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ABSTRACT

Irregularly sampled time series commonly occur in several domains where they
present a significant challenge to standard deep learning models. In this paper, we
propose a new deep learning framework for probabilistic interpolation of irregu-
larly sampled time series that we call the Heteroscedastic Temporal Variational
Autoencoder (HeTVAE). HeTVAE includes a novel input layer to encode infor-
mation about input observation sparsity, a temporal VAE architecture to propa-
gate uncertainty due to input sparsity, and a heteroscedastic output layer to enable
variable uncertainty in output interpolations. Our results show that the proposed
architecture is better able to reflect variable uncertainty through time due to sparse
and irregular sampling than a range of baseline and traditional models, as well as
recent deep latent variable models that use homoscedastic output layers.1

1 INTRODUCTION

In this paper, we propose a novel deep learning framework for probabilistic interpolation of ir-
regularly sampled time series. Irregularly sampled time series data occur in multiple scientific and
industrial domains including finance (Manimaran et al., 2006), climate science (Schulz & Stattegger,
1997) and healthcare (Marlin et al., 2012; Yadav et al., 2018). In some domains including electronic
health records and mobile health studies (Cheng et al., 2017), there can be significant variation in
inter-observation intervals through time. This is due to the complexity of the underlying observation
processes that can include “normal” variation in observation times combined with extended, block-
structured periods of missingness. For example, in the case of ICU EHR data, this can occur due to
patients being moved between different locations for procedures or tests, resulting in missing phys-
iological sensor data for extended periods of time. In mobile health studies, the same problem can
occur due to mobile sensor batteries running out, or participants forgetting to wear or carry devices.

In such situations, it is of critical importance for interpolation models to be able to correctly reflect
the variable input uncertainty that results from variable observation sparsity so as not to provide
overly confident inferences. However, modeling time series data subject to irregular sampling poses
a significant challenge to machine learning models that assume fully-observed, fixed-size feature
representations (Marlin et al., 2012; Yadav et al., 2018; Shukla & Marlin, 2021b). The main chal-
lenges in dealing with such data include the presence of variable time gaps between the observation
time points, partially observed feature vectors caused by the lack of temporal alignment across
different dimensions, as well as different data cases, and variable numbers of observations across
dimensions and data cases. Significant recent work has focused on developing specialized models
and architectures to address these challenges in modeling irregularly sampled multivariate time se-
ries (Li & Marlin, 2015; 2016; Lipton et al., 2016; Futoma et al., 2017; Che et al., 2018a; Shukla &
Marlin, 2019; Rubanova et al., 2019; Horn et al., 2020; Li & Marlin, 2020; Shukla & Marlin, 2021a;
De Brouwer et al., 2019; Tan et al., 2020; Kidger et al., 2020).

Recently, Shukla & Marlin (2021a) introduced the Multi-Time Attention Network (mTAN) model, a
variational autoencoder (VAE) architecture for continuous-time interpolation of irregularly sampled

1Implementation available at https://github.com/reml-lab/hetvae
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time series. This model was shown to provide state-of-the-art classification and deterministic inter-
polation performance. However, like many VAEs, the mTAN architecture produces a homoscedastic
output distribution conditioned on the latent state. This means that the model can only reflect un-
certainty due to variable input sparsity through variations in the VAE latent state. As we will show,
this mechanism is insufficient to capture differences in uncertainty over time. On the other hand,
Gaussian Process Regression-based (GPR) methods (Rasmussen & Williams, 2006) have the abil-
ity to reflect variable uncertainty through the posterior inference process. The main drawbacks of
GPR-based methods are their significantly higher run times during both training and inference, and
the added restriction to define positive definite covariance functions for multivariate time series.

In this work, we propose a novel encoder-decoder architecture for multivariate probabilistic time
series interpolation that we refer to as the Heteroscedastic Temporal Variational Autoencoder or
HeTVAE. HeTVAE aims to address the challenges described above by encoding information about
input sparsity using an uncertainty-aware multi-time attention network (UnTAN), flexibly capturing
relationships between dimensions and time points using both probabilistic and deterministic latent
pathways, and directly representing variable output uncertainty via a heteroscedastic output layer.

The proposed UnTAN layer generalizes the previously introduced mTAN layer with an additional
intensity network that can more directly encode information about input uncertainty due to variable
sparsity. The proposed UnTAN layer uses an attention mechanism to produce a distributed latent
representation of irregularly sampled time series at a set of reference time points. The UnTAN
module thus provides an interface between input multivariate, sparse and irregularly sampled time
series data and more traditional deep learning components that expect fixed-dimensional or regularly
spaced inputs. We combat the presence of additional local optima that arises from the use of a
heteroscedastic output layer by leveraging an augmented training objective where we combine the
ELBO loss with an uncertainty agnostic loss component. The uncertainty agnostic component helps
to prevent learning from converging to local optima where the structure in data is explained as noise.

We evaluate the proposed architecture on both synthetic and real data sets. Our approach outper-
forms a variety of baseline models and recent approaches in terms of log likelihood, which is our
primary metric of interest in the case of probabilistic interpolation. Finally, we perform ablation test-
ing of different components of the architecture to assess their impact on interpolation performance.

2 RELATED WORK

Keeping in mind the focus of this work, we concentrate our discussion of related work on determin-
istic and probabilistic approaches applicable to the interpolation and imputation tasks.

Deterministic Interpolation Methods: Deterministic interpolation methods can be divided into fil-
tering and smoothing-based approaches. Filtering-based approaches infer the values at a given time
by conditioning only on past observations. For example, Han-Gyu Kim et al. (2017) use a unidi-
rectional RNN for missing data imputation that conditions only on data from the relative past of the
missing observations. On the other hand, smoothing-based methods condition on all possible obser-
vations (past and future) to infer any unobserved value. For example, Yoon et al. (2018) and Cao
et al. (2018) present missing data imputation approach based on multi-directional and bi-directional
RNNs. These models typically use the gated recurrent unit with decay (GRU-D) model (Che et al.,
2018a) as a base architecture for dealing with irregular sampling. Interpolation-prediction networks
take a different approach to interfacing with irregularly sampled data that is based on the use of
temporal kernel smoother-based layers (Shukla & Marlin, 2019). Shan & Oliva (2021) propose hi-
erarchical imputation strategy based on set-based architectures for imputation in irregularly sampled
time series. Of course, the major disadvantage of deterministic interpolation approaches is that they
do not express uncertainty over output interpolations and thus can not be applied to the problem of
probabilistic interpolation without modifications.

Probabilistic Interpolation Methods: The two primary building blocks for probabilistic interpola-
tion and imputation of multivariate irregularly sampled time series are Gaussian processes regression
(GPR) (Rasmussen & Williams, 2006) and variational autoencoders (VAEs) (Rezende et al., 2014;
Kingma & Welling, 2014). GPR models have the advantage of providing an analytically tractable
full joint posterior distribution over interpolation outputs when conditioned on irregularly sampled
input data. Commonly used covariance functions have the ability to translate variable input obser-
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vation density into variable interpolation uncertainty. GPR-based models have been used as the core
of several approaches for supervised learning and forecasting with irregularly sampled data (Ghas-
semi et al., 2015; Li & Marlin, 2015; 2016; Futoma et al., 2017). However, GPR-based models
can become somewhat cumbersome in the multivariate setting due to the positive definiteness con-
straint on the covariance function (Rasmussen & Williams, 2006). The use of separable covariance
functions is one common approach to the construction of GPR models over multiple dimensions
(Bonilla et al., 2008), but this construction requires all dimensions to share the same temporal kernel
parameters. A further drawback of GP-based methods is their significantly higher run times relative
to deep learning-based models when applied to larger-scale data (Shukla & Marlin, 2019).

Variational autoencoders (VAEs) combine probabilistic latent states with deterministic encoder and
decoder networks to define a flexible and computationally efficient class of probabilistic models that
generalize classical factor analysis (Kingma & Welling, 2014; Rezende et al., 2014). Recent research
has seen the proposal of several new VAE-based models for irregularly sampled time series. Chen
et al. (2018) proposed a latent ordinary differential equation (ODE) model for continuous-time data
using an RNN encoder and a neural ODE decoder. Building on the prior work of Chen et al. (2018),
Rubanova et al. (2019) proposed a latent ODE model that replaces the RNN with an ODE-RNN
model as the encoder. Li et al. (2020) replace the deterministic ODEs with stochastic differential
equations(SDEs). Norcliffe et al. (2021) extends the prior work on neural ode by combining it
with neural processes (Garnelo et al., 2018). Shukla & Marlin (2021a) proposed the Multi-Time
Attention Network (mTAN) model, a VAE-based architecture that uses a multi-head temporal cross
attention encoder and decoder module (the mTAND module) to provide the interface to multivariate
irregularly sampled time series data. Fortuin et al. (2020) proposed a VAE-based approach for the
task of smoothing in multivariate time series with a Gaussian process prior in the latent space to
capture temporal dynamics. Garnelo et al. (2018); Kim et al. (2019) used heteroscedastic output
layers to represent uncertainty in case of fixed dimensional inputs but these approaches are not
applicable to irregularly sampled time series.

Similar to the mTAN model, the Heteroscedastic Temporal Variational Autoencoder (HeTVAE)
model proposed in this work is an attention-based VAE architecture. The primary differences are
that mTAN uses a homoscedastic output distribution that assumes constant uncertainty and that the
mTAN model’s cross attention operation normalizes away information about input sparsity. These
limitations are problematic in cases where there is variable input density through time resulting in
the need for encoding, propagating, and reflecting that uncertainty in the output distribution. As we
describe in the next section, HeTVAE addresses these issues by combining a novel sparsity-sensitive
encoder module with a heteroscedastic output distribution and parallel probabilistic and determinis-
tic pathways for propagating information through the model. Another important difference relative
to these previous methods is that HeTVAE uses an augmented learning objective to address the
underfitting of predictive variance caused by the use of the heteroscedastic layer.

3 PROBABILISTIC INTERPOLATION WITH THE HETVAE

In this section, we present the proposed architecture for probabilistic interpolation of irregularly
sampled time series, the Heteroscedastic Temporal Variational Autoencoder (HeTVAE). HeTVAE
leverages a sparsity-aware layer as the encoder and decoder in order to represent input uncertainty
and propagate it to output interpolations. We begin by introducing notation. We then describe the
architecture of the encoder/decoder network followed by the complete HeTVAE architecture.

3.1 NOTATION

We letD = {sn|n = 1, ..., N} represent a data set containing N data cases. An individual data case
consists of a D-dimensional, sparse and irregularly sampled multivariate time series sn. Different
dimensions d of the multivariate time series can have observations at different times, as well as
different total numbers of observations Ldn. We follow the series-based representation of irregularly
sampled time series (Shukla & Marlin, 2021b) and represent time series d for data case n as a tuple
sdn = (tdn,xdn) where tdn = [t1dn, ..., tLdndn] is the list of time points at which observations are
defined and xdn = [x1dn, ..., xLdndn] is the corresponding list of observed values. We drop the data
case index n for brevity when the context is clear.
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3.2 REPRESENTING INPUT SPARSITY

As noted in the previous section, the mTAN encoder module does not represent information about
input sparsity due to the normalization of the attention weights. To address this issue, we propose
an augmented module that we refer to as an Uncertainty Aware Multi-Time Attention Network
(UnTAN). The UnTAN module is shown in Figure 1a. This module includes two encoding pathways
that leverage a shared time embedding function and a shared attention function. The first encoding
pathway (the intensity pathway, INT) focuses on representing information about the sparsity of
observations while the second encoding pathway (the value pathway, VAL) focuses on representing
information about values of observations. The outputs of these two pathways are concatenated and
mixed via a linear layer to define the final output of the module. The mathematical description of
the module is given in Equations 1 to 3 and is explained in detail below.

inth(rk, td) =
pool({exp(αh(rk, tid)) | tid ∈ td})
pool({exp(αh(rk, ti′u)) | ti′u ∈ tu})

(1)

valh(rk, td,xd) =
pool({exp(αh(rk, tid)) · xid | tid ∈ td, xid ∈ xd})

pool({exp(αh(rk, ti′d)) | ti′d ∈ td})
(2)

αh(t, t
′) =

(
φh(t)wvTφh(t

′)T√
de

)
(3)

Time Embeddings and Attention Weights: Similar to the mTAN module, the UnTAN module
uses time embedding functions φh(t) to project univariate time values into a higher dimensional
space. Each time embedding function is a one-layer fully connected network with a sine function
non-linearity φh(t) = sin(ω · t+ β). We learn H time embeddings each of dimension de. w and v
are the parameters of the scaled dot product attention function αh(t, t′) shown in Equation 3. The
scaling factor 1/

√
de is used to normalize the dot product to counteract the growth in the dot product

magnitude with increase in the time embedding dimension de.

Intensity Encoding: The intensity encoding pathway is defined by the function inth(rk, td) shown
in Equation 1. The inputs to the intensity function are a query time point rk and a vector td con-
taining all the time points at which observations are available for dimension d. The numerator of
the intensity function exponentiates the attention weights between rk and each time point in td to
ensure positivity, then pools over the observed time points. The denominator of this computation
is identical to the numerator, but the set of time points tu that is pooled over is the union over all
observed time points for dimension d from all data cases.

Intuitively, if the largest attention weight between rk and any element of td is small relative to
attention weights between rk and the time points in tu, then the output of the intensity function will
be low. Importantly, due to the use of the non-linear time embedding function, pairs of time points
with high attention weights do not necessarily have to be close together in time meaning the notion
of intensity that the network expresses is significantly generalized.

We also note that different sets could be used for tu including a regularly spaced set of reference time
points. One advantage of using the union of all observed time points is that it fixes the maximum
value of the intensity function at 1. The two pooling functions applicable in the computation of the
intensity function are max and sum. If the time series is sparse, max works well because using
sum in the sparse case can lead to very low output values. In a more densely observed time series,
either sum or max can be used.

Value Encoding: The value encoding function valh(rk, td,xd) is presented in Equation 2 in a
form that highlights the symmetry with the intensity encoding function. The primary differences
are that valh(rk, td,xd) takes as input both observed time points td and their corresponding values
xd, and the denominator of the function pools over td itself. While different pooling options could
be used for this function, in practice we use sum-based pooling. These choices lead to a function
valh(rk, td,xd) that interpolates the observed values at the query time points using softmax weights
derived from the attention function. The values of observed points with higher attention weights con-
tribute more to the output value. This structure is equivalent to that used in the mTAN module when
sum-based pooling is used. We can also clearly see that this function on its own can not represent

4



Published as a conference paper at ICLR 2022

Scaled Dot 
Product

Pooling

Normalization

Emb function 

Linear

Emb function 

Linear

Concat

Linear

Concat

UnTAND

INT
Product & Pool

Normalization
VAL

(a) Uncertainty Aware Multi-Time Attention Networks

UnTAND

Sample

UnTAND

Mean

MLP

MLP MLP

Concat

Variance

Prob Det

(b) Heteroscedastic Temporal VAE

Figure 1: (a) Architecture of UnTAN module. This module takes D-dimensional irregularly sampled
time points t = [t1, · · · , tD] and corresponding observations x = [x1, · · · ,xD] as keys and values
and produces a fixed dimensional representation at the query time points r = [r1, · · · , rK ]. Shared
time embedding and attention function provide input to parallel intensity (INT) and value (VAL) en-
coding networks, whose outputs are subsequently fused via concatenation and an additional linear
encoding layer. (b) Architecture of HeTVAE consisting of the UnTAND module to represent input
uncertainty, parallel probabilistic (Prob) and deterministic (Det) encoding paths, and a heteroscedas-
tic output layer that aims to reflect uncertainty due to input sparsity in the output distribution.

information about input sparsity due to the normalization over td. Indeed, the function is completely
invariant to an additive decrease in all of the attention weights α′

h(rk, tid) = αh(rk, tid)− δ.

Module Output: The last stage of the UnTAN module concatenates the value and intensity path-
way representations and then linearly weights them together to form the final J-dimensional repre-
sentation that is output by the module. The parameters of this linear stage of the model are U inthdj and
Uvalhdj . The value of the jth dimension of the output at a query time point rk is given by Equation 4.

UnTAN(rk, t,x)[j] =

H∑
h=1

D∑
d=1

[
inth(rk, td)

valh(rk, td,xd)

]T [
U inthdj

Uvalhdj

]
(4)

Finally, we note that the UnTAN module defines a continuous function of t given an input time
series and hence cannot be directly incorporated into standard neural network architectures. We
adapt the UnTAN module to produce fully observed fixed-dimensional discrete sequences by ma-
terializing its output at a set of reference time points. Reference time points can be fixed set of
regularly spaced time points or may need to depend on the input time series. For a given set of
reference time points r = [r1, · · · , rK ], the discretized UnTAN module UnTAND(r, t,x) is defined
as UnTAND(r, t,x)[i] = UnTAN(ri, t,x). This module takes as input the time series s = (t,x)
and the set of reference time points r and outputs a sequence of K UnTAN embeddings, each of
dimension J corresponding to each reference point. As described in the next section, we use the
UnTAND module to provide an interface between sparse and irregularly sampled data and fully
connected MLP network structures.

3.3 THE HETVAE MODEL

In this section, we describe the overall architecture of the HeTVAE model, as shown in Figure 1b.

Model Architecture: The HeTVAE consists of parallel deterministic and probabilistic pathways
for propagating input information to the output distribution, including information about input spar-
sity. We begin by mapping the input time series s = (t,x) through the UnTAND module along
with a collection of K reference time points r. In the probabilistic path, we construct a distribu-
tion over latent variables at each reference time point using a diagonal Gaussian distribution q with
mean and variance output by fully connected layers applied to the UnTAND output embeddings
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henc = [henc1 , · · · ,hencK ] as shown in Equation 6. In the deterministic path, the UnTAND output
embeddings henc are passed through a feed-forward network g to produce a deterministic temporal
representation (at each reference point) of the same dimension as the probabilistic latent state.

The decoder takes as input the representation from both pathways along with the reference time
points and a set of query points t′ (Eq 8). The UnTAND module produces a sequence of embeddings
hdec = [hdec1 , · · · ,hdec|t′| ] corresponding to each time point in t′. The UnTAND embeddings are then
independently decoded using a fully connected decoder fdec and the result is used to parameterize
the output distribution. We use a diagonal covariance Gaussian distribution where both the mean
µ = [µ1, · · · ,µ|t′|],µi ∈ RD and variance σ2 = [σ2

1 , · · · ,σ2
|t′|],σ

2
i ∈ RD are predicted for

each time point by the final decoded representation as shown in Eq 9. The generated time series is
sampled from this distribution and is given by ŝ = (t′,x′) with all data dimensions observed.

The complete model is described below. We define qγ(z|r, s) to be the distribution over the proba-
bilistic latent variables z = [z1, · · · , zK ] induced by the input time series s = (t,x) at the reference
time points r. We define the prior p(zi) over the latent states to be a standard multivariate normal
distribution. We let phetθ (x′id | zcat, t′id) define the final probability distribution over the value of
time point t′id on dimension d given the concatenated latent state zcat = [zcat1 , · · · , zcatK ]. γ and θ
represent the parameters of all components of the encoder and decoder respectively.

henc = UnTANDenc(r, t,x) (5)

zk ∼ qγ(zk |µk,σ2
k), µk = fencµ (henck ), σ2

k = fencσ (henck ) (6)

zcatk = concat(zk, g(h
enc
k )) (7)

hdec = UnTANDdec(t′, r, zcat) (8)

phetθ (x′id | zcat, t′id) = N (x′id; µi [d], σ
2
i [d]), µi = fdecµ (hdeci ), σ2

i = fdecσ (hdeci ) (9)

x′id ∼ phetθ (x′id | zcat, t′id) (10)

Compared to the constant output variance used to train the mTAN-based VAE model proposed in
prior work (Shukla & Marlin, 2021a), our proposed model produces a heteroscedastic output dis-
tribution that we will show provides improved modeling for the probabilistic interpolation task.
However, the increased complexity of the model’s output representation results in an increased
space of local optima. We address this issue using an augmented learning objective, as described
in the next section. Finally, we note that we can easily obtain a simplified homoscedastic ver-
sion of the model with constant output variance σ2

c using the alternate final output distribution
pcθ(x

′
id | z, t′id) = N (x′id; µi [d], σ

2
c ).

Augmented Learning Objective: To learn the parameters of the HeTVAE framework given a
data set of sparse and irregularly sampled time series, we propose an augmented learning objective
based on a normalized version of the evidence lower bound (ELBO) combined with an uncertainty
agnostic scaled squared loss. We normalize the contribution from each data case by the total number
of observations so that the effective weight of each data case in the objective function is independent
of the total number of observed values. The augmented learning objective is defined below. µn is the
predicted mean over the test time points as defined in Equation 9. Also recall that the concatenated
latent state zcat depends directly on the probabilistic latent state z.

LNVAE(θ, γ) =

N∑
n=1

1∑
d Ldn

(
Eqγ(z|r,sn)[log p

het
θ (xn|zcatn , tn)]−DKL(qγ(z|r, sn)||p(z)) (11)

− λEqγ(z|r,sn)‖xn − µn‖22]
)

DKL(qγ(z|r, sn)||p(z)) =
K∑
i=1

DKL(qγ(zi|r, sn)||p(zi)) (12)

log phetθ (xn|zcatn , tn) =

D∑
d=1

Ldn∑
j=1

log phetθ (xjdn|zcatn , tjdn) (13)

We include the uncertainty agnostic scaled squared loss term to counteract the propensity of the
heteroscedastic model to become stuck in poor local optima where the mean is essentially flat and
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Observed data Ground truth Reconstructions

n = 3 n = 10 n = 20

Figure 2: We show example interpolations on
the synthetic dataset. The set of 3 columns
correspond to interpolation results with in-
creasing numbers of observed points: 3, 10
and 20 respectively. The first, second and
third rows correspond to STGP, HeTVAE
and HTVAE mTAN respectively. The shaded
region corresponds to ± one standard devia-
tion. STGP and HetVAE exhibit variable out-
put uncertainty in response to input sparsity
while mTAN does not.

all of the structure in the data is explained as noise. This happens because the model has the abil-
ity to learn larger variances at the output, which allows the mean to underfit the data. The extra
component (scaled squared loss) helps to push the optimization process to find more informative
parameters by introducing a fixed penalty for the mean deviating from the data. As we will show
in the experiments, the use of this augmented training procedure has a strong positive impact on
final model performance. Since, we are focusing on the interpolation task, we train the HeTVAE by
maximizing the augmented learning objective (Equation 11) on the interpolated time points (more
details on training has been provided in the experimental protocols in Section 4).

4 EXPERIMENTS

In this section, we present interpolation experiments using a range of models on three real-world data
sets. PhysioNet Challenge 2012 (Silva et al., 2012) and MIMIC-III (Johnson et al., 2016) consist of
multivariate, sparse and irregularly sampled time series data. We also perform experiments on the
Climate dataset (Menne et al., 2016), consisting of multi-rate time series. We also show qualitative
results on a synthetic dataset. Details of each dataset can be found in the Appendix A.6.1.

Experimental Protocols: We randomly divide the real data sets into a training set containing 80%
of the instances, and a test set containing the remaining 20% of instances. We use 20% of the training
data for validation. In the interpolation task, we condition on a subset of available points and produce
distributions over the rest of the time points. On the real-world datasets, we perform interpolation
experiments by conditioning on 50% of the available points. At test time, the values of observed
points are conditioned on and each model is used to infer single time point marginal distributions
over values at the rest of the available time points in the test instance. In the case of methods that
do not produce probabilistic outputs, we make mean predictions. In the case of the synthetic dataset
where we have access to all true values, we use the observed points to infer the values at the rest of
the available points. We repeat each real data experiment five times using different random seeds
to initialize the model parameters. We assess performance using the negative log likelihood, which
is our primary metric of interest. We also report mean squared and mean absolute error. For all
experiments, we select hyper-parameters on the held-out validation set using grid search and then
apply the best trained model to the test set. The hyper-parameter ranges searched for each model
and dataset are fully described in Appendix A.5.

Models: We compare our proposed model HeTVAE to several probabilistic and deterministic in-
terpolation methods. We compare to two Gaussian processes regression (GPR) approaches. The
most basic GP model for multivariate time series fits one GPR model per dimension. This approach
is known as a single task GP model (STGP) (Rasmussen & Williams, 2006). A potentially better
option is to model data using a Multi Task GP (MTGP) (Bonilla et al., 2008). This approach models
the correlations both across different dimensions and across time by defining a kernel expressed as
the Hadamard product of a temporal kernel (as used in the STGP) and a task kernel. We also com-
pare to several VAE-based approaches. These approaches use a homoscedastic output distribution
with different encoder and decoder architectures. HVAE RNN employs a gated recurrent unit net-
work (Chung et al., 2014) as encoder and decoder, HVAE RNN-ODE (Chen et al., 2018) replaces
the RNN decoder with a neural ODE, HVAE ODE-RNN-ODE (Rubanova et al., 2019) employs

7



Published as a conference paper at ICLR 2022

Table 1: Interpolation performance on PhysioNet.

Model Negative Log Mean Absolute Mean Squared
Likelihood Error Error

Mean Imputation − 0.7396± 0.0000 1.1634± 0.0000
Forward Imputation − 0.4840± 0.0000 0.9675± 0.0000
Single-Task GP 0.7875± 0.0005 0.4075± 0.0001 0.6110± 0.0003
Multi-Task GP 0.9250± 0.0040 0.4178± 0.0007 0.7381± 0.0051
HVAE RNN 1.5220± 0.0019 0.7634± 0.0014 1.2061± 0.0038
HVAE RNN-ODE 1.4946± 0.0025 0.7372± 0.0026 1.1545± 0.0058
HVAE ODE-RNN-ODE 1.2906± 0.0019 0.5334± 0.0020 0.7622± 0.0027
HTVAE mTAN 1.2426± 0.0028 0.5056± 0.0004 0.7167± 0.0016
HeTVAE 0.5542± 0.0209 0.3911± 0.0004 0.5778± 0.0020

Table 2: Interpolation performance on MIMIC-III.

Model Negative Log Mean Absolute Mean Squared
Likelihood Error Error

Mean Imputation − 0.7507± 0.0000 0.9842± 0.0000
Forward Imputation − 0.4902± 0.0000 0.6148± 0.0000
Single-Task GP 0.8360± 0.0013 0.4167± 0.0006 0.3913± 0.0002
Multi-Task GP 0.8722± 0.0015 0.4121± 0.0005 0.3923± 0.0008
HVAE RNN 1.4380± 0.0049 0.7804± 0.0073 1.0382± 0.0086
HVAE RNN-ODE 1.3464± 0.0036 0.6864± 0.0069 0.8330± 0.0093
HVAE ODE-RNN-ODE 1.1533± 0.0286 0.5447± 0.0228 0.5642± 0.0334
HTVAE mTAN 1.0498± 0.0013 0.4931± 0.0008 0.4848± 0.0008
HeTVAE 0.6662± 0.0023 0.3978± 0.0003 0.3716± 0.0001

a ODE-RNN encoder and neural ODE decoder. Finally, we compare to HTVAE mTAN (Shukla
& Marlin, 2021a), a temporal VAE model consisting of multi-time attention networks producing
homoscedastic output. For VAE models with homoscedastic output, we treat the output variance
term as a hyperparameter and select the variance using log likelihood on the validation set. Archi-
tecture details for these methods can be found in Appendix A.4. As baselines, we also consider
deterministic mean and forward imputation-based methods. Forward imputation always predicts
the last observed value on each dimension, while mean imputation predicts the mean of all the
observations for each dimension.

Synthetic Data Results: Figure 2 shows sample visualization output for the synthetic dataset.
For this experiment, we compare HTVAE mTAN, the single task Gaussian process STGP, and the
proposed HeTVAE model. We vary the number of observed points (3, 10, 20) and each model is
used to infer the distribution over the remaining time points. We draw multiple samples from the
VAE latent state for HeTVAE and HTVAE mTAN and visualize the distribution of the resulting
mixture. As we can see, the interpolations produced by HTVAE mTAN have approximately constant
uncertainty across time and this uncertainty level does not change even when the number of points
conditioned on increases. On the other hand, both HeTVAE and STGP show variable uncertainty
across time. Their uncertainty reduces in the vicinity of input observations and increases in gaps
between observations. Even though the STGP has an advantage in this experiment (the synthetic
data were generated with an RBF kernel smoother and STGP uses RBF kernel as the covariance
function), the proposed model HeTVAE shows comparable interpolation performance. We show
more qualitative results in Appendix A.3.

Real Data Results: Tables 1, 2 and 3 compare the interpolation performance of all the approaches
on PhysioNet, MIMIC-III and Climate dataset respectively. HeTVAE outperforms the prior ap-
proaches with respect to the negative log likelihood score on all three datasets. Gaussian Process
based methods − STGP and MTGP achieve second and third best performance respectively. We
emphasize that while the MAE and MSE values for some of the prior approaches are close to those
obtained by the HeTVAE model, the primary metric of interest for comparing probabilistic interpola-
tion approaches is log likelihood, where the HeTVAE performs much better than the other methods.
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Table 3: Interpolation performance on Climate dataset.

Model Negative Log Mean Absolute Mean Squared
Likelihood Error Error

Mean Imputation − 0.4539± 0.0000 0.8403± 0.0000
Forward Imputation − 0.2979± 0.0000 0.8426± 0.0000
Single-Task GP 0.2478± 0.0016 0.2738± 0.0002 0.4886± 0.0001
Multi-Task GP − − −
HVAE RNN 1.3666± 0.0674 0.4838± 0.0474 0.8587± 0.0863
HVAE RNN-ODE 1.1769± 0.0032 0.3514± 0.0067 0.6076± 0.0059
HVAE ODE-RNN-ODE 1.1766± 0.0053 0.3531± 0.0034 0.5953± 0.0051
HTVAE mTAN 0.9262± 0.0073 0.2916± 0.0046 0.5162± 0.0060
HeTVAE 0.1287± 0.0242 0.2813± 0.0034 0.5013± 0.0116

Table 4: Ablation Study of HeTVAE: Negative Log Likelihood on PhysioNet and MIMIC-III.

Model PhysioNet MIMIC-III

HeTVAE 0.5542± 0.0209 0.6662± 0.0023
HeTVAE - ALO 0.6087± 0.0136 0.6869± 0.0111
HeTVAE - DET 0.6278± 0.0017 0.7478± 0.0028
HeTVAE - INT 0.6539± 0.0107 0.7430± 0.0011
HeTVAE - HET - ALO 1.1304± 0.0016 0.9272± 0.0002

We note that the MAE/MSE of the VAE-based models with homoscedastic output can be improved
by using a small fixed variance during training. However, this produces even worse log likelihood
values. Further, we note that the current implementation of MTGP is not scalable to the Climate
dataset (270 dimensions). We provide experiments on an additional dataset in Appendix A.1.

Ablation Results: Table 4 shows the results of ablating several different components of the HeT-
VAE model and training procedure. The first row shows the results for the full proposed approach.
The HeTVAE - ALO ablation shows the result of removing the augmented learning objective and
training the model only using the ELBO. This results in an immediate drop in performance on
PhysioNet. HeTVAE - DET removes the deterministic pathway from the model, resulting in a per-
formance drop on both MIMIC-III and PhysioNet. HeTVAE - INT removes the intensity encoding
pathway from the UnTAND module. It results in a large drop in performance on both datasets. HeT-
VAE - HET- ALO removes the heteroscedastic layer and the augmented learning objective (since the
augmented learning objective is introduced to improve the learning in the presence of heteroscedas-
tic layer), resulting in a highly significant drop on both datasets. These results show that all of the
components included in the proposed model contribute to improved model performance. We provide
more ablation results in Appendix A.2 and discuss hyperparameter selection in Appendix A.5.

5 DISCUSSION AND CONCLUSIONS

In this paper, we have proposed the Heteroscedastic Temporal Variational Autoencoder (HeTVAE)
for probabilistic interpolation of irregularly sampled time series data. HeTVAE consists of an in-
put sparsity-aware encoder, parallel deterministic and probabilistic pathways for propagating input
uncertainty to the output, and a heteroscedastic output distribution to represent variable uncertainty
in the output interpolations. Furthermore, we propose an augmented training objective to combat
the presence of additional local optima that arise from the use of the heteroscedastic output struc-
ture. Our results show that the proposed model significantly improves uncertainty quantification in
the output interpolations as evidenced by significantly improved log likelihood scores compared to
several baselines and state-of-the-art methods. While the HeTVAE model can produce a probability
distribution over an arbitrary collection of output time points, it is currently restricted to producing
marginal distributions. As a result, sampling from the model does not necessarily produce smooth
trajectories as would be the case with GPR-based models. Augmenting the HeTVAE model to ac-
count for residual correlations in the output layer is an interesting direction for future work.
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6 REPRODUCIBILITY STATEMENT

The source code for reproducing the results in this paper is available at https://github.com/
reml-lab/hetvae. It contains the instructions to reproduce the results in the paper including
the hyperparameters. The hyperparameter ranges searched for each model are fully described in
Appendix A.5. The source code also includes the synthetic dataset generation process as well as
one of the real-world dataset. The other datasets can be downloaded and prepared following the
preprocessing steps notes in Appendix A.6.1.
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A APPENDIX

A.1 ADDITIONAL RESULTS

We also perform experiments on the UCI electricity dataset (described in Appendix A.6.1). We
follow the same experiment protocols described in Section 4. As we can see from Table 5, the
proposed model HeTVAE outperforms the prior approaches across all three metrics.

A.2 ABLATION STUDY

Tables 6 and 7 show the complete results of ablating several different components of the HeTVAE
model and training procedure with respect to all three evaluation metrics on PhysioNet and MIMIC-
III respectively. We denote different components of the HeTVAE model as − HET: heteroscedastic
output layer, ALO: augmented learning objective, INT: intensity encoding, DET: deterministic path-
way. The results show selected individual and compound ablations of these components and indicate
that all of these components contribute significantly to the model’s performance in terms of the neg-
ative log likelihood score. We provide detailed comments below.
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Table 5: Interpolation performance on Electricity Dataset.

Model Negative Log Mean Absolute Mean Squared
Likelihood Error Error

Mean Imputation − 0.6765± 0.0000 1.0311± 0.0000
Forward Imputation − 0.6163± 0.0000 1.2626± 0.0000
Single-Task GP 0.8972± 0.0009 0.5456± 0.0007 0.7827± 0.0005
Multi-Task GP 0.7767± 0.0033 0.5324± 0.0016 0.7782± 0.0006
HVAE RNN 1.3981± 0.0043 0.6267± 0.0055 0.9577± 0.0093
HVAE RNN-ODE 1.3947± 0.0054 0.6262± 0.0074 0.9469± 0.0111
HVAE ODE-RNN-ODE 1.4089± 0.0095 0.6453± 0.0042 0.9792± 0.0184
HTVAE mTAN 1.4040± 0.0148 0.6392± 0.0250 0.9724± 0.0366
HeTVAE 0.7055± 0.0103 0.5049± 0.0039 0.7503± 0.0162

Table 6: Ablation Study of HeTVAE on PhysioNet.

Model Negative Log Mean Absolute Mean Squared
Likelihood Error Error

HetVAE 0.5542± 0.0209 0.3911± 0.0004 0.5778± 0.0020
HeTVAE - ALO 0.6087± 0.0136 0.4087± 0.0008 0.6121± 0.0063
HeTVAE - DET 0.6278± 0.0017 0.4089± 0.0005 0.5950± 0.0018
HeTVAE - INT 0.6539± 0.0107 0.4013± 0.0005 0.5935± 0.0015
HeTVAE - HET - ALO 1.1304± 0.0016 0.3990± 0.0003 0.5871± 0.0016
HeTVAE - DET - ALO 0.7425± 0.0066 0.4747± 0.0024 0.6963± 0.0031
HeTVAE - PROB - ALO 0.7749± 0.0047 0.4251± 0.0029 0.6230± 0.0040
HeTVAE - INT - DET - ALO 0.7866± 0.0029 0.4857± 0.0003 0.7120± 0.0007
HeTVAE - HET - INT - DET - ALO 1.2426± 0.0028 0.5056± 0.0004 0.7167± 0.0016

Effect of Heteroscedastic Layer: Since the augmented learning objective is introduced to im-
prove the learning in the presence of heteroscedastic layer, we remove the augmented learning ob-
jective (ALO) with the heteroscedastic layer (HET). This ablation corresponds to HeTVAE - HET
- ALO. As we can see from both Table 6 and 7, this results in a highly significant drop in the log
likelihood performance as compared to the full HeTVAE model on both datasets. However, it results
in only a slight drop in performance with respect to MAE and MSE, which is sensible as the HET
component only affects uncertainty sensitive performance metrics.

Effect of Intensity Encoding: HeTVAE - INT removes the intensity encoding pathway from the
UnTAND module. It results in an immediate drop in performance on both datasets. We also compare
the effect of intensity encoding after removing the deterministic pathway and the augmented learning
objective. These ablations are shown in HeTVAE - DET - ALO and HeTVAE - INT - DET - ALO.
The performance drop is less severe in this case because of the propensity of the heteroscedastic
output layer to get stuck in poor local optima in the absence of the augmented learning objective
(ALO).

Effect of Augmented Learning Objective: The HeTVAE - ALO ablation shows the result of
removing the augmented learning objective and training the model only using only the ELBO. This
results in an immediate drop in performance on PhysioNet. The performance drop is less severe
on MIMIC-III. We further perform this ablation without the DET component and observe severe
drops in performance across all metrics on both datasets. These ablations correspond to HeTVAE -
DET and HeTVAE - DET - ALO. This shows that along with ALO component, the DET component
also constrains the model from getting stuck in local optima where all of the structure in the data is
explained as noise. We show interpolations corresponding to these ablations in Appendix A.3.1.

Effect of Deterministic Pathway: HeTVAE - DET removes the deterministic pathway from the
model, resulting in a performance drop on both MIMIC-III and PhysioNet across all metrics. We
further compare the performance of both the probabilistic and deterministic pathways in isolation
as shown by ablation HeTVAE - DET - ALO and HeTVAE - PROB - ALO. We observe that the
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Table 7: Ablation Study of HeTVAE on MIMIC-III.

Model Negative Log Mean Absolute Mean Squared
Likelihood Error Error

HetVAE 0.6662± 0.0023 0.3978± 0.0003 0.3716± 0.0001
HeTVAE - ALO 0.6869± 0.0111 0.4043± 0.0006 0.3840± 0.0007
HeTVAE - DET 0.7478± 0.0028 0.4129± 0.0008 0.3845± 0.0009
HeTVAE - INT 0.7430± 0.0011 0.4066± 0.0001 0.3837± 0.0001
HeTVAE - HET - ALO 0.9272± 0.0002 0.4044± 0.0001 0.3765± 0.0001
HeTVAE - DET - ALO 0.9005± 0.0052 0.5177± 0.0004 0.5325± 0.0008
HeTVAE - PROB - ALO 0.7472± 0.0056 0.4049± 0.0006 0.3833± 0.0008
HeTVAE - INT - DET - ALO 0.9245± 0.0021 0.5208± 0.0009 0.5358± 0.0012
HeTVAE - HET - INT - DET - ALO 1.0498± 0.0013 0.4931± 0.0008 0.4848± 0.0008

deterministic pathway HeTVAE - PROB - ALO outperforms the probabilistic pathway HeTVAE -
DET - ALO in terms of log likelihood on MIMIC-III while the opposite is true in case of PhysioNet.
However, on both datasets using only the deterministic pathway (HeTVAE - PROB - ALO) achieves
better MAE and MSE scores as compared to using only the probabilistic pathway (HeTVAE - DET
- ALO).

A.3 VISUALIZATIONS

A.3.1 INTERPOLATIONS ON PHYSIONET

Figure 3 shows example interpolations on the PhysioNet dataset. Following the experimental setting
mentioned in Section 4, the models were trained using all dimensions and the inference uses all
dimensions. We only show interpolations corresponding to Heart Rate as an illustration. As we can
see, the STGP and HeTVAE models exhibit good fit and variable uncertainty on the edges where
there are no observations. We can also see that mTAN trained with homoscedastic output is not able
to produce as good a fit because of the fixed variance at the output (discussed in Section 4).

The most interesting observation is the performance of HeTVAE - DET - ALO, an ablation of
HeTVAE model that retains heteroscedastic output, but removes the deterministic pathways and
the augmented learning objective. This ablation significantly underfits the data and performs similar
to mTAN. This is an example of local optima that arises from the use of a heteroscedastic output
layer where the mean is excessively smooth and all of the structure in the data is explained as noise.
We address this with the use of augmented learning objective described in Section 3.3. As seen in the
Figure 3, adding the augmented learning objective (HeTVAE - DET) clearly improves performance.

A.3.2 SYNTHETIC DATA VISUALIZATIONS: SPARSITY

In this section, we show supplemental interpolation results on the synthetic dataset. The setting
here is same as in Section 4. Figure 4 compares HTVAE mTAN, the single task Gaussian process
STGP, the proposed HeTVAE model and an ablation of proposed model without intensity encoding
HeTVAE - INT. We vary the number of observed points (3, 10, 20) and each model is used to infer
the distribution over the remaining time points. We draw multiple samples from the VAE latent
state for HeTVAE, HeTVAE - INT and HTVAE mTAN, and visualize the distribution of the result-
ing mixture. Figure 4 illustrates the interpolation performance of each of the models. As we can
see, the interpolations produced by HTVAE mTAN have approximately constant uncertainty across
time and this uncertainty level does not change even when the number of points conditioned on in-
creases. On the other hand, both HeTVAE and STGP show variable uncertainty across time. Their
uncertainty reduces in the vicinity of input observations and increases in gaps between observations.
The HeTVAE-INT model performs slightly better than HTVAE mTAN model but it does not show
variable uncertainty due to input sparsity like HeTVAE.

A.3.3 SYNTHETIC DATA VISUALIZATIONS: INTER-OBSERVATION GAP

To demonstrate the effectiveness of intensity encoder (INT), we perform another experiment on
synthetic dataset where we increase the maximum inter-observation gap between the observations.
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Figure 3: In this figure, we show example interpolations of one dimension corresponding to Heart
Rate on the PhysioNet dataset. The columns correspond to different examples. The rows corre-
spond to STGP, HeTVAE, HTVAE mTAN, HeTVAE-DET-ALO and HeTVAE-DET respectively.
The shaded region corresponds to ± one standard deviation. STGP, HeTVAE and HeTVAE-DET
exhibit variable output uncertainty and good fit while mTAN and HETVAE-DET-ALO does not.

We follow the same training protocol as described in Section 4. At test time, we condition on
10 observed points with increasing maximum inter-observation gap. We vary the maximum inter-
observation gap from 20% to 80% of the length of the original time series. Each model is used to
infer single time point marginal distributions over values at the rest of the available time points in
the test instance.

Figure 5 shows the interpolations with increasing maximum inter-observation gap. STGP and HeT-
VAE show variable uncertainty with time and the uncertainty increases with increasing maximum
inter-observation gap. On the other hand, HTVAE mTAN with homoscedastic output shows approx-
imately constant uncertainty with time and also across different maximum inter-observation gaps.
These results clearly show that HTVAE mTAN produces over-confident probabilistic interpolations
over large gaps.

Furthermore, we show an ablation of the proposed model HeTVAE - INT, where we remove the
intensity encoder and perform the interpolations. As we see from the figure, this leads to approxi-
mately constant uncertainty across time as well as different maximum inter-observation gaps. This
shows that the HeTVAE model is not able to capture uncertainty due to input sparsity as effectively
without the intensity encoder.
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(c) Example 3.

Figure 4: Additional interpolation results on the synthetic dataset. The 3 columns correspond to
interpolation results with increasing numbers of observed points: 3, 10 and 20 respectively. The
shaded region corresponds to ± one standard deviation. STGP and HeTVAE exhibit variable output
uncertainty in response to input sparsity while mTAN and HeTVAE - INT do not.
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(b) Example 2.

Figure 5: In this figure, we show example interpolations on the synthetic dataset with increas-
ing maximum inter-observation gap. The columns correspond to an inter-observation gap of size
20%, 40%, 60% and 80% of the length of original time series. The rows correspond to STGP, HeT-
VAE, HTVAE mTAN and HeTVAE-INT respectively. The shaded region corresponds to the confi-
dence region. STGP and HeTVAE exhibit variable output uncertainty while mTAN and HeTVAE-
INT does not.
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A.4 ARCHITECTURE DETAILS

HeTVAE: Learnable parameters in the UnTAND architecture shown in Figure 1a include the
weights of the three linear layers and the parameters of the shared time embedding functions. Each
time embedding function is a one layer fully connected network with a sine function non-linearity.
The two linear layers on top of embedding function are linear projections from time embedding
dimension de to de/H where H is the number of time embeddings. Note that these linear layers do
not share parameters. The third linear layer performs a linear projection from 2 ∗ D ∗ H to J . It
takes as input the concatenation of the VAL encoder output and INT encoder output and produces
an output of dimension J . de, H and J are all hyperparameters of the architecture. The ranges
considered are described in the next section.

The HeTVAE model shown in the Figure 1b consists of three MLP blocks apart from the UnTAND
modules. The MLP in the deterministic path is a one layer fully connected layer that projects the
UnTAND output to match the dimension of the latent state. The remaining MLP blocks are two-
layer fully connected networks with matching width and ReLU activations. The MLP in the de-
coder takes the output of UnTAND module and outputs the mean and variance of dimension D
and sequence length t′. We use a softplus transformation on the decoder output to get the variance
σi = 0.01 + softplus(fdecσ (hdeci )). Similarly, in the probabilistic path, we apply an exponential
transformation to get the variance of the q distribution σ2

k = exp(fencσ (henck )). We use K refer-
ence time points regularly spaced between 0 and 1. K is considered to be a hyperparameter of the
architecture. The ranges considered are described in the next section.

Baselines: For the HTVAE mTAN, we use a similar architecture as HeTVAE where we remove the
deterministic path, heteroscedastic output layer and use the mTAND module instead of the UnTAND
module (Shukla & Marlin, 2021a). We use the same architectures for the ODE and RNN-based
VAEs as Rubanova et al. (2019).

A.5 HYPERPARAMETERS

HeTVAE: We fix the time embedding dimension to de = 128. The number of embeddings H
is searched over the range {1, 2, 4}. We search the number of reference points K over the range
{4, 8, 16, 32}, the latent dimension over the range {8, 16, 32, 64, 128}, the output dimension of Un-
TAND J over the range {16, 32, 64, 128}, and the width of the two-layer fully connected layers over
{128, 256, 512}. In augmented learning objective, we search for λ over the range {1.0, 5.0, 10.0}.
We use the Adam Optimizer for training the models. Experiments are run for 2, 000 iterations with
a learning rate of 0.0001 and a batch size of 128. The best hyperparameters are reported in the code.
We use 100 samples from the probabilistic latent state to compute the evaluation metrics.

Ablations: We note that the ablations were not performed with a fixed architecture. For all the ab-
lation models, we tuned the hyperparameters and reported the results with the best hyperparameter
setting. We also made sure that the hyperparameter ranges for ablated models with just determin-
istic/probabilistic path were wide enough that the optimal ablated models did not saturate the end
of the ranges for architectural hyper-parameter values including the dimensionality of the latent
representations.

VAE Baselines: For VAE models with homoscedastic output, we treat the out-
put variance term as a hyperparameter and select the variance over the range
{0.01, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}. For HTVAE mTAN, we search the
corresponding hyperparameters over the same range as HeTVAE. For ODE and RNN based VAEs,
we search for GRU hidden units, latent dimension, the number of hidden units in the fully connected
network for the ODE function in the encoder and decoder over the range {20, 32, 64, 128, 256}.
For ODEs, we also search the number of layers in fully connected network in the range {1, 2, 3}.
We use a batch size of 50 and a learning rate of 0.001. We use 100 samples from the latent state to
compute the evaluation metrics.

Gaussian Processes: For single task GP, we use a squared exponential kernel. In case of multi-
task GP, we experimented with the Matern kernel with different smoothness parameters, and the
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squared exponential kernel. We found that Matern kernel performs better. We use maximum
marginal likelihood to train the GP hyperparameters. We search for learning rate over the range
{0.1, 0.01, 0.001} and run for 100 iterations. We search for smoothness parameter over the range
{0.5, 1.5, 2.5}. We search for the batch size over the range {32, 64, 128, 256}.

A.6 TRAINING DETAILS

A.6.1 DATA GENERATION AND PREPROCESSING

Synthetic Data Generation: We generate a synthetic dataset consisting of 2000 trajectories each
consisting of 50 time points with values between 0 and 1. We fix 10 reference time points and draw
values for each from a standard normal distribution. We then use an RBF kernel smoother with a
fixed bandwidth of α = 120.0 to construct local interpolations over the 50 time points. The data
generating process is shown below:

zk ∼ N (0, 1), k ∈ [1, · · · , 10]
rk = 0.1 ∗ k
ti = 0.02 ∗ i, i ∈ [1, · · · , 50]

xi =

∑
k exp(−α(ti − rk)2) · zk∑
k′ exp(−α(ti − rk′)2)

+N (0, 0.12)

We randomly sample 3 − 10 observations from each trajectory to simulate a sparse and irregularly
sampled univariate time series.

PhysioNet: The PhysioNet Challenge 2012 dataset (Silva et al., 2012) consists of multivariate
time series data with 37 physiological variables from intensive care unit (ICU) records. Each record
contains measurements from the first 48 hours after admission. We use the protocols described
in Rubanova et al. (2019) and round the observation times to the nearest minute resulting in 2880
possible measurement times per time series. The data set consists includes 8000 instances that can
be used for interpolation experiments. PhysioNet is freely available for research use and can be
downloaded from https://physionet.org/content/challenge-2012/.

MIMIC-III: The MIMIC-III data set (Johnson et al., 2016) is a multivariate time series dataset
containing sparse and irregularly sampled physiological signals collected at Beth Israel Deaconess
Medical Center. We use the procedures proposed by Shukla & Marlin (2019) to process the data set.
This results in 53, 211 records each containing 12 physiological variables. We use all 53, 211 in-
stances to perform interpolation experiments. MIMIC-III is available through a permissive data use
agreement which can be requested at https://mimic.mit.edu/iii/gettingstarted/.
Once the request is approved, the dataset can be downloaded from https://mimic.mit.edu/
iii/gettingstarted/dbsetup/. The instructions and code to extract the MIMIC-III dataset
is given at https://github.com/mlds-lab/interp-net.

Climate Dataset: The U.S. Historical Climatology Network Monthly (USHCN) dataset (Menne
et al., 2016) is a publicly available dataset consisting of daily measurements of 5 climate variables
− daily maximum temperature, daily minimum temperature, whether it was a snowy day or not,
total daily precipitation, and daily snow precipitation. It contains data from the last 150 years for
1, 218 meteorological stations scattered over the United States. Following the preprocessing steps
of Che et al. (2018b), we extract daily climate data for 100 consecutive years starting from 1910
to 2009 from 54 stations in California. To get multi-rate time series data, we split the stations into
3 groups with sampling rates of 2 days, 1 week, and 1 month respectively. We divide the data
into smaller time series consisting of yearly data and end up with a dataset of 100 examples each
consisting of 270 features. We perform the interpolation task on this dataset where we compute the
feature values every day using the multi-rate time series data. The dataset is available for download
at https://cdiac.ess-dive.lbl.gov/ftp/ushcn_daily/.

Electricity Dataset: The UCI household electricity dataset contains measurements of seven dif-
ferent quantities related to electricity consumption in a household. The data are recorded every
minute for 47 months between December 2006 and November 2010, yielding over 2 million ob-
servations. To simulate irregular sampling, we keep observations only at durations sampled from
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an exponential distribution with λ = 20. Following the preprocessing step of Binkowski et al.
(2018), we also do random feature sampling where we choose one out of seven features at each
time step. We divide the data into smaller time series consisting of monthly data and end up with
a dataset of 1431 examples each consisting of 7 features. We perform interpolation experiments
on this dataset where we compute feature values every minute using the irregularly sampled data.
The dataset is available for download at https://archive.ics.uci.edu/ml/datasets/
individual+household+electric+power+consumption.

Dataset Preprocessing: We rescale time to be in [0, 1] for all datasets. We also re-scale all di-
mensions. In case of PhysioNet and MIMIC-III, for each dimensions we first remove outliers in the
outer 0.1% percentile region. We then compute the mean and standard deviation of all observations
on that dimension. The outlier detection step is used to mitigate the effect of rare large values in the
data set from affecting the normalization statistics. Finally, we z-transform all of the available data
(including the points identified as outliers). No data points are discarded from the data sets during
the normalization process.

A.6.2 SOURCE CODE

The source code for reproducing the results in this paper is available at https://github.com/
reml-lab/hetvae.

A.6.3 COMPUTING INFRASTRUCTURE

All experiments were run on a Nvidia Titan X and 1080 Ti GPUs. The time required to run all the
experiments in this paper including hyperparameter tuning was approximately eight days using eight
GPUs.
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