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Abstract
OpenDiLoCo is an open-source implementa-
tion and replication of the Distributed Low-
Communication (DiLoCo) training method for
large language models. We provide a reproducible
implementation of the DiLoCo experiments, of-
fering it within a scalable, decentralized train-
ing framework using the Hivemind library. We
demonstrate its effectiveness by training a model
across two continents and four countries. Ad-
ditionally, we conduct an analytical evaluation
of its practicality, focusing on the algorithm’s
compute efficiency and scalability in the num-
ber of workers. Our findings indicate that while
DiLoCo can be effective in specific scenarios, it
is not necessarily a low-communication replace-
ment for Distributed Data Parallel training due to
its lower compute efficiency over a smaller num-
ber of steps.

1. Introduction
Large language models (LLMs) have revolutionized numer-
ous applications of machine learning, yet training these
models requires substantial computational resources typ-
ically concentrated in a single, well-connected cluster to
efficiently parallelize workloads for distributed model train-
ing (Hagemann et al., 2023). Novel approaches, such as
DiLoCo by Douillard et al., address these challenges by
enabling efficient training across multiple, poorly connected
devices. Their approach dramatically reduces the need for
frequent communication, making it feasible to train LLMs
on a global scale.
We reproduce DiLoCo’s results in an open manner and im-
plement them in a real-world setting using the Hivemind
library (team, 2020), showcasing its applications and ana-
lyzing its compute efficiency. In summary, the contributions
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of our work are as follows:

• Open Reproduction of DiLoCo Experiments: We
replicate the DiLoCo experiments for a large language
model pre-training and validate their results in a repro-
ducible manner.

• Open-Source Implementation: We provide imple-
mentations of DiLoCo built on top of the Hivemind
library alongside a concise 180-line PyTorch one, sig-
nificantly lowering the barrier for performing decen-
tralized training.

• Global Decentralized Training: We demonstrate our
approach in a real-world decentralized training setting
executed across two continents and four countries and
achieve 90-95% compute utilization.

• Analytical Insights and Ablations: We conduct an
ablation study of DiLoCo, focusing on the algorithm’s
scalability in the number of workers and compute effi-
ciency.

We publish the full data of our experiments, the
Hivemind as well as the PyTorch distributed training
code implementation of OpenDiLoCo on GitHub at
github.com/PrimeIntellect-ai/OpenDiLoCo.

2. Implementation
DiLoCo is a local SGD algorithm (Stich, 2019) that lever-
ages two distinct optimization processes: an inner opti-
mizer and an outer optimizer. The inner optimizer, AdamW
(Loshchilov & Hutter, 2017), performs local updates on
individual workers, while the outer optimizer, SGD with
Nesterov momentum (Nesterov, 1983), synchronizes the
workers using pseudo-gradients calculated by subtracting
the locally updated weight θ(t+h) from the original weight
θ(t).

This local SGD approach significantly reduces the frequency
of communication (up to 500 times), thus lowering the band-
width requirements for distributed training.
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General Implementation Details Our implementation of
DiLoCo instantiates the two optimizers (inner and outer) and
creates two copies of the model: the main model θ(t+ h),
which will be updated by the inner optimizer, and a copy of
the original weights, θ(t), which is needed to compute the
pseudo-gradient. The inner optimizer is called at the end of
each step, while the outer optimizer is called periodically.
Both of our implementations compute the pseudo-gradients
manually and store them in fp32 inside the PyTorch gradient
buffer (within param.grad) of the model.

In mixed precision training (Micikevicius et al., 2017) with
fp16, a gradient scaler is used to improve the dynamic range
of the gradients while avoiding underflow and overflow.
The gradient scaler should be called during the inner op-
timization step but not during the outer one because the
pseudo-gradients are calculated manually in fp32.

We offer two open source DiLoCo implementations, one
reference implementation using torch.distributed
and an implementation built using the Hivemind library for
a more practical decentralized training setting.

Implementation with torch.distributed The fol-
lowing details our PyTorch implementation, utilizing the
torch.distributed package with NCCL for the com-
munication backend. This implementation was used for our
main experiments.

1 for batch, step in enumerate(train_loader):

2 ... # loss calculation

3 inner_optimizer.step()

4 if real_step % local_steps == 0:

5 for old_param, param in \

6 zip(original_params, model.parameters()):

7
8 param.grad = old_param - param.data

9 dist.all_reduce(

10 tensor=param.grad,

11 op=dist.ReduceOp.AVG

12 )

13 param.data = old_param

14 outer_optimizer.step()

15 original_params = [

16 p.detach().clone() for p in model.parameters()

17 ]

Figure 1. Pseudo-Code for Outer Optimizer in OpenDiLoCo.

We highlight the most important outer optimization part in
Figure 1.

1 from hivemind.dht.dht import DHT

2 from open_diloco import DiLoCoOptimizer

3
4 optimizer = DiLoCoOptimizer(

5 bs, # batch size

6 ls, # learning rate scheduler

7 DHT(), # distributed hash table for coordination

8 i_opt, # inner optimizer

9 o_opt, # outer optimizer

10 m.params() # model parameters

11 )

12
13 for batch in train_dataloader:

14
15 model(batch).loss.backward()

16 optimizer.step()

17 # the outer step, including peer synchronization

18 # and communication, is triggered automatically

19 # after all local steps

20 optimizer.zero_grad()

Figure 2. OpenDiLoCo - Hivemind API.

Hivemind Implementation Our second implementation
is built on top of the Hivemind framework. Instead of using
torch.distributed for the worker communication,
Hivemind utilizes a distributed hash table (DHT) spread
across each worker to communicate metadata and synchro-
nize them. This DHT is implemented using the open-source
libp2p project 1. Hivemind provides an optimized all-reduce
algorithm designed for execution on a pool of poorly con-
nected workers.

Unlike the torch.distributed implementation, our
Hivemind implementation wraps both optimizers into a
single optimizer class, making it compatible with popu-
lar training codebases that assume a single optimizer, such
as the Hugging Face Trainer. This allows for the use of
OpenDiLoCo via a simple Hivemind-compatible API by
instantiating a customizable DiLoCoOptimizer, as shown in
Figure 2.

Our integration with Hivemind enables a real-world de-
centralized training setup for DiLoCo, making many of its
inherent properties usable, such as:

• On/Off ramping of resources: The amount of avail-
able compute may not be constant, with new devices
and clusters coming and going.

• Fault tolerance: For decentralized training, some de-
vices may be less reliable than others. Through Hive-
mind’s fault-tolerant training, a device could become
unavailable at any time without stopping the training
process.

1https://github.com/libp2p/libp2p
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• Peer-to-Peer: There is no master node. All communi-
cation is done in a peer-to-peer fashion.

Contrary to the torch.distributed implementation,
our Hivemind one wraps both optimizers into a one opti-
mizer class, making it more user friendly and compatible
with other open source frameworks.

3. Experiment
Experiment Setup Our OpenDiLoCo experiment setup
largely follows the main experiments from Douillard et al..
We conduct various experiments using a model with 150
million parameters on a language modeling task using the
C4 dataset (Raffel et al., 2019). The hyperparameters are
consistent with DiLoCo across experiments: an inner learn-
ing rate of 4e−4, 1,000 warm-up steps, 0.1 weight decay,
a batch size of 512, a sequence length of 1,024, a learning
rate for the Nesterov outer optimizer of 0.7, and Nesterov
momentum of 0.9. Similarly, we run the experiments for a
total of 88,000 steps.
The one difference in our experiment setup is that we choose
the Llama (Touvron et al., 2023) model architecture for our
experiments, due to its recent popularity, while the original
DiLoCo authors used the Chinchilla architecture (Hoffmann
et al., 2022). These two architectures are generally quite
similar but have slight differences. For instance, Llama uses
the SwiGLU activation function (Shazeer, 2020) for the
MLP and has a dimension of 2

34d instead of 4d. For more
details about the model configuration, see Appendix A.

In addition to the DiLoCo experiments, we conduct ex-
periments with a varying number of workers to analyze if
diminishing returns occur before reaching the 8 workers
reported in the DiLoCo work and to generally measure the
FLOP efficiency of the algorithm.

We also run experiments in a real-world decentralized train-
ing setup, training across workers from four different coun-
tries simultaneously.

Our baseline experiments follow a similar setup as
Douillard et al.. We use two baselines: the first is a weak
baseline that runs without DiLoCo and without replicas for
88,000 steps. The second is a stronger baseline, which uses
an 8× larger batch size with data parallelism, maintaining a
similar compute budget as our DiLoCo experiment but with
significantly larger communication requirements.

Main Results Figure 3 shows our main experimental re-
sults. It demonstrates that DiLoCo with 8 replicas signif-
icantly outperforms the baseline without any replicas and
matches the performance of the stronger baseline with 500×
larger communication requirements, as indicated by the final
perplexity results in Table 1. These findings are consistent
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Figure 3. Main result: 150 million parameter Llama model pre-
training with 8 DiLoCo workers yields significantly lower perplex-
ity than the baseline without DiLoCo, and even compared to the
baseline using 8 times larger batch size with the same compute
budget, while communicating 500 times less.

with the main experimental results of Douillard et al.. One
noticeable difference is that in Douillard et al.’s experiments,
the DiLoCo run is already approaching and surpassing the
stronger baseline at around 64,000 steps, while our DiLoCo
training run only starts to exactly match the performance
of the strong baseline at the end of the training at 88,000
steps. This difference might be due to the fact that their ex-
periments start from a checkpoint with 24,000 pre-training
steps, while ours start from scratch.

DiLoCo Number of Worker Ablation To determine the
compute efficiency of DiLoCo, we conduct an ablation study
on the number of workers, as shown in Figure 4. These
experiments are set up identically to our main experiment,
with the only difference being a reduction in the local step
size from 500 to 50.

Our results demonstrate a steady improvement in perplexity
as the number of workers in DiLoCo increases.

Furthermore, Figure 7 presents the same ablation as Fig-
ure 4, but with the x-axis representing global steps instead of
local steps. This provides a more accurate approximation of
DiLoCo’s FLOP efficiency by comparing the total compute
spent on the model. These results reinforce our previous
observation: DiLoCo with more than one worker is initially
not as compute efficient as the same number of global steps
on a single machine or when using Distributed Data Paral-
lel training. DiLoCo may only achieve comparable FLOP
efficiency after a large number of steps due to slower initial
convergence, as shown in our main experiment in Figure 3.

3



OpenDiLoCo

Model Communication Time Compute & Data Perplexity

Baseline, no replica, from scratch 0 1× 1× 16.17
Baseline, 8× batch size with DP 8×N 1× 8× 13.68
DiLoCo, 8 replica, 500 local steps 8× N

H 1× 8× 13.73

Table 1. Final Evaluation Perplexity Comparison: We compare our two baselines vs DiLoCo with 8 replicas for a 150 million parameter
model pre-training across their communication cost, time spent, compute & data used and final perplexity after 88,000 steps, similar to
Douillard et al.. For the same time and amount of compute, we can compare the second baseline and DiLoCo. The former communicates
gradients at each time step (N total steps), while DiLoCo communicates H = 500 times less.
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Figure 4. Ablation Study on the Number of Workers in DiLoCo:
Performance comparison of DiLoCo with different numbers of
workers and 50 local steps against the baseline without DiLoCo.
Due to compute constraints, these ablation experiments were not
extended to 88,000 steps like the other experiments.

Practical Usage According to our main experimental re-
sults in Figure 3, eight DiLoCo workers yield a final perplex-
ity comparable to that of DDP after 88,000 steps. However,
training for only 44,000 steps with eight workers results in
a significantly worse performing model than DDP with the
same number of global steps, making four DiLoCo work-
ers a more efficient choice in this case. Our interpretation
suggests that while training with eight DiLoCo workers ulti-
mately results in a stronger model, increasing the number
of workers does not accelerate the initial convergence phase
as data parallelism would.

All-Reduce in FP16 Our main experiments perform the
all-reduce operation of the pseudo gradients in FP32, fol-
lowing the original methodology outlined in the DiLoCo
paper. We repeated the DiLoCo experiment, this time using
FP16 for the pseudo gradient.

Figure 5 shows there is no noticeable impact on performance
both with 8 workers and 500 local steps and 4 workers and
50 local steps, indicating that FP16 all-reduce is effective
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Figure 5. FP16 vs FP32 All-Reduce Ablation: The first group is
4 workers and 50 local steps, the second group is 8 workers and
500 local steps.

for use with DiLoCo and can halve the communication time
required for the all-reduce operation.

Globally Distributed Training Setting To showcase the
functionality of decentralized training with OpenDiLoCo
executed across four countries, we utilize our Hivemind
implementation. We use four DiLoCo workers, each with
one H100 GPU, located in Canada, Finland, Poland, and
the United States, respectively. Figure 6 shows the network
bandwidth between the workers, which varies between 80-
300 Mbit/s. We use a 150 million parameter model with 500
local steps, as in our main experiment. We start our training
from a checkpoint pre-trained with 19k steps obtained from
the baseline of our main experiment.
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Figure 6. Network Bandwidth between Workers: Average bidi-
rectional network bandwidth between the four different workers in
our decentralized training setup (in Mbit/s). The GPUs are located
in four different countries and hosted by different cloud providers:
Canada (Oblivus), Finland (DataCrunch), Poland (Scaleway), and
the USA (Lambda Labs). Measured using the iperf package 3.

Through the large number of local steps, the four workers
run independently for around 57 minutes before communi-
cating for gradient averaging. For the outer optimizer step,
our experiment shows an average all-reduce time between
the workers of 180 seconds. Additionally, we observed
variations in the training speed between our different cloud
instances. Although all workers had the same GPU type,
we could not control for configuration variables such as the
number of CPU cores and the amount of RAM, which led
to slightly different training times for the 500 inner steps.
Since our current DiLoCo implementation requires every
worker to complete the same number of local steps, this
resulted in an additional waiting time of up to 200 seconds
for the fastest worker.
Nevertheless, due to the significant reduction in commu-
nication time, the all-reduce bottleneck only accounts for
5.2% of the training time, minimally impacting the overall
training speed. An additional 5.8% of the training time is
spent idling by the fastest worker in our scenario. In future
work, we will address this issue by exploring DiLoCo in an
asynchronous setting, as done by Liu et al..

4. Conclusion
We successfully reproduced the main experiment results
from DiLoCo and demonstrate its application in a real-world
decentralized training setting. We train a large language
model using our OpenDiLoCo implementation across 2
continents and 4 countries and achieve 90-95% compute uti-
lization through the low-communication training approach.

While scaling DiLoCo to more than eight workers is a
promising research direction for enabling effective, low-
communication training across globally distributed GPUs,
our ablation study shows using eight workers does not yet
match the computational efficiency of Distributed Data Par-
allel (DDP) when running for a shorter amount of steps.
However, DiLoCo exhibit strong performance with two or
four replicas comparable to DDP and this already opens up
practical applications.

For future work, more compute-efficient methods need to
be developed for decentralized training, which also improve
the scalability to support a significantly larger number of
distributed workers. Additionally, efforts will be directed
towards scaling OpenDiLoCo to test the algorithm’s scal-
ing behavior on larger model sizes, further enhancing its
applicability and efficiency in real-world scenarios.
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A. Model Configuration

Model Parameters 150M

Number of layers 12
Hidden dim 1024
Number of heads 16
K/V size 64
Vocab size 32,000
Inner learning rate (AdamW) 4e−4

Number of warmup steps 1,000
Weight decay 0.1
Batch Size 512
Sequence length 1,024
Outer Nesterov learning rate 0.7
Outer Nesterov momentum 0.9

Table 2. Model Configuration for the DiLoCo experiments. The models are based on the Llama architecture (Touvron et al., 2023).

B. FLOP Efficiency Comparison

20000 40000 60000 80000 100000 120000
Global Training Steps

15

20

25

30

35

Pe
rp

le
xi

ty

Baseline: No Replica, From Scratch
DiLoCo with 1 replica, 50 local steps
DiLoCo with 2 replica, 50 local steps
DiLoCo with 4 replica, 50 local steps
DiLoCo with 8 replica, 50 local steps

Figure 7. Ablation Study on FLOP Efficiency Relative to Number of Workers in DiLoCo: This figure compares the performance of
DiLoCo with different numbers of workers and 50 local steps against the baseline without DiLoCo. The x-axis shows the global steps
instead of local steps, providing a better approximation of DiLoCo’s FLOP efficiency by comparing the total amount of compute spent on
the model.
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