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Abstract

Motion deblurring can be advanced by exploiting informative
features from supplementary sensors such as event cameras,
which can capture rich motion information asynchronously
with high temporal resolution. Existing event-based motion
deblurring methods neither consider the modality redundancy
in spatial fusion nor temporal cooperation between events and
frames. To tackle these limitations, a novel spatial-temporal
collaboration network (STCNet) is proposed for event-based
motion deblurring. Firstly, we propose a differential-modality
based cross-modal calibration strategy to suppress redun-
dancy for complementarity enhancement, and then bimodal
spatial fusion is achieved with an elaborate cross-modal co-
attention mechanism to weight the contributions of them for
importance balance. Besides, we present a frame-event mu-
tual spatio-temporal attention scheme to alleviate the errors
of relying only on frames to compute cross-temporal sim-
ilarities when the motion blur is significant, and then the
spatio-temporal features from both frames and events are ag-
gregated with the custom cross-temporal coordinate atten-
tion. Extensive experiments on both synthetic and real-world
datasets demonstrate that our method achieves state-of-the-
art performance. Project website: https://github.com/wyang-
vis/STCNet.

Introduction
Motion blur is commonly inevitable due to camera shake
or object motion over the period of exposure time, which
not only deteriorates the visual experience for humans but
hinders other computer vision tasks such as tracking (Jin,
Favaro, and Cipolla 2005; Mei and Reid 2008), video stabi-
lization (Matsushita et al. 2006), etc. To eliminate the ad-
verse effects, the task of motion deblurring has received
much research attention recently.

Traditional motion deblurring techniques explicitly uti-
lize image priors and various constraints (Bar et al. 2007;
Cho, Wang, and Lee 2012; Wulff and Black 2014; Bahat,
Efrat, and Irani 2017; Kotera, Šroubek, and Milanfar 2013;
Levin et al. 2009) that are handcrafted with empirical ob-
servations. However, it is challenging to design such priors
and constraints to model the inherent properties of latent
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Figure 1: Comparison of visualized deblurring results with
state-of-the-art event-based motion deblurring methods DS-
Deblur (Yang et al. 2022), ERDNet (Chen et al. 2022a),
EFNet (Sun et al. 2022), and our STCNet.

frames and motion blur. Due to the success of deep neu-
ral networks (DNNs), some deep convolutional neural net-
work (CNN)-based methods (Zhang et al. 2019; Zamir et al.
2021; Chen et al. 2021; Cho et al. 2021), recurrent neural
network (RNN)-based methods (Nah, Son, and Lee 2019;
Zhong et al. 2020; Zhou et al. 2019; Zhu et al. 2022) and
Transformer-based methods (Liang et al. 2021; Wang et al.
2022b; Liang et al. 2022b,a) have been proposed for mo-
tion deblurring, which implicitly learn more general prior in-
formation from large-scale training data. Despite their good
performance, these learning-based deblurring methods may
fail to deal with severe blur. Motion deblurring cannot be
solved trivially from the input blur set alone, as it is a highly
ill-posed problem with infinite feasible solutions.

Event cameras are bio-inspired sensors that can record
per-pixel intensity changes asynchronously with high tem-
poral resolution and output a stream of events encoding
time, location and polarity of intensity changes (Vitoria
et al. 2023) if the intensity changes surpass a threshold. Un-
derstandably, with the attractive properties that offer mo-
tion information with microsecond accuracy, event cam-
eras have been attempted to address motion deblurring. Re-
cently, some event-based motion deblurring methods are
proposed (Pan et al. 2019; Jiang et al. 2020; Lin et al. 2020;
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Sun et al. 2022; Chen et al. 2022a; Sun et al. 2023), and
have achieved promising performance of deblurring. Cru-
cially, these methods, on the one hand, adopt only simple
fusion strategy for spatial complementary fusion and also do
not consider the modality redundancy; on the other, neglect
the role of the event itself and the event-frame interaction
in the temporal domain. These insufficient collaboration of
events and frames limits the overall performance.

In this paper, we develop a novel spatial-temporal col-
laboration network (STCNet) to learn the collaborative fu-
sion of frames and events both in spatial and temporal as-
pects for motion deblurring. Generally, different modalities
are usually complementary but also redundant. We present
a differential-modality guided cross-modal calibration strat-
egy to enhance complementarity, which leverages the global
interaction of differential-modality and two modalities. The
calibration operation allows to later fuse the features bet-
ter, and potentially avoids the modality redundancy. Then
considering the disparity of the contributions of different
modality features, we elaborate a cross-modal co-attention
scheme to balance the contributions of multi-modality fea-
tures for spatial complementary fusion. Besides, exploiting
spatio-temporal dependencies is useful for motion deblur-
ring. There may be errors in estimating the cross-temporal
similarities relying only on frames when fast motions are
present, i.e., spatio-temporal modeling lacks the guidance
of motion information. Fortunately, benefiting from the rich
motion information in the event, we propose a frame-event
mutual spatio-temporal attention scheme to model the cross-
temporal dependencies by conducting the communication
of cross-frames and cross-events, alleviating that issue of
cross-temporal similarities computation. Based on the mu-
tual spatio-temporal attention, not only spatio-temporal fea-
tures from frames, but also additional from events, are aggre-
gated to the current feature with a custom cross-temporal co-
ordinate attention. Coupled with the above spatial and tem-
poral collaboration strategy, our framework achieves state-
of-the-art performance of event-based motion deblurring
(some visual comparisons are shown in Figure 1). The main
contributions of our work are as follows.

• We propose a novel spatial-temporal collaboration net-
work (STCNet) for event-based motion deblurring,
which facilitates the collaborative fusion of frames and
events in both spatial and temporal domains. Extensive
experiments show that our model outperforms state-of-
the-art event-based and image/video-based methods.
• We present a differential-modality guided cross-modal

calibration strategy to enhance complementarity and sup-
press redundancy of multi-modality features. Then the
calibrated multi-modality features are fused by a cross-
modal co-attention scheme to adaptively balance the
modality contributions.
• We propose a mutual spatio-temporal attention to model

the cross-temporal dependencies by enjoying the extra
assistance of motion information in events. Based on this,
informative features from temporal neighbors of both
frames and events are fused with current features via a
custom cross-temporal coordinate attention.

Related Work
Motion Deblurring
Early methods focus on explicitly using image priors and
constraints (Cho, Wang, and Lee 2012; Hyun Kim and
Mu Lee 2015; Bahat, Efrat, and Irani 2017; Kotera, Šroubek,
and Milanfar 2013; Levin et al. 2009) that are handcrafted
with empirical observations. With the development of deep
learning, researchers have made significant progress on mo-
tion deblurring. State-of-the-art learning-based deblurring
methods use a single image or multiple frames.

Image Deblurring. Contemporary successful deep
learning-based image deblurring methods can be roughly
categorized as follows. 1) Single-Stage Approaches. These
methods are based on a single-stage design, using the con-
volutional neural network (CNN) (Zhang et al. 2020) or
Generative Adversarial Network (GAN) (Kupyn et al. 2018,
2019). 2) Multi-Stage Approaches. These methods aim to
recover clean images in a progressive manner with multi-
stage (Nah, Hyun Kim, and Mu Lee 2017; Tao et al. 2018;
Zamir et al. 2021; Chen et al. 2021), which decompose
the image deblurring task into smaller easier subtasks. 3)
Coarse-to-Fine Strategies. These methods typically stack
sub-networks with multi-scale inputs and gradually improve
sharpness of images (Park et al. 2020; Cho et al. 2021). 4)
Attention Modules. Attention mechanisms can help learn
cross-spatial/channel correlations to better address deblur-
ring (Suin, Purohit, and Rajagopalan 2020; Tsai et al. 2022;
Purohit and Rajagopalan 2020; Liang et al. 2021).

Video Deblurring. The spatio-temporal correlation be-
tween adjacent inputs is critical for video deblurring. Recur-
rent neural network (RNN) or convolutional neural network
(CNN) are adopted to exploit temporal information (Nah,
Son, and Lee 2019; Zhong et al. 2020; Zhou et al. 2019;
Su et al. 2017; Zhu et al. 2022). To improve the deblurring
performance further, some extra multiple frames aligning
methods were proposed to model spatio-temporal correla-
tion, such as optical flow based methods (Pan, Bai, and Tang
2020; Xiang, Wei, and Pan 2020), deformable and dynamic
convolutions based methods (Wang et al. 2019; Zhou et al.
2019). Recently, the emergence of Transformer provides an
alternative for effective temporal modeling for video deblur-
ring (Liang et al. 2022b,a; Lin et al. 2022), due to its advan-
tages of modeling long-range spatial dependencies.

Event-Based Motion Deblurring
Event cameras provide visual information with low latency
and with strong robustness against motion blur, which offers
great potential for motion deblurring. Event-based motion
deblurring methods can be divided into two categories (Xu
et al. 2021), i.e., model driven and data driven algorithms.

Model driven methods formulate the relation from blurry
images to sharp images with the physical event generation
principle (Scheerlinck, Barnes, and Mahony 2018). Specifi-
cally, Pan et al. (Pan et al. 2019) modeled the blur-generation
process by associating event to a latent frame with an
Event-based Double Integral (EDI) algorithm for deblurring.
Scheerlinck et al. (Scheerlinck, Barnes, and Mahony 2018)
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Figure 2: Framework of our STCNet, containing two parts: modality spatial collaboration and modality temporal collaboration.

presented a continuous-time formulation of event-based in-
tensity estimation using complementary filtering to combine
frames with events. Regrettably, there is inevitable noise in
events due to the non-ideality of physical sensors (Zhang
and Yu 2022), resulting in degraded performance.

Data driven methods tackle above limitations by learning-
based approaches (Lin et al. 2020). LEMD (Jiang et al.
2020) presented a sequential formulation of event-based mo-
tion deblurring, and unfolded its optimization with deep ar-
chitecture. eSL-Net (Wang et al. 2020) proposed an event
enhanced degeneration model for the high-quality image re-
covery. Shang et al. (Shang et al. 2021) proposed an event
fusion module to utilize beneficial information from events,
which can be incorporated into existing motion deblurring
methods. EFNet (Sun et al. 2022) first introduced a sym-
metric cumulative event representation and then proposed
a cross-modal attention module to fuse image and event.
ERDNet (Chen et al. 2022a) proposed a residual learning
approach to learn event-based motion deblurring.

Method
Problem Statement
Given a blurry frame B and the corresponding event stream
ET , {(xi, yi, pi, ti)}ti∈T containing all events triggered
during exposure time T , where p = ±1 is polarity, which
denotes the direction (increase or decrease) of the inten-
sity changes at that pixel (x, y) and time t, the proposed
method is to recover a sharp frame I by exploiting both
blurry frame B and event stream ET , which can be mod-
eled as I = G (B,ET ), where G is deep learning model.

Principled Framework of STCNet
In our work, a novel spatial-temporal collaboration network
(STCNet) is proposed for event-based motion deblurring,
which can facilitate the collaborative fusion of frames and
events in both spatial and temporal domains. Figure 2 shows
the overview of STCNet. We first use symmetric feature
encoder to extract target features ΦB

t and ΦE
t from blurry

frame and its corresponding events, separately. Next, we

conduct modality spatial collaboration with first differential-
modality guided cross-modal calibration (CMC) for com-
plementary enhancement and then cross-modal aggregation
(CMA) for contribution balance, obtaining Ft. Besides, we
conduct modality temporal collaboration with first frame-
event mutual spatio-temporal attention (STA) for cross-
temporal dependencies modeling and then cross-temporal
fusion (CTF) for spatio-temporal features fusion, obtaining
Ot. Finally, feature decoder reconstructs the deblurred result
It. Below we detail the main parts: modality spatial collab-
oration and modality temporal collaboration.

Modality Spatial Collaboration (MSC)
Generally, different modalities usually have complementary
features (discrepancy) for each other and also have their
shared features (commonalities). Differential features are
what cross-modal fusion focuses on, while common features
are redundant information. We advocate first calibrating the
modality features to enhance complementarity and suppress
redundancy, and then considering the disparity of the con-
tributions of different modality features for multi-modality
fusion, shown in Figure 3.

Firstly, considering that differential-modality contains
complementary cues, a differential-modality guided cross-
modal calibration strategy is presented to enhance comple-
mentarity. The main idea is leveraging global interaction of
differential-modality and two modalities to infer attention
maps, then the attention maps are multiplied to the input fea-
tures respectively for feature enhancement.

The calibration process is realized by the CMC in Figure
3. Given the frame features ΦB

t and event features ΦE
t , we

first obtain the differential-modality features Fdm by direct
subtraction of two modalities:

Fdm = ΦB
t − ΦE

t , (1)

then, based on the traditional self-attention (Vaswani et al.
2017), we further put forward an efficient cross-attention
mechanism applied to ΦB

t , ΦE
t and Fdm to infer the atten-

tion maps. ΦE
t and ΦB

t are transformed into Key Ke, Value
Ve and Key Kb, Value Vb, respectively. Fdm is transformed
into Query Qd. Then attention maps can be calculated as:
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Figure 3: Details of modality spatial collaboration.

AB = Softmax
(
QdK

T
b

)
,

AE = Softmax
(
QdK

T
e

)
,

(2)

where attention maps AB and AE contain complementarity
clues of frame and event respectively. Thus, the calibrated
features can be represented as:

Φ̂B
t = ABVb, Φ̂E

t = AEVe. (3)
Next, considering the disparity of the contributions of dif-

ferent modality features, we elaborate a cross-modal co-
attention scheme to balance the contributions of multi-
modality features for bimodal spatial complementary fusion.
Meanwhile, we use a bi-directional fusion strategy, i.e., from
frames to events as well as in the opposite direction.

The aggregation process is realized by the CMA model
in Figure 3. Specifically, taking the image-to-event exam-
ple, given the calibrated feature Φ̂B

t and original ΦE
t , they

are first combined using concatenation and convolution op-
eration. Then the combined features are split evenly along
the channel dimension into two sub-branches. The sigmoid
function and global average pooling are performed on each
sub-branch to obtain co-attention scores gB and gE , which
model the importance of different modal features for the fur-
ther fusion, which can be formulated as:

g = Avg
(
Sig

(
Conv

(
Cat

(
Φ̂B

t ,Φ
E
t

))))
, (4)

where Avg(·) is the global average pooling, Sig(·) denotes
sigmoid function, Conv(·) refers to the convolution layer
and Cat(·) is the concatenation operation. And we apply the
co-attention scores to the corresponding features to generate
gated features Φ̂B

t and ΦE
t :

Φ̂B
t = Φ̂B

t ∗ gB , ΦE
t = ΦE

t ∗ gE . (5)
Further, we use channel-wise and spatial-wise attentions

to emphasize the supplementary features:

Φ̂B
t

′
= CA(Φ̂B

t ) ∗ Φ̂B
t , Φ̂B

t

′′
= SA(Φ̂B

t

′
) ∗ Φ̂B

t

′
, (6)

then we devise the aggregation operation as an element-wise
addition of the two modalities:

E = ΦE
t + Φ̂B

t

′′
(7)

Similarly, we can obtain B. The final fusion feature can
be denoted as Ft = cat(E,B).

Modality Temporal Collaboration (MTC)
Exploring the useful information from neighboring inputs
is crucial for motion deblurring. There may be errors in
estimating the cross-temporal similarities relying only on
frames when fast motions are present, i.e., spatio-temporal
modeling lacks the guidance of motion information. Fortu-
nately, on the one hand, events contain rich motion infor-
mation that can assist frames to better model cross-temporal
relevance; on the other hand, spatio-temporal dependencies
of event sequences can also be explored. Thus, by enjoying
the extra assistance of events, we propose a frame-event mu-
tual spatio-temporal attention to model the cross-temporal
dependencies and then aggregate informative features from
temporal neighbors of both frames and events via a custom
cross-temporal coordinate attention, illustrated in Figure 4.

In our work, the features of the two adjacent moments
before and after are fused to the features of the current mo-
ment. We take time t and time t+ 1 for example. Given the
features of frame ΦB

t and ΦB
t+1, as well as event ΦE

t and
ΦE

t+1, the key of the proposed cross-temporal dependencies
capturing is to conduct the communication of cross-frames
and cross-events. As shown in STA of Figure 4, we first
transform ΦB

t into Query Qb, and ΦB
t+1 into Key Kb, Value

Vb, as well as ΦE
t into Query Qe, and ΦE

t+1 into Key Ke,
Value Ve. Then intra-modality individual cross-temporal at-
tention is first estimated by multiplying the queries from one
moment and the keys from the other moment:

SB = Softmax
(
QbK

T
b

)
,

SE = Softmax
(
QeK

T
e

)
.

(8)

Then we joint inter-modality cross-temporal attention to
obtain the mutual spatio-temporal attention SM :

SM = SBSE . (9)

Then the informative spatio-temporal features Φ̃B
t+1 and

Φ̃E
t+1 from both frame and event domains are obtained with

the guidance of mutual attention SM :

Φ̃B
t+1 = SMVb, Φ̃E

t+1 = SMVe. (10)

Following, we fuse the current features Ft with Φ̃B
t+1 and

Φ̃E
t+1 separately. Taking the fusion of Ft and Φ̃B

t+1 as an
example, the CTF is developed based on coordinate atten-
tion (Hou, Zhou, and Feng 2021), which can concurrently
capture channel and location importance and long-range de-
pendencies. Figure 4 shows the structure of CTF.

Specifically, given the Ft and Φ̃B
t+1, we use two spatially

scoped pooling kernels (H, 1) or (1,W ) encode each chan-
nel of the two features along the horizontal and vertical ori-
entations. The aggregated features are represented as:

Fh
t = XAP (Ft), Fw

t = Y AP (Ft),

Bh
t+1 = XAP (Φ̃B

t+1), Bw
t+1 = Y AP (Φ̃B

t+1),
(11)

where XAP and Y AP denote the average pooling along
the vertical and horizontal directions, respectively. Then we
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Figure 4: Details of modality temporal collaboration.

join the four aggregated feature by spatial concatenation,
followed by convolution and batch normalization (BN):

R = BN(Cat(Fh
t , F

w
t , B

h
t+1, B

w
t+1)). (12)

Then, we split R into four separate tensors Rh
f , Rw

f , Rh
b

andRw
b . We use four 1× 1 convolution to transform each of

the four split tensors into a tensor with the same number of
channels as the input features:

Wh
f = σ(Conv(Rh

f )), Ww
f = σ(Conv(Rw

f )),

Wh
b = σ(Conv(Rh

b )), Ww
b = σ(Conv(Rw

b )),
(13)

where Wh
f ,W

w
f ,W

h
b ,W

w
b represent Ft and Φ̃B

t+1 coordi-
nate attention weight in the vertical and horizontal direc-
tions, respectively. The final weighted features can be de-
fined as:

Mf = FtW
h
f W

w
f , Mb = Φ̃B

t+1W
h
b W

w
b , (14)

then we devise the aggregation operation as an element-wise
addition of the two features:

Mfb = Mf +Mb. (15)

Similarly, we can obtainMfe. The final fusion feature can
be denoted as Ot = cat(Mfb,Mfe).

Loss Function
In this paper, we use the Charbonnier loss (Charbonnier et al.
1994) to train our network in an end-to-end fashion:

Lchar =
1

CHW

√
‖I −G‖2 + ε2, (16)

where I and G is deblurred out and ground truth, respec-
tively, C, H , W are dimensions of frame, and constant ε is
empirically set to 10−3 as in (Zamir et al. 2021).

Experiments
Experimental Settings
Datasets. Our STCNet is evaluated on 1) Synthetic dataset.
GoPro (Nah, Hyun Kim, and Mu Lee 2017) and DVD (Su
et al. 2017) datasets are widely adopted for image-only and
event-based deblurring such as (Sun et al. 2022), which con-
tains synthetic blurring images and sharp ground-truth im-
ages, as well as synthetic events generated by simulation

algorithm ESIM (Rebecq, Gehrig, and Scaramuzza 2018).
2) Real dataset. REB dataset is a real event dataset captured
by us with the DAVIS346 event camera, including both real
events and clear ground-truth images captured under various
conditions both indoors and outdoors, that are well-exposed
and minimally motion-blurred. The blurring images are gen-
erated by using the same strategy as the GoPro. There are 60
videos of REB, 40 of which are used for training and 20 for
testing. In addition, several sequences are collected under
fast camera movement or fast moving scenes for qualitative
comparison, without ground truth.
Implementation Details. Our method is implemented using
Pytorch on NVIDIA RTX 3090 GPU. The size of training
patch is 256 × 256 with minibatch size of 8. The optimizer
is ADAM (Kingma and Ba 2015), and the learning rate is
initialized at 2× 10−4 and decreased by the cosine learning
rate strategy with a minimum learning rate of 10−6. For data
augmentation, each patch is horizontally flipped with the
probability of 0.5. The Peak Signal-to-Noise Ratio (PSNR)
and the Structural Similarity Index (SSIM) are adopted as
the evaluation metrics.

Comparison With State-of-the-Art Methods
We compare our STCNet to state-of-the-art image/video-
only deblurring methods, including MemDeblur (Ji and
Yao 2022), MMP-RNN (Wang et al. 2022a), MPRNet (Za-
mir et al. 2021), MIMO-UNet++ (Cho et al. 2021),
Restormer (Zamir et al. 2022), RNN-MBP (Zhu et al. 2022),
NAFNet (Chen et al. 2022b), VRT (Liang et al. 2022a),
DFFN (Kong et al. 2023), DSTN (Pan et al. 2023), and
event-based deblurring methods, including RED* (Xu et al.
2021), eSL-Net* (Wang et al. 2020), D2Nets* (Shang et al.
2021), DS-Deblur* (Yang et al. 2022), ERDNet* (Chen et al.
2022a), EFNet* (Sun et al. 2022), REFID* (Sun et al. 2023).

GoPro: We report the performance of compared motion
deblurring approaches on GoPro dataset in Table 1. Overall,
our method achieves the best performance against other al-
gorithms (1.40dB improvement in terms of PSNR over best
image/video-only methods and 0.54dB improvement over
best event-based methods). Moreover, we show the qualita-
tive visual quality comparison in Figure 5. Overall, visual
quality comparisons demonstrate that our method can re-
cover sharper texture details that are closer to the ground-
truth, while the results restored by other methods still suffer
from motion blur, losing sharp edge information.

DVD: The STCNet is trained on GoPro dataset and
tested on DVD dataset. Table 2 reports the quantitative re-
sults on the DVD dataset. Our method significantly out-
performs other state-of-the-art competitors (2dB improve-
ment in terms of PSNR over best image/video-only methods
and 0.79dB improvement over best event-based methods),
demonstrating the superior generalization ability of the pro-
posed framework.

REB: The quantitative performance of real-world dataset
REB is shown in Table 3. Our method significantly outper-
forms other competitors (2.69dB improvement in terms of
PSNR over best image/video-only methods and 0.53dB im-
provement over best event-based methods). We show the de-
blurring visual comparison on real blurs in Figure 6. Our
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Method RED* eSL-Net* D2Nets* MemDeblur MMP-RNN MPRNet MIMO-UNet++ Restormer DS-Deblur*
PSNR 28.98 30.23 31.76 31.76 32.64 32.66 32.68 32.92 33.13
SSIM 0.8499 0.8703 0.9430 0.9230 0.9359 0.9590 0.9590 0.9610 0.9465

Method RNN-MBP NAFNet DFFN ERDNet* VRT DSTN EFNet* REFID* STCNet(Ours)*
PSNR 33.32 33.69 34.21 34.25 34.81 35.05 35.46 35.91 36.45
SSIM 0.9627 0.9670 0.9692 0.9534 0.9724 0.9733 0.9720 0.9730 0.9809

Table 1: Comparison of motion deblurring methods on GoPro dataset. * denotes event-based methods.

Blurry D2Nets* MPRNet DS-Deblur* ERDNet*

Blurry Image Ground-truth VRT EFNet* REFID* STCNet(Ours)*

Figure 5: Visual comparisons on GoPro datatset. * denotes event-based methods. Best viewed on a screen and zoomed in.

Method D2Nets* MPRNet eSL-Net* DS-Deblur* NAFNet ERDNet* VRT EFNet* REFID* STCNet(Ours)*
PSNR 26.64 27.80 27.50 31.63 27.94 32.29 31.94 32.85 33.15 33.94
SSIM 0.8819 0.9091 0.8914 0.9436 0.9126 0.9506 0.9602 0.9571 0.9611 0.9692

Table 2: Comparison of motion deblurring methods on DVD dataset. * denotes event-based methods.

Method MMP-RNN Restormer D2Nets* NAFNet DS-Deblur* ERDNet* eSL-Net* REFID* EFNet* STCNet(Ours)*
PSNR 30.66 32.21 32.47 32.75 32.84 34.02 34.55 34.84 34.91 35.44
SSIM 0.9122 0.9505 0.9585 0.9570 0.9583 0.9663 0.9710 0.9723 0.9720 0.9772

Table 3: Comparison of motion deblurring methods on REB dataset. * denotes event-based methods.

method achieves the most visually plausible deblurring re-
sults with sharper textures while others produce results with
more artifacts and cannot remove severe blur effectively.

Complexity Comparison
We further calculate the parameters and average runtime for
complexity analysis. All experiments are conducted with im-
age size of 1280× 720× 3. Results in average running time
and parameters are presented in Table 4. It is obvious that
our method has comparable parameters and running time
with consideration of acceptable calculation consumption to
achieve promising deblurring performance.

Ablation Study
To evaluate the effectiveness of the key components (MSC
and MTC) in our model, we conduct ablation studies on Go-
Pro dataset and REB dataset. A baseline is first experimented
with, which simply concatenates frame features ΦB

t and
event features ΦE

t and neglects the spatio-temporal corre-
lation between successive inputs. First row of Table 5 shows
the performance of baseline.

Effectiveness of MSC Module. We append it to Base-
line to conduct cross-modal fusion using a calibration-then-

aggregation strategy. There is a great performance gap in
the first two rows of Table 5, which shows that MSC can
efficiently fuse events with frames. Then, we validate the
importance of differential-modality guided cross-modal cal-
ibration (DM-CMC) strategy in MSC. The DM-CMC is ap-
pended to the baseline to calibrate ΦB

t and ΦE
t and the cal-

ibrated bi-modal features are simply concatenated, and the
results are shown in the first two rows in Table 7, show-
ing that DM-CMC can enhance complementarity. Further,
the validity of CMA in MSC is tested, which is designed to
weight different contribution of modalities. The CMA is ap-
pended to the baseline to adaptively fusion, ignoring modal-
ity redundancy problem, and the results are shown in the first
and third rows in Table 7. Apparently, CMA can efficiently
emphasize modality own importance for better fusion.

Effectiveness of MTC Module. We append MTC mod-
ule to baseline to capture sharp information from temporal
neighbors of both frames and events, and the results are
shown in the first and third rows in Table 5. Apparently,
cross-temporal relevance can be modeled by MTC to im-
prove the deblurring performance. Then the mutual spatio-
temporal attention scheme in MTC is validated. We model
spatio-temporal relevance with only frames, only events,
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Blurry Image MPRNet Restormer NAFNet

Event REFID* EFNet* STCNet(Ours)*

Figure 6: Visual comparison on real blur set of REB dataset. * denotes event-based methods. Best viewed on a screen and
zoomed in.

Method eSL-Net* D2Nets* MemDeblur MPRNet MIMO-UNet++ Restormer DS-Deblur* ERDNet* REFID* STCNet(Ours)*
Params (M) 0.19 32.63 6.1020 20.10 16.10 26.09 15.60 18.08 15.9 16.25
Runtime (s) 0.015 1.340 0.9110 0.117 0.025 1.1546 0.292 0.020 0.072 0.098
PSNR(dB) 30.23 31.76 31.76 32.66 32.68 32.92 33.13 34.25 35.91 36.45

Table 4: Complexity comparison with other methods. * denotes event-based methods.

MSC MTC Gropo REB
PSNR SSIM PSNR SSIM

7 7 33.40 0.9615 33.12 0.9610
3 7 35.93 0.9780 35.00 0.9721
7 3 35.05 0.9733 34.20 0.9682
3 3 36.45 0.9809 35.44 0.9772

Table 5: Ablation study on MSC and MTC in STCNet.

Cross-frame Cross-event Gropo REB
PSNR SSIM PSNR SSIM

7 7 33.40 0.9615 33.12 0.9610
3 7 34.37 0.9681 33.58 0.9645
7 3 33.96 0.9658 33.15 0.9608
3 3 34.61 0.9706 33.79 0.9652

Table 6: Ablation study on mutual attention in MTC.

joint them by STA, and the spatio-temporal features and
current features are simply concatenated. Table 6 shows
that mutual attention better captures spatio-temporal depen-
dence. Besides, we test the validity of the CTF, which adap-
tively fuses above mutual attention-guided spatio-temporal
features and current features. Table 8 shows the superiority
of CTF.

Conclusion
In this work, we explore the complementary fusion of events
and frames for motion deblurring. A novel spatial-temporal
collaboration network is introduced to facilitate the cross-
modal fusion both in spatial and temporal aspects. We first

DM-CMC CMA Gropo REB
PSNR SSIM PSNR SSIM

7 7 33.40 0.9615 33.12 0.9610
3 7 34.73 0.9712 33.97 0.9667
7 3 35.67 0.9768 34.66 0.9703
3 3 35.93 0.9780 35.00 0.9721

Table 7: Ablation study on calibration-aggregation in MSC.

CTF Gropo REB
PSNR SSIM PSNR SSIM

7 34.61 0.9706 33.79 0.9652
3 35.05 0.9733 34.20 0.9682

Table 8: Ablation study on cross-temporal fusion in MTC.

conduct cross-modal spatial fusion with first differential-
modality guided cross-modal calibration for complementary
enhancement and then co-attention based cross-modal ag-
gregation for adaptive fusion. And then to attach importance
to the temporal correlation among adjacent neighbors, we
prepose the frame-event mutual spatio-temporal attention
for cross-temporal dependencies modeling and then fuse
spatio-temporal features with a cross-temporal coordinate
attention based cross-temporal fusion. Extensive evaluations
show that our method achieves state-of-the-art performance.
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