
MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought
Reasoning enhances Formal Theorem Proving

Ruida Wang * 1 Rui Pan * 1 Yuxin Li * 2 Jipeng Zhang 2 Yizhen Jia 1

Shizhe Diao 3 Renjie Pi 2 Junjie Hu 4 Tong Zhang 1

Abstract

Solving mathematical problems using computer-
verifiable languages like Lean has significantly
impacted the mathematical and computer sci-
ence communities. State-of-the-art methods uti-
lize a single Large Language Model (LLM) to
generate complete proof or perform tree search,
but they fail to balance these tasks. We pro-
pose MA-LoT: Model-CollAboration Lean-based
Long Chain-of-Thought, a comprehensive frame-
work for Lean4 theorem proving to solve this is-
sue. It separates the cognition tasks of general NL
for whole-proof generation and error analysis for
proof correction using the model-collaboration
method. We achieve this by structured interac-
tion of the LLM and Lean4 verifier in Long CoT.
To implement the framework, we propose the
novel LoT-Transfer Learning training-inference
pipeline, which enables the Long CoT thinking ca-
pability to LLMs without special data annotation.
Extensive experiment shows that our framework
achieves a 61.07% accuracy rate on the Lean4 ver-
sion of the MiniF2F-Test dataset, largely outper-
forming DeepSeek-V3 (33.61%), single-model
tree search (InternLM-Step-Prover, 50.70%), and
whole-proof generation (Godel-Prover, 55.33%)
baselines. Furthermore, our findings highlight the
potential of combining Long CoT with formal
verification for a more insightful generation in a
broader perspective.

*First Authors 1Department of Computer Science, University
of Illinois Urbana-Champaign 2Hong Kong University of Science
and Technology 3NVIDIA 4Department of Computer Science,
University of Wisconsin-Madison. Correspondence to: Ruida
Wang <ruidaw@illinois.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Formal reasoning is a cornerstone of human intelligence
and a key objective in machine learning (Newell & Simon,
1956), often evaluated through rigorous mathematical deriva-
tions (Yang et al., 2024a). With the rise of Large Language
Models (LLMs), Chain-of-Thought (CoT) prompting has
emerged to formalize reasoning by generating intermediate
steps. This approach improves interpretability and enhances
reasoning performance (Wei et al., 2022).

Wrong state

Return
last state

Initial state

Proof Done

✅

Tree-Search Method:
✅ Use ITP to check
✅ Find non-trivial proof
❌ Expensive
❌ No Long-term NL planning

Theorem
Statement

Prover
LLM

Analysis +
Complete

proof

✅

❌

Another
generation

Whole-proof generation
✅ LLM NL planning and reasoning
✅ Controllable cost
❌ No intermediate feedback
❌ Usually trivial solution

Figure 1. Two main directions of FL theorem proving using LLMs:
Single model tree-search and whole-proof generation with their
advantages/disadvantages.

However, the ambiguity of Natural Language (NL) compli-
cates verifying intermediate steps, particularly in advanced
mathematics, where there is no answer to check but theo-
rems to prove. This challenge is exacerbated by the growing
complexity of modern mathematics, which makes proof ver-
ification highly demanding and can lead to errors, as seen in
the prolonged validation of Fermat’s Last Theorem (Wang
et al., 2024). Researchers propose grounding reasoning in
rigorous first-order logic to address this, enabling automated
verification via Formal Language (FL) verifiers. This frame-
work ensures rigor and has led to the development of tools
like Lean (De Moura et al., 2015; Moura & Ullrich, 2021),
Isabelle (Paulson, 1994), and HOL Light (Harrison, 2009)
for verifiable theorem proving.

However, writing mathematical proofs in FL requires signif-
icant expertise and effort, as most proofs involve extensive

1

MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

NL-Planning
CoT

1st Proof

Proof Done

Prompt

Error analysis
CoT-1

1st Proof +
Rethink prompt

2nd Proof

Prompt

2nd Proof +
Rethink prompt

……

LoT-Solver
as Prover

Prompt

LoT-Solver
as Corrector

✅

❌

Proof Done

Error analysis
CoT-2

3rd Proof

❌

✅

Lean SFT
data

NL Statement:
Show that it is false that ¬a ∧ a.
Proof by contradiction

Commented Theorem:
theorem not_and_self : ¬(¬a ∧ a)

-- Proof by contradiction
| ⟨hn, ha⟩ => hn ha

System Prompt: Complete the following Lean4
theorem WITHOUT Long CoT

NL statement:
Show that it is false that ¬a ∧ a.
Proof by contradiction

FL statement:
theorem not_and_self : ¬(¬a ∧ a)

<Thought> Not use CoT to solve </Thought>

Completed proof:
theorem not_and_self : ¬(¬a ∧ a)

-- Proof by contradiction
| ⟨hn, ha⟩ => hn ha

Training data sample

Trained part

System Prompt: Complete the following Lean4
theorem WITH Long CoT

NL statement:
Show that it is false that ¬a ∧ a.
Proof by contradiction

FL statement:
theorem not_and_self : ¬(¬a ∧ a)

<Thought> Alright, let me solve this step-by-
step … </Thought>
Completed proof:
theorem not_and_self : ¬(¬a ∧ a)

-- Proof by contradiction
| ⟨hn, ha⟩ => hn ha

Inference data sample

Inferenced part

Pretrained
LLM LoT-Solver

(a) Model-Collaboration Lean-based Long CoT inference

(b) LoT-TL Training-Inference pipeline

(c) Training procedure of LoT-Solver

LoT-Solver
as Corrector

General NL Long
CoT data (SFT)

Lean SFT data
(LoT-TL)

Lean Correction
data (LoT-TL)

Figure 2. MA-LoT Framework: (a) Model-collaboration Lean4 theorem proving framework: The LoT-Solver model functions as the
prover to generate initial Lean4 proofs with emergent NL planning for Lean proof in Long CoT (orange block); then it acts as corrector to
analyze error from Lean executor in Long CoT to output a refined proof. (b) LoT-Transfer Learning (TL): The novel training-inference
pipeline enables formal reasoning ability to emerge in Long CoT (L-CoT) without the need for specifically annotated data. This is
achieved by adjusting the system prompt to control the on/off of L-CoT in training and inference. (c) Training procedure of LoT-Solver:
We use normal SFT to train general NL L-CoT, use LoT-TL to train on the Lean SFT, and correction data to make Lean L-CoT an emergent
capability in LLM.

repetition and application of low-resource functions (Jiang
et al., 2022). With the rapid progress of LLMs, research
has explored LLMs’ application in FL reasoning to auto-
mate theorem proving (Polu & Sutskever, 2020; Polu et al.,
2022; Jiang et al., 2021; 2022; Yang et al., 2024b; Xin et al.,
2024b; Wang et al., 2024; Wu et al., 2024a; Kumarappan
et al., 2024; Lin et al., 2024). Prior research follows two
main approaches, namely, tree-search (Jiang et al., 2021;
2022; Lin et al., 2024; Xin et al., 2024b; Wang et al., 2024)
and whole-proof generation (Polu & Sutskever, 2020; Polu
et al., 2022; Yang et al., 2024b; Wu et al., 2024a; Kumarap-
pan et al., 2024). The summary of dis/advantages of these
two methods can be found in Figure 1.

Tree-search methods train an LLM to iteratively generate
proof steps by predicting the next tactic based on the current
proof state. This is achieved through either direct code

writing (Polu & Sutskever, 2020; Polu et al., 2022; Xin
et al., 2024b; Wu et al., 2024a; Lin et al., 2024) or retrieval-
based techniques (Yang et al., 2024b; Kumarappan et al.,
2024). Tree-search methods apply an FL executor to verify
after each generation step and can discover some non-trivial
proofs. However, as proof complexity increases, tree-search
methods become computationally expensive and lack high-
level NL planning to control the overall structure of the
proof. The lack of overall planning causes the tree-search
method to be unable to find some structured proof that
requires high-level NL planning to answer the question.

In contrast, whole-proof generation treats theorem proving
like the code generation problem, where LLMs generate
the entire proof in a single attempt using either supervised
training (Wang et al., 2024; Xin et al., 2024b) or prompt en-
gineering (Jiang et al., 2021; 2022). This approach leverages

2

MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

LLMs’ NL reasoning and high-level planning capabilities
with predictable computation costs, but it lacks intermediate
feedback from FL executors. As a result, the generated
proofs often lack post-hoc analysis of errors and tend to
perform badly on tedious questions that require non-trivial
or tedious tricks. In summary, existing single-model ap-
proaches struggle to balance the NL reasoning with the FL
verifiability, motivating the need for a more comprehensive
framework.

To address the above challenges in Lean4 theorem proving,
we introduce MA-LoT: Model-CollAboration Lean-based
Long Chain-of-Thought, a comprehensive framework de-
signed to coordinate multiple models for effective formal
reasoning. As illustrated in Figure 2 (a), MA-LoT sepa-
rates the cognitive process into two distinct tasks: high-level
proof planning and writing, as well as fine-grained correc-
tion based on verifier feedback. This separation is enabled
by a collaborative model architecture and the emergent rea-
soning capability of Long CoT, which was developed during
training. The framework consists of two core components:
a prover model, responsible for generating well-structured
proofs, and a corrector model, which interprets feedback
from the Lean4 verifier to refine the output. Both models
are enhanced with Lean4 field-specific Long CoT capability,
allowing them to reason more thoroughly before producing
outputs. Moreover, we integrate Lean verification results
into Long CoT to improve the system’s self-reflection and
correction abilities.

To implement the MA-LoT framework, we propose a novel
training-inference pipeline called LoT-Transfer Learning
(LoT-TL), which is used to train the LoT-Solver model, as
shown in Figure 2 (b) and (c). This pipeline enables the
emergence of using Long CoT to solve the FL problems
without requiring specifically annotated formal data. It is
achieved by leveraging transfer learning across three data
sources: NL-based general Long CoT reasoning, SFT data
for theorem proving under the code completion task, and
in/correct proof pairs based on Lean4 feedback. Through
structured adaptation, LoT-TL equips the model with aware-
ness of FL proof states and tactics while preserving its strong
NL reasoning and planning capabilities. Then, the model
trained under this pipeline can generate coherent and in-
sightful formal proofs grounded in both symbolic precision
and high-level planning.

Extensive experiments demonstrate that MA-LoT frame-
work effectively enhances the model’s formal reasoning
ability through model-collaboration design and emergent
formal reasoning in Long CoT. The framework can success-
fully prove some of the advanced IMO and AIME problems
in the MiniF2F dataset (Zheng et al., 2021), with which
existing models struggle. Under similar sampling budgets,
our framework achieves a 61.07% accuracy rate, surpass-

ing state-of-the-art whole-proof generation models (Godel-
Prover (Lin et al., 2025), 55.33%) and tree-search baseline
(InternLM-Step-Prover(Wu et al., 2024a), 50.70%).

We summarize our contributions as follows: (1) We in-
troduce MA-LoT, a comprehensive model-collaboration
framework to balance NL reasoning and FL verification
under the Long CoT paradigm for Lean4 theorem proving.
(2) We propose using Long CoT to synergically combine
the nature of NL and FL, allowing the model to generate in-
depth and insightful formal reasoning through NL planning
and analysis. (3) We develop LoT-TL, a training-inference
pipeline that makes field-specific Long CoT capabilities
emerge to LLMs without requiring explicitly annotated
datasets.

Our framework has broad potential beyond Lean4 theorem
proving, demonstrating how formal verification can be
effectively integrated with Long CoT reasoning. This
approach reveals the potential for structured, reflective, and
adaptable general text generation through iterative planning
and error analysis on formal executors. To accelerate
advancements in this field, we open-source our code
at https://github.com/RickySkywalker/LeanOfThought-
Official

2. Methodology
In this section, we detail the development of the MA-LoT
framework and training procedure of LoT-Solver model for
Lean4 theorem proving. Our framework’s core idea is to
enable the model to perform Long Chain-of-Thought (CoT)
reasoning under the context of Lean4 theorem proving. The
Long CoT is designed to perform deep integration between
Natural Language (NL) and Formal Language (FL) reason-
ing. Training of such Long CoT thinking model is achieved
under an extreme scarcity of NL-FL aligned data faced
by the entire field (Wang et al., 2024). We introduce the
methods by first outlining the preliminaries of LLM for-
mal theorem proving in Section 2.1. Then, we describe
the LoT-Transfer Learning (LoT-TL) training pipeline in
Section 2.2. Finally, we present comprehensive details on
how our trained model facilitates MA-LoT framework for
Lean4 proof writing in Section 2.3.

2.1. Preliminaries

We introduce preliminary knowledge of applying Long
Chain-of-Thought (CoT) LLMs to Lean4 formal theorem
proving in a model-collaboration manner.

Current state-of-the-art methods treat Lean4 code as plain
text and feed it directly to LLMs. There are two main
branches of techniques to apply LLMs for Lean4 theorem
proving. The first branch is the tree-search method (Yang
et al., 2024b; Wu et al., 2024a). This method converts the

3

https://github.com/RickySkywalker/LeanOfThought-Official
https://github.com/RickySkywalker/LeanOfThought-Official

MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

Lean4 theorem statement and current proof state (includ-
ing conditions and goals based on the existing proofs) into
plain text as input to LLMs and asks it to generate the next
possible tactic to complete the proof. The other direction
is whole-proof generation methods. It provides the LLMs
with NL instruction, NL theorem statement, and Lean4 state-
ment to the LLMs. The intended outcome is to generate
a complete Lean4 proof in a single pass. This is achieved
by first leveraging the LLM’s NL reasoning to produce a
high-level plan, then guiding the generation of the actual
Lean4 proof The input-output examples for both tree-search
and whole-proof generation are presented in Appendix B.

The Long CoT LLMs, represented by O1 (OpenAI, 2024),
make long internal NL thinking before outputting the final
answer. It largely enhances the NL math reasoning ability
of LLMs through self-reflection and correction in Long CoT.
However, it still struggles to provide rigorous NL proofs
and typically has relatively low FL capability.

Our approach combines the strengths of tree search
and whole-proof generation methods through a model-
collaboration system. By leveraging Long CoT, we coordi-
nate the interaction between NL and FL in LLMs, which
allows the model to write more structured and insightful
proofs.

2.2. LoT-TL Training Pipeline

This section introduces a simple but effective training
pipeline LoT-Transfer Learning (LoT-TL). The pipeline in-
tends to make LLMs have the ability to perform Lean4
field-specific Long CoT reasoning. Such ability can be ob-
tained through LoT-TL without the need for specifically
annotated Long CoT data. The main idea of LoT-TL is
to leverage system prompts to regulate training and infer-
ence behaviors, which can be divided into the following
stages: (1) collecting field-specific Supervised Fine-Tuning
(SFT) data (Section 2.2.1), (2) training the model on general
natural language Long CoT tasks (Section 2.2.2), and (3)
training the model using the transfer learning method on
SFT and correction data to make formal Long CoT abil-
ity emerge(Section 2.2.3). Although this paper focuses on
Lean4, our framework shows potential to be applied to more
fields, making LLMs obtain field-specific Long CoT capa-
bility without RL or special data annotation.

2.2.1. OBTAIN SFT DATA

The first step of LoT-TL pipeline is to gather a moderate
amount of NL-FL aligned SFT data for the specific target
field (in our case, Lean4). However, existing open-source
datasets do not meet the requirement. They are typically
small in size (e.g., MiniF2F (Zheng et al., 2021)), or omit
NL annotations (e.g., DeepSeek-Prover-v1 dataset (Xin
et al., 2024a)), or exhibit relatively low NL quality (e.g.,

OBT (Wang et al., 2024)), or lack Lean4 proofs (e.g., Lean-
Workbook (Ying et al., 2024)).

To address this, we compile a new Lean theorem proof
dataset named LoT-ProveData (LoT-PD), containing 54,465
data records. Each record contains Lean4 theorem state-
ments, verified proofs with NL explanations as comments,
and NL statements. The Lean4 theorem proofs come
from two sources: the DeepSeek-Prover-v1 dataset and
the annotated Lean-Workbook using TheoremLlama and
DeepSeek-Prover-v1.5-RL. Next, inspired by the analysis-
then-generate approach in Wang et al. (2023), we employ
Qwen-2.5-72B to provide an analysis of Lean4 proofs, fol-
lowed by writing the NL proof based on the analysis. Fi-
nally, we integrate these NL proofs as comments in the
Lean4 code by Qwen. For data records lacking NL state-
ments, we generate NL statements using a similar method.
The core components of our LoT-ProveData are as follows:

{FL Statement, Commented FL proof, NL
statement}↪→

During proof generation for the ProverData, some incor-
rect proofs were also produced. We recorded these along-
side their error messages to form LoT-CorrectionData (LoT-
CD), consisting of 64,912 records of correct-incorrect Lean4
proof pairs with error messages of the incorrect proof. Ad-
ditionally, it contains an NL statement and proof of the
theorem. LoT-CD is used to train the model’s error analysis
and correction capability. The core part of the LoT-CD is:

{FL Statement, Correct FL proof, Error
messages, Incorrect FL proof, NL
statement}

↪→

↪→

These datasets work together to improve both the prover and
corrector models’ capability, acting as the source of strong
NL-FL joint thinking ability for our model-collaboration
framework.

2.2.2. NL LONG COT TRAINING

In the second stage, we train a normal instruction-finetuned
model to obtain the general Long CoT reasoning capa-
bility in Natural Language. We use the OpenO1-SFT-
Pro dataset provided by Open-Source-O1 (2024), a 126k
records dataset for general NL question-answering on math
and science topics with Long CoT for training. We apply
standard next-token prediction SFT, guiding the model to
produce Long CoT before it outputs final answers. Through-
out the NL Long CoT training, we set the system prompt as
follows to explicitly instruct the model to use the Long CoT
approach:

You are a helpful assistant who will
solve every problem **WITH** Long
Chain-of-Thought

↪→

↪→

4

MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

This system prompt indicates that the model should use the
Long CoT to write the answer. The training input includes
the system prompt and NL question, with the expected out-
put being the Long CoT and final answer. After training,
we observe that the model gains robust NL Long CoT ca-
pabilities, which serve as a base for models to analyze and
interact with Lean code. However, when applied to Lean4
reasoning, it tends to provide only NL solutions rather than
outputting Lean4 code in its output section, indicating the
need for further alignment.

2.2.3. FIELD-SPECIFIC ALIGNMENT

In the final stage of the training process of LoT-TL pipeline,
we train the model to obtain emergent Lean4 Long CoT
ability. In this training stage, we set the system prompt to
instruct the model not to use Long CoT when answering.
In the meantime, to make the model aware of the Long
CoT structure, we use a simple placeholder to occupy the
original place of the Long CoT. The above method allows us
to train the model aware of the Lean4 Long CoT structure
without requiring any Lean4 Long CoT data. Specifically,
the system prompt is:

You are a helpful assistant who will
solve every problem **WITHOUT**
Long Chain-of-Thought

↪→

↪→

and the placeholder Long CoT is:

The user asks not to solve with Long
CoT, so I will directly write the
answer.

↪→

↪→

Under this setup, we first train on the LoT-ProveData for
formal theorem proving ability, then train on the LoT-
CorrectionData to make the model learn error-analysis and
correction skills. The example of training data can be found
in Appendix F. We also adopt the curriculum learning data
sorting method from Wang et al. (2024) to stabilize training.
After training, we find that the Long CoT Lean4 proving
and error analysis ability emerges in the LLMs when using
the system prompt to turn on Long CoT in inference. We
conclude the effectiveness of the TL framework because it
preserves the structure of Long CoT and enables the model
to activate such capability when instructed.

Following the above steps, we train the LoT-Solver model
based on an expert Lean4 prover with instruction fine-tuning.
LoT-Solver is a model with Lean4 Long CoT reasoning
capability, which also enables the separation of whole-proof
writer and corrector.

2.3. Model-Collaboration Lean4 Proof Writing

This section presents the model-collaboration framework
that combines the advantages of whole-proof generation

and tree-search methods under the Lean-based Long CoT
paradigm. We use the LoT-Solver as the base model for both
the prover and the corrector. Under this setup, we use the
prover model to write a complete proof draft (Section 2.3.1)
and apply the corrector model to analyze and correct the
proof based on Lean verifier feedback (Section 2.3.2).

2.3.1. PROVER MODEL

The prover model writes the initial Lean4 proof using a
whole-proof generation strategy. Then, it is submitted to
the Lean4 verifier to check its correctness and passed to the
corrector model if it is wrong. We use the system prompt to
turn on the Long CoT reasoning and use a specific header in
Long CoT to guide the model in making a high-level proof
plan. Here is the instruction template for the prover model:

{... **WITH** Long CoT ...}
Instruction:
{NL statement}
{FL statement}
Response:
Alright, I should do the following:
1. Provide the natural language

analysis for the theorem based on
the Natural language theorem
statement.

↪→

↪→

↪→

2. Draft the Lean4 tactics I should use
to solve the problem↪→

3. Write the output Lean4 code.

The prover model’s input and output example can be found
in Appendix G. The emergent Lean reasoning ability in the
Long CoT enables the model to write a better-structured
proof based on its high-level plan than direct proof genera-
tion. Upon generating the proof, the prover model submits
it to the Lean evaluator for verification. The theorem is
then passed to the corrector model for further refinement if
incorrect.

2.3.2. CORRECTOR MODEL

After receiving a wrong proof and Lean verifier feedback,
the corrector model will systematically analyze them in
Long CoT. The corrector re-evaluates and rethinks the proof
strategy, then generates a revised proof that intends to cor-
rect the errors and complete the proof. In conceptual anal-
ogy, the corrector model functions similarly to the tree-
search method but with greater flexibility and deeper analy-
sis.

The instruction prompt remains identical to the prover
model. We incorporate the incorrect proof and feedback
from the Lean verifier in the Long CoT, followed by instruc-
tions to direct the model to analyze the error and formulate
a revised proof. Detailed examples of such prompts are
available in Appendix G. Then, the corrector model will

5

MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

pass the new proof to the Lean4 verifier. If the new proof
is still wrong, iteratively analyze the errors until success or
reach the max retry limit.

The corrector model enhances theorem proving by enabling
deeper reflection and systematically exploring alternative
proof strategies based on error messages. This iterative cor-
rection process increases the likelihood of discovering non-
trivial proofs while maintaining computational efficiency.

3. Experiments
We conduct comprehensive experiments on the MiniF2F-
Lean4 (Zheng et al., 2021) dataset to assess the perfor-
mance of the MA-LoT framework in formal proof writ-
ing. Specifically, we intend to prove the advantage of the
MA-LoT framework by showing its capability to generate
better-structured and more insightful proofs. We do this
by showing our model has a better general performance in
Section 3.3. Moreover, we perform studies on our correc-
tor model in Section 3.4, the efficiency of the Long CoT
method in Section 3.5, training components of LoT-Solver
in Section 3.6, and a case study in Section 3.7 to further
analyze the impact of individual components.

3.1. Experiment Setup

3.1.1. DATASET AND TASK

In this paper, we assess MA-LoT’s Lean4 reasoning capabil-
ities on the MiniF2F-Test and Valid1 datasets (Zheng et al.,
2021; Yang et al., 2024b; Wang et al., 2024). MiniF2F is a
widely used and challenging benchmark for formal theorem
proving (Frieder et al., 2024), which is adopted in nearly
all major studies in the field (Jiang et al., 2021; Polu et al.,
2022; Jiang et al., 2022; Wu et al., 2024a; Lin et al., 2024;
Yang et al., 2024b; Xin et al., 2024b; Wang et al., 2024;
Azerbayev et al., 2023).

Both the test and validation datasets contain 244 Lean4 state-
ments. The range of problems varies from high-school com-
petition questions to undergraduate-level theorem proofs. It
includes 488 problems from three sources: (1) 260 problems
sampled from the MATH dataset (Hendrycks et al., 2021);
(2) 160 problems from high-school math competitions, in-
cluding AMC, AIME, and AMO; (3) 68 manually crafted
problems at the same difficulty level as (2). Our task is to
query the LLM to generate Lean4 proofs for MiniF2F prob-
lems based on their formal statements and NL descriptions.
To minimize computational overhead, imports are manually
configured.

1Although DeepSeek-Prover-v1.5 declared that they applied
MiniF2F-Valid for training, yet its performance does significantly
differentiate from other methods. Thus, we still keep this baseline.

3.1.2. BASELINES

To highlight MA-LoT ’s capabilities, we select some
of the most competitive baselines in recent years, cov-
ering both tree-search and whole-proof generation ap-
proaches. For tree-search methods, we include: Expert
Iteration (Polu et al., 2022), Llemma (Azerbayev et al.,
2023), ReProver (Yang et al., 2024b), Lean-STaR(Lin et al.,
2024), and InternLM2.5-StepProver(Wu et al., 2024a) as our
baselines. For whole-proof generation baselines, we include
closed-source LLMs, represented by GPT-4-Turbo(Achiam
et al., 2023), Gemini-1.5(Reid et al., 2024), and DeepSeek-
V3 (Liu et al., 2024). Moreover, we include representative
open-source expert models for whole-proof writing, such as
DeepSeek-Math(Shao et al., 2024), TheoremLlama(Wang
et al., 2024), DeepSeek-Prover-v1.5-RL (Xin et al., 2024b)2,
STP-Lean (Dong & Ma, 2025), and Godel-Prover-SFT (Lin
et al., 2025).

For whole-proof generation baselines, we set the sample
budget to pass@128 with 4096 context length (except for
Godel-Prover, where, following the original paper, we use
pass@32), balancing robustness and manageable GPU con-
sumption. We align the search cost as closely as possible
for tree-search methods to whole-proof generation.3

3.2. Implementation Details

In the model’s training process, we use Openo1-SFT-Pro,
LoT-ProverData, and LoT-CorrectionData to train two base
models, namely DeepSeek-Prover-v1.5-SFT and Godel-
Prover-SFT. For different training stages, the learning rate is
as follows: 1E-5 for NL Long CoT training, 1E-7 for LoT-
TL on LoT-PD, and 1E-6 for LoT-CD. The total computa-
tional cost for training is around 1 GPU day, and evaluation
is 11 GPU days on a 4× H100-96G cluster4. To evaluate
our framework in detail, we present three sets of results,
including: (1) LoT (whole-proof): pass@128 whole-proof
generation result of LoT-Solver. (2) MA-LoT: Our primary
evaluation result, where the prover performs 64 whole-proof
generations and undergoes two rounds of corrector refine-
ment5. (3) Cumulative Results: A combined evaluation
aggregating all LoT models’ outputs obtained throughout

2The reported results of DeepSeek-Prover-V1.5 and Goedel-
Prover in our paper are different from the original paper because
we are unable to access vLLM in our machine, and it is known that
the inference without vllm will lead to slight drop of the model’s
capability

3This explains why we exclude RMaxTS for DeepSeek-Prover-
v1.5, as its smallest disclosed sample budget (1× 3200) is not a
comparable result to our baselines.

4The high evaluation cost is due to accelerated inference meth-
ods like vLLM being unable to fit our machine

5Because we don’t need to pass a correct proof to the corrector,
two rounds of correction are approximately the same as one round
of whole-proof generation

6

MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

Method Model size Sample budget MiniF2F-Valid MiniF2F-Test Average

Tree-search Methods

ReProver (Yang et al., 2024b) 229M - - 26.5% -
Llemma (Azerbayev et al., 2023) 34B 1× 32× 100 27.9% 25.8% 26.85%

Expert Iteration (Polu et al., 2022) 837M 8× 8× 512 41.2% 36.6% 38.9%
Lean-STaR (Lin et al., 2024) 7B 64× 1× 50 - 46.3% -

InternLM2.5-StepProver (Wu et al., 2024a) 7B 2× 32× 600 56.0% 50.7% 53.35%

Whole-proof generation

GPT-4-Turbo (Achiam et al., 2023) > 1T

pass@128

25.41% 22.95% 24.18%
DeepSeek-Math (Shao et al., 2024) 7B 25.80% 24.60% 25.20%
Gemini-1.5-pro (Reid et al., 2024) - 29.92% 27.87% 28.90%

TheoremLlama (Wang et al., 2024) 8B 38.52% 35.66% 37.66%
DeepSeek-Prover-v1.5-RL (Xin et al., 2024b) 7B 54.10% 48.36% 51.23%

STP-Lean (Dong & Ma, 2025) 7B - 56.15% -
Godel-Prover (Lin et al., 2025) 7B pass@32 - 55.33% -
DeepSeek-V3 (Liu et al., 2024) 685B pass@32 - 33.61% -

Ours

DeepSeek-Prover + LoT (whole-proof)

7B

pass@128 62.70% 52.05% 57.42%
DeepSeek-Prover + MA-LoT 64 + 32× 2 64.34% 54.51% 59.22%

Godel-Prover + LoT (whole-proof) pass@32 - 57.79% -
Godel-Prover + MA-LoT 16 + 8× 2 - 61.07% -

MA-LoT cumulative 65.98% 63.93% 64.96%

Table 1. Main experimental results of MA-LoT. Our results are presented as Base model + method. The LoT (whole-proof) indicates
using the whole-proof results of our LoT-Solver model, and MA-LoT indicates the result of our whole pipeline. The sampling budget
x+ k × y in the MA-LoT framework indicates we first perform x whole-proof writing using the prover model and k rounds of correction
using the corrector model. In practice, one round of correction costs approximately half of the whole-proof generation budget, resulting in
y = 1

2
x.

Method Prover round 1 round 2 round 3

DS-Prover-v1.5 51.64% 53.28% 54.51% 55.33%
Godel-Prover-SFT 54.92% 59.43% 61.07% 61.89%

Prover as Corrector 54.92% 56.15% 57.38% -

Table 2. Results from multiple rounds of correction using
DeepSeek-Prover and Godel-Prover as base models, along with
the outcomes of using the prover to perform correction.

Method MiniF2F-Test

DeepSeek-Prover-v1.5-SFT (base model) 46.31%
LoT-Solver witch-off Long CoT 49.18%

w/o Long CoT training (on RL model) 48.36%
base model + Long CoT 46.72%

base model + Long CoT + SFT 50.00%

LoT-Solver 51.64%

Table 3. Ablation study result in pass@64 under DeepSeek-Prover
as base model.

Method Godel-Prover-SFT MA-LoT-Godel

Sample budget pass@32 16 + 2× 8
Avg. tokens gen 492.10 657.54
MiniF2F-Test 58.20% 61.07%

Table 4. Long CoT efficiency study result.

the experiment process.

3.3. Results

Table 1 presents our main results, showing that MA-LoT
achieves 61.07% accuracy rate on MiniF2F-Test benchmark
and 57.79% for LoT-Solver using whole-proof generation.
After the enhancement of MA-LoT, we achieve 10.37%
on Godel-Prover and 12.72% on DeepSeek-Prover on the
MiniF2F-Test benchmark. This significant and uniform
improvement of our framework indicates its effectiveness.
Detailed analysis also shows that our models can solve IMO
and AIME problems that previous models struggled with.
Our model surpasses state-of-the-art tree-search (InternLM-
2.5) and whole-proof generation (Godel-Prover) baselines,
demonstrating that our proposed model-collaboration frame-
work based on Long CoT excels in formal theorem proving.

MA-LoT outperforms all tree-search baselines by at least
20.45% because its prover model constructs proofs with
high-level NL planning using emergent Lean Long CoT
reasoning capability. This indicates our prover model can
leverage LLMs’ strong NL reasoning ability in its Long CoT,
which leads to more comprehensive proofs. Additionally,
MA-LoT surpasses whole-proof generation baselines by at
least 10.37%, as its corrector model analyzes, reflects, and
reformulates proofs based on Lean4 executor feedback in
Long CoT. The strong performance also demonstrates the ef-
fectiveness of our ideas of integrating FL verification in NL

7

MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

Long CoT reasoning with its emergent capability. Notably,
the DeepSeek-Prover + MA-LoT is based on DeepSeek-
Prover-v1.5-SFT; it outperforms its RL-trained variant by
6.15%. This suggests that our model-collaboration frame-
work and Lean-based Long CoT methodology align more
naturally with formal theorem proving than RL alone.

The comparison between LoT (whole-proof) and MA-LoT
further highlights the importance of our model-collaboration
framework. We observe a 2.46% improvement by reallo-
cating the computation resources from the prover model,
which performs more whole-proof generation, to the cor-
rector model, which analyzes and refines proofs based on
Lean executor feedback. This validates the necessity of a
model-collaboration system over relying solely on a prover
model. In summary, these results confirm that Long CoT
reasoning, combined with formal verification and a model-
collaboration paradigm, enhances the discovery of non-
trivial and in-depth proofs, thereby validating the effec-
tiveness of our proposed method.

3.4. Corrector study

To assess the impact of the correct model in MA-LoT, we
present the cumulative accuracy on the MiniF2F-Test across
different rounds of correction in Table 2 for two of our base
models. The prover column presents the pass@64 (or 16)
accuracy rate of the prover model in whole-proof genera-
tion, while Round-i columns indicate successive correction
rounds. The results indicate that during the first three cor-
rection rounds, the corrector model successfully corrects
an average of 11.55% theorems that the prover cannot an-
swer. Our analysis shows that most corrected proofs belong
to IMO, AIME, and high-level MATH problems, which
are particularly difficult for prior models. Such additional
solved problems highlight the corrector’s ability to analyze
feedback from the Lean4 executor feedback using emergent
Lean capability in Long CoT to discover non-trivial proofs.
The case study for the analysis and regeneration of new
proofs can be found in Section 3.7 and Appendix E.

Additionally, to validate the effectiveness of the expert cor-
rector, we conducted an experiment that used prover to
perform corrections. In particular, we apply the LoT-Solver
based on Goedel-Prover-SFT. We add the wrong Lean4
proof and error message as a comment in the Lean4 code
block and ask the prover to correct it. Results are shown in
the last row of Table 2. It shows a clear drop in performance
in both correction rounds. This drop is because the prover
model tends to directly repeat the wrong proof instead of
using the Long CoT to analyze the error and correct the
proof. This experiment shows the importance of an expert
corrector model, further validating the effectiveness of our
idea of using FL as a backbone for Long CoT in NL.

3.5. Long CoT Efficiency Study

To further study the property of Long CoT, we perform
this experiment to test whether MA-LoT is able to search
for the answer more efficiently. In this experiment, we
measure the GPU hours as well as the tokens generated in
both MA-LoT and the base model. We observed that the
MA-LoT generated 33% additional tokens and costs 70%
additional GPU hours compared to the base model. Thus, to
make a fair comparison in the sense of computation hours,
we enlarge the base model’s sample budget to 1.7 times
in this experiment; the results are presented in the Tab. 4.
The table shows that despite having a smaller sampling
budget, MA-LoT still outperforms the base model by 4.93%,
which indicates that MA-LoT is a better way to allocate
computation power.

3.6. Ablation Study

To show the effectiveness of each component of our LoT-TL
training pipeline, we conduct this thorough ablation study.
We demonstrate that the elements in LoT-TL pipeline work
synergistically to strengthen the model’s formal theorem-
proving capability through integrating FL in Long CoT. We
use DeepSeek-Prover-v1.5-SFT as our base model and apply
the pass@64 accuracy rate on the whole-proof generation
method for this set of experiments. The results are presented
in Table 3.

3.6.1. EFFECT OF TRAINING STAGES

We evaluate training progression by measuring performance
across key intermediate models, namely base model, base
model + Long CoT, and base model + Long CoT + SFT, as
shown in Table 3. Results indicate that training solely on NL
CoT data provides minimal improvement. It suggests that
the model lacks field-specific information to finish a com-
prehensive Lean4 proof under pure general NL Long CoT
training. However, incorporating SFT data with the LoT-
TL training method yields a marked improvement, demon-
strating the effectiveness of transfer learning in equipping
models with Lean4 Long CoT capabilities. Interestingly, al-
though it is not designed for whole-proof writing, additional
training with correction data further enhances the perfor-
mance. This improvement likely arises from the model’s
development of self-analysis capabilities in Lean4 code,
allowing it to avoid potentially wrong solutions.

3.6.2. SWITCH-OFF LONG COT

This experiment shows that the strong FL reasoning power
of LoT-Solver comes from the emergent formal reasoning
ability in Long CoT, rather than trivially stacking more
data. It uses our LoT-Solver model to write Lean4 proofs
directly using the code completion method without Long
CoT. We find the performance drop from 51.64% to 49.18%

8

MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

because the model does not take an explicit high-level plan
in Long CoT, making it unable to finish some questions in
the induction field.

3.6.3. ABLATION OF LONG COT

To validate the quality of integration between NL and FL
in Long CoT, we fine-tune the DeepSeek-Prover-v1.5-RL
model directly using our SFT dataset without Long CoT
reasoning. We can find that the performance of w/o Long
CoT model (48.36%) is lower than LoT-Solver (51.64%).
The results confirm that Long CoT plays a crucial role in
Lean4 theorem proving, offering structured reasoning that
outperforms a direct RL-based additional data fine-tuned
model.

3.7. Case Study

This section presents the general results of case studies of
the MA-LoT framework. Due to the limited space, we
leave detailed examples in Appendix E. From the examples,
we can observe a clear collaboration between models. The
prover can use a high-level plan to prove advanced MATH
theorems, and the corrector can analyze the feedback from
the Lean executor to formulate a correct proof of an IMO-
level problem. The content in Long CoT also demonstrates
the formal reasoning abilities that emerge from our LoT-
TL training pipeline in both prover and corrector. These
observations qualitatively validate the model-collaboration
system’s design and emergence of formal reasoning ability
in Long CoT, demonstrating its ability to combine high-level
planning with iterative refinement in Lean-based Long CoT.

4. Related Work
4.1. Lean4 Theorem Proving using LLMs

The application of LLMs for FL proving has been a hot
topic for study in recent years. The tree-search including
works represented by Expert Iteration (Polu et al., 2022), Re-
Prover (Yang et al., 2024b), Lean-Star (Lin et al., 2024), and
InternLM-Step-Prover (Wu et al., 2024b). This direction
does not take full consideration of the LLMs’ NL reason-
ing ability and costs exponentially increasing computation
power. Another direction treats formal languages as code
and asks the LLMs to do the whole-proof generation without
interaction with the Lean executor to fully use the NL reason-
ing ability of LLMs. Significant works includes DeepSeek-
Prover (Xin et al., 2024b;a), TheoremLlama (Wang et al.,
2024), and Llemma (Azerbayev et al., 2023). Works in
this direction tend to overlook the verification signals from
Lean executors or do not thoroughly think about the error
messages. Although there is some early work (First et al.,
2023; Zheng et al., 2023) that tries to combine both models,
it did not perform well because of the lack of thorough NL

reasoning and multi-round thinking in Long CoT.

4.2. LLM Collaboration

Traditional RL methods offer a training method solution for
general reasoning and decision-making processes, but often
suffer from low sample efficiency and generalization prob-
lems (Pourchot & Sigaud, 2018). With the fast-developing
reasoning and instruction-following ability of LLMs, many
researchers began to separate the cognition task for a sin-
gle LLM (Wang et al., 2022; Ma et al., 2024). The pri-
mary method for the separation of tasks is to design special
prompts and in-context examples to let LLMs interact with
the outsourcing tools using actionable responses (Xie et al.,
2023; Yang et al., 2023). Further efforts were made to apply
specialized training to enhance their field-specific capabil-
ities (Xu et al., 2023; Reed et al., 2022). In the context of
formal reasoning, most tree-search methods (Yang et al.,
2024b; Lin et al., 2024; Wu et al., 2024a) apply an LLM
to continuously query the executor and receive feedback
to further refine the proof. Because of the huge difference
between FL and NL, such methods are unable to provide a
high-level analysis of the problem and provide a structured
response.

5. Conclusion
This paper introduces MA-LoT, a comprehensive model-
collaboration framework for formal theorem proving that
leverages Lean-based Long Chain-of-Thought (CoT) reason-
ing. MA-LoT separate high-level proof planning from fine-
grained correction, overcoming limitations of single-model
approaches that either fail to harness LLMs’ NL reasoning
capability or lack integration with formal feedback. By coor-
dinating a prover and a corrector model through Long CoT,
MA-LoT produces more structured, coherent, and insight-
ful proofs. To support this framework, we introduce LoT-TL
training-inference pipeline. This pipeline enables LLMs
to develop domain-specific Long CoT reasoning capabil-
ity through transfer learning without requiring specifically
annotated Lean Long CoT data. We conduct extensive ex-
periments on the MiniF2F benchmark, where the MA-LoT
achieves 61.07% accuracy, surpassing all baselines, includ-
ing both tree-search and whole-proof generation methods.
These results highlight the value of combining formal veri-
fication with structured and iterative Long CoT reasoning.
Beyond theorem proving, LoT-TL we proposed offers a
general method for enabling Long CoT reasoning in other
specialized domains without expensive RL or data annota-
tion. Additionally, the success of the model-collaboration
Long CoT in Lean4 suggests broader applications of for-
mal verification for enhancing structured reasoning across
diverse fields.

9

MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

Impact statement
This paper presents work whose goal is to advance the for-
mal theorem proving using LLMs. The potential social im-
pact is majorly in the field of education. With the increasing
number of formal languages used in graduate-level educa-
tion, a more advanced formal theorem proving model may
result in educators being unable to distinguish the model-
generated results and student writing results. Despite the
societal consequences of improving formal reasoning sys-
tems, specific discussions of ethical concerns are still too
early at this stage.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Azerbayev, Z., Schoelkopf, H., Paster, K., Santos, M. D.,
McAleer, S., Jiang, A. Q., Deng, J., Biderman, S., and
Welleck, S. Llemma: An open language model for math-
ematics. arXiv preprint arXiv:2310.10631, 2023.

De Moura, L., Kong, S., Avigad, J., Van Doorn, F., and von
Raumer, J. The lean theorem prover (system description).
In Automated Deduction-CADE-25: 25th International
Conference on Automated Deduction, Berlin, Germany,
August 1-7, 2015, Proceedings 25, pp. 378–388. Springer,
2015.

Dong, K. and Ma, T. Beyond limited data: Self-play llm
theorem provers with iterative conjecturing and proving.
arXiv preprint arXiv:2502.00212, 2025.

First, E., Rabe, M. N., Ringer, T., and Brun, Y. Baldur:
Whole-proof generation and repair with large language
models. In Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 1229–1241,
2023.

Frieder, S., Bayer, J., Collins, K. M., Berner, J., Loader, J.,
Juhász, A., Ruehle, F., Welleck, S., Poesia, G., Griffiths,
R.-R., et al. Data for mathematical copilots: Better ways
of presenting proofs for machine learning. arXiv preprint
arXiv:2412.15184, 2024.

Harrison, J. Hol light: An overview. In International
Conference on Theorem Proving in Higher Order Logics,
pp. 60–66. Springer, 2009.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Jiang, A. Q., Li, W., Han, J. M., and Wu, Y. Lisa: Language
models of isabelle proofs. In 6th Conference on Artificial
Intelligence and Theorem Proving, pp. 378–392, 2021.

Jiang, A. Q., Welleck, S., Zhou, J. P., Li, W., Liu, J., Jamnik,
M., Lacroix, T., Wu, Y., and Lample, G. Draft, sketch,
and prove: Guiding formal theorem provers with informal
proofs. arXiv preprint arXiv:2210.12283, 2022.

Kumarappan, A., Tiwari, M., Song, P., George, R. J.,
Xiao, C., and Anandkumar, A. Leanagent: Lifelong
learning for formal theorem proving. arXiv preprint
arXiv:2410.06209, 2024.

10

MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

Lin, H., Sun, Z., Yang, Y., and Welleck, S. Lean-star: Learn-
ing to interleave thinking and proving. arXiv preprint
arXiv:2407.10040, 2024.

Lin, Y., Tang, S., Lyu, B., Wu, J., Lin, H., Yang, K., Li,
J., Xia, M., Chen, D., Arora, S., and Jin, C. Goedel-
prover: A frontier model for open-source automated the-
orem proving, 2025. URL https://arxiv.org/
abs/2502.07640.

Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., Zhao,
C., Deng, C., Zhang, C., Ruan, C., et al. Deepseek-v3
technical report. arXiv preprint arXiv:2412.19437, 2024.

Ma, C., Zhang, J., Zhu, Z., Yang, C., Yang, Y., Jin, Y.,
Lan, Z., Kong, L., and He, J. Agentboard: An analytical
evaluation board of multi-turn llm agents. arXiv preprint
arXiv:2401.13178, 2024.

Moura, L. d. and Ullrich, S. The lean 4 theorem prover
and programming language. In Automated Deduction–
CADE 28: 28th International Conference on Automated
Deduction, Virtual Event, July 12–15, 2021, Proceedings
28, pp. 625–635. Springer, 2021.

Newell, A. and Simon, H. The logic theory machine–a com-
plex information processing system. IRE Transactions
on information theory, 2(3):61–79, 1956.

Open-Source-O1. Open-o1, 2024. URL https://
github.com/Open-Source-O1/Open-O1. Ac-
cessed: 2024-12-28.

OpenAI. Learning to reason with
llms. https://openai.com/index/
learning-to-reason-with-llms/, September
13 2024. Accessed: 2024-11-24.

Paulson, L. C. Isabelle: A generic theorem prover. Springer,
1994.

Polu, S. and Sutskever, I. Generative language model-
ing for automated theorem proving. arXiv preprint
arXiv:2009.03393, 2020.

Polu, S., Han, J. M., Zheng, K., Baksys, M., Babuschkin, I.,
and Sutskever, I. Formal mathematics statement curricu-
lum learning. arXiv preprint arXiv:2202.01344, 2022.

Pourchot, A. and Sigaud, O. Cem-rl: Combining evolution-
ary and gradient-based methods for policy search. arXiv
preprint arXiv:1810.01222, 2018.

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G.,
Novikov, A., Barth-Maron, G., Gimenez, M., Sulsky,
Y., Kay, J., Springenberg, J. T., et al. A generalist agent.
arXiv preprint arXiv:2205.06175, 2022.

Reid, M., Savinov, N., Teplyashin, D., Lepikhin, D., Lilli-
crap, T., Alayrac, J.-b., Soricut, R., Lazaridou, A., Firat,
O., Schrittwieser, J., et al. Gemini 1.5: Unlocking multi-
modal understanding across millions of tokens of context.
arXiv preprint arXiv:2403.05530, 2024.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X., Zhang,
H., Zhang, M., Li, Y., Wu, Y., et al. Deepseekmath: Push-
ing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Wang, R., Jansen, P., Côté, M.-A., and Ammanabrolu, P.
Scienceworld: Is your agent smarter than a 5th grader?
arXiv preprint arXiv:2203.07540, 2022.

Wang, R., Zhou, W., and Sachan, M. Let’s synthesize step
by step: Iterative dataset synthesis with large language
models by extrapolating errors from small models. arXiv
preprint arXiv:2310.13671, 2023.

Wang, R., Zhang, J., Jia, Y., Pan, R., Diao, S., Pi, R., and
Zhang, T. Theoremllama: Transforming general-purpose
llms into lean4 experts. arXiv preprint arXiv:2407.03203,
2024.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022.

Wu, Z., Huang, S., Zhou, Z., Ying, H., Wang, J., Lin, D., and
Chen, K. Internlm2. 5-stepprover: Advancing automated
theorem proving via expert iteration on large-scale lean
problems. arXiv preprint arXiv:2410.15700, 2024a.

Wu, Z., Wang, J., Lin, D., and Chen, K. Lean-github:
Compiling github lean repositories for a versatile lean
prover. arXiv preprint arXiv:2407.17227, 2024b.

Xie, T., Zhou, F., Cheng, Z., Shi, P., Weng, L., Liu, Y., Hua,
T. J., Zhao, J., Liu, Q., Liu, C., et al. Openagents: An
open platform for language agents in the wild. arXiv
preprint arXiv:2310.10634, 2023.

Xin, H., Guo, D., Shao, Z., Ren, Z., Zhu, Q., Liu, B., Ruan,
C., Li, W., and Liang, X. Deepseek-prover: Advancing
theorem proving in llms through large-scale synthetic
data. arXiv preprint arXiv:2405.14333, 2024a.

Xin, H., Ren, Z., Song, J., Shao, Z., Zhao, W., Wang, H., Liu,
B., Zhang, L., Lu, X., Du, Q., et al. Deepseek-prover-v1.
5: Harnessing proof assistant feedback for reinforcement
learning and monte-carlo tree search. arXiv preprint
arXiv:2408.08152, 2024b.

Xu, Y., Su, H., Xing, C., Mi, B., Liu, Q., Shi, W., Hui, B.,
Zhou, F., Liu, Y., Xie, T., et al. Lemur: Harmonizing

11

https://arxiv.org/abs/2502.07640
https://arxiv.org/abs/2502.07640
https://github.com/Open-Source-O1/Open-O1
https://github.com/Open-Source-O1/Open-O1
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/

MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

natural language and code for language agents. arXiv
preprint arXiv:2310.06830, 2023.

Yang, H., Yue, S., and He, Y. Auto-gpt for online decision
making: Benchmarks and additional opinions. arXiv
preprint arXiv:2306.02224, 2023.

Yang, K., Poesia, G., He, J., Li, W., Lauter, K., Chaudhuri,
S., and Song, D. Formal mathematical reasoning: A new
frontier in ai. arXiv preprint arXiv:2412.16075, 2024a.

Yang, K., Swope, A., Gu, A., Chalamala, R., Song, P.,
Yu, S., Godil, S., Prenger, R. J., and Anandkumar, A.
Leandojo: Theorem proving with retrieval-augmented
language models. Advances in Neural Information Pro-
cessing Systems, 36, 2024b.

Ying, H., Wu, Z., Geng, Y., Wang, J., Lin, D., and Chen,
K. Lean workbook: A large-scale lean problem set for-
malized from natural language math problems. arXiv
preprint arXiv:2406.03847, 2024.

Zheng, C., Wang, H., Xie, E., Liu, Z., Sun, J., Xin, H.,
Shen, J., Li, Z., and Li, Y. Lyra: Orchestrating dual
correction in automated theorem proving. arXiv preprint
arXiv:2309.15806, 2023.

Zheng, K., Han, J. M., and Polu, S. Minif2f: a cross-system
benchmark for formal olympiad-level mathematics. arXiv
preprint arXiv:2109.00110, 2021.

12

MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

A. Term chart
To make the reader better understand the terms, we pro-
vide this chart that explains every term, abbreviation, and
corresponding tool in detail.

1. NL (Natural Language): Refers to language that hu-
mans use in our daily life, often unable to perform
auto-verification.

2. FL (Formal Language): A structured and mathemati-
cally precise representation of logic and proofs, which
ensures rigorous verification and eliminates ambigui-
ties present in NL reasoning.

3. Lean4: A functional programming language and in-
teractive theorem prover developed for formalizing
mathematics and verifying proofs.

4. Lean Executor: The built-in proof verification engine
of Lean4. It evaluates proof steps, checks for correct-
ness, and ensures that every logical inference follows
strict formal verification rules.

5. Long CoT (Long Chain-of-Thought): The reasoning
structure provided by OpenAI-O1 (OpenAI, 2024) that
performs long and detailed thinking before making the
final output. Different from standard CoT, Long CoT
allows for multi-step logical reasoning before proof
generation, reflection, and iterative refinement from
self-check of Lean4 feedback.

6. MA-LoT (Model-CollAboration Lean-based Long
Chain-of-Thought framework): Our proposed model-
collaboration framework for formal theorem proving.

7. LoT-TL (LoT-Transfer Learning): The transfer learn-
ing pipeline we propose to enable LLMs with Lean4
Long CoT capability without the need for a specially
annotated dataset.

8. LoT-Solver: The model we train through LoT-TL
pipeline that serves both as prover and corrector. It
is a high-standard Lean4 theorem proving model with
Long CoT capability to control the type of cognition
task and enhance formal thinking.

9. LoT-PD & LoT-CD (LoT-ProveData) & (LoT-
CorrectionData): The LoT-PD is a dataset containing
verified Lean4 theorem proofs and NL statement and
proof. Its main function is to provide basic capability
for the prover. The LoT-CD is a dataset containing
incorrect error messages and correct Lean4 proofs to-
gether with NL annotations. It mainly provides the
capability for the prover model to refine proofs.

Training Steps MiniF2F-Test

125 Steps 32.79%
250 Steps 35.25%

1,250 Steps 45.08%
2,500 Steps 47.54%

13,616 Steps (full training) 51.64%

Table 5. MiniF2F-Test result on different data-scale trained models

B. Examples for tree-search and whole-proof
generation

Following Section 2.1, we present the input-output example
for tree-search method and whole-proof generation method
here.

Example for whole-proof generation:

Input Example
Complete the following Lean 4 code:
theorem algebra_sqineq_unitcircatbpamblt1

(a b: R)
(h0 : aˆ2 + bˆ2 = 1) :
a * b + (a - b) ≤ 1 := by

Output Example
-- We have that (a - b - 1)ˆ2 ≥ 0.
have h1 : 0 ≤ (a - b - 1) ˆ 2 :=
sq_nonneg _

-- By expanding, we have:
-- 0 ≤ aˆ2 -ab-a-ab+bˆ2 +b-a+b+1.
linarith [h0, sub_add_cancel a b]

Example for tree-search method:

Input Example
DECL MyNat.mul_pow
GOAL a b n : N
⊢ (a * b) ˆ n = a ˆ n * b ˆ n
Output Example
PROOFSTEP induction n with t Ht

C. Scaling Law Study
We conduct an additional experiment to investigate whether
our model adheres to scaling laws by evaluating its perfor-
mance across varying training dataset scales. Specifically,
we train the model with four distinct step sizes (125, 250,
1250, and 2500 steps) under a fixed batch size of 4 and
evaluate its accuracy on the MiniF2F-Test benchmark using
the Long Chain-of-Thought (CoT) format. The resulting
accuracy rates are presented in Table 5. To analyze these
results, we plot the relationship between log-scaled training
steps and model accuracy in Figure 3. A linear approxima-
tion of the data yields a strong coefficient of determination
(R2 = 0.9664), indicating a near-linear improvement in
performance as training steps increase logarithmically. This
aligns with the predictions of scaling laws, suggesting that
our approach benefits significantly from larger-scale train-

13

MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

y = 0.0998x + 0.1235
R² = 0.9664

0.3

0.35

0.4

0.45

0.5

0.55

2.1 2.6 3.1 3.6 4.1

A
cc

ur
ac

y
R

at
e

Log-Scale Training Steps

Scaling Law Study

Figure 3. Log-scale training steps and accuracy rate on MiniF2F
of trained model. The dashed line is a linear regression approxima-
tion.

ing. Our findings further highlight the potential for enhanced
performance with expanded resources to annotate additional
Lean4 data.

D. ProofNet result
We perform a small-scale baseline comparison on the
ProofNet benchmark using the Goedel-Prover-SFT and MA-
LoT(Goedel), where MA-LoT achieves 15.47% of accuracy
rate under 16+16 metric while the original Goedel-Prover is
12.15% under pass@32. The relatively low performance of
both models is that Goedel-Prover does not fit the ProofNet
well as reported in Lin et al. (2025). However, we can still
see the improvement of our method compared to the base-
line, indicating MA-LoT’s effectiveness is not constrained
to the baseline.

E. Case studies
We present two case studies in Appendix E.1 and E.2. We
can see that the model-collaboration framework can write a
more coherent and well-structured proof by making a high-
level NL plan and executing such a plan in the prover. The
corrector can analyze the unsolved goals, make plans for
correction, and write correct proof. This is achieved by our
proposed training procedure.

14

MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

E.1. Prover analysis

This is an example of a prover-generated result, in which we can see that the prover model learns to write a high-level proof
plan in the Long CoT and details execute the plan when writing the Lean4 code

Provided Long CoT Header
<Thought>
Alright, I should do the following:
1. Provide the natural language analysis for the theorem based on the Natural

language theorem statement.↪→

2. Draft the Lean4 tactics I should use to solve the problem
3. Write the output Lean4 code.

The user also asks that I should avoid using the keyword `sorry` to give up the
proof, so I will not write it in my Lean4 code.↪→

Generated results:
The `mathd_numbertheory_458` can be proofed by leveraging the properties of

modular arithmetic. Specifically, we know that if `n % 8 = 7`, then `n` can
be expressed as `n = 8k + 7` for some integer `k`. We need to find `n % 4`.

↪→

↪→

First, observe that `n % 8 = 7` implies `n = 8k + 7`. Since `8k` is divisible by
`4`, we only need to consider the remainder when `7` is divided by `4`, which
is `3`. Therefore, `n % 4 = 3`.

↪→

↪→

Now, translating this reasoning into Lean4 code, we can use the properties of
modular arithmetic to directly derive the result.↪→

</Thought>
<Output>
```lean4
theorem mathd_numbertheory_458 (n : N) (h0 : n % 8 = 7) : n % 4 = 3 := by

-- We know that n leaves a remainder of 7 when divided by 8.
have h1 : n % 8 = 7 := h0

-- We need to find the remainder when n is divided by 4.
have h2 : n % 4 = 3 := by

-- Using the fact that 4 divides 8, we can use the modulo operation
properties.↪→

rw [← Nat.mod_mod_of_dvd n (by decide : 4 | 8)]
-- Simplify the expression using the given remainder when divided by 8.
simp [h1]

-- Therefore, the remainder when n is divided by 4 is 3.
exact h2

```&
</Output>

E.2. Corrector analysis

This is an example of error correction that successfully solves an IMO problem, We can see that the model first analyzes the
error message, then makes a proof plan, and then writes a correct proof for another IMO-level problem

Provided Long CoT Header
<Thought>
Alright, I need to prove the theorem prover_data_68493 using the Lean4 code. Here

is my draft of the proof:↪→

```lean4
theorem imo_1983_p6
(a b c : R)
(h0 : 0 < a ∧ 0 < b ∧ 0 < c)

15



MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

(h1 : c < a + b)
(h2 : b < a + c)
(h3 : a < b + c) :
0 ≤ aˆ2 * b * (a - b) + bˆ2 * c * (b - c) + cˆ2 * a * (c - a) := by
/-
To prove that \( aˆ2 b(a - b) + bˆ2 c(b - c) + cˆ2 a(c - a) \geq 0 \) for

positive real numbers \( a \), \( b \), and \( c \) satisfying certain
conditions related to being part of a triangle, we can proceed as follows:

↪→

↪→

1. **Nonlinear Arithmetic**: Utilize nonlinear arithmetic (`nlinarith`) to
verify inequalities involving squares and products of differences between
variables. These operations inherently handle cases where expressions might
not hold due to cancellation or sign changes.

↪→

↪→

↪→

Equality holds if all pairwise differences among \( a \), \( b \), and \( c \)
become zero simultaneously. However, since they must satisfy strict
positivity constraints imposed by `triangle`, such an eventuality cannot
occur under normal circumstances unless specified otherwise. Nonetheless,
within the confines of algebraic manipulation without additional
constraints beyond those provided, no immediate contradictions arise
regarding potential zeros leading to equality.

↪→

↪→

↪→

↪→

↪→

↪→

-/
-- Introduce intermediate hypotheses ensuring divisibility properties do not

disrupt expected behavior.↪→

have ha' : True := trivial
have hb' : True := trivial
have hc' : True := trivial
-- Employ nonlinear arithmetic to iteratively check for inequalities involving

sums and products of our main variables and constants.↪→

repeat' nlinarith [mul_pos h0.1 h0.2.1, mul_pos h0.2.1 h0.2.2, mul_pos h0.2.2
h0.1,↪→

sub_self a, sub_self b, sub_self c, add_sub_cancel'_right a b,
add_sub_cancel'_right b c,↪→

add_sub_cancel'_right c a, mul_nonneg (ha'.le) (hb'.le), mul_nonneg (hb'.le)
(hc'.le),↪→

mul_nonneg (hc'.le) (ha'.le)]
```&
Let me test it in Lean4
Emmm, it seems the above proof is wrong.
Let me check the error messages.
OK, Here is the error messages:
```bash
line 13

unsolved goals
a b c : R
h0 : 0 < a ∧ 0 < b ∧ 0 < c
h1 : c < a + b
h2 : b < a + c
h3 : a < b + c
ha' hb' hc' : True
⊢ 0 ≤ a ˆ 2 * b * (a - b) + b ˆ 2 * c * (b - c) + c ˆ 2 * a * (c - a)
```&
So, I will rethink a Lean4 proof following the steps

16

MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

1. Provide the natural language analysis for the theorem based on the Natural
language theorem statement, Lean4 theorem statement, my previous proof and
the error message.

↪→

↪→

2. Draft the Lean4 tactics I should use to solve the problem
3. Write the output Lean4 code.

Let me analysis the wrong Lean4 solution through the error messages.
Generated results"
The error message indicates that the proof is incomplete.
The error message says:
```
unsolved goals
a b c : R
h0 : 0 < a ∧ 0 < b ∧ 0 < c
h1 : c < a + b
h2 : b < a + c
h3 : a < b + c
ha' hb' hc' : True
⊢ 0 ≤ a ˆ 2 * b * (a - b) + b ˆ 2 * c * (b - c) + c ˆ 2 * a * (c - a)
```&
So, the main issue is that the proof is incomplete, and the final goal `0 ≤ aˆ2 *

b * (a - b) + bˆ2 * c * (b - c) + cˆ2 * a * (c - a)` is not being addressed
properly.

↪→

↪→

Therefore, I need to construct a proper proof strategy that addresses all the
conditions and goals properly.↪→

First, I need to understand the mathematical structure of the inequality `aˆ2 * b

* (a - b) + bˆ2 * c * (b - c) + cˆ2 * a * (c - a)`.↪→

This expression is symmetric in `a`, `b`, and `c`.
Given that `a`, `b`, and `c` are positive real numbers and they satisfy certain

conditions related to being part of a triangle (triangle inequalities), I can
think about the properties of such expressions.

↪→

↪→

One approach is to consider the symmetry and positivity of `a`, `b`, and `c`.
Since `a`, `b`, and `c` are sides of a triangle, they satisfy the triangle

inequalities:↪→

- `a + b > c`
- `b + c > a`
- `c + a > b`
Additionally, since `a`, `b`, and `c` are positive, we can use properties of real

numbers and inequalities to prove the desired result.↪→

Another approach is to use algebraic manipulation or inequalities like AM-GM
inequality or Cauchy-Schwarz inequality.↪→

Given the complexity of the expression, perhaps rearranging terms or applying
known inequalities could help.↪→

Also, considering the conditions of the triangle, perhaps expressing the
variables in terms of each other or using substitution could simplify the
problem.

↪→

↪→

I need to ensure that the final proof is logically sound and does not rely on
assumptions that are not justified.↪→

Therefore, I will proceed to construct a revised proof based on these
considerations.↪→

Let me proceed with the thought process and output the corrected Lean4 code.
</Thought>

<Output>
```lean4

17



MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

/-- Let $a$, $b$, and $c$ be the lengths of the sides of a triangle. Prove that
$aˆ2 b(a - b) + bˆ2 c(b - c) + cˆ2 a(c - a) \geq 0$.
-/
theorem imo_1983_p6
(a b c : R)
(h0 : 0 < a ∧ 0 < b ∧ 0 < c)
(h1 : c < a + b)
(h2 : b < a + c)
(h3 : a < b + c) :
0 ≤ aˆ2 * b * (a - b) + bˆ2 * c * (b - c) + cˆ2 * a * (c - a) := by
-- We will use the fact that the square of any real number is non-negative.
have h4 : 0 ≤ (a - b)ˆ2 := sq_nonneg (a - b)
have h5 : 0 ≤ (b - c)ˆ2 := sq_nonneg (b - c)
have h6 : 0 ≤ (c - a)ˆ2 := sq_nonneg (c - a)
-- Using these inequalities, we can conclude the desired inequality using

non-linear arithmetic.↪→

nlinarith [mul_pos h0.1 h0.2.1, mul_pos h0.2.1 h0.2.2, mul_pos h0.2.2 h0.1,
mul_pos (sub_pos.mpr h1) (sub_pos.mpr h2), mul_pos (sub_pos.mpr h2)

(sub_pos.mpr h3),↪→

mul_pos (sub_pos.mpr h3) (sub_pos.mpr h1)]
```&
</Output>

Another example is demonstrated as follows:

@ Natural language theorem statement:
mathd_algebra_419:
What is the value of $-a-bˆ2+3ab$ if $a=-1$ and $b=5$? Show that it is -39.

@ Lean4 theorem statement:
```lean4
theorem mathd_algebra_419

(a b : R)
(h0 : a = -1)
(h1 : b = 5) :
-a - bˆ2 + 3 * (a * b) = -39 := by

```&

@ Lean4 theorem statement and proof with explanatory comments preceding each line
of code:↪→

Response:
<Thought>
Okay the user asks me to write Lean4 theorem proof using Long CoT, I should do

the following:↪→

1. Provide the natural language analysis for the theorem based on the Natural
language theorem statement.↪→

2. Draft the Lean4 tactics I should use to solve the problem

3. Write the output Lean4 code.

18

MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

The user also asks that I should avoid using the keyword `sorry` to give up the
proof, so I will not write it in my Lean4 code.↪→

The natural language analysis for the theorem `mathd_algebra_419` is:

Given a = -1 and b = 5, we need to compute the value of the expression -a - b² +
3ab and show that it equals -39.↪→

The steps to solve this problem are:

1. Substitute a = -1 and b = 5 into the expression.
2. Simplify the expression step by step.
3. Verify that the result is -39.

The Lean4 code for this theorem would involve substituting the given values for a
and b into the expression and then simplifying it using algebraic operations.↪→

Now, let's outline the Lean4 code:

The theorem statement is:

theorem mathd_algebra_419
(a b : R)
(h0 : a = -1)
(h1 : b = 5) :
-a - bˆ2 + 3 * (a * b) = -39 := by

The proof would involve substituting the values of a and b into the expression
and simplifying:↪→

First, substitute a = -1 and b = 5 into the expression:

-a - b² + 3ab becomes:

-(-1) - (5)² + 3*(-1)*(5)

Simplify each term:

-(-1) = 1

-(5)² = -25

3*(-1)*(5) = -15

So the expression becomes:

1 - 25 - 15

Now compute the result:

1 - 25 = -24

-24 -15 = -39

19

MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

Thus, the value of the expression is -39.

Now, let's write the Lean4 code.

The code would start with the theorem statement, then use the `rw` tactic to
substitute the values of a and b.↪→

Wait, but in Lean4, we can directly substitute the values into the expression.

So the code would be:

theorem mathd_algebra_419
(a b : R)
(h0 : a = -1)
(h1 : b = 5) :
-a - bˆ2 + 3 * (a * b) = -39 := by

rw [h0, h1]
ring

But wait, let me check. The expression is -a - b² + 3ab. So substituting a = -1
and b = 5:↪→

-(-1) - 5² + 3*(-1)*5 = 1 -25 -15 = -39.

Yes, that's correct.

So the code can be written as:

rw [h0, h1]

Then use the `ring` tactic to simplify the expression.

So the complete code would be:

theorem mathd_algebra_419
(a b : R)
(h0 : a = -1)
(h1 : b = 5) :
-a - bˆ2 + 3 * (a * b) = -39 := by

rw [h0, h1]
ring

Alternatively, using the `simp` tactic with the appropriate lemmas.

But in this case, the `ring` tactic is sufficient.

So the code is straightforward.

I should test this code in Lean4 to ensure that it works.

But since the user asked to avoid using `sorry`, I will not write the code.
Instead, I will provide the explanation.↪→

20

MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

</Thought>

<Output>

To solve the problem, we need to evaluate the expression \(-a - bˆ2 + 3ab\) given
\(a = -1\) and \(b = 5\), and show that the result is \(-39\).↪→

Key steps:
1. **Substitute the given values into the expression:**

- Replace \(a\) with \(-1\) and \(b\) with \(5\).
- The expression becomes \(-(-1) - (5)ˆ2 + 3(-1)(5)\).

2. **Simplify each term:**
- \(-(-1) = 1\)
- \((5)ˆ2 = 25\)
- \(3(-1)(5) = -15\)

3. **Combine the simplified terms:**
- \(1 - 25 - 15 = -39\)

Proof:
```lean4
theorem mathd_algebra_419
(a b : R)
(h0 : a = -1)
(h1 : b = 5) :
-a - bˆ2 + 3 * (a * b) = -39 := by
rw [h0, h1]
ring

```&

Explanation:
- **Substitution:** The `rw [h0, h1]` tactic replaces \(a\) with \(-1\) and \(b\)

with \(5\) in the expression.↪→

- **Simplification:** The `ring` tactic simplifies the expression using algebraic
rules, resulting in \(-39\).↪→

This approach ensures that we efficiently and correctly evaluate the expression
by substituting the given values and simplifying step-by-step. The final
result confirms that the value of the expression is indeed \(-39\).

↪→

↪→

</Output>

From the example above, we can clearly see the saying of wait, which indicates a rethinking process of the Long CoT. Such
rethinking can help the model to reach conclusion that needs more thorough thinking.

E.3. Theorem only solved by MA-LoT

We have observed that algebra 2varlineareq fp3zeq11 3tfm1m5zeqn68 feqn10 zeq7 is only solved in the MA-LoT setup.
From the original code draft and the error analysis, we can spot that our corrector framework is able to restructure the proof
from the previous left and right cases into direct solving. This indicates our method’s superiority in rethinking based on
formal guidance.

<Thought>
Alright, I need to prove the theorem lean_workbook_plus_68493 using the Lean4

code. Here is my draft of the proof:↪→

21

MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

```lean4
import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat
theorem algebra_2varlineareq_fp3zeq11_3tfm1m5zeqn68_feqn10_zeq7
(f z: C)
(h0 : f + 3*z = 11)
(h1 : 3*(f - 1) - 5*z = -68) :
f = -10 ∧ z = 7 := by
/-
Given the equations \( f + 3z = 11 \) and \( 3(f - 1) - 5z = -68 \), we need to

show that \( f = -10 \) and \( z = 7 \).↪→

1. Start by isolating \( f \) from the first equation: \( f = 11 - 3z \).
2. Substitute \( f = 11 - 3z \) into the second equation: \( 3((11 - 3z) - 1) -

5z = -68 \).↪→

3. Simplify the equation step by step:
- Distribute the 3: \( 3(10 - 3z) - 5z = -68 \).
- Distribute the 3 again: \( 30 - 9z - 5z = -68 \).
- Combine like terms: \( 30 - 14z = -68 \).

4. Solve for \( z \):
- Subtract 30 from both sides: \( -14z = -98 \).
- Divide both sides by -14: \( z = 7 \).

5. Substitute \( z = 7 \) back into \( f = 11 - 3z \):
- \( f = 11 - 3(7) \).
- \( f = 11 - 21 \).
- \( f = -10 \).

Thus, we have shown that \( f = -10 \) and \( z = 7 \).
-/
constructor
case left =>

-- Isolate f from the first equation
have h2 : f = 11 - 3*z := by linear_combination h0

-- Substitute f into the second equation
have h3 : 3*(11 - 3*z - 1) - 5*z = -68 := by rw [h2] at h1; exact h1

-- Simplify the equation to solve for z
have h4 : 30 - 14*z = -68 := by linear_combination h3

have h5 : -14*z = -98 := by linear_combination h4

have h6 : z = 7 := by linear_combination h5 / -14
exact h6

case right =>
-- Isolate z from the first equation
have h2 : z = 7 := by linear_combination h0

exact h2

```&

Let me test it in Lean4

Emmm, it seems the above proof is wrong.

Let me check the error messages.

22

MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

OK, Here is the error messages:

```bash
line 39

type mismatch
h6

has type
z = 7 : Prop

but is expected to have type
f = -10 : Prop

```&

```bash
line 42

ring failed, ring expressions not equal
f z : C
h0 : f + 3 * z = 11
h1 : 3 * (f - 1) - 5 * z = -68
⊢ 4 + (-(z * 2) - f) = 0
```&

So, I will rethink a Lean4 proof following the steps

1. Provide the natural language analysis for the theorem based on the Natural
language theorem statement, Lean4 theorem statement, my previous proof and
the error message.

↪→

↪→

2. Draft the Lean4 tactics I should use to solve the problem

3. Write the output Lean4 code.

Let me analysis the wrong Lean4 solution through the error messages

The first error says:

line 39: type mismatch

h6 has type z = 7 : Prop but is expected to have type f = -10 : Prop

Wait, in the code, I have two cases: left and right. The left case is supposed to
prove f = -10, and the right case z = 7. But in the left case, I derived z =
7 and then tried to use h6 to conclude f = -10, but h6 is z = 7. That's the
type mismatch. So, I need to fix that.

↪→

↪→

↪→

The second error is:

line 42: ring failed, ring expressions not equal

f z : C

23

MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

h0 : f + 3 * z = 11

h1 : 3 * (f - 1) - 5 * z = -68

⊢ 4 + (-(z * 2) - f) = 0

Hmm, this seems like an unrelated expression that Lean is trying to check. Maybe
there's a mistake in how I'm handling the substitutions or the algebraic
manipulations.

↪→

↪→

Let me revisit the code. In the left case (proving f = -10), I first derived f =
11 - 3*z from h0, then substituted that into h1 to get h3. Then I simplified
h3 to get h4, h5, and h6, which led to z = 7. But then I tried to use h6 to
conclude f = -10, but h6 is z = 7. I need to instead use z = 7 to find f.

↪→

↪→

↪→

So, in the left case, after getting z = 7, I should substitute that back into f =
11 - 3*z to get f = -10. Then I can use that to conclude f = -10.↪→

Similarly, in the right case, I need to properly handle the substitution and
simplification steps to avoid the ring error.↪→

Let me try adjusting the code accordingly. Instead of having separate cases for
left and right, maybe I should first solve for z, then use that to solve for
f, and then combine the results. Let's see how the corrected code does it.

↪→

↪→

</Thought>

<Output>
```lean4
import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

/--Given that $f + 3z = 11$ and $3(f - 1) - 5z = -68$, show that $f = -10$ and $z
= 7$.-/↪→

theorem algebra_2varlineareq_fp3zeq11_3tfm1m5zeqn68_feqn10_zeq7
(f z: C)
(h0 : f + 3*z = 11)
(h1 : 3*(f - 1) - 5*z = -68) :
f = -10 ∧ z = 7 := by
/-
Given the equations \( f + 3z = 11 \) and \( 3(f - 1) - 5z = -68 \), we aim to

show that \( f = -10 \) and \( z = 7 \).↪→

1. Start by isolating \( f \) in the first equation: \( f = 11 - 3z \).
2. Substitute \( f = 11 - 3z \) into the second equation: \( 3(11 - 3z - 1) -

5z = -68 \).↪→

3. Simplify the equation step by step:
- Expand the terms inside the parentheses: \( 3(10 - 3z) - 5z = -68 \).
- Distribute the 3: \( 30 - 9z - 5z = -68 \).
- Combine like terms: \( 30 - 14z = -68 \).

4. Solve for \( z \):

24



MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

- Subtract 30 from both sides: \( -14z = -98 \).
- Divide both sides by -14: \( z = 7 \).

5. Substitute \( z = 7 \) back into \( f = 11 - 3z \):
- Calculate \( f \): \( f = 11 - 3(7) = 11 - 21 = -10 \).

6. Conclude that \( f = -10 \) and \( z = 7 \).
-/
-- Isolate f in the first equation
have h2 : f = 11 - 3*z := by linear_combination h0

-- Substitute f = 11 - 3z into the second equation
have h3 : 3*(11 - 3*z - 1) - 5*z = -68 := by rw [h2] at h1; exact h1

-- Simplify the equation step by step
have h4 : 3*10 - 9*z - 5*z = -68 := by linear_combination h3

have h5 : 30 - 14*z = -68 := by linear_combination h4

-- Solve for z
have h6 : -14*z = -98 := by linear_combination h5 - 30
have h7 : z = 7 := by linear_combination h6 / -14
-- Substitute z = 7 back into f = 11 - 3z
have h8 : f = -10 := by rw [h7] at h2; linear_combination h2

-- Conclude the proof
exact 〈h8, h7〉

```&
</Output>

F. Training examples
This section, we present the training examples for SFT data and correction data. We can see that in the LoT-TL training
stage, we keep the system prompt to switch off the Long CoT thinking. In particular, in the SFT data, we switch off the
entire Long CoT., In the correction data training, we only switch off the analysis of error messages in the Long CoT while
providing the error message as well as the original proof draft as a component in the Long CoT.

F.1. LoT-TL Training example for SFT data

=== Input Example ===
<|begin_of_sentence|>You are a helpful assistant who will solve every problem

WITHOUT Long Chain-of-Thought↪→

Instruction:
@ Natural language theorem statement:
prover_data_298:
This all simplifies to: $\frac{55*35}{12ˆ7}$
@ Lean4 theorem statement:
```lean4
theorem prover_data_298 :

((55 * 35) / (12ˆ7) : Q) = (55 * 35) / (12ˆ7) := by
```&
@ Lean4 theorem statement and proof with explanatory comments preceding each

line of code:↪→

Response:
=== Output Example ===
<Thought>
The user ask not to solve with long CoT, so I will directly write the answer.
</Thought>
<Output>
```lean4
/--This all simplifies to: $\frac{55*35}{12ˆ7}$-/
theorem prover_data_298 :

25



MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

((55 * 35) / (12ˆ7) : Q) = (55 * 35) / (12ˆ7) := by
/-
To prove that \(\frac{55 \cdot 35}{12ˆ7}\) is equal to \(\frac{55 \cdot

35}{12ˆ7}\), we simply observe that the expressions on both sides of
the equality are identical. This identity holds true because the
numerator and denominator are the same on both sides.

↪→

↪→

↪→

-/
-- We use the fact that the left-hand side and the right-hand side of the

equality are the same.↪→

congr 1
-- Simplify the power expression.
<;> simp [pow_succ]
-- Normalize the numerical values to confirm the equality.
<;> norm_num

```&
</Output><|end_of_sentence|>

F.2. LoT-TL Training example for correction data

=== Input Example ===
<|begin_of_sentence|>You are a helpful assistant who will solve every problem

WITH Long Chain-of-Thought. You can make some Lean4 proof draft in
your O1 style Long internal Chain of Thought (CoT) and you have the
ability to test the thing during your thinking. You need to use the error
messages in your Long CoT to guide your proof generation but you are
required **NOT** to provide natural language analysis to the errors.

↪→

↪→

↪→

↪→

↪→

Instruction:
@ Natural language theorem statement:
prover_data_2216:
Given non-negative real numbers a, b, c with $a + b + c = 1$. Prove that:

$7(ab + bc + ca) \leq 2 + 9abc$.↪→

@ Lean4 theorem statement:
```lean4
theorem prover_data_2216 (a b c : R) (ha : 0 ≤ a) (hb : 0 ≤ b) (hc : 0 ≤ c)

(habc : a + b + c = 1) : 7 * (a * b + b * c + c * a) ≤ 2 + 9 * a * b * c
:= by

↪→

↪→

```&
@ Lean4 theorem statement and proof with explanatory comments preceding each

line of code:↪→

Response:
<Thought>
Alright, I need to prove the theorem prover_data_2216 using the Lean4 code.

Here is my draft of the proof:↪→

```lean4
theorem prover_data_2216 (a b c : R) (ha : 0 ≤ a) (hb : 0 ≤ b) (hc : 0 ≤ c)

(habc : a + b + c = 1) : 7 * (a * b + b * c + c * a) ≤ 2 + 9 * a * b * c
:= by

↪→

↪→

with aes
```&
Let me test it in Lean4
Emmm, it seems the above proof is wrong.
Let me check the error messages.
OK, Here is the error messages:
```bash

26



MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

line 7
unexpected token 'with'; expected '{' or tactic
```&
```bash
line 7
unsolved goals
a b c : R
ha : 0 ≤ a
hb : 0 ≤ b
hc : 0 ≤ c
habc : a + b + c = 1
⊢ 7 * (a * b + b * c + c * a) ≤ 2 + 9 * a * b * c
```&
=== Output Example ===
Since the user ask NOT to provide natural language analysis to the problem.

Let me directly try to write the revised code.↪→

<\Thought>
<Output>
```lean4
/--Given non-negative real numbers $a, b, c$ with $a + b + c = 1$. Prove

that: $7(ab + bc + ca) \leq 2 + 9abc$.-/↪→

theorem prover_data_2216 (a b c : R) (ha : 0 ≤ a) (hb : 0 ≤ b) (hc : 0 ≤ c)
(habc : a + b + c = 1) : 7 * (a * b + b * c + c * a) ≤ 2 + 9 * a * b * c
:= by

↪→

↪→

/-
Given non-negative real numbers \(a\), \(b\), and \(c\) such that \(a + b +

c = 1\), we need to prove that \(7(ab + bc + ca) \leq 2 + 9abc\). The
proof involves using algebraic manipulations and inequalities to show
that the left-hand side is bounded above by the right-hand side.
Specifically, we use the fact that squares of real numbers are
non-negative, which helps in establishing the required inequality.

↪→

↪→

↪→

↪→

↪→

-/
-- Normalize the expression involving `a`, `b`, and `c` to prepare for

algebraic manipulation.↪→

ring_nf at habc ⊢
-- Use `nlinarith` to handle nonlinear arithmetic inequalities. This

includes checking non-negativity of expressions involving `a`, `b`, and
`c`.

↪→

↪→

nlinarith [sq_nonneg (a - 1), sq_nonneg (b - 1), sq_nonneg (c - 1),
sq_nonneg (a - b), sq_nonneg (b - c), sq_nonneg (c - a),
sq_nonneg (a + b + c)]

```&
</Output><|end_of_sentence|>

27

MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

G. Models input example
G.1. Prover model input-output example

Input Example
IMO problem our prover found
@ Natural language theorem statement:
imo_1961_p1:
(''Hungary'')
Solve the system of equations:

<center>
$
\begin{matrix}
\quad x + y + z \\\ &= a \; \, \\
xˆ2 +yˆ2+zˆ2 \\\ &=bˆ2 \\
\qquad \qquad xy \\\ &= zˆ2
\end{matrix}
$
</center>

where $a $ and $b $ are constants. Give the conditions that $a $ and $b $
must satisfy so that $x, y, z $ (the solutions of the system) are
distinct positive numbers.

↪→

↪→

@ Lean4 theorem statement:
```lean4
theorem imo_1961_p1 (x y z a b : R) (h0 : 0 < x ∧ 0 < y ∧ 0 < z) (h1 : x ̸= y)

(h2 : y ̸= z)↪→

(h3 : z ̸= x) (h4 : x + y + z = a) (h5 : x ˆ 2 + y ˆ 2 + z ˆ 2 = b ˆ 2) (h6 :
x * y = z ˆ 2) :↪→

0 < a ∧ b ˆ 2 < a ˆ 2 ∧ a ˆ 2 < 3 * b ˆ 2 := by
```&

@ Lean4 theorem statement and proof with explanatory comments preceding each
line of code:↪→

Response:
<Thought>
Alright, I should do the following:

1. Provide the natural language analysis for the theorem based on the
Natural language theorem statement.↪→

2. Draft the Lean4 tactics I should use to solve the problem
3. Write the output Lean4 code.

The user also asks that I should avoid using the keyword `sorry` to give up
the proof, so I will not write it in my Lean4 code.↪→

Output Example
The `imo_1961_p1` can be proofed by analyzing the given equations and

deriving necessary inequalities to ensure that the solutions are distinct
positive numbers.

↪→

↪→

</Thought>
<Output>
```lean4
theorem imo_1961_p1 (x y z a b : R) (h0 : 0 < x ∧ 0 < y ∧ 0 < z) (h1 : x ̸= y)

(h2 : y ̸= z)↪→

28



MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

(h3 : z ̸= x) (h4 : x + y + z = a) (h5 : x ˆ 2 + y ˆ 2 + z ˆ 2 = b ˆ 2) (h6 :
x * y = z ˆ 2) :↪→

0 < a ∧ b ˆ 2 < a ˆ 2 ∧ a ˆ 2 < 3 * b ˆ 2 := by
-- We need to prove three inequalities: 0 < a, bˆ2 < aˆ2, and aˆ2 < 3 *

bˆ2.↪→

refine' 〈_, _, _〉
-- First, prove 0 < a.
-- Since x, y, z are positive, their sum a must also be positive.
. nlinarith [h0.1, h0.2.1, h0.2.2, sq_nonneg (x - y), sq_nonneg (y - z),

sq_nonneg (z - x)]↪→

-- Next, prove bˆ2 < aˆ2.
-- Using the given equations and inequalities, derive the necessary

inequalities.↪→

. nlinarith [mul_self_pos.mpr (sub_ne_zero.mpr h1), mul_self_pos.mpr
(sub_ne_zero.mpr h2),↪→

mul_self_pos.mpr (sub_ne_zero.mpr h3), sq_nonneg (x - y), sq_nonneg (y -
z), sq_nonneg (z - x)]↪→

-- Finally, prove aˆ2 < 3 * bˆ2.
-- Combine all the given information to derive this inequality.
. nlinarith [mul_self_pos.mpr (sub_ne_zero.mpr h1), mul_self_pos.mpr

(sub_ne_zero.mpr h2),↪→

mul_self_pos.mpr (sub_ne_zero.mpr h3), sq_nonneg (x - y), sq_nonneg (y -
z), sq_nonneg (z - x)]↪→

```&
</Output>

G.2. Corrector model input-output example

Input Example
You are a helpful mathematical assistant specialized in formal theorem

proving using Lean4.↪→

Your objectives:
1. Read and interpret the Lean4 theorem statement and any error messages.
2. **If a previous proof attempt was incorrect, analyze its exact mistakes

and completely discard or rewrite the proof as needed.**↪→

3. **Avoid reusing incorrect proof structures or strategies unless explicitly
validated as correct.**↪→

4. **Address all error messages** by modifying the proof structure as needed.
5. Provide a detailed thought process in the <Thought> section, but **only

place the corrected Lean4 code in the <Output> section**.↪→

6. **Ensure the new proof is logically valid and does not use `sorry`.**
Instruction:Below are some **correct Lean4 theorem proof examples** for
your reference. Use them as guidance when constructing the revised proof.
Ensure that your final proof aligns with these examples in terms of
clarity, structure, and correctness. Instruction: @ Natural language
theorem statement:

↪→

↪→

↪→

↪→

↪→

mathd_algebra_392
The sum of the squares of three consecutive positive even numbers is 12296.

Find the product of the three numbers divided by 8. Show that it is
32736.

↪→

↪→

@ Lean4 theorem statement:
```lean4
theorem mathd_algebra_392

29



MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

(n : N)
(h0 : Even n)
(h1 : ((n:Z) - 2)ˆ2 + (n:Z)ˆ2 + ((n:Z) + 2)ˆ2 = 12296) :
((n - 2) * n * (n + 2)) / 8 = 32736 :=

```&

@ Lean4 theorem statement and proof with explanatory comments preceding each
line of code:↪→

Response:
<Thought>
Alright, I need to prove the theorem prover_data_68493 using the Lean4 code.

Here is my draft of the proof:↪→

```lean4
theorem mathd_algebra_392

(n : N)
(h0 : Even n)
(h1 : ((n:Z) - 2)ˆ2 + (n:Z)ˆ2 + ((n:Z) + 2)ˆ2 = 12296) :
((n - 2) * n * (n + 2)) / 8 = 32736 := by
-- Convert the equation to integers for easier manipulation
norm_cast at h1

-- Expand and simplify the given equation
ring_nf at h1

-- Solve for n using numerical reasoning
have h2 : n = 24 := by

nlinarith
-- Substitute n = 24 into the expression and simplify
norm_num [h2]

```&
Let me test it in Lean4
Emmm, it seems the above proof is wrong.
Let me check the error messages.
OK, Here is the error messages:
```bash
line 18

linarith failed to find a contradiction
case h1.h
n : N
h0 : Even n
h1 : Int.subNatNat n 2 ˆ 2 + ↑(n ˆ 2) + ↑(4 + n * 4 + n ˆ 2) = 12296
a† : n < 24
⊢ False
failed
```&
```bash
line 11

unsolved goals
n : N
h0 : Even n
h1 : Int.subNatNat n 2 ˆ 2 + ↑(n ˆ 2) + ↑(4 + n * 4 + n ˆ 2) = 12296
h2 : n = 24
⊢ False

30



MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

```&

So, I will rethink a Lean4 proof following the steps
1. Provide the natural language analysis for the theorem based on the

Natural language theorem statement, Lean4 theorem statement, my
previous proof and the error message.

↪→

↪→

2. Draft the Lean4 tactics I should use to solve the problem
3. Write the output Lean4 code.

Let me analysis the wrong Lean4 solution through the error messages.
Output Example
From the error messages, it seems the following points:
- `linarith failed to find a contradiction` suggests that the linear

arithmetic tactic was unable to derive a contradiction from the given
hypotheses, indicating that the assumptions might not lead to a
contradiction as expected.

↪→

↪→

↪→

- `case h1.h` indicates a specific case within a larger context where a
contradiction was expected but was not found, suggesting that the
assumption `n < 24` might not be valid under certain conditions.

↪→

↪→

- `unsolved goals` means that after applying the tactics, there are still
unresolved goals left, indicating that the tactics applied were
insufficient to complete the proof.

↪→

↪→

From these error messages, I realize that my previous approach might not have
handled the specifics of the problem correctly. Therefore, I need to
revise my proof strategy.

↪→

↪→

First, I will analyze the natural language theorem statement and the provided
Lean4 theorem statement to understand the problem fully.↪→

The problem involves three consecutive even numbers whose squares sum up to
12296. The goal is to find the product of these three numbers divided by
8 and show that it equals 32736.

↪→

↪→

Given that the numbers are consecutive even numbers, I can denote the middle
number as `n`. Then, the three consecutive even numbers can be
represented as `n-2`, `n`, and `n+2`.

↪→

↪→

The sum of their squares is given by:
```
((n - 2)ˆ2) + (nˆ2) + ((n + 2)ˆ2) = 12296
```
Expanding these squares, we get:
```
(nˆ2 - 4n + 4) + nˆ2 + (nˆ2 + 4n + 4) = 12296
```
Combining like terms:
```
3nˆ2 + 8 = 12296
```
Subtracting 8 from both sides:
```
3nˆ2 = 12288
```
Dividing both sides by 3:
```
nˆ2 = 4096
```
Taking the square root of both sides:
```

31



MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

n = 64
```
Since we are dealing with squares, we take the positive root because we are

dealing with natural numbers.↪→

Now, the three consecutive even numbers are:
```
n - 2 = 62
n = 64
n + 2 = 66
```
The product of these numbers is:
```
62 * 64 * 66
```
To compute this product, I can break it down into smaller factors:
```
62 * 64 = 3968
3968 * 66 = 3968 * (60 + 6) = 3968 * 60 + 3968 * 6 = 238080 + 23808 = 261888
```
Now, divide this product by 8:
```
261888 / 8 = 32736
```
Thus, the final result matches the expected outcome.
Now, I need to translate this reasoning into Lean4 code.
I will follow these steps:
1. Define the theorem with the given parameters.
2. Convert the given integer expressions to natural numbers.
3. Expand and simplify the equation using algebraic manipulation.
4. Solve for `n` using numerical methods.
5. Compute the product of the three numbers and verify that dividing by 8

gives the desired result.↪→

I will also include necessary imports and use appropriate tactics to handle
the calculations.↪→

Now, I will proceed to write the Lean4 code following this plan.
</Thought>

<Output>
```lean4
theorem mathd_algebra_392

(n : N)
(h0 : Even n)
(h1 : ((n:Z) - 2)ˆ2 + (n:Z)ˆ2 + ((n:Z) + 2)ˆ2 = 12296) :
((n - 2) * n * (n + 2)) / 8 = 32736 := by
-- Convert the equation to integers for easier manipulation
push_cast at h1

-- Expand and simplify the given equation
ring_nf at h1

-- Solve for n using numerical reasoning
have h2 : n = 64 := by

nlinarith
-- Substitute n = 64 into the expression and simplify
subst h2

norm_num

32



MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

```&
</Output>

33

