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ABSTRACT

In psychology, relational learning refers to the ability to recognize and respond to
relationship among objects irrespective of the nature of those objects. Relational
learning has long been recognized as a hallmark of human cognition and a key
question in artificial intelligence research. In this work, we propose an unsuper-
vised learning method for addressing the relational learning problem where we
learn the underlying relationship between a pair of data irrespective of the nature
of those data. The central idea of the proposed method is to encapsulate the rela-
tional learning problem with a probabilistic graphical model in which we perform
inference to learn about data relationship and other relational processing tasks.

1 INTRODUCTION

American Psychological Association defines relational learning as (VandenBos & APA, 2007):
Definition 1.1 (Relational learning). Learning to differentiate among stimuli on the basis of
relational properties rather than absolute properties.

In other words, relational learning refers to the ability to recognize and respond to relationship
(called relational property) among objects irrespective of the nature of those objects (called absolute
property). For example (attributed to Doumas & Hummel (2013)), how do we come to understand that
two circles are the same-shape in the same way that two squares are? In this example, “same-shape”
is the relational property and object shape is the absolute property. Relational learning has long
been recognized as a hallmark of human cognition with strong implications for both human-like
learning capabilities and generalization capacity (Biederman, 1987; Medin et al., 1993; Gentner,
2003; Penn et al., 2008; Holyoak, 2012; Gentner & Smith, 2012). We refer the interested readers
to the provided references for a comprehensive discussion on this subject. Contemporaneously, the
research on learning data relationships—also commonly called “relational learning”—has flourished
in the machine learning community where the overarching goal is learning in a context where there
may be relationships between learning examples, or where these examples may have a complex
internal structure (i.e., consist of multiple components and there may be relationships between these
components) (Getoor & Taskar, 2007; De Raedt et al., 2016). We argue that the key difference
between the two “relational learning” definitions and their learning objectives is that Definition 1.1
takes the relationship learning problem one step further by requiring the data relationships be learned
only on the basis of relational properties rather than absolute properties. To the best of our knowledge,
this important distinction—learning relationships irrespective of the absolute properties—has not
been rigorously studied in the unsupervised learning community, where most existing methods either
encourage or do not constrain the relationships learning through absolute properties.

In this work, we propose an unsupervised learning method—variational relational learning (VRL)—
for addressing the relational learning problem as defined by Definition 1.1. At its core, VRL
encapsulates the relational learning problem with a probabilistic graphical model (PGM) in which
we perform inference to learn about relational property and other relational processing tasks. Our
contribution in this paper is threefold: First, we propose a probabilistic formulation for the relational
learning problem defined by Definition 1.1. Second, we encapsulate the relational learning problem
with a PGM in which we perform learning and inference. Third, we propose an efficient and effective
learning algorithm that can be trained end-to-end and completely unsupervised.
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2 PROBLEM DEFINITION

We focus on a canonical form of the relational learning problem where we observed a paired dataset
X = { (a(i),b(i)) | i∈ [1..N ] } consisting of N i.i.d. samples generated from a joint distribution
p(a∈A,b∈B ). We dissect the information in X into absolute property and relational property
where absolute property represents specific features that describe individual a and b, and relational
property represents the relationship between a and b irrespective of their absolute property. In this
work, we interpret the absolute property of a and b as any information that characterizes (even if only
partially) the marginal distribution p(a ) and p(b ). We propose to represent the relational property
as a latent random variable (r.v.) z that satisfies the following constraints:

(i) p(a, z ) = p(a )p( z ), (ii) p(b, z ) = p(b )p( z ),

(iii) p(a, z | b ) 6= p(a | b )p( z | b ), (iv) p(b, z | a ) 6= p(b | a )p( z | a ),
(1)

where in Eq. 1(i) and 1(ii) we interpret the specification of relational property in Definition 1.1—
learning relationships irrespective of the absolute properties—as meaning statistical independence,
while in Eq. 1(iii) and 1(iv) we ensure r.v. z contains relevant (relationship) information that further
informs a and b about one another, i.e., H(a | b, z) < H(a | b), H(b | a, z) < H(b | a) where
H(· | ·) is the conditional entropy. It is easy to see that the following conditions are necessary for
r.v. z to exist: (1) H(b | a) > 0 and H(a | b) > 0, i.e., a and b cannot be fully determined by
each other; (2) r.v. a, b, z are not mutually independent, i.e., p(a,b, z ) 6= p(a )p(b )p( z ). Our
goal for relational learning is to learn about relational property z that satisfies Eq. 1 in a completely
unsupervised fashion. A motivating example for Eq. 1 is provided in Appendix A.1.

In addition, we are interested in two related relational processing tasks: relational discrimination and
relational mapping defined as (VandenBos & APA, 2007):

Definition 2.1 (Relational discrimination in condition). A discrimination based on the relationship
between or among stimuli rather than on absolute features of the stimuli.

Definition 2.2 (Relational mapping). The ability to apply what one knows about one set of elements
to a different set of elements.

Relational discrimination allows us to differentiate (a(i),b(i)) from (a(j),b(j)) based on their
relational properties. And relational mapping allows us to apply the relational property of (a(i),b(i))
to a different set of data, for example, deduce that b(j) is related to a(j) in the same way that b(i) is
related to a(i).

3 METHOD

Learning and inference relational property z that satisfies all four constraints in Eq. 1 is a challenging
problem due to the hard independence constraints in Eq. 1(i) and 1(ii). To overcome this challenge,
we first introduce VRL as a tractable learning method that satisfies 3 (out of 4) constraints in Eq. 1—
Eq. 1(i), 1(iii), 1(iv). We then discuss VRL’s unique optimization challenges, which are partially
attributable to its relaxation of the independence requirement in Eq. 1(ii).

3.1 VARIATIONAL RELATIONAL LEARNING

The proposed VRL method consists of two parts: first, we encapsulate the relational learning problem
with a PGM, called VRL-PGM; we then formulate various relational processing tasks as performing
inference and learning in VRL-PGM. The VRL-PGM model, shown in Fig. 1, samples data a, z, and b
from parametric families of distributions—pθ(a ), pθ( z ), pθ(b |a, z )—that are differentiable almost
everywhere with respect to (w.r.t.) a, z, and θ. In practice, we observe only a set of independent
realizations { (a(i),b(i)) | i ∈ [1..N ] } while the true parameter θ∗ and the corresponding latent
variables z(i) are unobserved. A well-known property of the PGM shown in Fig. 1 is that r.v.
a and z are independent with no variables observed, but not conditionally independent when b
is observed, i.e., pθ(a, z ) = pθ(a )pθ( z ), pθ(a, z | b ) 6= pθ(a | b )pθ( z | b ) (Bishop, 2006).
Consequently, VRL-PGM can be viewed as a parametric relational learning model that satisfies 3 (out
of 4) constraints in Eq. 1—Eq. 1(i), 1(iii), 1(iv) (note that Eq. 1(iv) is trivially satisfied in VRL-PGM).
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Figure 1: VRL-PGM: a probabilistic graphical model for representing the relational learning problem;
the observed r.v. a and b are generated from some random process (parameterized by θ) involving a
latent r.v. z.

Further discussions on the connection between VRL-PGM and the relational learning problem is
provided in Appendix A.2.

Having established VRL-PGM, our primary learning objective is to approximate the unknown true
likelihood function pθ(b | a, z ) and posterior pθ( z | a,b ). Learning pθ( z | a,b ) provides us a
way to infer (a(i),b(i))’s relational property z(i); moreover, it serves as a basis for performing
relational discrimination where we compare relational properties between different pairs of data.
Learning pθ(b | a, z ) allows us to perform relational mapping where we use the relational property
of (a(i),b(i)) to map a(j) to b(j), i.e., b(j) ∼ pθ(b | a(j), z(i) ) where z(i) ∼ pθ( z | a(i),b(i) ).

We estimate the parameter for pθ(b |a, z ) by following the maximum-likelihood (ML) principle, and
approximate the true posterior pθ( z | a,b ) with variational Bayesian approach. More specifically,
we use a variational distribution qφ( z | a,b ), parameterized by φ, to approximate the unknown (and
often intractable) true posterior. Both θ and φ are learned through maximizing a variational lower
bound, L(θ, φ;a(i),b(i)) (abbreviated as L(i)), for the conditional log-likelihood log pθ(b

(i) | a(i) )
(derivation is provided in Appendix C):

L(i) = Eqφ(z|a(i),b(i))

[
log pθ(b

(i)|a(i), z ) + log pθ( z )− log qφ( z|a(i),b(i) )
]
. (2)

Recall that learning z independent of a is central to our relational learning goal. While this in-
dependence assumption is built into VRL-PGM, the learning objective L(i) does not explicitly
force z to be independent of a nor penalize learning a dependent z. In practice, there may be
numerous reasons that could break this independence assumption, e.g., insufficient training data,
failure to reach the global optimum, non-identifiability of the model, etc., and it may be desirable
to explicitly enforce independence between z and a. One way to achieve this is to introduce a
non-positive function that measures the dependency between a and z with maximum attained when
they are independent. For example, we can append the negative mutual information between z and a,
−I(z ; a) = −DKL(pθ( z,a ) ‖ pθ( z )pθ(a )), to L(i):

L(i) = Eqφ(z|a(i),b(i))

[
log pθ(b

(i)|a(i), z ) + log pθ( z )− log qφ( z|a(i),b(i) )
]
− I(z ; a). (3)

Since I(z ; a) ≥ 0 and I(z ; a) = 0 if and only if z and a are independent, the addition of −I(z ; a)
to L(i) not only maintain the validity of the lower bound, but also retain its quality (z and a are
independent in VRL-PGM).

3.2 OPTIMIZATION CHALLENGES

A limitation of the proposed VRL method is its inability to enforce the independence constraint
between z and b in Eq. 1(ii). This may lead to a worst-case scenario of learning a degenerated
posterior qφ( z | a,b ) = qφ( z |b ) where relational property z only depends on the absolute property
of b. Another limitation of VRL is exposed when the assumption H(b | a) > 0 is violated and b
can be completely determined by a. In this case, a degenerated likelihood pθ(b|a, z ) = pθ(b|a )
may be fitted and relational property z plays no role in the learning process. To further explain these
limitations and potential mitigation strategies for avoiding the worst-case learning scenario, we first
dissect VRL’s gradient updating process into the following steps (using a single data point (a(i),b(i))
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as an example): (1) sample z(i) ∼ qφk( z | a(i),b(i) ) by using the current parameter φk; (2) evaluate
L(i) and calculate gradients g = ∇θk,φkL(i) by using φk, θk; (3) use gradients g to update φk, θk and
get new parameters φk+1, θk+1. This process is depicted with an information flow diagram shown
in Fig. 2a where ideally we would like every path to contribute to the evaluation of all the terms in
its reachable nodes in order to obtain meaningful gradients for updating its associated parameters.
However, there are two situations where this is not the case: The first situation, called information-
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Figure 2: Information flow diagrams depicting VRL’s gradients updating process, where each path
uses its associated parameters to propagate information in the forward direction and gradients in the
backward direction: (a) Overfitting occurs when the learning of pθ(b(i)|a(i), z(i)) rely only on the
dash-dotted path (deterministic-mapping) or the dashed path (information-shortcut); (b) Parameter
updating process improved with RPDA.

shortcut, occurs when the learning of pθ(b(i) | a(i), z(i) ) rely entirely on the dashed path in Fig. 2a;
more specifically, the dashed (shortcut) path directly propagates b(i) through z(i) to pθ(b(i)|a(i), z(i) )
and, as a result, the relational property z(i) may only learn to encode the absolute property of b(i),
i.e., qφ( z | a(i),b(i) ) = qφ( z | b(i) ). The second situation, called deterministic-mapping, occurs
when b(i) can be fully characterized by a(i); in this case, the learning of pθ(b(i) | a(i), z(i) ) may
only rely on the dash-dotted path in Fig. 2a, i.e., pθ(b(i)|a(i), z(i) ) = pθ(b

(i)|a(i) ). While both
situations can be viewed as overfitting problem, deterministic-mapping is mainly caused by the data
itself and is beyond our control. On the other hand, information-shortcut is caused by short-cutting
the gradient update process, which we may overcome with additional regularization techniques. Here
we propose two approaches for mitigating the information-shortcut problem by disrupting the flow of
information passing through the shortcut path. In the first approach, we restrict the flow of information
by constraining the expressiveness of the latent variable z, e.g., by adopting a discrete categorical r.v.
(assuming we know a priori the underlying relational property is discrete). In the second approach, we
propose a novel data augmentation strategy—relation-preserving data augmentation (RPDA)—that
aims to eliminate the shortcut path entirely. First, we define a set of relation preserving functions
D={ d(a,b; r) | r∈R (some index set), d :A×B→A×B } that preserve data relationship in the
following sense: pθ( z | a,b ) = pθ( z | a′,b′ ), ∀ (a′,b′)= d(a,b; r). Assuming we have access to
D, the proposed RPDA strategy then seek to optimize a modified lower bound L(i)

RPDA:

L(i)
RPDA = Eqφ( z|a′(i),b′(i) )

[
log pθ(b

(i)|a(i), z ) + log pθ( z )− log qφ( z|a′(i),b′(i) )
]

(4)

where (a′
(i)
,b′

(i)
) = d(a(i),b(i); r(i)), r(i) ∼ U(R).

Note that due to the relation preserving property of D, we have qφ( z(i) | a′(i),b′(i) ) =

qφ( z(i) | a(i),b(i) ), and thus L(i)
RPDA is equivalent to L(i) in Eq. (2). When we optimize with L(i)

RPDA,
the gradient update process can be redrawn in Fig. 2b, where now the learning of pθ(b(i) | a(i), z(i) )

can no longer rely solely on the shortcut path to propagate b′
(i) since it differs from b(i) by a

non-deterministic factor r(i). In practice, it may seem unrealistic to assume that we can construct a
set of RPDA functions D without extensive knowledge of the underlying relational property. How-
ever, we can treat data augmentation as a form of regularization and construct a D that reflects
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our prior knowledge and belief of the underlying system (Ronneberger et al., 2015; Perez & Wang,
2017). For example, if we want the learning to be rotation invariance—a common theme in com-
puter vision applications—we can construct a D that consists of image rotation augmentations, e.g.,
d(a,b; r) = (rot(a, r), rot(b, r)) where rot(x, r) rotates the image x by r ∈R= [0, 360) degrees
(note that both a and b are rotated by the same amount). Another example may be, for time-series
data of a linear time-invariant (LTI) system (commonly assumed in signal processing and control
theory (Oppenheim & Schafer, 2009)), we can construct D with time delay and amplitude scaling,
e.g., d(a[t],b[t];α, τ) = (αa[t − τ ], αb[t − τ ]), α, τ ∈ R = R × Z. Additional remarks on the
practical applicability of RPDA is provided in Appendix A.3. The full training procedure for VRL
with RPDA is summarized in Appendix B.

4 RELATED WORK

Existing work on relational learning (Definition 1.1) are mostly based on supervised learning ap-
proaches (Lu et al., 2012; Puebla et al., 2021). The rapid growing field of statistical relational
learning (SRL) concerns domain models with relational structure (Getoor & Taskar, 2007; De Raedt
et al., 2016). Popular SRL methods for link prediction and classification that are based on node
attributes similarity (Taskar et al., 2004; Yu et al., 2007) directly contradicts our goal of learning a
relational property that is independent of absolute property (node attributes). Other SRL methods
based on matrix factorization (Singh & Gordon, 2008; Menon & Elkan, 2011), probabilistic logic
programming (De Raedt et al., 2015; Manhaeve et al., 2018), or probabilistic relational models (Fried-
man et al., 1999; Getoor et al., 2007) typically require some supervision for learning (e.g., labeled
examples, known dependency type, etc.) which we do not assume in our work; moreover, most of
these methods allow, even encourage, data relationship to depend on its absolute property. Other
recent work focus on high-level cognitive tasks, such as visual Q&A and state prediction for complex-
physics systems, and derive their relational processing capabilities from learning with clever designed
neural networks (Wu et al., 2015; Reed et al., 2015; Fragkiadaki et al., 2016; Chang et al., 2017;
Battaglia et al., 2016; Santoro et al., 2017; Battaglia et al., 2018; van Steenkiste et al., 2018; Kipf
et al., 2018). Our work differ from these methods in two fundamental ways: (1) we focus on learning
an independent relational property in a completely unsupervised fashion; (2) we derive our relational
learning capability from a PGM formulation, which gives us the flexibility to use any compatible
inference method or function approximation.

Many existing unsupervised learning methods can also be applied to our problem setting (Song et al.,
2007; Mikolov et al., 2013a;b; Kingma & Welling, 2014; Goodfellow et al., 2014; Makhzani et al.,
2015; Dilokthanakul et al., 2017); however, most of these methods learn a single representation with
superimposing information about the relational and absolute property. The difficulty of decoupling the
relational property from the learned representation constitute a major obstacle to relational learning.
A closely related method is proposed by Guu et al. (Guu et al., 2018), but their learned latent “edit
vector” (loosely related to our relational property) may be coupled with absolute property.

Other related work include methods on learning a disentangled representations with applications in
style-transfer, image-to-image translation, domain adaptation, etc. (Bousmalis et al., 2016; Mathieu
et al., 2016; Chen et al., 2016; Higgins et al., 2017; Denton & Birodkar, 2017; Huang et al., 2018;
Chen et al., 2019). Most of these methods strive to learn a disentangled representations of content
and style (or pose for video sequence data) where content is generically defined as the underling
spatial structure, and style as the rendering of the structure. In comparison, our work can be viewed
as learning a disentangled representations of relational and absolute property. We argue that style-
content separation is fundamentally different from relational-absolute separation; more specifically,
we consider both style and content information as absolute property (both describe features of an
individual data), while relational property provides additional information about data relationships.

5 EXPERIMENT

In this section, we present experimental results from applying VRL to a variety of relational learning
tasks. In our implementation, we parameterize pθ(b | a(i), z(i) ) and qφ( z | a′(i),b′(i) ) with fully-
connected networks (MLPs) fpθ (a(i), z(i)) and fqφ(a′

(i)
,b′

(i)
), respectively. For binary valued data,

we let pθ(b | a(i), z(i) ) be a multivariate Bernoulli distribution whose probability parameters are
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computed from fpθ (a(i), z(i)). For real-valued data, we let pθ(b|a(i), z(i) ) be a multivariate Gaussian
distribution with a fixed diagonal covariance and the mean is computed from fpθ (a(i), z(i)). We
experimented with both continuous and discrete r.v. z. For continuous z, we let the prior pθ( z ) be a
bivariate normal distribution z ∼ N (0, I) and qφ( z | a′(i),b′(i) ) be a bivariate Gaussian distribution
with diagonal covariance whose mean and covariance are computed from fqφ(a′

(i)
,b′

(i)
). For discrete

z, we adopted two categorical r.v., z = [z1, z2], each having a uniform prior over five categories
and let qφ( z | a′(i),b′(i) ) represents two categorical r.v. reparameterized with Gumbel-Softmax
distributions whose class probabilities are computed from fqφ(a′

(i)
,b′

(i)
) (Jang et al., 2017; Maddison

et al., 2017). For RPDA, we used random image rotation as data augmentation functions. Parameters
θ and φ were jointly trained to maximize L̃(i)

RPDA in Eq. (4) using Adam optimizer (Kingma & Ba,
2015). Full implementation details are provided in Appendix E.1 and source code for reproducible
results is available online1.

5.1 RELATIONAL LEARNING WITH DECOUPLED RELATIONSHIPS

We first present two relational learning tasks designed with the MNIST (LeCun & Cortes, 2010) and
Omniglot (Lake et al., 2015) datasets (dataset information and data preprocessing is described in
Appendix D). A paired MNIST (and Omniglot) dataset XM (and XO) = { (a(i),b(i)) | i∈ [1..N ] }
is constructed where each a(i) is a randomly rotated MNIST (and Omniglot) binary image and b(i) is
another random counter-clockwise rotation of a(i) by 0◦, 72◦, 144◦, 216◦, or 288◦. There are five
uniquely defined relative rotational relationships between (a(i),b(i)) in XM (and XO); furthermore,
the relative relationships are decoupled from their absolute properties, i.e., the relationship cannot be
inferred from a(i) or b(i) alone. The goal of relational learning is to discover the underlying relative
rotational relationship. We first demonstrate VRL’s relational discrimination and relational mapping
capabilities on the Omniglot relational learning task:

Relational discrimination. We used the trained posterior qφ( z | a,b ) to infer the relational property
of a hold-out dataset constructed from the evaluation alphabets. Figure 3a shows a scatter plot of
the relational property inferred by VRL where we can see that the approximated posterior accurately
cluster (discriminate) data with the same (different) relative rotational relationship together (apart).

Relational mapping. We used the trained likelihood pθ(b | a, z ) to generate images from a given a
and z. We chose a from a hold-out dataset and z from: (1) direct sampling in the latent space; (2)
relational property inferred from a source data point (as,bs). Figure 3b shows predicted images with
z sampled from the latent space shown in Fig. 3a. Figure 3c shows examples of relational mappings
from a(c) to b(r,c) by applying the relational property inferred from a source data point (as,b

(r)
s ).

Next, we compare VRL with other unsupervised and self-supervised learning methods: Spatial
transformer networks (STN) (Jaderberg et al., 2015) (we tested two variations of STN that uses
its localization network to learn about affine transformation, denoted as STN-affine, and rotation
transformation, denoted as STN-rotate); Variational autoencoder (VAE) (Kingma & Welling, 2014);
VAE with Gaussian mixture prior (GMVAE) (Dilokthanakul et al., 2017); Adversarial autoencoder
(AAE) (Makhzani et al., 2015); VAE with added contrastive latent loss (VAE-contrastive) (Chen et al.,
2020); self-supervised representation learning method BYOL (Grill et al., 2020); Learning linear
structure in representation space through vector arithmetic (Vec-arithmetic) (Mikolov et al., 2013a;
Radford et al., 2016); Learning independent causal mechanisms (LICM) (Parascandolo et al., 2018);
Neural relational inference (NRI) with graph neural networks (Kipf et al., 2018). VAE, GMVAE,
AAE, VAE-contrastive, BYOL, and Vec-arithmetic all trained with dim(z)=10. Each baseline method
is assessed on both MNIST and Omniglot relational learning tasks through unsupervised clustering.
For fair comparison, we adopted image rotation augmentation during the training of all the baseline
methods. For VAE-contrastive and BYOL, we used random image rotation augmentations to generate
“positive paris” for training. In our comparison, STN-affine and STN-rotate are considered as the
benchmark methods as they are architecturally designed to learn about the spatial transformation
between a(i) and b(i). In contrast, VRL does not make any assumption about the underlying
relationship. Implementation details for the baseline methods are provided in Appendix E.2

1https://github.com/kh1iu/vrl.git
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Figure 3: Learning decoupled relative rotational relationship with VRL: (a) Scatter plots of 2-D
relational property of XO inferred by VRL (relative rotational relationship labels: # : 0◦, O : 72◦,
+ : 144◦, × : 216◦, ♦ : 288◦); (b) Images predicted from sampled latent variables (sampling the
centroid of each cluster in (a): “#”→z(1), “O”→z(2),“+”→z(3), “×”→z(4), “♦”→z(5)); each
image b(r,c), 1 ≤ r, c ≤ 5, was predicted from a(c) (shown in the top row) and z(r) by b(r,c) ∼
pθ(b |a(c), z(r) ); (c) Relational mappings of top row images by applying relational property inferred
from pairs of source images (as,b

(r)
s ) shown in the left-most column with as,b

(1)
s , ...,b

(5)
s arranged

from top to bottom; each image b(r,c), 1 ≤ r, c ≤ 5 was generated by b(r,c) ∼ pθ(b | a(c), z(r) )

where z(r) ∼ qφ( z | as,b(r)
s ).

To quantitatively evaluate the clustering performance, we calculate the classification error rate of
a hold-out dataset based on a simple classifier that was trained on 5% of the data with label. For
continuous latent space, we trained a standard multi-class support vector machine classifier with
radial basis function kernel (Manning et al., 2008). For discrete (categorical) latent space, we follow
the evaluation protocol on clustering assignment described in Makhzani et al. (2015). Results are
summarized in Table 1 where each entry reports the average and standard deviation over 5 runs with
different random seeds and each run consists of either 3 (randomly selected out of 5) or 5 relative
rotational relationships. We can see that the proposed VRL with RPDA achieved high accuracy
in recovering the relative relationships for all the tasks and outperformed other baseline methods
including the benchmark STN-affine and STN-rotate. To gain insight into the information-shortcut
problem and the proposed mitigation strategies introduced in Sec. 3.2, we performed an ablation
study on the prior selection of z and RPDA. The results are summarized in Table 1 and we make
the following observations: First, representing z as a discrete categorical (Cat.) r.v. limits its
expressiveness and improves VRL’s performance over a continuous prior (Cont.); Second, RPDA is
a critical component necessary for VRL to learn a meaningful and independent relational property,
especially when flexible function approximations such as deep neural networks are used. Additional
experimental results and analysis are provided in Appendix F.

5.2 RELATIONAL LEARNING WITH COUPLED RELATIONSHIPS

To further test the robustness and generalizability of VRL, we consider a scenario where the relative
relationship is coupled with the absolute property. To setup this experiment, we modified the
construction of XM , denoted as XMd , so that the relative rotational relationship between a(i)

and b(i) is completely determined by its digit representation (absolute property of a(i) and b(i)):
a(i) ∈ [’0’, ’1’]→ 0◦,a(i) ∈ [’2’, ’3’]→ 72◦,a(i) ∈ [’4’, ’5’]→ 144◦,a(i) ∈ [’6’, ’7’]→ 216◦,a(i) ∈
[’8’, ’9’]→ 288◦ (read: if a(i) is digit ’0’ or ’1’ then the relative rotational relationship between
(a(i),b(i)) is 0◦). The question then arise: is VRL capable of learning an independent relational
property even when the underlying relative relationship is coupled with the absolute property? To
test this idea, we trained VRL on XMd but validated it on a hold-out dataset of XM which has a
decoupled relative relationship. The results are shown in Fig. 4, where we can see that VRL was
indeed capable of learning an independent relational property irrespective of the digit representation.
If this were not the case, we would expect to see a scatter plot Fig. 4a with heavily overlapped
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Table 1: Unsupervised clustering accuracy (in %) for MNIST and Omniglot relational learning tasks.

MNIST Omniglot

Num. relationships 3 5 3 5

VRL (Cat., no RPDA) 93.9±6.7 46.9±7.4 99.9±0.1 22.4±0.7

VRL (Cat., RPDA) 99.8±0.1 99.9±0.1 99.6±0.3 99.9±0.1

VRL (Cont., no RPDA) 60.1±7.1 28.3±4.2 96.4±6.7 32.1±4.9

VRL (Cont., RPDA) 99.8±0.2 99.9±0.1 99.8±0.1 97.7±0.6

STN-affine 33.7±1.1 19.8±0.9 34.1±0.4 19.9±0.8

STN-rotate 98.3±1.3 97.2±0.8 47.4±26.1 30.2±13.1

VAE 93.8±3.5 60.6±2.3 98.2±1.9 63.0±3.7

GMVAE 73.9±3.7 57.2±2.5 47.7±1.4 38.8±1.6

AAE 49.1±1.2 31.1±2.4 66.5±4.2 33.3±1.2

VAE-contrastive 92.4±3.8 60.5±2.7 93.4±6.3 59.4±4.4

BYOL 49.1±12.7 27.7±2.4 36.7±1.7 23.3±1.2

Vec-arithmetic 64.7±11.9 54.3±1.6 53.5±14.1 50.8±1.3

LICM 36.6±3.3 19.7±1.1 35.0±2.5 21.6±2.3

NRI 34.5±1.2 20.5±1.0 34.6±0.9 21.1±0.9

relative relationship labels since XM was constructed with random relative rotational relationships.
Figures 4b and 4c further demonstrate VRL generalizes well to unseen data—VRL trained on XMd

learned to rotate any digit by any amount despite not having seen most of the digit-rotation pairs
during training.

−2 −1 0 1 2
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−1
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1

2

3

z 2

(a)

z(1)

z(2)

z(3)

z(4)

z(5)

(b) (c)

Figure 4: Learning coupled relative rotational relationship with VRL: (a) Scatter plot of 2-D relational
property of XM inferred by VRL (relative rotational relationship labels: # : 0◦, O : 72◦, + : 144◦,
× : 216◦, ♦ : 288◦); (b) Images predicted from sampled latent variables (sampling the centroid of
each cluster in (a): “#”→ z(1), “O”→ z(2),“+”→ z(3), “×”→ z(4), “♦”→ z(5)); (c) Relational
mappings of top row images by applying relational property inferred from pairs of source images
(as,b

(r)
s ) in the left-most column.

5.3 RELATIONAL LEARNING WITH HIGH-LEVEL PERCEPTION REASONING

Finally, we present results of using VRL to learn about relative facial expression changes, facial
illumination condition changes, and speech emotion changes. We extracted images of three facial
expressions (happy, surprised, sad) of each subject from the Yale Face Database (Belhumeur et al.,
1997) to form a paired dataset XFe where each data point (a(i),b(i)) represents a subject with
different facial expressions. Next, we extracted images of four illumination conditions (left (L),
front (F), right (R), top (T)) of each subject from the Extended Yale Face Database B (Georghiades
et al., 2001) to form a paired dataset XFl where each data point (a(i),b(i)) represents a subject with
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different illumination conditions. Lastly, we extracted speech waveforms (represented as log-mel
spectrogram) of three emotions (calm, angry, fearful) of each voice actor from the Ryerson Audio-
Visual Database of Emotional Speech and Song (RAVDESS) (Livingstone & Russo, 2018) to form a
paired dataset XS where each data point (a(i),b(i)) represents a voice actor with different emotions.
Dataset information and data preprocessing is described in Appendix D. Due to the extremely limited
data samples in XFe (45 unique images), XFl (112 unique images), and XS (144 unique speech
recordings), we focus on learning undirected relative relationship, i.e., (a(i),b(i)) and (b(i),a(i))
have the same relative relationship. In this case, XFe , XFl , and XS consist of 3, 6, and 3 undirected
relative relationships, respectively. For RPDA, we adopted random image rotation for the VRL
training on XFe and XFl , and random time delay and amplitude scaling for XS due to its temporal
data characteristic; furthermore, since we are only interested in learning undirected relationships, we
augment RPDA with random swapping operation (see Appendix E.1 for implementation details).
Due to the limited datasets, both training and validation are performed on the entire dataset. The
inference results from a trained posterior qφ( z | a,b ) are shown in Fig. 5 where we can see that
VRL is effective in learning a relative relationship that is independent of subject’s identity, facial
expression, illumination condition, speech content, and emotion. Comparing our results with existing
unsupervised methods on facial images (Song et al., 2007; Wu et al., 2013; Shi et al., 2018; Tapaswi
et al., 2019) and speech emotion recognition (Neumann & Vu, 2019; Li et al., 2021), we remark that
existing methods cluster data by their absolute property (e.g., subject identity, speech emotion, etc.),
while VRL clusters data by their relational property (e.g., relative facial expression, illumination, or
speech emotion changes). Additional relational mapping results are provided in Appendix F.2.
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Figure 5: Learning relative relationships between facial images and speech waveforms: (a) Learn-
ing relative facial expression changes with 2-D VRL relational property (labels: O:“happy-sad”,
#:“happy-surprised”, +:“surprised-sad”); (b) Learning relative facial illumination condition changes
with 2-D VRL relational property (labels: O:“L-R, ♦:“F-T, #: “L-F, +:“L-T, ×:“F-R, 2:“R-T);
(c) Learning relative speech emotion changes with 2-D VRL relational property (labels: O:“calm-
fearful”, #:“calm-angry”, +:“angry-fearful”)

6 DISCUSSION AND CONCLUSION

The proposed VRL method comes with both advantages and disadvantages: the main advantage
of VRL is its relational learning capabilities; however, this may also be one of its disadvantages.
More specifically, VRL can learn an independent relational property even when it is coupled with the
absolute property (see Sec. 5.2), i.e., VRL is oblivious to the coupling information between the two
properties. Nevertheless, such information may be of interest to the user, and in this regard, VRL
only provides a partial view of the data.

In conclusion, the proposed VRL method is an efficient and effective unsupervised learning method
for addressing the relational learning problem where our goal is to learn an independent relational
property. By dissecting the data information into decoupled relational and absolute property, we
hope VRL can bring new insight into everyday data analysis and ultimately find applications for a
wide variety of problems.
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A ADDITIONAL REMARKS

A.1 REMARKS ON EQUATION 1

To provide additional insight into Eq. (1), we give the following example (attributed to S. Bern-
stein (Hogg et al., 2005)): Let a and b be two independent tosses of a fair coin, where we designate
1 for heads and 0 for tails. Let a third random variable z be equal to 1 if exactly one of two coin
tosses resulted in "heads", and 0 otherwise. It is easy to see that this example r.v. a, b ans z satisfy
all four conditions in Eq. (1) and we can intuitively interpret z as meaning "different tosses" which is
a relational property since it indicates the relationship between a and b (same vs. different) and is
independent of a and b, i.e., z is undertermined when observing a or b alone. The main difference
between this example and our definition in Eq. (1) is that we do not specify what z is; we only assume
the existence of z and our goal is to learn about it.

A.2 REMARKS ON VRL-PGM

The proposed VRL-PGM reflects our priority and compromise for using a PGM to represent the
relational learning problem: we sacrifice some identifiability of the original abstract problem but
obtain a rigorous and tractable model that achieves our objective of learning an independent relational
property. Here we discuss aspects of the original relational learning problem (see Section 2) that
differ from the proposed VRL-PGM (see Section 3.1). First, the original problem description in
Eq. 1 specifies that the relational property z be independent of both a’s and b’s absolute properties;
however, learning and inferencing relational property z that satisfies both independence constraints
is a challenging problem; therefore, as a compromise, VRL-PGM only enforce the independence
constraint between z and a. Second, the original problem is inherently undirected with no cause-effect
relationship between a and b, whereas VRL-PGM is based a directed acyclic graph (DAG) that
artificially introduces conditional dependency between a and b. We note that this can be viewed as
the result of VRL-PGM choosing to satisfy Eq. 1(i), 1(iii), 1(iv). It is equally valid for VRL-PGM to
choose to satisfy Eq. 1(ii), 1(iii), 1(iv) and it would lead to the same model but with a and b swapped.
In other words, the application of VRL does not require the true conditional dependency between
(a,b) be known in advance only that it is maintained consistently throughout learning and inference.
The above-mentioned discrepancies represent the compromises we made with adopting VRL-PGM in
exchange for a rigorous and tractable method for learning an independent relational property. Finally,
these compromises are not been made without consequences: information-shortcut is a direct result
of not enforcing independence constraint between z and b, and deterministic-mapping can be viewed
as caused by the causal relationship VRL-PGM introduced between a and b.

A.3 REMARKS ON RPDA

Here we discuss the practical applicability of the proposed RPDA strategy. More specifically, we
argue that in many practical problem settings, the RPDA functions D can be designed without any
knowledge of the underlying relational property. For example, as we have explained in Sec. 3.2,
in many computer vision applications, rotation invariant is a desirable property for the learned
model; for example, in spectral imaging applications, oftentimes the orientation of the images are not
preserved or not enforced only that they are consistent between the same paired images (Ronneberger
et al., 2015). In such problem setting, we can safely use image rotation function for constructing
D. Another example may be: for a discrete time-series data a[t],b[t] that represent the input and
output of a linear time-invariant (LTI) system (commonly assumed in signal processing and control
theory (Oppenheim & Schafer, 2009)), and we want to learn a relational property that characterize the
system’s impulse response. We have αb[t− τ ] = αa[t− τ ], ∀α ∈ R, τ ∈ Z, and we can construct
D with d(a[t],b[t];α, τ) = (αa[t− τ ], αb[t− τ ]), α, τ ∈ R = R×Z. In all of the above examples,
the construction of RPDA functions D reflects our prior knowledge and belief of the underlying
system and not based on the underlying relational property. However, just like any data augmentation,
the effectiveness of RPDA will depend on the problem setting and we advocate to start without RPDA
and only apply it when suspecting information-shortcut occurs.
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B VRL ALGORITHM

Algorithm 1 VRL with RPDA

procedure VRL(X, p( ε ), D) . If RPDA not available, D={ id(·) | (a,b) = id(a,b) }
Initialize parameters θ, φ
while not convergence of parameters (θ, φ) do

Sample minibatch { (a(i),b(i)) | i∈ [1..M ] } from X.
Run RPDA and obtain (a′

(i)
,b′

(i)
) = d(a(i),b(i); r(i)), r(i) ∼ U(R), i=1, ...,M .

Compute gradients g = ∇θ,φL(i)
RPDA (see Eq. (4)).

Update parameters θ, φ using gradients g (e.g., SGD).
end while
return θ, φ

end procedure

C DERIVATION OF VARIATIONAL LOWER BOUND

To derive a variational lower bound for VRL-PGM, we first write the log-evidence as log pθ(X ) =

log pθ( { (a(i),b(i)) | i∈ [1..N ] } ) =
∑N
i=1 log pθ(a

(i),b(i) ), where each term in the summation
can be expressed as:

log pθ(a
(i),b(i) ) = DKL

(
qφ( z | a(i),b(i) )

∥∥∥ pθ( z | a(i),b(i) )
)

+ Eqφ(z|a(i),b(i))

[
log pθ( z,a

(i),b(i) )− log qφ( z | a(i),b(i) )
]
. (5)

The first term on the right-hand side (RHS) is the KL-divergence from pθ( z | a(i),b(i) ) to
qφ( z | a(i),b(i) ), which provides a measure of dissimilarity between the two distributions; the
second term on the RHS continues as:

Eqφ(z|a(i),b(i))

[
log pθ( z,a

(i),b(i) )− log qφ( z | a(i),b(i) )
]

= Eqφ(z|a(i),b(i))

[
log pθ(b

(i) | a(i), z )pθ( z )pθ(a
(i) )− log qφ( z | a(i),b(i) )

]
= Eqφ(z|a(i),b(i))

[
log pθ(b

(i) | a(i), z ) + log pθ( z )− log qφ( z | a(i),b(i) )
]

+ log pθ(a
(i) ), (6)

where in the second line we use the fact that r.v. a and z are independent. Substitute Eq. (6) back in
(5) and rearrange terms gives us the expression for Eq. 2:

log pθ(b
(i) | a(i) ) = DKL

(
qφ( z | a(i),b(i) )

∥∥∥ pθ( z | a(i),b(i) )
)

+ L(i) (7)

where

L(i) = Eqφ(z|a(i),b(i))

[
log pθ(b

(i)|a(i), z ) + log pθ( z )− log qφ( z|a(i),b(i) )
]
.

The term L(i) serves as a lower bound for the conditional log-likelihood log pθ(b
(i) | a(i) ) since

KL-divergence is non-negative. Maximizing L(i) w.r.t. φ and θ gives us both a ML estimate for
pθ(b | a, z ) (by maximizing the first term inside the expectation in L(i)) and a lower KL-divergence
(the better qφ( z | a(i),b(i) ) approximates the true posterior pθ( z | a(i),b(i) )) as the conditional
log-likelihood log pθ(b

(i) | a(i) ) does not depend on φ. The lower bound L(i) can be maximized
with gradient ascend methods; however, its gradients w.r.t. φ is difficult to obtain: the expectation in
L(i) is taken w.r.t. the distribution qφ( z | a(i),b(i) ), which is a function of φ (Paisley et al., 2012).
To obtain efficient estimators for both L(i) and its gradients, we adopt the reparameterization trick
developed in Kingma & Welling (2014) where the r.v. z is expressed as a transformation of another r.v.
ε ∼ p( ε ) that is independent of a, b, and φ: z = g(ε,a(i),b(i), φ) where g is some differentiable
and invertible transformation. Given such a change of variable, the lower bound L(i) can be rewritten
as:

L(i) = Ep(ε)
[
log pθ(b

(i) | a(i), z ) + log pθ( z )− log qφ( z | a(i),b(i) )
]
, (8)
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where z = g(ε,a(i),b(i), φ) and ε ∼ p( ε ). Note that the expectation in Eq. (8) is taken w.r.t. p( ε )
and we can approximate L(i) with a Monte Carlo estimator:

L̃(i) =
1

L

L∑
l=1

log pθ(b
(i) | a(i), z(i,l) ) + log pθ( z

(i,l) )− log qφ( z(i,l) | a(i),b(i) ), (9)

where z(i,l) = g(ε(i,l),a(i),b(i), φ) and ε(i,l) ∼ p( ε ). An estimator for L(i)
RPDA in Eq. (4) follows

similarly as:

L̃(i)
RPDA =

1

L

L∑
l=1

log pθ(b
(i) | a(i), z(i,l) ) + log pθ( z

(i,l) )− log qφ( z(i,l) | a′(i),b′(i) ), (10)

where (a′
(i)
,b′

(i)
) = d(a(i),b(i); r(i)), r(i) ∼ U(R),

and z(i,l) = g(ε(i,l),a′
(i)
,b′

(i)
, φ), ε(i,l) ∼ p( ε ). The lower bound for a minibatches of data XM =

{ (a(i),b(i)) | i∈ [1..M ] } can be approximated by L̃RPDA(θ, φ;XM ) = N
M

∑M
i=1 L̃

(i)
RPDA. And finally,

the gradients ∇θ,φL̃RPDA(θ, φ;XM ) = N
M

∑M
i=1∇θ,φL̃

(i)
RPDA can be computed in a straightforward

manner and used to update the parameters θ and φ with stochastic optimization methods, such as
SGD.

D DATASET AND DATA PREPROCESSING

We used the following datasets in our experiments:

MNIST dataset (available under CC BY-SA 3.0 license) consists of 28 × 28 grayscale images of
standard handwritten digits with labels; the dataset is composed of 60,000 training samples and
10,000 testing samples (LeCun & Cortes, 2010).

Omniglot dataset (available under MIT license) contains 1623 different handwritten characters
(105 × 105 grayscale images) from 50 different alphabets; the dataset is split into a background
(training) set of 30 alphabets and an evaluation (testing) set of 20 alphabets (Lake et al., 2015).

Yale Face Database (see (Georghiades, 2001) for dataset permission) contains 165 grayscale face
images of 15 human subjects under 8 facial expressions and 3 illumination conditions (Belhumeur
et al., 1997).

Extended Yale Face Database B (see (Georghiades, 2001) for dataset permission) contains 16128
grayscale face images of 28 human subjects under 9 poses and 64 illumination conditions (Georghi-
ades et al., 2001).

Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) (available under CC
BY-NC-SA 4.0 license) is a speech and song dataset containing 24 professional actors (12 female, 12
male) vocalizing two lexically-matched statements in a neutral North American accent with wide
range of emotions (Livingstone & Russo, 2018).

Each handwritten character image in MNIST and Omniglot dataset is resized to 32 × 32 binary
image. Each facial image in Yale and Extended Yale dataset is center-cropped, resized to 64× 64,
and normalized pixel values to be within [0, 5]. Each speech waveform in RAVDESS dataset is
trimmed to remove silences both at the start and at the end, and then clipped or zero-padded to be 3
seconds long. We then represent each waveform by its log-amplitude mel spectrogram with 128 mel
bands and frame size of 512 samples. Finally, each log-mel spectrogram image is resized to 64× 64.
Examples of facial images from Yale and Extended Yale, and log-mel spectrograms of RAVDESS
speech waveforms are shown in Fig. 6.

E IMPLEMENTATION DETAILS

E.1 VRL IMPLEMENTATION

Here we describe the details of our VRL implementation. We parameterize both pθ(b | a(i), z(i,l) )

and qφ( z | a′(i),b′(i) ) using fully-connected networks (MLPs) with rectified linear non-linearities.
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(a) (b) (c)

Figure 6: Examples of facial images and speech waveforms: (a) Subjects (columns) with different
facial expressions (rows): happy, surprised, sad; (b) Subjects (rows) with different illumination
conditions (columns): left, front, right, top; (c) Log-mel spectrogram of actors vocalizing two
statements with different speech emotions (Columns: 1. male actor vocalizing "Kids are talking by
the door", 2. female actor vocalizing "Kids are talking by the door", 3. male actor vocalizing "Dogs
are sitting by the door", 4. female actor vocalizing "Dogs are sitting by the door"; Rows: calm, angry,
fearful).

For binary valued data such as MNIST and Omniglot, we let pθ(b | a(i), z(i,l) ) be a multivariate
Bernoulli distribution whose probability parameters p(i,l) are computed from MLPs fpθ (a(i), z(i,l)):

fpθ : [a(i), z(i,l)]→ FC(512)→ FC(256)→ FC(512)→ p(i,l) (11)

The reconstruction error in this case is the binary cross-entropy: log pθ(b
(i) | a(i), z(i,l) ) =

−∑b(i) logp(i,l) + (1 − b(i)) log(1 − p(i,l)). For real-valued data such as Yale facial images
and RAVDESS log-mel spectrograms, we let pθ(b | a(i), z(i,l) ) be a multivariate Gaussian dis-
tribution with a fixed diagonal covariance N (b;µ(i,l),σ2I) where µ(i,l) is computed from MLPs
fpθ (a(i), z(i)):

fpθ : [a(i), z(i,l)]→ FC(512)→ FC(256)→ FC(512)→ µ(i,l), (12)

The reconstruction error in this case is the mean squared error: log pθ(b
(i) | a(i), z(i,l) ) =

−1
σ2 ‖b(i) − µ(i,l)‖2 + const. We experimented with both continuous and discrete (categorical)
latent variable z. For a continuous z, we let the prior pθ( z ) be a bivariate normal distribution and
the approximated posterior qφ( z | a′(i),b′(i) ) be a bivariate Gaussian distribution with a diagonal
covariance N (z;µ(i), (σ(i))2I) where µ(i) and σ(i) are computed from MLPs fqφ(a′

(i)
,b′

(i)
):

fqφ : [a′
(i)
,b′

(i)
]→ FC(512)→ FC(256)→ [µ(i),σ(i)] (13)

In this case the latent variable samples are drawn as: z(i,l) = µ(i) + σ(i) � ε(i,l), ε(i,l) ∼ N (0, I).
For a discrete z, we used two categorical r.v., z = [z1, z2], each having a uniform prior over five
categories and let qφ( z | a′(i),b′(i) ) represents two categorical r.v. reparameterized with Gumbel-
Softmax distributions whose class probabilities π1 = (π11, . . . , π15) and π2 = (π21, . . . , π25) are
computed from MLPs fqφ(a′

(i)
,b′

(i)
) (Jang et al., 2017; Maddison et al., 2017):

fpθ : [a′
(i)
,b′

(i)
]→ FC(512)→ FC(256)→ [π1,π2] (14)

In this case the latent variable samples are drawn as: z(i,l)j = softmax
(
(ε(i,l) + logπj)/τ

)
, j = 1, 2

where ε(i,l) ∈ R5 are i.i.d. samples drawn from a Gumbel(0, 1) distribution and the softmax
temperture τ controls the “smoothness” of the samples.

For MNIST, Omniglot, and Yale relational learning tasks, we used random image rotation for RPDA,
i.e., D={ (rot(a, r), rot(b, r)) | r∈ [0, 360) }. For time-series RAVDESS speech waveforms, we
used random time delay and amplitude scaling for RPDA, i.e., D={ (αa[t− τ ], αb[t− τ ]) | α ∈
R, τ ∈ Z }. Additionally, since we are only interested in learning an undirected relative relationship
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changes in Yale and RAVDESS relational learning tasks (i.e., pθ( z | a,b ) = pθ( z | b,a )), we
augment RPDA functions with random swapping operations:

swap(a′,b′) =

{
(a′,b′), p = 0.5

(b′,a′), p = 0.5

Finally, the learning objective L̃(i)
RPDA in Eq. 10 can be constructed once pθ(b |a(i), z(i,l) ), pθ( z ), and

qφ( z |a′(i),b′(i) ) are defined. For example, when we adopt a discrete latent variable z = [z1, z2] for
MNIST and Omniglot relational learning tasks (Sec. 5.1 and 5.2), we can derive L̃(i)

RPDA (with L = 1)
as:

L̃(i)
RPDA = −

∑
b(i) logp(i,1) + (1− b(i)) log(1− p(i,1))−

∑
πj logπj + const (15)

where (a′
(i)
,b′

(i)
) = (rot(a, r(i)), rot(b, r(i))), r(i) ∼ U([0, 360)), [π1,π2] = fqφ(a′

(i)
,b′

(i)
),

z
(i,1)
j = softmax((ε(i,1) + logπj)/τ), ε(i,1) ∼ Gumbel(0, 1), j = 1, 2, and p(i,1) =

fpθ (a(i), [z
(i,1)
1 , z

(i,1)
2 ]). Similarly, L̃(i)

RPDA (with L = 1) for a continuous latent variable z can be
derived as:

L̃(i)
RPDA =−

∑
b(i) logp(i,1) + (1− b(i)) log(1− p(i,1)) + logN (z(i,1);0, I)

− logN (z(i,1);µ(i), (σ(i))2I), (16)

where (a′
(i)
,b′

(i)
) = (rot(a, r(i)), rot(b, r(i))), r(i) ∼ U([0, 360)), [µ(i),σ(i)] = fqφ(a′

(i)
,b′

(i)
),

z(i,1) = µ(i)+σ(i)�ε(i,1), ε(i,1) ∼ N (0, I), and p(i,1) = fpθ (a(i), z(i,1)). For Yale and RAVDESS
relational learning tasks (Sec. 5.3), we adopted a continuous latent variable z with σ = 0.1 and L̃(i)

RPDA
(with L = 1) can be derived as:

L̃(i)
RPDA =

−1

0.02
‖b(i) − µ(i,l)‖2 + logN (z(i,1);0, I)− logN (z(i,1);µ(i), (σ(i))2I) + const (17)

where (a′
(i)
,b′

(i)
) = swap(rot(a, r(i)), rot(b, r(i))), r(i) ∼ U([0, 360)), [µ(i),σ(i)] =

fqφ(a′
(i)
,b′

(i)
), z(i,1) = µ(i) + σ(i) � ε(i,1), ε(i,1) ∼ N (0, I), and µ(i,l) = fpθ (a(i), z(i,1)).

All MLPs with parameters θ and φ were jointly trained for 300k iterations (without batch-
normalization, weight decay, nor dropout) to maximize L̃(i)

RPDA in Eq. (4) with using Adam optimizer
(learning rate=0.0004, β1=0.9, β1=0.999) (Kingma & Ba, 2015). Minibatches of size M=100 were
used. We anneal the learning rate (0.0004 base learning rate) with step decay (factor of 0.5 every
100k iterations). When Gumbel-Softmax distributions is used, we anneal the softmax temperature τ
from 1.0 to 0.5 with exponential decay (decay rate=0.00005).

E.2 BASELINE METHODS IMPLEMENTATION

STN-affine and STN-rotate (Jaderberg et al., 2015; Dong et al., 2017) minimize the difference
between b(i) and a geometric transformation of a(i) (affine transformation for STN-affine and
rotation transformation for STN-rotate) by using a spatial transformer with a localization network
that takes both a(i),b(i) as input; during evaluation, we perform clustering on the output of the
trained localization network. The localization network in STN-affine takes both a(i),b(i) as input
and outputs an affine transformation matrix:

[a(i),b(i)]→ FC(512)→ FC(256)→ FC(256)→ Aθ =

[
θ11 θ12 θ13
θ21 θ22 θ23

]
.

In STN-rotate, we further restrict STN-affine to only allow rotation transformation and the localization
network in this case only outputs the rotation angle ∆θ:

[a(i),b(i)]→ FC(512)→ FC(256)→ FC(256)→ ∆θ, Aθ =

[
cos(∆θ) − sin(∆θ) 0
sin(∆θ) cos(∆θ) 0

]
.

VAE, AAE, GMVAE all trained directly using (a(i),b(i)) and we perform clustering on their learned
latent space. We selected dim(z)=10 via cross-validation. We follow the implementation of (Kingma
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& Welling, 2014; Makhzani et al., 2015; Dilokthanakul et al., 2017) since they also experimented
with MNIST or Omniglot dataset. However, for a fair comparison, we also experimented with the
following encoder/decoder architecture and report the best results:

[a(i),b(i)]→ FC(512)→ FC(256)→ z(i) ∼ q(z(i))→ FC(256)→ FC(512)→ [ya(i) ,yb(i) ].

Our VAE-contrastive implementation is similar to Chen et al. (2020) in concept. We added an
additional latent loss term to the VAE loss function that aim to minimize the difference between
the latent representation from different rotation augmented image pairs, i.e., α‖z(i) − z′

(i)‖2 (also
experimented with cosine similarity) where z(i) = Enc([a(i),b(i)]), z′

(i)
= Enc([a′

(i)
,b′

(i)
]) and

we cross-validate α from 0.1 to 10.

BYOL learns a joint image represenation z for (a(i),b(i)), on which the clustering is applied during
evaluation. We selected dim(z)=10 via cross-validation.

Vec-arithmetic first trains an autoencoder on individual a(i), b(i) and then used the trained encoder
to compute a latent vector representation of (a(i),b(i)) through Enc(b(i))− Enc(a(i)), on which
the clustering is applied during evaluation. We selected dim(z)=10 via cross-validation.

LICM (Evtimova, 2017) trained a committee of 5 experts to learn a set of independent mechanisms
that generates b(i) from the canonical a(i), and used the trained discriminator during evaluation to
select the winning expert (as a categorical variable).

NRI infer the interaction between a(i) and b(i) and used the NRI-Encoder to predict the relationship
type (as a categorical variable). We follow the implementation of (Kipf et al., 2018; Fetaya, 2019)
where we used the NRI-Encoder to infer the relationhip between a(i) and b(i); the inferred relationship
z(i), together with (a(i),b(i)), are then feed into the NRI-Decoder to predict ya(i) and yb(i) which
are reconstructions for a(i) and b(i), respectively. To account for the high-dimensional input data, we
used two MLPs (one for each a(i) and b(i)) to extract lower dimensional feature vectors xa(i) ∈ R10

and xb(i) ∈ R10 that serve as input to NRI-Encoder:

a(i) → FC(512)→ FC(256)→ xa(i) , b(i) → FC(512)→ FC(256)→ xb(i) .

Similarly, we insert two MLPs (with the same architecture as above) in front of NRI-Decoder to
extract data feature vectors and append two MLPs after NRI-Decoder to convert the predicted feature
vectors back to the high-dimensional data space:

xa(i) → FC(256)→ FC(512)→ yb(i) , xb(i) → FC(512)→ FC(256)→ yb(i) .

All MLPs are trained jointly with NRI encoder and decoder.

For our final baseline comparison, we present results from applying InfoGAN to the MNIST rela-
tional learning task in Sec. 5.1 (Chen et al., 2016). InfoGAN has demonstrated its ability to learn
disentangled representations (represented by structured latent codes c1, c2, ..., cL) through generative
modelling. Although inferring latent codes for a given data point is a non-trivial task for InfoGAN,
we can examine the learned latent representation by manipulating the latent codes and visually
inspect the generated random samples. We modeled the latent codes with one categorical code
c1 ∼ Cat(K = 10, p = 0.1) and two continuous codes c2, c3 ∼ Unif(−1, 1) . Figure 7 shows
examples of generated images from manipulating the latent codes and it is clear that none of the
latent codes distinctively capture the full range of relative rotational relationships.

F ADDITIONAL EXPERIMENTAL RESULTS AND ANALYSIS

F.1 MNIST AND OMNIGLOT RELATIONAL LEARNING RESULTS ANALYSIS

At first glance, the results in Fig. 3c resemble that of style-transfer, but they are fundamentally
different: in style-transfer, the image b(r,c) is generated by applying the style of b(r)

s to the content
of a(c), whereas VRL generates image b(r,c) by applying the relational property of (as,b

(r)
s ) to the

image a(c). It is evident from Fig. 3c that predicted images b(r,c) do not share similar style to b
(r)
s ,

but rather the same relative rotational relationship w.r.t. a(c) and as.
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(a) (b)

Figure 7: Manipulating latent codes of InfoGAN on MNIST where each row represents random
samples from varying continuous latent code c2 in (a) and c3 in (b) while other latent codes and noise
are fixed; different rows correspond to different categorical code c1 = 1 . . . 10.

A close inspection of the results in Table 1 shows that the seemingly simple relational learning tasks
is in fact very challenging even for specialized methods such as STN-affine and STN-rotate that
only learn about spatial transformations. Comparing VRL with VAE, we can see that VRL achieved
better performance than VAE with more efficient learning—VAE were only able to solve the simpler
3-relationship tasks by adopting a high dimensional latent space; in contrast, VRL were able to solve
all tasks with a compact 2-D latent space. Further comparing VAE with GMVAE and AAE shows
that regularizing the latent space, as done in AAE and GMVAE, can degrade the performance of
relational learning. For contrastive self-supervised learning methods like VAE-contrastive and BYOL
there is no way to enforce the learned data representation be independent of absolute property since
different augmented image still share large part of their absolute property (e.g., digit representation).
For example, it is entirely possible for VAE-contrastive and BYOL to tightly cluster images based
on their digit representation (absolute property); this will lead to a small loss function value but
makes the subsequent relational discrimination task more challenging since each digit representation
can have all possible relative rotation relationships. LICM failed all relational learning tasks due
to the fact that the transformed and canonical distributions overlaps completely (both a(i) and b(i)

are rotations of MNIST or Omniglot images) and it is not possible for a committee of experts to
distinguish the two. NRI’s inability to solve the relational learning tasks can be attributed to the fact
that it is designed to learn in a dynamical systems, but more importantly, GNN is not guaranteed to
learn an independent relative relationship.

In summary, we argue that a major challenge for applying existing methods to relational learning
problem is that they learn a single representation that encodes both relational and absolute properties
and it is difficult to dissect the relational property from the learned representation.

F.2 YALE AND RAVDESS RELATIONAL MAPPING RESULTS

Figure 8 shows examples of relational mappings predicted by the same set of trained VRL models
from Sec. 5.3.

F.3 RELATIONAL LEARNING WITH MULTIPLE RELATIONSHIPS

Here, we setup a more complex relational learning task that includes both relative rotational and
scaling relationships. We constructed a paired MNIST dataset XM10 = { (a(i),b(i)) | i∈ [1..N ] }
where each a(i) is a randomly rotated and scaled (by a factor ×0.66 or ×1) MNIST image and
b(i) is another random rotation (by 0◦, 72◦, 144◦, 216◦, or 288◦) and scaling (by ×1 or ×1.5) of
a(i). Note that there are a total of 10 decoupled relative relationships between (a(i),b(i)) in XM10

(combinations of 5 rotational and 2 scaling transformations). We trained VRL on XM10 following
the same training procedure as described in Appendix E but with larger MLPs for fpθ (a(i), z(i)) and
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(a)

(b)

(c)

Figure 8: Examples of VRL relational mapping for facial images and speech waveforms; each pair of
images shows VRL relational mapping predictions based on the relational property inferred from
the first two images in the same row; (a) Relative facial illumination condition changes; (b) Relative
facial expression changes; (c) Relative speech emotion changes.

fqφ(a′
(i)
,b′

(i)
) (cf. Eq. 11, 13) to account for the increased problem complexity:

fpθ : [a(i), z(i,l)]→ FC(1024)→ FC(512)→ FC(512)→ p(i,l)

fqφ : [a′
(i)
,b′

(i)
]→ FC(1024)→ FC(512)→ [µ(i),σ(i)]

(18)

The inference result is shown in Fig. 9a, where we can see that the approximated posterior accurately
cluster (discriminate) data with the same (different) relative relationship together (apart). Examples
of images predicted by direct sampling in the latent space are shown in Fig. 9b.

F.4 RELATIONAL LEARNING WITH CONTINUOUS RELATIONSHIPS

Lastly, we present an example with a continuous relational property. Based on the MNIST dataset, we
constructed a paired dataset XMc ={ (a(i),b(i)) | i∈ [1..N ] } where both a(i) and b(i) are random
rotation of the same MNIST image. In this case, there is a continuous (and decoupled) relative
rotational relationship between (a(i),b(i)). We trained VRL on XMc following the same training
procedure as described in Appendix E but used convolutional neural networks (CNNs) to capture the
continuous relationship. We approximate pθ(b | a(i), z(i,l) ) with an autoencoder-like neural network
fpθ (a(i), z(i)) = f dec

θ

(
f enc
θ (a(i)), z(i,l)

)
:

f enc
θ :a(i) → Conv(3x3x8)→ Conv(3x3x32)→ Conv(3x3x128)→ FC(20)→ h(i)∈R20

f dec
θ :[h(i)∈R20, z(i,l)]→ FC→ ConvT(3x3x128)→ ConvT(3x3x32)→ ConvT(3x3x8)

→ Conv(1x1x1)
Sigmoid−−−−→ [0, 1]dim(B),

where Conv(·) is a strided (stride 2) convolutional layer and ConvT (·) is a transposed convolutional
layer. We used batch-normalization after each layer and rectified linear non-linearities. We represent
the approximated posterior qφ( z | a′(i),b′(i) ) (with bivariate normal distribution as prior) using:

fqφ : [a′
(i)
,b′

(i)
]→ Conv(3x3x8)→ Conv(3x3x32)→ Conv(3x3x128)→ FC(4)→ [µ(i),σ(i)].
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Figure 9: Learning multiple relative relationship with VRL: (a) Scatter plot of 2-D relational property
of XM10 inferred by VRL (relative relationship labels: #(blue) : 0◦, O : 72◦, + : 144◦, × : 216◦,
♦ : 288◦, 2 : 0◦,×1.5, � : 72◦,×1.5, � : 144◦,×1.5, 4 : 216◦,×1.5, #(cyan) : 288◦,×1.5);
(b) Images predicted from sampled latent variables (sampling the centroid of each cluster in (a):
“#”(blue)→z(1), “O”→z(2),“+”→z(3), “×”→z(4), “♦”→z(5), “2”→z(6), “�”→z(7), “�”→
z(8), “4”→z(9), “#”(cyan)→z(10)).

A scatter plot of the relational property inferred by a trained posterior is shown in Fig. 10a, and
examples of images predicted by direct sampling in the latent space (denoted by markers “×” in
Fig. 10a) are shown in Fig. 10b. From Fig. 10 we can see that VRL learned an independent relational
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Figure 10: Learning continuous relative relationship with VRL: (a) Scatter plot of 2-D relational
property of XMc inferred by VRL, each point is color-coded (best viewed in color) by the degrees
of relative rotation between the corresponding data point; (b) Images predicted from sampled latent
variables (denoted by markers “×” in (a)).

property that encodes a continuous relative rotational relationship; however, there is a small region in
Fig. 10a with overlapping relational property that leads to an ambiguous relationship interpretation
(120◦ vs. 240◦). This ambiguity is likely caused by compressing the relative relationship down to a
2-D latent space, z ∈ R2, and motivates us to adopt a higher-dimensional latent space, e.g., z ∈ R3.
Figure 11 shows inference result from repeating the previous experiment but with adopting z ∈ R3.
We can see that VRL learned a three-dimensional relational property that unambiguously represents
the underlying continuous relative rotational relationship.
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Figure 11: Scatter plot of 3-D relational property of XMc inferred by VRL (with z ∈ R3); each plot
shows a different vantage point of the 3-D scatter plot, and each point is color-coded (best viewed in
color) by the degrees of relative rotation between the corresponding data point.
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