include an additional feature
map resolution of 64× 64. All feature map channel numbers are set to 64, with attention applied to
resolutions of 16× 16 and 8× 8. Our initializer directly predicts the noised image ỹt at each noise
level t, while the DDPM in (Ho et al., 2020) predicts the total injected noise ϵ.

For the class-conditioned generation task, we map class labels to one-hot vectors and use a fully-
connected layer to map these vectors to class embedding vectors with the same dimensions as time
embedding vectors. The class embedding is then added to the time embedding. We set the time
embedding dimension to 512 for EBM and 256 for the initializer in the CDRL setting. In the
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CDRL-large setting, the time embedding dimension increases to 1024 for EBM, while the one in the
initializer remains unchanged.

Table 5: Building blocks of the EBM in CDRL.

(a) ResBlock

leakyReLU, 3 × 3 Conv2D

+ Dense(leakyReLU(temb))

leakyReLU, 3 × 3 Conv2D

+ Input

(b) Downsample Block

N ResBlocks

Downsample 2× 2

(c) Time Embedding

Sinusoidal Embedding

Dense, leakyReLU

Dense

Table 6: Hyperparameters for EBM architectures in different settings.

Model # of Downsample
Blocks

N (# of Resblocks in
Downsample Block)

# of channels
in each resolution

CDRL (32× 32) 4 8 (128, 256, 256, 256)
CDRL-large (32× 32) 4 8 (256, 512, 512, 512)
Compositionality Exp. 5 2 (128, 256, 256, 256, 256)

Inpainting Exp. 5 8 (128, 256, 256, 256, 256)

B.2 HYPERPARAMETERS

We set the learning rate of EBM to be ηθ = 1e−4 and the learning rate of initializer to be ηϕ = 1e−5.
We use linear warm up for both EBM and initializer and let the initializer to start earlier than EBM.
More specifically, given training iteration iter, we have:

ηθ = min(1.0,
iter

10000
)× 1e− 4

ηϕ = min(1.0,
iter + 500

10000
)× 1e− 5

(15)

We use the Adam optimizer Kingma & Ba (2015); Loshchilov & Hutter (2019) to train both the EBM
and the initializer, with β = (0.9, 0.999) and a weight decay equal to 0.0. We also apply exponential
moving average with a decay rate equal to 0.9999 to both the EBM and the initializer. Training is
conducted across 8 Nvidia A100 GPUs, typically requiring approximately 400k iterations, which
spans approximately 6 days.

Following (Gao et al., 2021), we use a re-parameterization trick to calculate the energy term. Our EBM
is constructed across noise levels t = 0, 1, 2, 3, 4, 5 and we assume the distribution at noise level t = 6
is a simple Normal distribution during sampling. Given yt under noise level t, suppose we denote the
output of the EBM network as f̂θ(yt, t), then the true energy term is given by fθ(yt, t) =

f̂θ(yt,t)
s2t

,
where st is the Langevin step size at noise level t. In other words, we parameterize the energy as the
product of the EBM network output and a noise-level dependent coefficient, setting this coefficient
equal to the square of the Langevin step size. We use 15 steps of Langevin updates at each noise
level, with the Langevin step size at noise level t given by

s2t = 0.054× σ̄t × σ2
t+1, (16)

where σ2
t+1 is the variance of the added noise at noise level t+1 and σ̄t is the standard deviation of the

accumulative noise at noise level t. During the generation process, we begin by randomly sampling
x6 ∼ N (0, I) and perform denoising using both the initializer and the Langevin Dynamics of the
EBM, which follows Algorithm 2. After obtaining samples x0 at the lowest noise level t = 0, we
perform an additional denoising step, where we disable the noise term in the Langevin step, to further
enhance its quality. More specifically, we follow Tweedie’s formula (Efron, 2011; Robbins, 1992),
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which states that given x ∼ pdata(x) and a noisy version image x′ with conditional distribution
p(x′|x) = N (x, σ2I), the marginal distribution can be defined as p(x′) =

∫
pdata(x)p(x

′|x)dx.
Consequently, we have

E(x|x′) = x′ + σ2∇x′ log p(x′). (17)
In our case, we have p(xt|ᾱtx0) = N (ᾱtx0, σ̄

2
t I) and we use EBM to model the marginal distribu-

tion of xt as pθ,t(xt), thus

E(ᾱtx0|xt) = xt + σ̄2
t∇xt

log pθ,t(xt),

E(x0|xt) =
xt + σ̄2

t∇xt
log pθ,t(xt)

ᾱt
. (18)

Suppose the samples we obtain at t = 0 are denoted as x0. These samples actually contains a small
amount of noise corresponding to ᾱ0, thus, we may use Equation 18 to further denoise them. In
practice, we find that enlarging the denoising step by multiplying the gradient term ∇xt

log pθ,t(xt)
by a coefficient larger than 1.0 yields better results. We set this coefficient to be 2.0 in our experiments.

B.3 NOISE SCHEDULE AND CONDITIONING INPUT

We improve upon the noise schedule and the conditioning input of DRL (Gao et al., 2021). Let
λt = log

ᾱ2
t

σ̄2
t

represent the logarithm of signal-to-noise ratio at noise level t. Inspired by (Kingma
et al., 2021), we utilize λt as the conditioning input of the noise level and feed it to the networks fθ
and gϕ instead of directly using t.

Figure 5: Noise schedule. The
green line represents the noise
schedule used by DRL (Gao et al.,
2021) while the red line depicts the
noise schedule employed by our
CDRL.

For the noise schedule, we keep the design of using 6 noise
levels as in DRL. Inspired by (Nichol & Dhariwal, 2021), we
construct a cosine schedule such that λt is defined as λt =
−2 log(tan(at + b)), where a and b are calculated from the
maximum log SNR (denoted as λmax) and the minimum log
SNR (denoted as λmin) using

b = arctan(exp(−0.5λmax)), (19)
a = arctan(exp(−0.5λmin))− b. (20)

We set λmax = 9.8 and λmin = −5.1 to correspond with the
standard deviation ᾱt of the accumulative noise in the original
Recovery Likelihood model (T6 setting) at the highest and
lowest noise levels. Figure 5 illustrates the noise schedule of
DRL alongside our proposed schedule. In contrast to the DRL’s
original schedule, our proposed schedule places more emphasis
on regions with lower signal-to-noise ratios, which are vital for
generating low-frequency, high-level concepts in samples.

B.4 ILLUSTRATION OF THE CDRL FRAMEWORK

Figure 6 illustrates the training and sampling processes of the CDRL framework, providing a
comprehensive overview of the model.

C MORE EXPERIMENTAL RESULTS

C.1 IMAGE INPAINTING

We demonstrate the inpainting ability of our learned model on the 64 × 64 CelebA dataset. Each
image is masked, and our model is tasked with filling in the masked area. We gradually add noise to
the masked image up to the final noise level, allowing the model to denoise the image progressively,
similar to the standard generation process. During inpainting, only the masked area is updated,
while the values in the unmasked area are retained. This is achieved by resetting the unmasked area
values to the current noisy version after each Langevin update step of the EBM or initializer proposal
step. Our results, depicted in Figure 7, include two types of masking: a regular square mask and an
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(a) CDRL training process. In the training phase, we start by selecting a pair of images {yt,xt+1} at noise
levels t and t+ 1 respectively. The image xt at noise level t is then fed into the initializer to generate an initial
proposal ŷt. Subsequently, this initial proposal undergoes refinement through the MCMC process guided by
the underlying energy function. The refined sample ỹt obtained from this process is utilized to update both the
energy function and the initializer.

(b) CDRL Sampling process. The sampling phase starts from Gaussian noise. Starting from the highest noise
level, an initial proposal is generated by the initializer that corresponds to that noise level. Subsequently, the
samples undergo refinement through MCMC sampling. This denoising process is iteratively repeated to push the
noisy image towards lower noise levels until the lowest noise level t = 0 is reached.

Figure 6: Illustration of the Cooperative Diffusion Recovery Likelihood (CDRL) framework

irregularly shaped mask. In Figure 7, the first two columns respectively display the original images
and the masked images, while the other columns show the corresponding inpainting results. CDRL
successfully inpaints valid and diverse values in the masked area, producing inpainted results that
differ from the observations. This suggest that CDRL does not merely memorize data because it fills
novel and meaningful content into unobserved areas based on the statistical features of the dataset.

Figure 7: Results of Image inpainting on CelebA (64× 64) dataset. The first two rows utilize square
masks, while the last two rows use irregular masks. The first column displays the original images.
The second column shows the masked images. Columns three to six display inpainted images using
different initialization noises.
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C.2 IMAGE GENERATION

In this section we present additional generation results. Figure 10 showcases more compositionality
results with varying guidance weights on the CelebA 64× 64 dataset. Here, w = 0.0 corresponds
to the original setting without guidance in Equation 13 in the main paper. In Figure 11, 12, 13, 14
and 15, we provide more results for conditional generation on ImageNet32 (32× 32) with different
guidance weights. Specifically, Figure 11 showcases random samples, while each figure in Figures
12, 13, 14 and 15 contains samples from a specific class under different guidance weights w.

C.3 GENERATING HIGH-RESOLUTION IMAGES

The recent trend in generative modeling of high-resolution images involves either utilizing the latent
space of a VAE, as demonstrated in latent diffusion (Rombach et al., 2022), or initially generating
a low-resolution image and then gradually expanding it, as exemplified by techniques like Imagen
(Saharia et al., 2022). This process often reduce the modeled space to dimensions such as 32× 32
or 64 × 64, which aligns with the resolutions that we used in our experiments in the main text.
Here, we conduct additional experiments by learning CDRL following Rombach et al. (2022). We
conduct experiments on the CelebA-HQ dataset, and the generated samples are shown in Figure 8.
Additionally, we report the FIDs in Table 7.

Table 7: Comparison of FIDs on the CelebA-HQ (256 x 256) dataset

Model FID score
GLOW (Kingma & Dhariwal, 2018) 68.93
VAEBM (Xiao et al., 2021) 20.38
ATEBM (Yin et al., 2022) 17.31
VQGAN+Transformer (Esser et al., 2021) 10.2
LDM (Rombach et al., 2022) 5.11
CDRL(ours) 10.74

C.4 OUT-OF-DISTRIBUTION DETECTION

We present the results for the out-of-distribution (OOD) detection task on additional datasets, along
with incorporating more recent baselines. The comprehensive results are summarized in Table 8.

Table 8: Comparison of AUROC scores in OOD detection on CIFAR-10 dataset. The AUROC score
for DRL (Gao et al., 2021) is reported by Yoon et al. (2023). For EBM-CD (Du et al., 2021), we
present two sets of performance results from different sources: one from Du et al. (2021) and the
other from a recent study (Yoon et al., 2023). We include both sets of results, with scores from Yoon
et al. (2023) presented in brackets for comparison.

Cifar-10
interpolation Cifar-100 CelebA SVHN Texture

PixelCNN(Salimans et al., 2017) 0.71 0.63 - 0.32 0.33
GLOW (Kingma & Dhariwal, 2018) 0.51 0.55 0.57 0.24 0.27
NVAE (Vahdat & Kautz, 2020) 0.64 0.56 0.68 0.42 -
EBM-IG (Du & Mordatch, 2019) 0.70 0.50 0.70 0.63 0.48
VAEBM (Xiao et al., 2021) 0.70 0.62 0.77 0.83 -
EBM-CD (Du et al., 2021) 0.65 (-) 0.83 (0.53) - (0.54) 0.91 (0.78) 0.88 (0.73)
CLEL (Lee et al., 2023) 0.72 0.72 0.77 0.98 0.94
DRL (Gao et al., 2021) - 0.44 0.64 0.88 0.45
MPDR-S(Yoon et al., 2023) - 0.56 0.73 0.99 0.66
MPDR_R(Yoon et al., 2023) - 0.64 0.83 0.98 0.80
CDRL 0.75 0.78 0.84 0.82 0.65
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Figure 8: Samples generated by CDRL model trained on the CelebAHQ (256× 256) dataset.

D MODEL ANALYSIS

In this section, we employ several experiments to analyze the CDRL model.

D.1 ABLATION STUDY

In this section, we conduct an ablation study to analyze the effectiveness of each component of our
CDRL model. We have previously described three main techniques in our main paper that contribute
significantly to our CDRL model: (1) the new noise schedule design, (2) the cooperative training
algorithm, and (3) noise variance reduction. We demonstrate the impact of each of these techniques
by comparing our CDRL model with the following models:

1. The original diffusion recovery likelihood (DRL) model (Gao et al., 2021) as a baseline.

2. A model trained without using the cooperative training. This corresponds to the DRL but
using the same noise schedule and conditioning input as CDRL.

3. CDRL without using noise reduction.

4. Similar to Xiao et al. (2022), we use the initializer to predict the clean image x̂0 and then
transform it to ŷt. Note that our CDRL uses the initializer to directly predict ŷt.

5. Similar to Ho et al. (2020), we use initializer to directly output the prediction of total added
noise ϵ̂ and then transform it to ŷt.

6. Compared with the noise schedule used in the original DRL(Gao et al., 2021) paper, the
proposed one used in our CDRL places more emphasis on the high-noise area where ᾱ
is close to 0. We train a CDRL model with the original DRL noise schedule but with 2
additional noise levels in the high-noise region for comparison.
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7. As depicted in Equation 8 in the main paper, our cooperative training algorithm involves
the initializer learning from the revised sample ỹt at each step. A natural question arises:
should we instead regress it directly on the data yt? To answer this, we train a model, in
which the initializer directly learns from yt at each step.

We ensure that all models share the same network structure and training settings on the CIFAR-10
dataset and differ only in the aforementioned ways. As shown in Table 9, our full model performs the
best among these settings, which justifies our design choices.

Table 9: Ablation study on the CIFAR-10 dataset.

Models FID ↓
DRL (Gao et al., 2021) 9.58
CDRL without cooperative training 6.47
CDRL without noise reduction 5.51
CDRL with an initializer that predicts x̂0 5.17
CDRL with an initializer that predicts ϵ̂ 4.95
CDRL using a noise schedule in DRL-T8 4.94
CDRL with an initializer that learns from yt 5.95

CDRL (full) 4.31

D.2 EFFECTS OF NUMBER OF NOISE LEVELS AND NUMBER OF LANGEVIN STEPS

We test whether the noise level can be further reduced. The results in Table 10a show that further
reducing noise level to 4 can make model more unstable, even if we increase the number of the
Langevin sample steps K. On the other hand, reducing T to 5 yields reasonable but slightly worse
results. In Table 10b, we show the effect of changing the number of Langevin steps K. The results
show that, on one hand, decreasing K to 10 yields comparable but slightly worse results. On the
other hand, increasing K to 30 doesn’t lead to better results. This observation aligns wit the finding
from Gao et al. (2021). The observation of changing K implies that simply increasing the number of
Langevin steps doesn’t significantly enhance sample quality, thereby verifying the effectiveness of
the initializer in our model.

Table 10: Comparison of CDRL models with varying numbers of noise levels T and varying numbers
of Langevin steps K. FIDs are reported on the Cifar-10 dataset.

(a) Results of CDRL models with varying T

Model FID ↓
T = 4 (K = 15, 20, 30) not converge
T = 5 (K = 15) 5.08
T = 6 (K = 15) 4.31

(b) Results of CDRL models with varying K

Model FID ↓
T = 6 (K = 10) 4.50
T = 6 (K = 15) 4.31
T = 6 (K = 30) 5.08

D.3 SAMPLING TIME

In this section, we measure the sampling time of CDRL and compare it with the following models:
(1) CoopFlow (Xie et al., 2022b), which combines an EBM with a Normalizing Flow model; (2)
VAEBM (Xiao et al., 2021), which combines a VAE with an EBM and achieves strong generation
performance; (3) DRL (Gao et al., 2021) model with a 30-step MCMC sampling at each noise level.
We conduct the sampling process of each model individually on a single A6000 GPU to generate a
batch of 100 samples on the Cifar10 dataset. Our CDRL model produces samples with better quality
with a relatively shorter time frame. Additionally, with the sampling adjustment techniques, the
sampling time can be further reduced without significantly compromising sampling quality.
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Table 11: Comparison of different EBMs in terms of sampling time and number of MCMC steps.
The sampling time are measured in seconds.

Method Number of MCMC steps Sampling Time FID ↓
CoopFlow (Xie et al., 2022b) 30 2.5 15.80
VAEBM (Xiao et al., 2021) 16 21.3 12.16
DRL (Gao et al., 2021) 6 × 30 = 180 23.9 9.58

CDRL 6 × 15 = 90 12.2 4.31
CDRL (8 steps) 6 × 8 = 48 6.5 4.58
CDRL (5 steps) 6 × 5 = 30 4.2 5.37
CDRL (3 steps) 6 × 3 = 18 2.6 9.67

D.4 ANALYZING THE EFFECTS OF THE INITIALIZER AND THE EBM

To gain deeper insights into the roles of the initializer and the EBM in the CDRL in image generation,
we conduct two additional experiments using a pretrained CDRL model on the ImageNet Dataset
(32 × 32). We evaluate two generation options: (a) images generated using only the initializer’s
proposal, without the EBM’s Langevin Dynamics at each noise level, and (b) images generated
with the full CDRL model, which includes the initializer’s proposal and 15-step Langevin updates
at each noise level. As shown in Figure 9a and 9b, the initializer captures the rough outline of the
object, while the Langevin updates by the EBM improve the details of the object. Furthermore, in
Figure 9c, we display samples generated by fixing the initial noise image and sample noise of each
initializer proposal step. The outcomes demonstrate that images generated with the same initialization
noises share basic elements but differ in details, highlighting the impact of both the initializer and the
Langevin sampling. The initializer provides a starting point, while the Langevin sampling process
enriches details.

(a) Initializer only (b) Full CDRL model (c) Fixing the initialization noise

Figure 9: Illustration of the effects of the initializer and the EBM on the image generation process
using a CDRL model pretrained on the ImageNet Dataset (32× 32). (a) Samples generated using
only the proposal of the initializer; (b) Samples generated by the full CDRL model; (c) Samples
generated by fixing the initial noise image and the sample noise of each initialization proposal step.
Each row of images shared the same initial noise image and the sample noise of each initialization
proposal step, but differed in the noises of Langevin sampling process at each noise level.

D.5 ANALYZING LEARNING BEHAVIOR

We dive into a deeper understanding of the learning behavior of the cooperative learning algorithm.
We follow the analysis framework of Xie et al. (2020; 2022a). Let Kθ(yt|yt

′,xt+1) be the transition
kernel of the K-step Langevin sampling that refines the initial output yt

′ to the refined output yt. Let
(Kθqϕ)(yt|xt+1) =

∫
Kθ(yt|y′

t,xt+1)qϕ(y
′
t|xt+1)dy

′
t be the conditional disribution of yt, which

is obtained by K steps of Langevin sampling starting from the output of the initialier qϕ(yt|xt+1).
Let π(yt|xt+1) be the true conditional distribution for denoising xt+1 to retrieve yt. The maximum
recovery likelihood for the EBM in Equation 4 in the main paper is equivalent to minimizing the
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Kullback-Leibler divergence (KL) divergence KL(π(xt|yt+1)||pθ(xt|yt+1)). Using j to index the
learning iteration for model parameters, given the current initializer model qϕ(yt|xt+1), the EBM
updates its parameters θ by minimizing

θj+1 = argmin
θ

KL(π(yt|xt+1)||pθ(yt|xt+1))− KL((Kθjqϕ)(yt|xt+1)||pθ(yt|xt+1)) (21)

which is a modified contrastive divergence. It is worth noting that, in the original contrastive
divergence, the above (Kθjqϕ)(yt|xt+1) is replaced by (Kθjπ)(yt|xt+1). That is, the MCMC
chains are initialized by the true data. The learning shifts pθ(yt|xt+1) toward the true distribution
π(yt|xt+1).

On the other hand, given the current EBM, the initializer model learns from the output distribution of
the EBM’s MCMC. That is, we train the initializer with ỹ in equation 8 of the main paper. The update
of the parameters of the initializer at learning iteration j + 1 approximately follows the gradient of

ϕj+1 = argmin
ϕ

KL(Kθqϕj
(yt|xt+1)||qϕ(yt|xt+1)) (22)

The initializer qϕ(yt|xt+1), which is a conditional top-down generator, learns to be the sta-
tionary distribution of the MCMC transition Kθ(xt|yt+1) by adjusting its mapping towards
the low-energy regions of pθ(xt|yt+1). In a limit, the initializer qϕ(yt|xt+1) minimizes
KL(Kθqϕj

(yt|xt+1)||qϕ(yt|xt+1)) and approach the conditional EBM pθ(xt|yt+1). The entire
learning algorithm can be viewed as a chasing game, where the initialzier model qϕ(yt|xt+1) chases
the EBM pθ(yt|xt+1) in pursuit of the true conditional distribution π(yt|xt+1).

According to the above learning behavior, we can now discuss the benefits of the cooperative learning
compared to directly training the initializer with observed y.

Firstly. as presented in Equation 22, the MCMC process of the EBM drives the evolution of the
initializer, which seeks to amortize the MCMC. At each learning iteration, in order to provide good
initial examples for the current EBM’s MCMC, the initialzer needs to be sufficiently close to the
EBM. Therefore, training the initialzer with the MCMC outputs ỹ is a beneficial strategy to maintain
a appropriate distance between EBM and initialzer model. Conversely, if the initializer directly learns
from the true distribution, even though it may move toward the true distribution quickly, it might not
provide a good starting point for the MCMC. A competent initializer should assist in identifying the
modes of the EBM. Consider a scenario in which the initizlier model initially shifts toward the true
distribution by learning directly from y, but the EBM remains distant. Due to a large divergence
between the EBM and the initialzier, the latter may not effectively assist the EBM in generating fair
samples, especially with finite-step Lanegevin dynamics. A distant initializer could lead to unstable
training of the EBM.

Secondly, let us consider a more general senario where our initializer is modeled using a non-Gaussian
generator yt = gϕ(xt+1, z, t), where z ∼ N (0, I) introduces randomness through the latent vector z.
In this case qϕ(yt|xt+1) =

∫
p(yt|xt+1, z)p(z)dz is analytically intractable. Learning qϕ(yt|xt+1)

directly from y independently requires MCMC inference for the posterior distribution qϕ(z|xt+1,yt).
However, cooperative learning circumvents the challenge of inferring the latent variables z. That is,
at each learning iteration, we generate examples ŷ from qϕ(yt|xt+1) by first sampling ẑ ∼ p(z) and
then mapping it to ŷt = gϕ(xt+1, ẑ, t). The ŷ is used to initialze the EBM’s MCMC that produces
ỹ. The learning equation of ϕ is 1

n

∑n
i=1 −

1
2σ̃t

2 ||ỹt,i − gϕ(xt+1,i, ẑ, t)||2, where the latent variables
ẑ is used. That is, we shift the mapping from ẑ → ŷ to ẑ → ỹ for accumulating the MCMC
transition. Although our paper currently employs a Gaussian initializer, if we adopt a more expressive
non-Gaussian initializer in the future, the current cooperative learning strategy (i.e., training qϕ with
ỹ) can be much more beneficial and feasible.
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(a) w = 0.0

(b) w = 0.5

(c) w = 1.0

Figure 10: Attribute compositional samples generated by CDRL models trained on the CelebA
(64× 64) dataset. We utilize guided weights w = 0.0, 0.5, 1.0. Images at different guidance share
the same random noise. Results can also be compared with those in Figure 4, which use w = 3.0.
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(a) w = 0.0 (b) w = 0.5

(c) w = 1.0 (d) w = 1.5

(e) w = 2.0 (f) w = 3.0

Figure 11: Conditional generated examples with various classifier-free guidance weights on the
ImageNet32 (32× 32) dataset. Samples are generated using randomly selected class labels.
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(a) w = 0.0 (b) w = 0.5

(c) w = 1.0 (d) w = 1.5

(e) w = 2.0 (f) w = 3.0

Figure 12: Conditional generated examples with different classifier-free guidance weights on the
ImageNet32 (32× 32) dataset, using the class label “Tench”.
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(a) w = 0.0 (b) w = 0.5

(c) w = 1.0 (d) w = 1.5

(e) w = 2.0 (f) w = 3.0

Figure 13: Conditional generated examples with different classifier-free guidance weights on the
ImageNet32 (32× 32) dataset, using the class label “Siberian Husky”.
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(a) w = 0.0 (b) w = 0.5

(c) w = 1.0 (d) w = 1.5

(e) w = 2.0 (f) w = 3.0

Figure 14: Conditional generated examples with different classifier-free guidance weights on the
ImageNet32 (32× 32) dataset, using the class label “Tow Truck”.
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(a) w = 0.0 (b) w = 0.5

(c) w = 1.0 (d) w = 1.5

(e) w = 2.0 (f) w = 3.0

Figure 15: Conditional generated examples with different classifier-free guidance weights on the
ImageNet32 (32× 32) dataset, using the class label “Volcano”.
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