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Abstract

In this work, we present an adjoint-based method for discovering the underlying governing
partial differential equations (PDEs) given data. The idea is to consider a parameterized
PDE in a general form and formulate a PDE-constrained optimization problem aimed at
minimizing the error of the PDE solution from data. Using variational calculus, we obtain an
evolution equation for the Lagrange multipliers (adjoint equations), allowing us to compute
the gradient of the objective function with respect to the parameters of PDEs given data in
a straightforward manner. In particular, we consider a family of temporal parameterized
PDEs that encompass linear, nonlinear, and spatial derivative candidate terms, and elegantly
derive the corresponding adjoint equations. We show the efficacy of the proposed approach
in identifying the form of the PDE up to machine accuracy, enabling the accurate discovery
of PDEs from data. We also compare its performance with the famous PDE Functional
Identification of Nonlinear Dynamics method known as PDE-FIND Rudy et al. (2017) among
others, on both smooth and noisy data sets. Even though the proposed adjoint method
relies on forward/backward solvers, it outperforms PDE-FIND in the limit of large data sets
thanks to the analytic expressions for gradients of the cost function with respect to each
PDE parameter.

1 Introduction

A large portion of data-driven modelling of physical processes in literature is dedicated to deploying Neural
Networks to obtain fast prediction given the training data set. The data-driven estimation methods include
Physics-Informed Neural Networks Raissi et al. (2019), Pseudo-Hamiltonian neural networks Eidnes and Lye
(2024), structure preserving Matsubara et al. (2020); Sawant et al. (2023), and reduced order modelling Duan
and Hesthaven (2024). These methods often provide efficient and somewhat "accurate" predictions when
tested as an interpolation method in the space of input or boundary parameters. Such fast estimators are
beneficial when many predictions of a dynamic system is needed, for example in the shape optimization task
in fluid dynamics.

However, the data-driven estimators often fail to provide accurate solution to the dynamical sys-
tem when tested outside the training space, i.e. for extrapolation. Furthermore, given the regression-based
nature of these predictors, often they do not offer any error estimator in prediction. Since we already have
access to an arsenal of numerical methods in solving traditional governing equations, it is attractive to learn
the underlying governing equation given data instead. Once the governing equation is found, one can either
use the standard numerical methods for prediction, or train a PINN-like surrogate model for fast evaluation.
This way we guarantee the consistency with observed data, estimator for the numerical approximation,
and interoperability. Hence, learning the underlying physics given data has motivated a new branch in the
scientific machine learning for discovering the mathematical expression as the governing equation given data.

The wide literature of data-driven discovery of dynamical systems includes equation-free modelling Kevrekidis
et al. (2003), artificial neural networks González-García et al. (1998), nonlinear regression Voss et al. (1999),
empirical dynamic modeling Sugihara et al. (2012); Ye et al. (2015), modeling emergent behavior Roberts
(2014), automated inference of dynamics Schmidt et al. (2011); Daniels and Nemenman (2015a;b), normal
form identification in climate Majda et al. (2009), nonlinear Laplacian spectral analysis Giannakis and Majda
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(2012), modeling plasma physics Alves and Fiuza (2022), and Koopman analysis Mezić (2013) among others.
There has been a significant advancement in this field by combining symbolic regression with the evolutionary
algorithms Bongard and Lipson (2007); Schmidt and Lipson (2009); Tohme et al. (2022), which enable the
direct extraction of nonlinear dynamical system information from data. Furthermore, the concept of sparsity
Tibshirani (1996) has recently been employed to efficiently and robustly deduce the underlying principles of
dynamical systems Brunton et al. (2016); Mangan et al. (2016).

Related work. Next, we review several relevant works that have shaped the current landscape of discovering
PDEs from data:

PDE-FIND Rudy et al. (2017). This method has been developed to discover underlying partial differential
equation by minimizing the L2

2-norm point-wise error of the parameterized forward model from the data
using sparse regression. Estimating all the possible derivatives using Finite Difference, PDE-FIND constructs
a dictionary of possible terms and finds the underlying PDE by performing a sparse search using ridge
regression problem with hard thresholding, also known as STRidge optimization method. Several further
developments in the literature has been carried out based on this idea Champion et al. (2019); Kaheman et al.
(2020) including Weak-SINDy Messenger and Bortz (2021). In these methods, as the size (or dimension) of
the data set increases, the PDE discovery optimization problem based on point-wise error becomes extremely
expensive, forcing the user to arbitrarily reduce the size of data by resampling, or compressing the data using
proper orthogonal decomposition. Needles to say, in case of non-linear dynamics, such truncation of data can
introduce bias in prediction leading to finding a wrong PDE.

PDE-Net, PINN-SR, and PDE-LEARN. One of the issues with the PDE-FIND is the use of Finite
Difference in estimating the derivatives. This has motivated the idea of combining the PDE discovery
task with the PDE estimator that avoids the use of Finite Difference. In methods such as PDE-Net Long
et al. (2018; 2019), PDE-LEARN Stephany and Earls (2024) or PINN-SR Chen et al. (2021), the search for
weights/biases of a complicated neural network as a differentiable data-driven PDE estimator is combined
with the sparse search in the space of possible terms to find the coefficients of the underlying PDE. Combining
PDE discovery with data-driven estimation of PDEs makes these methods more expensive than PDE-FIND
in practice.

Hidden Physics Models Raissi and Karniadakis (2018). This method assumes that the relevant terms of
the governing PDE are already identified and finds its unknown parameters using Gaussian process regression
(GPR). While GPR is an accurate interpolator which offers an estimate for the uncertainty in prediction, its
training scales poorly with the size of the training data set as it requires inversion of the covariance matrix.

Contributions. In this paper, we introduce a novel approach for discovering PDEs from data based on the
well-known adjoint method, i.e. PDE-constrained optimization method. The idea is to formulate the objective
(or cost) functional such that the estimate function f minimizes the L2

2-norm error from the data points f∗

with the constraint that f is the solution to a parameterized PDE using the method of Lagrange multipliers.
Here, we consider a parameterized PDE in a general form and the task is to find all the parameters including
irrelevant ones. By finding the variational extremum of the cost functional with respect to the function f , we
obtain a backward-in-time evolution equation for the Lagrange multipliers (adjoint equations). Next, we
solve the forward parameterized PDE as well as the adjoint equations numerically. Having found estimates
of the Lagrange multipliers and solution to the forward model f , we can numerically compute the gradient
of the objective function with respect to the parameters of PDEs given data in a straightforward manner.
In particular, for a family of parameterized and nonlinear PDEs, we show how the corresponding adjoint
equations can be elegantly derived. We note that the adjoint method has been successfully used before as an
efficient method for uncertainty quantification Flath et al. (2011), shape optimization and sensitivity analysis
method in fluid mechanics Hughes et al. (1998); Jameson (2003); Caflisch et al. (2021) and plasma physics
Antonsen et al. (2019); Geraldini et al. (2021). Unlike the usual use of PDE-constrained adjoint optimization
where the governing equation is known, in this paper we are interested in finding the form along with the
coefficients of the PDE given data.

The remainder of the paper is organized as follows. First in Section 2, we introduce and derive the proposed
adjoint-based method of finding the underlying system of PDEs given data. Next in Section 3, we present
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our results on a wide variety of PDEs and compare the solution with the celebrated PDE-FIND in terms of
error and computational/training time. In Section 4, we discuss the limitations for the current version of our
approach and provide concluding remarks in Section 5.

2 Adjoint method for finding PDEs

In this section, we introduce the problem and derive the proposed adjoint method for finding governing
equations given data.

Problem setup. Assume we are given a data set on a spatial/temporal grid G =
⋃Nt

j=0 G(j) with G(j) =
{(x(k), t(j)) | k = 1, ..., Nx} for the vector of functions f∗ where k is the spatial index and j the time index
with t(Nt) = T being the final time. Here, x(k) ∈ Ω ⊂ Rn is spatial position inside the solution domain Ω, t(j)

denotes the j-th time that data is available, and output is a discrete map f∗ : G → RN . The goal is to find
the governing equations that accurately estimates f∗ at all points on G. In order to achieve this goal, we
formulate the problem using the method of Lagrange multipliers.

Adjoint method. For simplicity, let us first consider only the time interval t ∈ [t(j), t(j+1)]. Consider a
general a forward model L[·] that evolves an N -dimensional vector of sufficiently differentiable functions
f(x, t = t(j)) in t ∈ (t(j), t(j+1)] and x ∈ Ω where the i-th PDE is given by

Li[f ] := ∂tfi +
∑
d,p

αi,d,p∇(d)
x [fp] = 0 (1)

for i = 1, . . . , N , resulting in a system of N-PDEs, i.e. the i-th PDE Li predicts fi. Here, x = [x1, x2, . . . , xn]
is an n-dimensional (spatial) input vector, and f = [f1, f2, . . . , fN ] is an N-dimensional vector of functions.
We use the shorthand fi = fi(x, t) and f = f(x, t). Furthermore, p = [p1, . . . , pN ] and d = [d1, d2, . . . , dn]
are non-negative index vectors such that fp = fp1

1 fp2
2 · · · f

pN

N where pi for i = 1, ..., N denotes the power of
fi and

∇(d)
x [fp] := ∇(d1)

x1
∇(d2)

x2
· · · ∇(dn)

xn
[fp1

1 fp2
2 ...fpN

N ] , (2)

is an iterated differential operator acting on fp where ∇(dj)
xj for j = 1, ..., n indicates dj-th derivative in xj

dimension, and ∂tfi denotes the time derivative of the i-th function. We denote the vector of unknown
parameters by α = [αi,d,p](i,d,p)∈D, where D represents the domain of all valid combinations of i, d, and p.

Having written the forward model 1 as general as possible, the goal is to find the parameters α such that
f approximates the data points of f∗ at t = t(j+1) given the solution f = f∗ at t = t(j). To this end, we
formulate a semi-discrete objective (or cost) functional that minimizes the L2

2-norm error between what the
model predicts and the data f∗ on G(j+1), with the constraint that f solves the forward model in Eq. (1), i.e.

C[f ] =
N∑

i=1

( ∑
k

(f∗
i (x(k), t(j+1))− fi(x(k), t(j+1)))2

+
∫

λi(x, t)Li[f(x, t)]dxdt

)
+ ϵ0||α||22 , (3)

where ||.||2 denotes L2-norm, and ϵ0 is the regularization factor. We note that PDE discovery task is ill-posed
since the underlying PDE is not unique and the regularization term helps us find the PDE with the least
possible coefficients.

Clearly, given estimates of f and Lagrange multipliers λ = (λ1, λ2, . . . , λN ), the gradient of the
cost function with respect to model parameters can be simply computed via

∂C
∂αi,d,p

= (−1)|d|
∫

fp∇(d)
x [λi]dxdt + 2ϵ0αi,d,p (4)

where i = 1, ..., N and |d| = d1 + ... + dn, where |.| denotes L1-norm. Here, we used integration by parts and
imposed the condition that λ→ 0 on the boundaries of Ω at all time t ∈ [0, T ]. The compact support of λ
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is motivated by the fact that we consider boundary conditions as known. In case boundary conditions are
parameterized, we need to add another constraint to find its parameters.

The analytical expression 4 can be used for finding the parameters of PDE using in the gradient descent
method with update rule

αi,d,p ← αi,d,p − η
∂C

∂αi,d,p
(5)

for i = 1, . . . , N , where η = β min(∆x)|d|−dmax is the learning rate which includes a free parameter β and
scaling coefficient for each term of the PDE, and dmax = max(|d|) for all considered d. Let us also define
pmax = max(|p|) as the highest order in the forward PDE model. We note that since the terms of the PDEs
may have different scaling, the step size for the corresponding coefficient must be adjusted accordingly. Based
on our simulation studies, the gradient of the cost function is most sensitive to the highest order terms of the
PDE. In Appendix D, we give a justification for our choice of the learning rate η.

However, before we can use Eq. (4) and (5), we need to find λ, hence the adjoint equation. This can be
achieved by finding the functional extremum of the cost functional C with respect to f . First, we note that
the semi-discrete total variation of C can be derived as

δC =
N∑

i=1

( ∑
k

λi(x(k), t(j+1))δfi,x(k),t(j+1) −
∑

k

2(f∗
i (x(k), t(j+1))− fi(x(k), t(j+1)))δfi,x(k),t(j+1)

+
∫

(−∂λi

∂t
+

∑
d,p

(−1)|d|αi,d,p∇fi
[fp]∇(d)

x [λi])δfidxdt

)
where δfi denotes variation with respect to fi(x, t) in t ∈ (t(j), t(j+1)), and δfi,x(k),t(j+1) variation with respect
to fi(x = x(k), t = t(j+1)). In this derivation, we discretized the last integral resulting from integration by
parts in time using the same mesh as the one of data G(j+1). Here again, we used integration by parts and
imposed the condition that λ→ 0 on the boundaries of Ω at all time t ∈ [t(j), t(j+1)] for i = 1, ..., N . Note
that fi(x, t) is the output of i-th PDE.

Next, we find the optimums of C (and hence the adjoint equations) by taking the variational derivatives with
respect to fi and fi,x(k),t(j+1) , i.e.

δC
δfi

= 0 =⇒ ∂λi

∂t
=

∑
d,p

(−1)|d|αi,d,p∇fi
[fp]∇(d)

x [λi] (6)

and
δC

δfi,x(k),t(j+1)
= 0 =⇒ λi(x(k), t(j+1)) = 2(f∗

i (x(k), t(j+1))− fi(x(k), t(j+1))) (7)

for i = 1, ..., N and j = 0, ..., Nt− 1. We note that the adjoint equation 6 for the system of PDEs is backward
in time with the final condition at the time t = t(j+1) given by Eq. (7). In Appendices A and B, we provide a
detailed derivation of adjoint equation and its gradient. In order to make the notation clear, we also present
examples for adjoint equations in Appendix G. The adjoint equation is in the continuous form, while the final
condition is on the discrete points, i.e. on the grid G(j+1). In order to obtain the Lagrange multipliers in
t ∈ [t(j+1), t(j)), a numerical method appropriate for the forward 1 and adjoint equation 6 should be deployed.
Furthermore, the adjoint equation should have the same or coarser spatial discretization as G(j+1) to enforce
the final condition 7.

Training with smooth data set. The training procedure follows the standard gradient descent method.
We start by taking an initial guess for parameters α, e.g. here we take α = 0 initially. For each time interval
t ∈ [t(j), t(j+1)], first we solve the forward model 1 numerically to estimate f(x(k), t(j+1)) given the initial
condition

f(x(k), t(j)) = f∗(x(k), t(j)) . (8)
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Then, the adjoint Eq. 6 is solved backwards in time with the final time condition 7. Finally, the estimate
for parameters of the model is updated using Eq. 5. We repeat this for all time intervals j = 0, ..., Nt − 1
until convergence. In order to improve the search for coefficients and enforce the PDE identification, we also
deploy thresholding Blumensath and Davies (2009), i.e. set αi,d,p = 0 if |αi,d,p| < σ where σ is a user-defined
threshold, during and at the end of training, respectively. In Algorithm 1, we present a pseudocode for
finding the parameters of the system of PDEs using the Adjoint method (a flowchart is also shown in Fig. 18
of Appendix E). For the introduced hyperparameters, we note that β in the learning rate needs to be small
enough to avoid unstable intermediate guessed PDEs, ϵ0 must be large enough to ensure uniqueness in cases
where more than one solution may exist, and the thresholding should be applied only when solution to the
optimization is not improving anymore up to a user-defined tolerance γthr. For suggested default values,
please see the description of the algorithm. For experimental investigation on impact of these parameters for
a few examples, see Appendix F.

We note that the type of guessed PDE may change during the training, which adds numerical
complexity to the optimization and motivates the use of an appropriate solver for each type of guessed PDE,
e.g. Finite Volume method for hyperbolic and Finite Element method for Elliptic PDEs. For simplicity, in
this work we use the second-order Finite Difference method across the board to estimate the spatial and
Euler for the time derivative with small enough time step sizes in solving the forward/backward equations to
avoid blow-ups due to possible instabilities. See appendix C for the analysis on the numerical error for the
estimated adjoint gradient. We note that the adjoint method is most effective when there is some prior
knowledge of the underlying PDE type, and a suitable numerical method is deployed.

Algorithm 1 Finding system of PDEs using Adjoint method. Default threshold σ = 10−3 applied after
Nthr = 100 iterations, with tolerances γ = 10−9 and γthr = 10−6, and regularization factor ϵ0 = 10−12.

Input: data f∗, learning rate η, tolerance γ, threshold σ applied after Nthr, and ϵ0.
Initialize the parameters α = 0
repeat

for j = 0, . . . , Nt − 1 do
Estimate f in t ∈ (t(j), t(j+1)] by solving forward model (1) given initial condition (8)
Find λ in t ∈ [t(j), t(j+1)) by solving the adjoint equation in Eq. (6)
Compute the gradient using Eq. (4)
Update parameters α using Eq. (5)

end for
if Epochs > Nthr or convergence in α with γthr then

Thresholding: set αi = 0 for all i such that |αi| < σ
end if

until Convergence in α with tolerance γ
Output: α

Training with noisy data set. Often the data set comes with some noise. There are several pre-processing
steps that can be done to reduce the noise at the expense of introducing bias, for example removing high
frequencies using Fast Fourier Transform or removing small singular values from data set using Singular
Value Decomposition. However, we can also reduce the sensitivity of the training algorithm to the noise by
averaging the gradients before updating the parameters. Assuming that the noise is martingale, the Monte
Carlo averaging gives us the unbiased estimator for the expected value of the gradient over all the data set.
We adapt the training procedure by averaging gradients over all available data points and then updating the
parameters (see Algorithm 2 and the flowchart in Fig. 18 of Appendix E for more details). Clearly, this will
make the algorithm more robust at higher cost since the update happens only after seeing all the data.

3 Results

We demonstrate the validity of our proposed adjoint-based method in discovering PDEs given measurements
on a spatial-temporal grid. We have compared our approach to PDE-FIND in terms of error and time to
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Algorithm 2 Finding a system of PDEs using the Adjoint method with averaging for the computation of
gradients over the data set. Default threshold σ = 10−3 applied after Nthr = 100 iterations, with tolerances
γ = 10−9 and γthr = 10−6, and regularization factor ϵ0 = 10−12.

Input: data f∗, learning rate η, tolerance γ, threshold σ applied after Nthr, and ϵ0.
Initialize the parameters α = 0
repeat

for j = 0, . . . , Nt − 1 do
Estimate f in t ∈ (t(j), t(j+1)] by solving forward model (1) given initial condition (8)
Find λ in t ∈ [t(j), t(j+1)) by solving the adjoint equation in Eq. (6)
Compute the gradient g(j) = ∂C(j)/∂α using Eq. (4)

end for
Average the gradient E[∂C/∂α] =

∑
j g(j)/Nt

Update parameters α using Eq. (5) and E[∂C/∂α]
if Epochs > Nthr or convergence in α with γthr then

Thresholding: set αi = 0 for all i such that |αi| < σ
end if

until Convergence in α with tolerance γ
Output: α

convergence. All the results are obtained using a single core-thread of a 2.3 GHz Quad-Core Intel Core i7
CPU. In this paper, we report the execution time τ obtained with averaging over 10 independent runs and
we use error bars to show the standard deviation of the expected time, i.e. derror−bar =

√
E[(τ − E[τ ])2].

3.1 Considered PDEs

In this section, we consider the PDE discovery task given data from numerical solutions to a variety of
problems, including the Heat, Burgers’, Kuramoto Sivashinsky, Random Walk, and Reaction Diffusion
equations, summarized in Table 1.

Table 1: A summary of recovered PDEs from dataset using Adjoint and PDE-FIND method.
Problem

(Nt, Nx1 , Nx2 , ...) Method Ex. Time [s] Recovered PDE

Heat eq. (1D) Adjoint 2.14± 0.01 ft = fxx +O(10−12)
(128,128) PDE-FIND 2.66± 0.02 ft = fxx +O(10−5)

Heat eq. (2D) Adjoint 44.87± 1.63 ft = fx1x1 + fx2x2 +O(10−6)
(100,100,100) PDE-FIND 796.01± 11.94 ft = fx1x1 + fx2x2 +O(10−6)

Burgers’ eq. (1D) Adjoint 3.37± 0.24 ft = (f2)x +O(10−12)
(128,128) PDE-FIND 2.56± 0.01 ft = −0.036f + 0.094f3 + 2ffx + 0.002f3fx +O(10−4)

Burgers’ eq. (2D) Adjoint 250.4± 6.6 ft = (f2)x1x1 (f2)x2x2 +O(10−4)
(100,100,100) PDE-FIND 914.93± 8.32 ft = 1.998ffx1x1 + 1.998ffx2x2 +O(10−4)

KS eq. (1D) Adjoint 9.34± 1.2 ft = −0.5fxx + 0.5fxxxx + (f2)x + O(10−5)
(64,256) PDE-FIND 1.12± 0.11 ft = −0.5fxx + 0.5fxxxx + 1.972ffx + 0.042f +O(10−3)

Random Walk (1D) Adjoint 1.253± 0.38 ft + 1.025fx − 0.465fxx +O(10−2) = 0
(50,100) PDE-FIND 0.17± 0.09 ft + 0.798fx − 0.454fxx +O(10−2) = 0

Reaction Diffusion eqs. (2D) Adjoint 998.32± 14.66 ut = 0.1uxx + 0.2uyy + 0.3u− 0.3v3 − 0.1uv2 − 0.2u2v + 0.4u3 +O(10−11),
(200,70,70) vt = 0.4vxx + 0.3vyy + 0.2v + 0.1v3 − 0.2uv2 − 0.3u2v − 0.1u3 +O(10−10)

PDE-FIND 2234.54± 31.52 ut = 0.1uxx + 0.2uyy + 0.3u− 0.3v3 − 0.1uv2 − 0.2u2v + 0.4u3 +O(10−9),
vt = 0.4vxx + 0.3vyy + 0.2v + 0.1v3 − 0.2uv2 − 0.3u2v − 0.1u3 +O(10−8)
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3.1.1 Heat equation

As a first example, let us consider measured data collected from the solution to the heat equation, i.e.

∂f

∂t
+ D

∂2f

∂x2 = 0, (9)

with D = −1. The data is constructed using the Finite Difference method with initial condition
f(x, 0) = 5 sin(2πx)x(x − L) and a mesh with Nx = 100 nodes in x covering the domain Ω = [0, L] with
L = 1 and Nt = 100 steps in t with final time T = Nt∆t where ∆t = 0.05∆x2/|D| is the step size and
∆x = L/Nx is the mesh size in x.

We consider a system consisting of a single PDE (i.e. N = 1, f = f , and p = p) with one-dimensional input,
i.e. n = 1 and x = x ⊂ R, and d = d ∈ N. In order to construct a general forward model, here we consider
derivatives and polynomials with indices d, p ∈ {1, 2, 3} as the initial guess for the forward model. This leads
to 9 terms with unknown coefficients α that we find using the proposed adjoint method (an illustrative
derivation of the candidate terms can be found in Appendix G.1). While we expect to recover the coefficient
that corresponds to D, we expect all the other coefficients (denoted by α∗) to become negligible. That is
what we indeed observe in Fig. 1 where the error of the coefficient for each term is plotted against the
number of epochs.

Next, we compare the solution obtained via the adjoint method against PDE-FIND with STRidge optimization
method. Here, we test both methods in recovering the heat equation given data on the grid with discretization
(Nt, Nx) As shown in Fig. 1, the proposed adjoint method provides more accurate results across all data sizes.
We also point out that as the size of the data set increases, PDE-FIND with STRidge regression method
becomes more expensive, e.g. one order of magnitude more expensive than the adjoint method for the data
on a grid size (Nt, Nx) = (1000, 1000). In Table 2, we also compare the adjoint method with more recent
methods such as WeakSINDy and PDE-LEARN, where, to our surprise, PDE-FIND remains the strongest
alternative that justifies its use as the baseline method here.
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Figure 1: The estimated coefficient corresponding to D in heat equation (a) and the L1-norm error of all
considered coefficients (b) using the proposed Adjoint method with Nt = 100 and Nx = 100. Also, we
show L1-norm error of the estimated coefficients (c) and the execution time (d) using the proposed Adjoint
method (blue) and PDE-FIND method (red), given data on a grid with Nt ∈ {100, 500, 1000} steps in t, and
Nx ∈ {100, 1000} nodes in x.
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(Nt, Nx) Method Ex. Time [s] Recovered PDE

(128,128) Adjoint 2.14± 0.01 ft = fxx +O(10−12)
PDE-FIND 2.66± 0.02 ft = fxx +O(10−5)
WSINDy 0.20± 0.01 ft = 10.777fx +−20.701f3

x
PDE-LEARN 941.01± 2.13 ft = −0.004fx + 0.002fxx + 0.009fxxx − 0.006ffx − 0.007ffxx

−0.003(fx)2 − 0.004f2fx − 0.004f2fxx

Table 2: Comparison between Adjoint, PDE-FIND, WSINDy, and PDE-LEARN in recovering 1D Heat
equation from noise-free data.

Next, we consider the Heat equation in 2D, i.e.

∂f

∂t
+ D

(
∂2f

∂x2
1

+ ∂2f

∂x2
2

)
= 0 (10)

with the initial condition

f(x, 0) = exp(−b(x− xc)2) cos(2cπ(x− xc)2) (11)

where xc = (0.5, 0.5)T and coefficients b = c = 20, inside the domain x ∈ [0, 1]2, as depicted in Fig. 2. Again,
we have tested the adjoint method against PDE-FIND method for a variety of mesh sizes in Table 3. Overall,
the adjoint method seems to provide a more efficient solution at larger data sets and higher dimensions.
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Figure 2: The initial condition described in Eq. 11 on 100× 100 grid (a) and the evolution of the solution to
the 2D heat equation after 20, 40, and 60 time steps (b)-(d).

(Nt, Nx1 , Nx2 ) Method Ex. Time [s] Recovered PDE

(20,50,50) Adjoint 11.4 ft = fx1x1 + fx2x2 +O(10−5)
PDE-FIND 15.31 ft = fx1x1 + fx2x2 +O(10−5)

(20,100,100) Adjoint 21.96 ft = fx1x1 + fx2x2 +O(10−5)
PDE-FIND 75.27 ft = fx1x1 + fx2x2 +O(10−5)

(100,100,100) Adjoint 44.87 ft = fx1x1 + fx2x2 +O(10−6)
PDE-FIND 796.83 ft = fx1x1 + fx2x2 +O(10−6)

Table 3: Recovering 2D Heat equation using the Adjoint and PDE-FIND method given noise-free dataset for
a range of discretizations.

3.1.2 Burgers’ equation

As a nonlinear test case, let us consider the data from Burgers’ equation given by

∂f

∂t
+ ∂(Af2)

∂x
= 0 (12)
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where A = −1. The data is obtained with similar simulation setup as for heat equation (Section 3.1.1) except
for the time step, i.e. ∆t = 0.05∆x/|A|.

Similar to Section 3.1.1, we adopt a system of one PDE with one-dimensional input. We also consider
derivatives and polynomials with indices d, p ∈ {1, 2, 3} in the construction of the forward model. This leads
to 9 terms whose coefficients we find using the proposed adjoint method. As shown in Fig. 3, the proposed
adjoint method finds the correct coefficients, i.e. αd=1,p=2 that corresponds to D as well as all the irrelevant
ones denoted by α∗, up to machine accuracy in O(10) epochs.
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Figure 3: The estimated coefficient corresponding to A (left) and the L1-norm error of all considered
coefficients (right) given the discretized data of 1D Burgers’ equation during training.

Next, we compare the solution obtained from the adjoint method to the one from PDE-FIND using
STRidge optimization method. Here, we compare the error on coefficients and computational time between
the adjoint and PDE-FIND by repeating the task for the data set with increasing size, i.e. (Nt, Nx) ∈
{(100, 100), (1000, 100), (1000, 1000)}. As depicted in Fig. 4, the adjoint method provides us with more
accurate solution across the different mesh sizes. Regarding the computational cost, while PDE-FIND seems
faster on smaller data sets, as the size of the data grows, it becomes increasingly more expensive than the
adjoint method. Similar to the heat equation, for the mesh size (Nt, Nx) = (1000, 1000) we obtain one order
of magnitude speed-up compared to PDE-FIND. Again, we compare the adjoint method to WeakSINDy and
PDE-LEARN as more recent alternative methods. As shown in Table 4, to our surprise, PDE-FIND remains
the strongest alternative that justifies its use as the baseline method here.
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Figure 4: L1-norm error of the estimated coefficients (left) and the execution time (right) for discovering the
Burgers’ equation equation using the Adjoint method (blue) and PDE-FIND method (red), given data on a
grid with Nt ∈ {100, 1000} steps in t, and Nx ∈ {100, 1000} nodes in x.
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(Nt, Nx) Method Ex. Time [s] Recovered PDE

(128,128) Adjoint 3.37± 0.15 ft = f2
x +O(10−12)

PDE-FIND 2.56± 0.02 ft = 2ffx − 0.03f + 0.09f3 +O(10−4)
WSINDy 0.21± 0.05 ft = −0.003f2

xxx + 0.016f3
xx

PDE-LEARN 889.15± 6.23 ft = 0.08fx + 0.10fxx + 0.01fxxx + 0.03ffx + 0.06f2fx + 0.034ffxx

+0.06f2fxx − 0.05ffxxx − 0.04f2fxxx

Table 4: Comparison between the Adjoint, PDE-FIND, WSINDy, and PDE-LEARN in recovering the 1D
Burgers’ equation from noise-free data.

Next, we consider the Burgers’ equation in 2D, i.e.

∂f

∂t
+ A

(
∂f2

∂x1
+ ∂f2

∂x2

)
= 0 (13)

with A = −1 and the initial condition

f(x, 0) = exp(−b(x− xc)2) (14)

with xc = (0.5, 0.5)T and coefficients b = 30, inside the domain x ∈ [0, 1]2, as depicted in Fig. 5. Again, we
have tested the adjoint method against the PDE-FIND method in variety of mesh sizes as shown in Table 5.
We observe that the adjoint method remains computationally advantageous at larger data sets.
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Figure 5: Initial condition (left) described in Eq. 14 and the solution of 2D Burgers’ equation at final time
(right).

(Nt, Nx1 , Nx2 ) Method Ex. Time [s] Recovered PDE

(20,50,50) Adjoint 148.4 ft = 0.979f2
x1 + 0.988f2

x2 +O(10−4)
PDE-FIND 15.23 ft = 2.03ffx1 − 2.02ffx2 − 0.027f3fx1 − 0.029f2fx2

−0.035f3fx2 − 0.002fx1 − 0.002fx2 +O(10−4)

(20,100,100) Adjoint 145.6 ft = 0.989f2
x1 + 0.989f2

x2 + 0.004fx1 + 0.007f3
x1 + 0.004fx2 − 0.007f3

x2 +O(10−4)
PDE-FIND 85.34 ft = 2.01ffx1 + 2.01ffx2 − 0.027f3fx1 − 0.012f2fx1 − 0.012f2fx2

−0.004f3fx2 + 0.008f3 − 0.002fx1 − 0.002fx2 +O(10−4)

(100,100,100) Adjoint 250.4 ft = f2
x1 + f2

x2 +O(10−4)
PDE-FIND 914.93 ft = 1.998ffx1 + 1.998ffx2 +O(10−4)

Table 5: Recovering 2D Burgers’ equation using the Adjoint method without averaging Algorithm 1 and
PDE-FIND method given noise-free dataset for a range of discretizations.

10



Under review as submission to TMLR

3.1.3 Kuramoto Sivashinsky equation

As a more challenging test case, let us consider the recovery of the Kuramoto-Sivashinsky (KS) equation
given by

∂f

∂t
+ A

∂f2

∂x
+ B

∂2f

∂x2 + C
∂4f

∂x4 = 0 (15)

where A = −1, B = 0.5 and C = −0.5. The data is generated in a similar way to previous sections except for
the grid (Nt, Nx) = (64, 256) and the time step size ∆t = 0.01∆x4/|C|.

Here again, we adopt a system of one PDE with one-dimensional input. As a guess for the forward model, we
consider terms consisting of derivatives with indices d ∈ {1, 2, 3, 4} and polynomials with indices b ∈ {1, 2},
leading to 8 terms whose coefficients we find using the proposed adjoint method. As shown in Fig. 6, the
adjoint method finds the coefficient with error of O(10−5), yet achieving machine accuracy seems not possible.
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Figure 6: The estimated coefficients corresponding to A, B, C (left) and the L1-norm error of all considered
coefficients (right) given the discretized data of the KS equation during training without (top) and with
(bottom) active thresholding for Epochs > Nthr = 100.

Again, in Fig. 7 we make a comparison between the predicted PDE using the adjoint method against
PDE-FIND. In particular, we consider a data set on a temporal/spatial mesh of size (Nt, Nx) =
{(64, 256), (128, 512), (256, 1024)} and compare how the error and computational cost vary. Similar
to previous sections, the error is reported by comparing the obtained coefficients against the coefficients of
the exact PDE in L1-norm. Interestingly, the PDE-FIND method has 3 to 4 orders of magnitude larger error
compared to the adjoint method. Also, in terms of cost, the training time for PDE-FIND seems to grow at a
higher rate than the adjoint method as the (data) mesh size increases. Again, we made further comparison
with more recent methods such as WeakSINDy and PDE-LEARN. As shown in Table 6, PDE-FIND remains
the strongest alternative which justifies its use as the baseline method here.

11



Under review as submission to TMLR

(6
4,

25
6)

(1
28

,5
12

)

(2
56

,1
02

4)

(Nt, Nx)

10 5

10 4

10 3

10 2

Er
ro

r

Adjoint PDE-FIND

(6
4,

25
6)

(1
28

,5
12

)

(2
56

,1
02

4)

(Nt, Nx)

101

Ti
m

e 
(s

ec
)

Adjoint PDE-FIND

Figure 7: L1-norm error of the estimated coefficients (left) and the execution time (right) for discovering
the KS equation using the Adjoint method (blue) and PDE-FIND method (red), given data on a grid with
Nt ∈ {64, 128, 256} steps in t, Nx ∈ {256, 512, 1024} nodes in x.

(Nt, Nx) Method Ex. Time [s] Recovered PDE

(64,256) Adjoint 79.14± 2.31 ft = −0.5fxx + 0.5fxxxx + f2
x +O(10−8)

PDE-FIND 26.20± 3.11 ft = −0.5fxx + 0.5fxxxx + 1.972ffx + 0.042f + O(10−4)
WSINDy 0.20± 0.01 ft = −0.255f2

xxx

PDE-LEARN 892.08± 7.72 ft = 0.04f − 0.03f2 − 0.05fx + 0.02fxx + 0.05fxxx + 0.04fxxxx − 0.07ffx + 0.03f2fx

−0.04ffxx − 0.05f2fxx + 0.08ffxxx − 0.04f2fxxx + 0.07ffxxxx + 0.01f2fxxxx

Table 6: Comparison between Adjoint, PDE-FIND, WSINDy, and PDE-LEARN method in recovering the
Kuramoto Sivashinsky equation from data.

3.1.4 Random Walk

Next, let us consider the recovery of the governing equation on probability density function (PDF) given
samples of its underlying stochastic process. As an example, we consider the Itô process

dX = Adt +
√

2DdW (16)

where A = 1 is drift and D = 0.5 is the diffusion coefficient, and W denotes the standard Wiener process
with Var(dW ) = ∆t. We generate the data set by simulating the random walk using Euler-Maruyama scheme
starting from X(t = 0) = 0 for Nt = 50 steps with a time step size of ∆t = 0.01. We estimate the PDF using
histogram with Nx = 100 bins and Ns = 1000 samples.

Let us denote the distribution of X by f . Itô’s lemma gives us the Fokker-Planck equation

∂f

∂t
+ A

∂f

∂x
−D

∂2f

∂x2 = 0 . (17)

Given the data set for f on a mesh of size (Nt, Nx), we can use Finite Difference to compute the contributions
from derivatives of f in the governing law. Since this is one of the challenging test cases due to noise, here we
only consider three possible terms in the forward model, consisting of derivatives with indices d ∈ {1, 2, 3}
and polynomial power p = 1. In Fig. 8, we show how the error of finding the correct coefficients evolves
during training for the adjoint method. Clearly, the adjoint method seems to recover the true PDE with L1
error of O(10−2) in its coefficients.

In Fig. 9, we make a comparison with PDE-FIND for the same number and order of terms as the initial guess
for the PDE. We compare the two methods for a range of grid and sample sizes, i.e. Nt ∈ {50, 100}, Nx = 100,
and Ns ∈ {103, 104}. It turns out that the proposed adjoint method overall provides more accurate estimate
of the coefficients than PDE-FIND, though at a higher cost. In Table 7, we show the discovered PDEs for
both methods across the different discretizations.
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Figure 8: The estimated coefficients corresponding to A and D (left) and the L1-norm error of all considered
coefficients (right) of the Fokker-Planck equation as the governing law for the PDF associated with the
random walk during training.

Table 7: Recovery of the Fokker-Planck equation, i.e. ft + fx− 0.5fxx = 0, using the proposed adjoint method
against PDE-FIND method given samples of the underlying stochastic process for various discretization
parameters.

Nt Nx Ns Method Recovered PDE

50 100 1000 Adjoint ft + 1.025fx − 0.465fxx = 0
PDE-FIND ft + 0.798fx − 0.454fxx = 0

10000 Adjoint ft + 1.022fx − 0.495fxx = 0
PDE-FIND ft + 0.818fx − 0.496fxx = 0

100 100 1000 Adjoint ft + 1.010fx − 0.543fxx = 0
PDE-FIND ft + 0.863fx − 0.560fxx = 0

10000 Adjoint ft + 1.015fx − 0.589fxx = 0
PDE-FIND ft + 0.894fx − 0.612fxx = 0
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Figure 9: L1-norm error of the estimated coefficients (left) and the execution time (right) for discovering
the Fokker-Planck equation using the proposed Adjoint method (blue) and PDE-FIND method (red), given
samples of its underlying stochastic process with Nt ∈ {50, 100} steps in t, Nx = 100 histogram bins, and
Ns ∈ {103, 104} samples.
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(Nt, Nx) Method Ex. Time [s] Recovered PDE

(50,100) Adjoint 1.25± 0.01 ft + 1.025fx − 0.465fxx = 0
PDE-FIND 0.17± 0.02 ft + 0.798fx − 0.454fxx = 0
WSINDy 0.19± 0.01 ft = 7.8766f

PDE-LEARN 69.10± 2.13 ft = 0.0479fx + 0.0228fxx − 0.0014fxxx

Table 8: Comparison between Adjoint, PDE-FIND, WSINDy, and PDE-LEARN in recovering the Fokker-
Planck equation corresponding to the Random Walk from data.

3.1.5 Reaction Diffusion System of Equations

In order to show scalability and accuracy of the adjoint method for a system of PDEs in a higher dimensional
space, let us consider a system of PDEs given by

∂u

∂t
+ cu

0∇2
x1

[u] + cu
1∇2

x2
[u] + Ru(u, v) = 0, (18)

∂v

∂t
+ cv

0∇2
x1

[v] + cv
1∇2

x2
[v] + Rv(u, v) = 0 (19)

where

Ru(u, v) = cu
2 u + cu

3 u3 + cu
4 uv2 + cu

5 u2v + cu
6 v3 (20)

Rv(u, v) = cv
2v + cv

3v3 + cv
4vu2 + cv

5v2u + cv
6u3 (21)

We construct the data set by solving the system of PDEs Eqs. 18-19 using a 2nd order Finite Difference
scheme with initial values

u0 = a sin
(4πx1

L1

)
cos

(3πx2

L2

) (
L1x1 − x2

1
) (

L2x2 − x2
2
)

v0 = a cos
(4πx1

L1

)
sin

(3πx2

L2

) (
L1x1 − x2

1
) (

L2x2 − x2
2
)

where a = 100, and the coefficients

cu = [cu
i ]6i=0 = [−0.1,−0.2,−0.3,−0.4, 0.1, 0.2, 0.3]

cv = [cv
i ]6i=0 = [−0.4,−0.3,−0.2,−0.1, 0.3, 0.2, 0.1].

We generate data by solving the system of PDEs Eqs. (18)-(19) using the Finite Difference method and forward
Euler scheme for Nt = 25 steps with a time step size of ∆t = 10−6, and in the domain Ω = [0, L1]× [0, L2]
where L1 = L2 = 1 which is discretized using a uniform grid with Nx1 ×Nx2 = 502 nodes leading to mesh
size ∆x1 = ∆x2 = 0.02. In Fig. 10 we show the solution to the system at time T = Nt∆t for u and v.
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Figure 10: Solution to the reaction diffusion system of PDEs at time t = T for u (left) and v (right).

We consider a system consisting of two PDEs, i.e. N = dim(f) = dim(p) = 2, with two-dimensional input,
i.e. n = dim(x) = dim(d) = 2. Here, dim(f) = dim(Ima(f)), where Ima(·) denotes the image (or output) of
a function.
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Figure 11: L1-norm error in the estimated coefficients of the reaction diffusion system of PDEs during
training.
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Figure 12: L1-norm error in the estimated coefficients of the irrelevant terms compared to the true reaction
diffusion system of PDEs during training, i.e. ||e(α∗)||1 = ||α∗||1.

In order to use the developed adjoint method, we construct a guess forward system of PDEs (or forward
model) using derivatives up to 2nd order and polynomials of up to 3rd order. That is, dmax = 2 and pmax = 3.
This leads to 90 terms whose coefficients we find using the proposed adjoint method (an illustrative derivation
of the candidate terms can be found in Appendix G.2). The solution to the constructed model f ≈ [u, v] as
well as the adjoint equation for λ is found using the same discretization as the data set.

As shown in Fig. 11, the adjoint method finds the correct equations with error up to O(10−12). Furthermore,
the coefficients corresponding to the irrelevant terms α∗ tend to zero with error of O(10−11), see Fig. 12.

Furthermore, we have compared the adjoint method against PDE-FIND for a range of grid sizes in Fig. 14.
We observe that the cost of PDE-FIND grows with higher rate than adjoint method as the size of the data
set increases.

3.1.6 Wave equation

Consider wave equation

f(x, t) = sin(x− t) (22)

which is a solution to infinite PDEs. For example, one class of PDEs with solution f is

ft + kfx + (k − 1)fxxx + c(fxx + fxxxx) = 0 ∀k ∈ N and c ∈ R , (23)

defined in a domain x ∈ [0, 2π] and T = 1. We create a data set using the exact f on a grid with Nt = 10
time intervals and Nx = 100 spatial discretization points.
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Figure 14: Comparing the error and execution time of the adjoint method (blue) to PDE-FIND method (red)
against the size of the data set for the tolerance of 10−7 in the discovered coefficients.

Let us consider a similar setup as the heat equation example 3.1.1 with derivatives and polynomi-
als indices d ∈ {1, ..., 6} and p = 1 as the initial guess for the forward model. This leads to 6 terms with
unknown coefficients α. Here, we enable averaging and use a finer discretization in time (100 steps for
forward and backward solvers in each time interval) to cope with the instabilities of the Finite Difference
solver due to the inclusion of the high-order derivatives. We also disable thresholding except at the end of
the algorithm.
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Figure 13: Profile of f at t = 0 and t = 1 (left) and the evolution of considered coefficients during adjoint
optimization (right)

As shown in Fig. 13, the proposed Adjoint method returns the solution

ft + 0.996fx = 0 (24)

which is the PDE with the least number of terms compared to all possible PDEs. We note that for the same
problem setting, PDE-FIND identifies the same form of the PDE, i.e.

ft + 0.9897fx = 0 . (25)

3.2 Partial observations in time

Here, we investigate how the error of the discovery task increases when only a subset of the fine data set is
available. Consider the heat equation presented in section 3.1.1 and consider a data set created by solving
the exact PDE using the Finite Difference method with ∆t = T/Nt where Nt = 1000 and ∆x = L/Nx and
Nx = 1000.

Let us assume that we are only provided with a subset of this data set. As a test, let us take every ν
time step as the input for the PDE discovery task, where ν ∈ {1, 2, 4, 8, 16}. This corresponds to using
{100, 50, 25, 12.5, 6.25}% of the total data set. By doing so, the accuracy of the Finite Difference method in
estimating the time derivatives using the available data deteriorates, leading to large error in PDE discover
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Table 9: Recovering the heat equation given sparse dataset in time. Here we rounded the coefficients up to
three decimals.

%Nt Method Recovered PDE

100 Adjoint ft − fxx = 0.
PDE-FIND ft − fxx = 0.

50 Adjoint ft − fxx = 0.
PDE-FIND ft − 0.999fxx + 0.177f − 0.261f3 − 0.089ffx

−0.011f3fx − 0.003f2fxx − 0.001ffxxx = 0.

25 Adjoint ft − fxx = 0
PDE-FIND ft − 0.999fxx + 0.532f − 0.778f3 − 0.268ffx

−0.035f3fx − 0.010f2fxx − 0.003ffxxx = 0.

12.5 Adjoint ft − fxx = 0.
PDE-FIND ft − 0.999fxx + 1.264f − 1.863f3 − 0.638ffx − 0.081f3fx

−0.025f2fxx − 0.007ffxxx − 0.001f3fxxx = 0.

6.25 Adjoint ft − fxx = 0.
PDE-FIND ft − 0.999fxx + 2.769f − 4.051f3 − 1.398ffx − 0.185f3fx

−0.055f2fxx − 0.016ffxxx − 0.002f3fxxx = 0.

task for PDE-FIND method.

However, the adjoint method can use a finer mesh in time compared to the data set in computing
the forward and backward equations and only compare the solution to the data on the coarse mesh where
data is available. We use Nt = 1000 for the forward and backward solvers in the adjoint method, and impose
the final time condition where data is available. As shown in Table 9 and Fig. 15 the proposed adjoint
method is able to recover the exact PDE regardless of how sparse the data set is in time.

We emphasize that while adjoint method can use a finer discretization in time than the one for
data on G in solving forward and backward equations, it is bound to use similar or coarser spatial
discretization as G. This is due to the fact that the data points f∗ are used for the initial condition of the
forward model eq. 8, and the final condition of the backward adjoint equation eq. 7.
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Figure 15: Evolution of the L1-norm error in coefficients of all considered terms using adjoint method when
only (a) 50% and (b) 6.25% (b) of the data set is available. Error and execution time of the adjoint method
(blue) and PDE-FIND method (red) in finding the coefficients of true heat equation given sparse data set in
time in (c) and (d).

3.3 Sensitivity to noise

Let us investigate how the error increases once noise is added to the data set. In particular, we add noise to
each point of the data set for f∗ via f∗(1 + ϵ), where the noise to signal ratio is (ϵf∗)/f∗ = ϵ ∼ N (0, σ2)
with N (0, σ2) denoting a normal distribution with zero mean and standard deviation of σ. As test cases,
we revisit the heat (section 3.1.1) and Burgers’ equations (section 3.1.2) with added noise of ϵ with σ ∈
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{0.001, 0.005, 0.01, 0.1} %. Before searching for the PDE, we first denoise the data set using Singular Value
Decomposition and drop out terms with singular value below a threshold of O(10−4).

As shown in Figure 16, adding noise to the dataset deteriorates the accuracy in finding the correct coefficients
of the underlying PDE for both the adjoint and PDE-FIND method. We observe that the adjoint method,
both with and without gradient averaging, is less susceptible to noise compared to PDE-FIND, albeit at a
higher computational cost. Additionally, averaging the gradients in the adjoint method improves the accuracy
around two orders of magnitude at higher computational cost.
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Figure 16: Error and execution time of the adjoint method with (green) and without averaging the gradients
(blue), along with the PDE-FIND method (red) in finding the coefficients of the true PDE, i.e. heat equation
(a)-(c) and Burgers’ equation (b)-(d), given noisy data.

Let us again revisit the Heat and Burgers’ equation test cases in 2D, and compare the adjoint method
with averaging gradient algorithm 2 against PDE-FIND method without applying any noise reduction in
Table 10- 11. Although the accuracy of both methods deteriorates with noise, the adjoint method seems to
provide more reliable solution.

σ Denoised Method Ex. Time [s] Recovered PDE

0.1 % no Adjoint 108.5 ft = fx1x1 + fx2x2 + 0.002f3
x1x1 + 0.003f3

x2x2 +O(10−4)
yes 110.5 ft = fx1x1 + fx2x2 +O(10−4)

no PDE-FIND 235.40 ft = 1.003fx1x1 + 1.02fx2x2 + 14.44f + 37.70f2 + 0.05f2fx1x1
+0.14f3fx1x1 + 0.06f2fx2x2 + 0.15f3fx2x2 +O(10−3)

yes 227.1 ft = fx1x1 + fx2x2 +O(10−4)

1 % no Adjoint 110.2 ft = 0.963fx1x1 + 1.008fx2x2 + 0.147f3
x2x2 + 0.010f3

x1x1 + 0.002f2
x1x1 +O(10−4)

yes 109.19 ft = fx1x1 + fx2x2 + 0.024f2
x2 + 0.027f3

x2 + 0.031f3
x2x2 +O(10−3)

no PDE-FIND −∗ −∗

yes 245.3 ft = −0.36 + 1.01fx1x1 + 1.01fx2x2 + 57.08f + 110.54f2 + 32.68f3 + 1.78f2fx1
+3.20f3fx2 − 1.06ffx2 − 0.77ffx1 + 0.20f2fx1x1 + 0.44f3fx1x1

−0.10f2fx1x2 + 0.24f2fx2x2 + 0.64f3fx2x2 +O(10−2)

5 % no Adjoint 105.43 ft = 1.30fx1x1 + 1.32fx2x2 − 0.13fx1 + 0.50f2
x1 + 0.18f3

x1 − 0.23f2
x2

−0.19f3
x1 − 0.22f2

x1x1 − 0.20f2
x2x2 +O(10−2)

yes 106.21 ft = 1.06fx1x1 + 1.07fx2x2 + 0.91f3
x1x1 + 0.87f3

x2x2 + 0.12f2
x2 − 0.11f3

x1
−0.15f3

x3 + 0.11f2
x1x1 − 0.10f2

x2x2 +O(10−2)

no PDE-FIND −∗ −∗

yes 248.53 ft = 1771.33f − 2369.49f2 + 3086.75f3 + 4.82ffx1 + 11.41f2fx1 − 26.46f3fx1
−4.40ffx2 + 7.77f3fx2 − 1.47ffx1x1 + 7.40f2fx1x1 − 0.81fx1 + 0.34fx2

+1.45fx1x1 + 1.46fx2x2 +−1.99ffx2x2 + 7.37f2fx2x2 + 2.81f3fx2x2 +O(10−1)

Table 10: Recovering 2D Heat equation given noisy data on the grid (Nt, Nx1 , Nx2) = (50, 100, 100) using the
adjoint method with averaging and learning rate parameter β = 0.02 in Algorithm 2 and PDE-FIND. −∗:
Given the raw noisy data, PDE-FIND was not able to find any PDE, as it lead to run-time errors. Here, we
also report the discovered PDE for denoised data with SVD.
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σ Denoised Method Ex. Time [s] Recovered PDE

0.1 % no Adjoint 210.2 ft = 0.971f2
x1 + 0.968f2

x2 + 0.024f3
x1 + 0.027f3

x2 +O(10−3)
yes 214.09 ft = 0.995f2

x1 + 0.992f2
x2 +O(10−3)

no PDE-FIND 280.71 ft = 0.11fx2x2 − 42.29f + 140.06f2 − 65.64f3 + 0.21ffx1 + 4.51f2fx1 − 2.01f3fx1
+0.17ffx2 + 4.72f2fx2 − 2.14f3fx2 + 0.77ffx1x1 − 0.94f2fx1x1 + 0.31f3fx1x1

+0.79ffx2x2 − 1.01f2fx2x2 + 0.38f3fx2x2 +O(10−2)
yes 99.32 ft = 1.990ffx1 + 1.990ffx2 +O(10−3)

1 % no Adjoint 220.2 ft = 0.52f2
x1 + 0.51f2

x2 + 0.09fx1 + 0.41f3
x1 − 0.09fx1 + 0.51f3

x2 + 0.13fx2x2
−0.01f3

x1x1 − 0.13fx2x2 − 0.02f3
x2x2 +O(10−3)

yes 231.0 ft = 0.965f2
x1 + 0.948f2

x2 + 0.028f3
x1

1
+ 0.0118fx1

1
− 0.013fx1 − 0.032f3

x1
2

+O(10−3)

no PDE-FIND 279.41 ft = 0.18fx1x1 + 0.19fx2x2 − 53.15f + 171.85f2 − 83.15f3 + 3.22f2fx1
+3.24f2fx2 + 0.78ffx1x1 − 1.22f2fx1x1 + 0.57f3fx1x1 + 0.75ffx2x2

−1.23f2fx2x1 + 0.62f3fx2x2 +O(10−2)
yes 290.01 ft = −14.53f + 32.98f2 + 17.51f3 + 6.78f2fx2 + 6.51f3fx1 − 1.51ffx2 − 1.04f2fx1x1

+0.70ffx1x1 + 0.66f3fx1x1 + 0.69ffx2x2 +−0.92f2fx2x2 + 0.52f3fx2x2 +O(10−2)

5 % no Adjoint 240.9 ft = 0.515f2
x1 + 0.393f2

x2 + 1.193f3
x1 − 0.788f3

x2 − 0.142fx1
+0.788f3

x1 + 0.051f3
x1 − 0.0569f3

x2 +O(10−3)
yes 242.90 ft = 0.678f2

x1 + 0.509f2
x2 + 0.504f3

x1 + 0.445f3
x2 +O(10−2)

no PDE-FIND −∗ −∗

yes 288.91 ft = 171.85f2 − 83.15f3 − 53.15f + 3.22f2fx1 + 3.24f2fx2 − 1.23f2fx2x2
−1.22f2fx1x1 + 0.19fx2x2 + 0.18fx1x1 + 0.78ffx1x1 + 0.57f3fx1x1

+0.75ffx2x2 + 0.62f3fx2x2 +O(10−2)

Table 11: Recovering 2D Burgers’ equation given raw noisy data on the grid (Nt, Nx1 , Nx2) = (50, 100, 100)
using the adjoint method with averaging and learning rate parameter β = 0.01 Algorithm 2 and PDE-FIND.
−∗: Given the raw noisy data, PDE-FIND was not able to find any PDE, as it lead to run-time errors. Here,
we also report the discovered PDE given noisy dataset that is denoised using SVD.

3.4 Addressing ill-posedness

There may exist more than one PDE that replicates the data set. Therefore, the PDE discovery task is
ill-posed due to the lack of uniqueness in the solution. This is an indication that further physically motivated
constraints are needed to narrow the search space to find the desired PDE. However, among all possible
PDEs, which PDE is found by the Adjoint method with the loss function defined as Eq. 3?

To answer this question, let us consider a simple example of the wave equation

f(x, t) = sin(x− t) (26)

which is a solution to infinite PDEs. For example, one class of PDEs with solution f is

ft + kfx + (k − 1)fxxx + c(fxx + fxxxx) = 0 ∀k ∈ N, c ∈ R (27)

defined in a domain x ∈ [0, 2π] and T = 1. We create a data set using the exact f on a grid with Nt = 10
time intervals and Nx = 100 spatial discretization points. Let us consider a similar setup as the heat equation
example 3.1.1 with derivatives and polynomials indices d ∈ {1, ..., 6} and p = 1 as the initial guess for the
forward model. This leads to 6 terms with unknown coefficients α. Here, we enable averaging and use a finer
discretization in time (100 steps for forward and backward solvers in each time interval) to cope with the
instabilities of the Finite Difference solver due to the inclusion of the high-order derivatives. We also disable
thresholding except at the end of the algorithm.

The proposed Adjoint method returns the solution

ft + 0.996fx = 0 (28)

which is the PDE with the least number of terms compared to all possible PDEs. We note that for the same
problem setting, PDE-FIND finds

ft + 0.9897fx = 0 . (29)
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Figure 17: The adjoint method applied to the Burgers’ equation for complete (top) and incomplete (bottom)
space of guessed PDEs.

The identified form of PDE can be explained by the use of regularization term in the cost function 3, which
enforces the minimization of the PDE coefficients. Clearly, the regularization term may be changed to find
other possible solutions of this ill-posed problem.

3.5 Incomplete guessed PDE space

In this section, we investigate the outcome of the adjoint method when the exact terms are not included in
the initial guessed PDE form. Here, we define the space of PDE where the exact terms are included in the
general forward model 1 as complete. If the considered general form of PDE 1 does not include all the terms
of the exact PDE, we denote that as an incomplete guessed PDE space.

Let us take the data from the numerical solution to Burgers’ equation used in section 3.1.2 with discretization
Nt = Nx = 100. For the complete forward model, we again consider derivatives and polynomials with indices
d, p ∈ {1, 2, 3} in the construction of the forward model. This leads to 9 terms whose coefficients we find
using the proposed adjoint method. For the incomplete space of PDE, we take derivatives and polynomials
with indices as d ∈ {1, 2, 3} and p ∈ {1, 3}, leading to 6 terms. Clearly, the incomplete guessed PDE space
does not include the term αd=1,p=2∂f2/∂x. Now, we would like to see which PDE is returned by the adjoint
method.

In Figure 17, we made a comparison between the evolution of coefficients and L2 norm error of the estimated
forward model against the data. While the complete space monotonically converges to the exact solution up
to machine accuracy, the incomplete space of PDE delivers another PDE, i.e.

∂f

∂t
+ ∂2

∂x2 (0.04f − 0.01f3) = 0, (30)

with the relative L2 error of O(10−5) between forward model estimation and the data points. The fact
that the L2 error between f and f∗ does not decrease is an indication that the considered space of PDE is
incomplete and additional terms must be included. We note that here we assumed there is no noise in the
data set. However, in the presence of noise, the L2 error between f and f∗ may stagnate at the noise level,
which makes the analysis on the completeness of the PDE space more challenging.

4 Discussion

Below we highlight and discuss strengths and weaknesses of the proposed adjoint method.
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Strengths. The proposed method has several strengths:

1. The proposed adjoint-based method of discovering PDEs can provides coefficients of the true governing
equation with significant accuracy.

2. Since the gradient of the cost function with respect to parameters are derived analytically, the
optimization problem converges fast. In particular, the adjoint method becomes cheaper than
PDE-FIND as the size of the data set increases. The adjoint method by construction finds the
optimal relation between the gradient of the cost function and the error in the data points. This was
achieved by finding the extremum of the objective functional using the variational derivative. We
note that a clear difference from the point-wise loss ||f − f∗||2 equipped with backpropagation used
in the PDE-FIND method is that the adjoint method weights the error at discrete points with the
Lagrange multipliers; see Eq. 4 and the final condition Eq. 7.

3. Since the adjoint method uses a PDE solver to find the underlying governing equation, there is a
guarantee that the recovered PDE has a solution and can be solved numerically.

4. The adjoint method can use a finer mesh in time compared to the available discretization of the data
set. This allows an accurate recovery of the underlying PDE compared to the PDE-FIND, where the
error in the latter increases as the data set gets coarser since it estimates derivatives directly (either
with Finite Difference or a polynomial fit) using the given data set.

Weaknesses. Our proposed method has some limitations:

1. In order to use the proposed adjoint method for discovering PDEs, a general solver of PDEs needs
to be implemented. Here, we used Finite Differences which can be replaced with more advance
solvers. Clearly, the proposed adjoint method is most effective when there is a prior knowledge of the
underlying PDE form, and an appropriate numerical solver is deployed. We note that an inherent
limitation of the proposed adjoint method is the possibility of encountering either ill-posed forward
or backward equations during optimization, which limits the time step size.

2. In this work, we used the same spatial discretization as the input data. If the spatial grid of input
data is too coarse for the PDE solver, one has to use interpolation to estimate the data on a finer
spatial grid that is more appropriate for the PDE solver.

3. In this work, we made the assumption that the underlying PDE can be solved numerically. This can
be a limitation when there are no stable numerical methods to solve the true PDE. In this scenario,
the proposed method may find another PDE that is solvable and fits to the data with a notable error.

4. Similar to PDE-FIND and similar symbolic regression methods, the Adjoint method considers a
library of symbolic terms for the PDE. This can be a limitation when no prior information about the
underlying dynamics is available.

5 Conclusion

In this work, we introduce a novel mathematical method for the discovery of partial differential equations
given data using the adjoint method. By formulating the optimization problem in the variational form using
the method of Lagrange multipliers, we find an analytic expression for the gradient of the cost function
with respect to the parameters of the PDE as a function of the Lagrange multipliers and the forward model
estimate. Then, using variational calculus, we find a backwards-in-time evolution equation for the Lagrange
multipliers which incorporates the error with a source term (the adjoint equation). Hence, we can use the
same solver for both forward model and the backward Lagrange equations. Here we used Finite Differences
to estimate the spatial derivatives and forward Euler for the time derivatives, which indeed can be replaced
with more stable and advanced solvers.

We compared the proposed adjoint method against PDE-FIND in several test cases. While PDE-FIND seems
to be faster for small size problems, we observe that the adjoint method equipped with forward/backward
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solvers becomes faster than PDE-FIND as the size of the data set increases. Also, the adjoint method
can provide machine-accuracy in identifying and finding the coefficients when the data set is noise-free.
Furthermore, in the case of discovering PDEs for PDFs given its samples, both methods seem to suffer
enormously form noise/bias associated with the finite number of samples and the Finite Difference on
histogram. This motivates the use of smooth and least biased density estimator in these methods such as
Tohme et al. (2023) in future work. In the future work, we intend to combine the adjoint-based method for
the discovery of PDE with PINNs as the solver instead of Finite Difference method. This would allow us to
handle noisy and sparse data as well as deploying larger time steps in estimating the forward and backward
solvers.
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A Derivation of the Adjoint equation

In this section, we provide a detailed derivation of the adjoint equations presented in this paper. Let us
consider the forward model

∂tfi +
∑
d,p

αi,d,p∇(d)
x [fp] = 0 (31)

for i = 1, ..., N . In order to find the parameters αi,d,p of the such model, we use method of Lagrange
multipliers to formulate a cost functional for the function f that has the minimum error from the data points
f∗ with the constraint that f also solves the forward model. For simplicity, let us consider the cost functional
only within each time interval [t(j), t(j+1)], i.e.

C[f ] =
N∑

i=1

( ∑
k

(f∗
i (x(k), t(j+1))− fi(x(k), t(j+1)))2

︸ ︷︷ ︸
I

+
∫

λi(x, t)Li[f(x, t)]dxdt︸ ︷︷ ︸
J

)
+ ϵ0||α||22 . (32)

Assuming the solution f and the Lagrange multipliers λ are sufficiently smooth, we derive functional
derivatives, more precisely Gateaux derivatives Giaquinta and Hildebrandt (2004), of C with respect to f
within the time interval [t(j), t(j+1)]. We perform these operations first for the term denoted by I,

δI[f ] = lim
ϵ→0

( d

dϵ
I[f + ϵδfiei]) (33)

= lim
ϵ→0

( d

dϵ

∑
k

(f∗
i (x(k), t(j+1))− fi(x(k), t(j+1))− ϵδfi(x(k), t(j+1)))2) (34)

= lim
ϵ→0

(
∑

k

−2δfi(x(k), t(j+1))(f∗
i (x(k), t(j+1))− fi(x(k), t(j+1))− ϵδfi(x(k), t(j+1)))) (35)

=
∑

k

−2δfi(x(k), t(j+1))(f∗
i (x(k), t(j+1))− fi(x(k), t(j+1))) (36)
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and the second term denoted by J ,

δJ [f ] = lim
ϵ→0

( d

dϵ
J [f + ϵδfiei]) (37)

= lim
ϵ→0

( d

dϵ

∫
λiLi[f + ϵδfiei]dxdt) (38)

= lim
ϵ→0

( d

dϵ

∫
λi∂t[fi + ϵδfi] + λi

∑
d,p

αi,d,p∇(d)
x [fp1

1 fp1
2 ...(fi + ϵδfi)pi ...fpN

N ]dxdt) (39)

= lim
ϵ→0

( d

dϵ

∫
−∂t[λi](fi + ϵδfi) +

∑
d,p

(−1)|d|αi,d,p∇(d)
x [λi]fp1

1 fp1
2 ...(fi + ϵδfi)pi ...fpN

N dxdt

+ d

dϵ
(λi(fi + ϵδfi))

∣∣∣t(j+1)

t(j)
) (40)

= lim
ϵ→0

(
∫
−∂t[λi]δfi +

∑
d,p

(−1)|d|αi,d,p piδfif
p1
1 fp1

2 ...(fi + ϵδfi)pi−1...fpN

N ∇
(d)
x [λi]dxdt)

+ (λiδfi)
∣∣∣t(j+1)

t(j)
) (41)

=
∫

δfi

−∂t[λi] +
∑
d,p

(−1)|d|αi,d,p pi
fp

fi
∇(d)

x [λi]

 dxdt + (λiδfi)
∣∣∣t(j+1)

t(j)
(42)

=
∫

δfi

−∂t[λi] +
∑
d,p

(−1)|d|αi,d,p∇fi [fp]∇(d)
x [λi]

 dxdt + λi(x, t(j+1))δfi(x, t(j+1)) . (43)

Here, ei denotes the standard basis vector in the direction of ith-dimension. In this derivation, we used
integration by parts, the divergence theorem, and considered compact support for λ in the spatial solution
domain Ω, i.e. λ→ 0 on the boundaries ∂Ω. Since we assume that the solution at the initial time is given,
there is no variation of C at the beginning of the time interval, that is, δfi(x, t(j)) = 0. Hence, the total
variation of the cost functional with respect to the function f for the time interval t ∈ (t(j), t(j+1)] becomes

δC[f ] =
N∑

i=1

(
−

∑
k

2(f∗
i (x(k), t(j+1))− fi(x(k), t(j+1)))δfi,x(k),t(j+1)

+
∫

(−∂λi

∂t
+

∑
d,p

(−1)|d|αi,d,p∇fi
[fp]∇(d)

x [λi])δfidxdt

+
∑

k

λi(x(k), t(j+1))δfi,x(k),t(j+1)

)
. (44)

Now that have found the total variation of the cost functional C with respect to f , we can find the adjoint
equation by considering only variation with respect to f in t ∈ (t(j), t(j+1)) and ignoring δfi,x(k),t(j+1) , leading
to

δC[f ]
∣∣∣
f(x,t(j+1))

= 0 (45)

=⇒
∫ (

− ∂λi

∂t
+

∑
d,p

(−1)|d|αi,d,p∇fi
[fp]∇(d)

x [λi]
)

δfidxdt = 0 (46)

=⇒ ∂λi

∂t
=

∑
d,p

(−1)|d|αi,d,p∇fi [fp]∇(d)
x [λi] . (47)

26



Under review as submission to TMLR

This equation is called adjoint equation presented in equation 6. Similarly, we can find the final condition for
the adjoint equation by only considering variation of f at final time t = t(j+1) and ignoring δfi which we
used to denote the variation of fi for t ∈ (t(j), t(j+1)), leading to

δC[f ]
∣∣∣
f(x,t) ∀t∈(t(j),t(j+1))

= 0 =⇒ λi(x(k), t(j+1)) = 2(f∗
i (x(k), t(j+1))− fi(x(k), t(j+1))) (48)

for i = 1, ..., N and j = 0, ..., Nt − 1.

B Derivation of the Adjoint gradient with respect to PDE parameters

Consider the cost functional

C[f ] =
N∑

i=1

( ∑
k

(f∗
i (x(k), t(j+1))− fi(x(k), t(j+1)))2 +

∫
λi(x, t)Li[f(x, t)]dxdt

)
+ ϵ0||α||22 . (49)

where

Li[f ] := ∂tfi +
∑
d,p

αi,d,p∇(d)
x [fp] . (50)

Assume that we have solved the adjoint equation equation 6 and found the Lagrange multipliers λ for each
time interval [t(j), t(j+1)]. Next, we can find the gradient of C with respect to PDE parameters simply by

∂C
∂αi,d,p

=
∫

λi∇(d)
x [fp]dxdt + 2ϵ0αi,d,p. (51)

Using integration by parts, Divergence theorem, and the fact that λ has a compact support on the boundaries,
we obtain

∂C
∂αi,d,p

=
∫
∇(d)

x [λif
p]dxdt + (−1)|d|

∫
fp∇(d)

x [λi]dxdt + 2ϵ0αi,d,p (52)

= (−1)|d|
∫

fp∇(d)
x [λi]dxdt + 2ϵ0αi,d,p . (53)

C Error in the numerical estimate of the Adjoint gradient

Consider the second-order central finite difference scheme as spatial and the first-order Euler as the temporal
discretization scheme for the forward equation 1 and backward equations equation 6. Let us denote the
discretized approximation of the solution with f̂ and λ̂, leading to

f = f̂ +O(h2) +O(∆t) (54)
λ = λ̂ +O(h2) +O(∆t) (55)

where h is the spatial spacing and ∆t is the time step size. By plugging the discretization into equation 4,
and using the same second-order numerical integration scheme in x and the first-order scheme in t, it can be
shown that

∂C
∂αi,d,p

= (−1)|d|
∫

(f̂ +O(h2) +O(∆t))p (∇̂(d)
x [λi] +O(h2) +O(∆t))dxdt + 2ϵ0αi,d,p (56)

≈ (−1)|d|
∫

f̂p ∇̂(d)
x [λi]dxdt +O(h2) +O(∆t) + 2ϵ0αi,d,p (57)

≈ ∂̂C
∂αi,d,p

+O(h2) +O(∆t) (58)
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where ∂̂C
∂αi,d,p

denotes the discretized estimate of the gradient of cost function. Therefore, the adjoint estimate

used in this work is second order in x and first order in t. Clearly, this may be improved using stable
higher-order scheme. Interestingly, the accuracy of the adjoint gradient is only a function of mesh spacing
and time step size, and not number of data points.

D Justification for the choice of the learning rate

In the proposed adjoint method, we considered the update rule

αi,d,p ← αi,d,p − η
∂C

∂αi,d,p
(59)

for i = 1, . . . , N . Here, we give a justification for our choice of the learning parameter η.

From the expression for the gradient of cost function with respect to parameters 4, i.e.

∂C
∂αi,d,p

= (−1)|d|
∫

fp∇(d)
x [λi]dxdt + 2ϵ0αi,d,p, (60)

we can see that ∣∣ ∂C
∂αi,d,p

∣∣ = O(∇(d)
x dx) (61)

≤ O(h−|d|+1) (62)

where h = min(∆x). So, the magnitude of the gradient scales exponentially with the order of the derivative
d. The highest order terms, i.e. the terms with d = dmax = max(|d|), have the largest magnitude for their
gradients. This means that by taking a constant learning rate η, the adjoint method would find the coefficients
of the highest order terms first. This effect leads to the non-uniform convergence of the adjoint method.

In order to enforce uniform convergence on all PDE parameters, in this paper we consider

η = β min(∆x)|d|−dmax (63)

as the learning rate which encodes the scaling with respect to the order of derivative for each PDE term.
With this choice of learning rate, we have

η
∣∣ ∂C
∂αi,d,p

∣∣ ≤ O(h|d|−dmax)O(h−|d|+1) (64)

≤ O(h−dmax+1) , (65)

for all i, d, p. Hence, our choice of η, i.e. Eq. 63, enforces uniform convergence on all PDE parameters.

E Flowcharts of Adjoint method

Here, we present flowcharts to illustrate the proposed adjoint algorithms 1-2 with and without averaging the
gradients in Fig. 18.

F Impact of hyperparameters on adjoint method

In this section, we study the impact of some of the hyperparameters used in the adjoint algorithm. We repeat
the PDE discovery experiment for Burgers’s and Kuramoto Sivashinsky equation with data on a grid with
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Figure 18: Training flowchart of the Adjoint method in finding PDEs (left) without and (right) with gradient
averaging.
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Nx = Nt = 100, as described in 3.1.2 and 3.1.3. We check the error in the outcome coefficients and the
solution of estimated forward model compared to the data.

As shown in Figure 19, by increasing the regularization factor ϵ0, the optimization problem seems to converge
faster to a stationary solution. In case of Burgers’ equation, we considered ϵ0 ∈ {10−4, 10−8, 10−12, 10−16},
where for all values of ϵ0 the exact solution is recovered. However, in the case of Kuramoto Sivashinsky
with ϵ0 ∈ {10−10, 10−12, 10−14, 10−16}, the solution seems to be more sensitive to ϵ0. Here, we fix the other
hyperparameters γthr = 10−16 and β = 2 × 10−3 for the Burgers’s equation and β = 20 for Kuramoto
Sivashinsky equation. We observe that high regularization factor deteriorates the accuracy, while stabilizing
the regression problem.

Next, we investigate how the error changes with the thresholding tolerance where γthr ∈
{10−4, 10−8, 10−12, 10−16}. Here, we fix the other hyperparameters ϵ0 = 10−16 and β = 2 × 10−3 for
the Burgers’s equation and β = 20 for Kuramoto Sivashinsky equation. Although using smaller γthr allows
faster convergence to a stationary solution almost in all cases, we remind the reader that γthr should be large
enough to allow enough training of the coefficients before truncating terms. In other words, the user should
avoid trivial scenarios where the initial guesses for coefficients α are zero and the thresholding is applied
from the very beginning of the training.
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Figure 19: Impact of regularization factor ϵ0 and thresholding tolerance γthr on the error of adjoint method
for Burgers’ equation (a-d) and Kuramoto Sivashinsky equation (e-h).

Finally, we show the impact of the free parameter β in the learning rate on the resulting PDE discovered by the
adjoint method. We compared the solution of adjoint method using β ∈ {10−3, 2× 10−3, 3× 10−3, 4× 10−3}
for the Burgers’ equation, and β ∈ {2, 5, 10, 20} for the Kuramoto Sivashinsky equation. Also, we fix the
other hyperparameters γthr = ϵ0 = 10−16. As shown in Figure 20, regardless of the value of β, adjoint method
delivers the same solution. However, larger values of β lead to faster convergence to the solution, if the
numerical solver does not become unstable. The upper bound of β is limited by the stability of the guessed
PDE, and can be found with try-and-error.
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Figure 20: Impact of the free parameter β in the learning rate on the error of adjoint method for Burgers’
equation (a-b) and Kuramoto Sivashinsky equation (c-d).

G Illustration of deployed notation for the considered cases.

Although the proposed method and its algorithm can be and has been computed in an automated fashion,
here we show two detailed illustrative examples for 1-dimensional and 2-dimensional cases presented in
Section 3 for the sake of better understanding the used notation and how the library of candidate terms looks
like.

G.1 Heat and Burgers’ Equations

As mentioned in Sections 3.1.1 and 3.1.2, for these two cases, we consider a system consisting of a single
PDE, i.e. N = dim(f) = dim(p) = 1 where f = f and p = p, in a one-dimensional input space, i.e.
n = dim(x) = dim(d) = 1 where x = x, and d = d. In addition, we consider candidate terms consisting of
derivatives with indices d ∈ {1, 2, 3} and polynomials with indices p ∈ {1, 2, 3}). In other words, dmax = 3
and pmax = 3. The resulting forward model in Eq. 1 takes the form

L[f ] = ∂f

∂t
+

3∑
d=1

3∑
p=1

αd,p

∂d
(
fp

)
∂xd

= ∂f

∂t
+ α1,1

∂f

∂x
+ α1,2

∂
(
f2)

∂x
+ α1,3

∂
(
f3)

∂x

+ α2,1
∂2f

∂x2 + α2,2
∂2(

f2)
∂x2 + α2,3

∂2(
f3)

∂x2

+ α3,1
∂3f

∂x3 + α3,2
∂3(

f2)
∂x3 + α3,3

∂3(
f3)

∂x3 (66)

where αd,p denotes the parameter corresponding to the term with d-th derivative and p-th polynomial order.
As we can observe, we have 9 terms with unknown coefficients α = [αd,p]d∈{1,2,3},p∈{1,2,3} that we aim to
find using the proposed adjoint method.

The cost functional in this case is simply

C =
∑
j,k

(f∗(x(k), t(j))− f(x(k), t(j)))2
+

∫
λ(x, t)L[f(x, t)]dxdt + ϵ0||α||22 . (67)

Letting variational derivatives of C with respect to f to be zero, and using integration by parts, the
corresponding adjoint equation can be obtained as
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∂λ

∂t
=

3∑
d=1

3∑
p=1

(−1)dαd,p

∂
(
fp

)
∂f

∂dλ

∂xd

=− α1,1
∂λ

∂x
− α1,2

(
2f

)∂λ

∂x
− α1,3

(
3f2)∂λ

∂x

+ α2,1
∂2λ

∂x2 + α2,2
(
2f

)∂2λ

∂x2 + α2,3
(
3f2)∂2λ

∂x2

− α3,1
∂3λ

∂x3 − α3,2
(
2f

)∂3λ

∂x3 − α3,3
(
3f2)∂3λ

∂x3 (68)

with final condition λ(x(k), t(j+1)) = 2(f∗(x(k), t(j+1)) − f(x(k), t(j+1))) for all j, k. The parameters α are
then found using the gradient descent method with update rule

αd,p ← αd,p − η
∂C

∂αd,p
(69)

where η = β min(∆x)d−dmax and ∂C
∂αd,p

= (−1)d

∫
fp ∂dλ

∂xd
dxdt + 2ϵ0αd,p . (70)

This leads to the update rule for each coefficient, for example

α1,1 ← α1,1 −
β

min(∆x)2

∫
f

∂λ

∂x
dxdt− 2βϵ0α1,1

α1,2 ← α1,2 −
β

min(∆x)2

∫
f2 ∂λ

∂x
dxdt− 2βϵ0α1,2

α1,3 ← α1,3 −
β

min(∆x)2

∫
f3 ∂λ

∂x
dxdt− 2βϵ0α1,3 .

G.2 Reaction Diffusion System of Equations

As mentioned in Section 3.1.5, for this case, we consider a system consisting of two PDEs, i.e. N =
dim(f) = dim(p) = 2 where f = [f1, f2] and p = [p1, p2], in a two-dimensional input space, i.e. n =
dim(x) = dim(d) = 2 where x = [x1, x2], and d = [d1, d2]. In addition, we consider candidate terms
with derivatives such that d ∈ Dd = {[0, 0], [1, 0], [0, 1], [2, 0], [0, 2]} and polynomials such that p ∈ Dp =
{[1, 0], [0, 1], [1, 1], [2, 0], [0, 2], [2, 1], [1, 2], [3, 0], [0, 3]}. In other words, dmax = 2 and pmax = 3. The resulting
forward model in Eq. 1 takes the form

Li[f ] = ∂tfi +
∑
d,p

αi,d,p∇(d)
x [fp] (71)

where i ∈ {1, 2}, fp = fp1
1 fp2

2 and ∇(d)
x = ∇(d1)

x1 ∇
(d2)
x2 . This is equivalent to

Li[f1, f2] = ∂fi

∂t
+

∑
[d1,d2]∈Dd

∑
[p1,p2]∈Dp

αi,[d1,d2],[p1,p2]
∂ d1+d2

(
fp1

1 fp2
2

)
∂xd1

1 ∂xd2
2

= ∂fi

∂t
+ αi,[0,0],[1,0]f1 + αi,[0,0],[0,1]f2 + αi,[0,0],[1,1]f1f2 + . . . + αi,[0,0],[0,3]f

3
2

+ αi,[1,0],[1,0]
∂f1

∂x1
+ αi,[1,0],[0,1]

∂f2

∂x1
+ αi,[1,0],[1,1]

∂
(
f1f2

)
∂x1

+ . . . + αi,[1,0],[0,3]
∂

(
f3

2
)

∂x1

+ . . .

+ αi,[0,2],[1,0]
∂2f1

∂x2
2

+ αi,[0,2],[0,1]
∂2f2

∂x2
2

+ αi,[0,2],[1,1]
∂2(

f1f2
)

∂x2
2

+ . . . + αi,[0,2],[0,3]
∂2(

f3
2
)

∂x2
2
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where i ∈ {1, 2}. As we can observe, we have |Dd| × |Dp| = 5 × 9 = 45 terms with unknown coefficients
αi = [αi,d,p]d∈Dd,p∈Dp for the i-th PDE, i.e. a total of 90 terms for the considered system, that we aim to
find using the proposed adjoint method.

The cost functional in this case is simply

C =
2∑

i=1

( ∑
j,k

(f∗
i (x(k), t(j+1))− fi(x(k), t(j+1)))2 +

∫
λi(x, t)Li[f(x, t)]dxdt

)
+ ϵ0||α||22 . (73)

The corresponding adjoint equation is given by

∂λi

∂t
=

∑
d,p

(−1)|d|αi,d,p∇fi
[fp]∇(d)

x [λi]

=
∑

[d1,d2]∈Dd

∑
[p1,p2]∈Dp

(−1)d1+d2αi,[d1,d2],[p1,p2]
∂

(
fp1

1 fp2
2

)
∂fi

∂ d1+d2λi

∂xd1
1 ∂xd2

2
(74)

and λi(x(k), t(j+1)) = 2(f∗
i (x(k), t(j+1))− fi(x(k), t(j+1))) for all j, k and where i ∈ {1, 2}.

Assume, without loss of generality, that i = 1. Then, we can write

∂λ1

∂t
= + α1,[0,0],[1,0]λ1 + α1,[0,0],[1,1]f2λ1 + α1,[0,0],[2,0]

(
2f1

)
λ1 + . . . + α1,[0,0],[3,0]

(
3f2

1
)
λ1

− α1,[1,0],[1,0]
∂λ1

∂x1
− α1,[1,0],[1,1]f2

∂λ1

∂x1
− α1,[1,0],[2,0]

(
2f1

)∂λ1

∂x1
− . . .− α1,[1,0],[3,0]

(
3f2

1
)∂λ1

∂x1

+ . . .

+ α1,[0,2],[1,0]
∂2λ1

∂x2
2

+ α1,[0,2],[1,1]f2
∂2λ1

∂x2
2

+ α1,[0,2],[2,0]
(
2f1

)∂2λ1

∂x2
2

+ . . . + α1,[0,2],[3,0]
(
3f2

1
)∂2λ1

∂x2
2

(75)

and λ1(x(k), t(j+1)) = 2(f∗
1 (x(k), t(j+1))− f1(x(k), t(j+1))) for all j, k. We can follow the same procedure for

i = 2. The parameters αi are then found using the gradient descent method with update rule

αi,d,p ← αi,d,p − η
∂C

∂αi,d,p
(76)

where

η = β min(∆x)|d|−dmax and ∂C
∂αi,d,p

= (−1)|d|
∫

fp∇(d)
x [λi]dxdt + 2ϵ0αi,d,p (77)

with ∆x = ∆x1∆x2, leading to the update rule for each coefficient, for example

αi,[0,0],[1,0] ← αi,[0,0],[1,0] −
β

min(∆x)2

∫
f1λidxdt− 2βϵ0αi,[0,0],[1,0]

αi,[1,0],[1,0] ← αi,[1,0],[1,0] −
β

min(∆x)

∫
f1

∂λi

∂x1
dxdt− 2βϵ0αi,[1,0],[1,0] .

33


	Introduction
	Adjoint method for finding PDEs
	Results
	Considered PDEs
	Heat equation
	Burgers' equation
	Kuramoto Sivashinsky equation
	Random Walk
	Reaction Diffusion System of Equations
	Wave equation

	Partial observations in time
	Sensitivity to noise
	Addressing ill-posedness
	Incomplete guessed PDE space

	Discussion
	Conclusion
	Derivation of the Adjoint equation
	Derivation of the Adjoint gradient with respect to PDE parameters
	Error in the numerical estimate of the Adjoint gradient
	Justification for the choice of the learning rate
	Flowcharts of Adjoint method
	Impact of hyperparameters on adjoint method
	Illustration of deployed notation for the considered cases.
	Heat and Burgers' Equations
	Reaction Diffusion System of Equations


