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ABSTRACT

We propose a novel federated independence testing framework that addresses both
theoretical and practical challenges arising from client heterogeneity. We begin by
revisiting existing federated independence testing methods and showing why they
often fail to provide valid guarantees or maintain statistical power under data dis-
tributional shift across clients. Building on this analysis, we introduce a copula-
based marginal alignment technique together with a stacking-based aggregation
strategy that amplifies intra-client dependence while mitigating inter-client varia-
tion, yielding a theoretically sound and powerful global test. For practicality, we
further accelerate the aggregation step and incorporate a privacy-preserving mech-
anism. On the theoretical side, we establish both the correctness of our method
and the validity of the test. Extensive experiments on both synthetic and real-world
datasets demonstrate the superiority of our solution over existing methods.

1 INTRODUCTION

Testing statistical independence is a foundational task in machine learning and statistics, supporting
causal discovery (Hoyer et al., 2008; Zhang et al., 2012), representation learning (Li et al., 2021), and
feature selection (Camps-Valls et al., 2010). Given the observations from a joint distribution PXY ,
the goal of independence testing (IT) is to determine whether X and Y are independent. As data
volume expands and governance tightens, data are frequently siloed across institutions. For instance,
hospitals keep their own patient records (Kidd et al., 2023), which cannot be pooled together due to
privacy and security concerns, and regulation requirements. This situation motivates the federated
independence testing (FedIT), which is to determine the independence relationship among variables
without sharing raw data.

Compared with the well-studied independent and identically distributed (i.i.d.) setting for indepen-
dence testing (Gretton et al., 2005; Zhang et al., 2012; Székely et al., 2007), FedIT is considerably
more challenging because heterogeneity may degrade test power (Huang et al., 2020). To the best of
our knowledge, there are only a few works that explicitly address this issue. The most recent is (Li
et al., 2024), hereafter FUIT, which proposes a kernel-based federated test that accelerates com-
putation via random features (Rahimi & Recht, 2007) and aggregates covariance-based summary
statistics in the random feature space. Although FUIT achieves competitive results for federated
causal discovery, we show that substantial headroom remains: its aggregation strategy is actually
equivalent to naively concatenating samples in the feature space, thereby ignoring cross-client het-
erogeneity, lacking rigorous theoretical guarantees, and risking power loss under distribution shift.
These limitations call for a theoretically grounded redesign of FedIT together with heterogeneity-
aware aggregation mechanisms. Please refer to Appendix B for further review on related work.

In this paper, we propose a novel framework for federated independence testing that directly tackles
both theoretical and practical challenges posed by client heterogeneity. To ensure theoretical validity
and practical robustness under heterogeneous marginal distributions and dependence structures, we
introduce a unified approach that combines copula-based marginal alignment with a stacking-based
aggregation mechanism. The copula-based alignment exploits the key property that copulas sepa-
rates marginal distributions from dependence structures, as formalized by Sklar’s theorem (Sklar,
1959). This theorem ensures that any multivariate distribution can be uniquely decomposed into its
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marginals and a copula that captures their dependence (Nelsen, 2006). By mapping local data into
a shared copula space, our method preserves the dependence structure while mitigating discrepan-
cies in the marginals. Complementing this, the stacking-based aggregation strategy enhances local
dependence signals at each client and selectively integrates them based on their contributions to
global test power. To ensure efficiency and privacy, we further design a fast and privacy-preserving
aggregation protocol, making the method practical for real-world federated settings.

Our main contributions are summarized as follows: 1) We provide a systematic analysis of the
challenges in FedIT under client heterogeneity and propose a novel framework that addresses both
theoretical and practical challenges. 2) We introduce a copula-based marginal alignment technique
combined with a stacking-based aggregation strategy that amplifies intra-client dependence while
mitigating inter-client variation, resulting in a theoretically sound and powerful global test. To
enhance its practicality, we further develop a fast and privacy-preserving aggregation protocol. 3)
We provide theoretical guarantees on the correctness of our method and the validity of the test.
4) We empirically validate the proposed methods on both synthetic and real-world benchmarks,
demonstrating their practical effectiveness, and superiority over existing methods.

2 PRELIMINARIES AND PROBLEM FORMULATION

We begin by recalling the classical hypothesis-testing framework for statistical independence, and
then formalize the FedIT setting with heterogeneous clients.

The hypothesis testing framework. The goal of independence testing is to decide whether two
random variables X and Y are independent (X ⊥⊥ Y ). Formally,

H0 : PXY = PXPY versus H1 : PXY ̸= PXPY . (1)

The testing procedure is as follows: First, define the statistic ρ and calculate its estimated value
using the samples. Then, choose a significance level α (typically set to 0.05), which represents the
probability that the sampling of ρ under H0 is at least as extreme as the observed value. Finally, the
null hypothesis H0 is rejected if the p-value is not greater than α.

In this procedure, two types of errors may occur. Type I error occurs when H0 is falsely rejected,
while Type II error happens when H0 is incorrect but not rejected. A good test (Zhang et al., 2012)
needs to control Type I error within α while maximizing the testing power (1−Type II error rate).

The federated setting with heterogeneous clients. We consider a federated setting with K clients
(distinct domains). Client k ∈ [K] 1 holds nk samples Zk = {(x(k)i , y

(k)
i )}nk

i=1 drawn from a
joint distribution PXkYk

on Xk ∈ Rdx and Yk ∈ Rdy . Let PXk
and PYk

denote the corresponding
marginals. All samples are mutually independent both intra- and inter-client. In federated indepen-
dence testing and causal discovery (Huang et al., 2020; Li et al., 2024), it is common to assume that,
although data distributions may vary by client, the dependence relationship between the variables is
consistent.

Assumption 1 (Consistent dependence assumption). We assume that the dependence relationship
between Xk and Yk is consistent across clients. That is, either all clients satisfy independence
(Xk ⊥⊥ Yk) or all exhibit dependence (Xk ⊥̸⊥ Yk).

This assumption reflects many real-world federated applications (e.g., multi-hospital studies, cross-
region deployments), where a common data-generating mechanism governs all domains, even as
local conditions differ without flipping the underlying dependence status.

Assumption 2 (Heterogeneous clients assumption). The dependence mechanism (e.g., strength or
functional relationship) and the marginal distributions PXk

and PYk
may vary across clients.

Together, these assumptions define a realistic yet challenging regime: the global dependence status
is common, but local distributions are heterogeneous. Our goal is to design a test that aggregates
cross-client evidence to infer the shared dependence status while handling client heterogeneity.

1Throughout, the symbol [m] denotes the set {1, 2, ...,m}.
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3 LIMITATIONS OF EXISTING FEDERATED INDEPENDENCE TESTS

In this section, we begin by identifying the aggregation challenges of federated independence testing
(FedIT) under client heterogeneity and then show that existing methods not only face fundamental
theoretical limitations but can also suffer substantial power loss in realistic scenarios.

3.1 CHALLENGES OF FEDERATED AGGREGATION UNDER CLIENT HETEROGENEITY

Fig. 1 summarizes two key challenges. On the left, we illustrate the pitfall of naive aggregation
strategies caused by heterogeneous marginal distributions. Two failure modes can occur: (i) inde-
pendence relationships within individual clients lead to spurious dependence after aggregation; (ii)
dependence relationships within individual clients lead to spurious independence after aggregation.

Figure 1: (Left) Naive aggregation pitfall: local independence may appear dependent after aggrega-
tion, or local dependence may cancel and appear independent. (Right) Dependence dilution: strong
local dependencies are weakened after aggregation due to client heterogeneity.

On the right, we highlight a practical challenge stemming from heterogeneous functional relation-
ships across clients. Consider a simple example: Client 1’s variables (X1,Y1) follow a bivariate
Gaussian distribution with a correlation coefficient of 0.3, whereas Client 2’s variables (X2, Y2)
follow a bivariate Gaussian with a correlation coefficient of −0.3. When combined, these oppos-
ing correlations cancel out, producing an aggregated relationship that appears uncorrelated. This
scenario poses a major difficulty for independence testing, as it requires detecting higher-order de-
pendencies beyond linear correlation, which in turn reduces the statistical power of the test.

Building on this, we later revisit existing methods and show that they are incapable of addressing
either the theoretical aggregation pitfall or the practical signal dilution challenge described above.

3.2 REVISITING EXISTING FEDERATED INDEPENDENCE TESTING METHODS

We focus on a representative class of FedIT methods (Li et al., 2024) that extend the Kernel-based
Independence Test (KIT) (Zhang et al., 2012) to the federated setting, which we refer to as FUIT. In
the following, we show that FUIT’s aggregation strategy is essentially equivalent to naively concate-
nating client samples in the feature space; consequently, it cannot overcome the limitations before.

Formally, let x = (x1,x2, . . . ,xn) ∈ Rdx×n denote n samples of dimension dx, and similarly
let y ∈ Rdy×n. The statistic of KIT is defined as T = n∥Cxy∥2F , where the covariance matrix
is Cxy = 1

n ϕ̃(x)
T ϕ̃(y) ∈ Rh×h. Here, ϕ̃(x) ∈ Rn×h is the centered random feature matrix,

given by ϕ̃(x) := Hϕ(x), H = I − 1
n11

T where 1 ∈ Rn×1 is the all-one vector. The feature

map is ϕ(x) :=
√
2/h

[
cos(wT1 x+ b1); . . . ; cos(w

T
hx+ bh)

]T ∈ Rn×h with wi ∼ P(w) and
bi ∼ Uniform(0, 2π). Here, h denotes the number of random features. The same construction
applies to ϕ(y). To determine the rejection threshold, a two-parameter Gamma distribution is used
to approximate the null distribution under H0, with parameters determined by the first two moments:

E0 := EH0
[T ] = Tr(Cxx) · Tr(Cyy), V0 := VarH0

[T ] = 2∥Cxx∥2F · ∥Cyy∥2F , (2)

where Cxx and Cyy are defined analogously as Cxy . Then, the critical threshold ĉα can be obtained:

H0 : n∥Cxy∥2F ∼ xγ−1e−x/β

βγΓ(γ)
, γ =

E2
0

V0
, β =

V0

E0
, s.t.

∫ ĉα
β

0

xγ−1e−x

Γ(γ)
dx = 1− α, (3)

where Γ(·) is the Gamma function. Finally, independence is decided by comparing T with ĉα.

3
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For FUIT, the key distinction from KIT lies in the aggregation process that its cross-covariance
matrix is computed via client-wise aggregation, Cxy =

∑
k C

(k)
xy , n =

∑
k nk, where C(k)

xy is
calculated by C(k)

xy = 1
nϕ(x

(k))THT
kHkϕ(y

(k)), and ϕ(x(k)) ∈ Rnk×h is obtained by replacing x

with the local sample vector x(k) := (xk;1, xk;1, ..., xk,nk
) ∈ Rdx×nk for client k. The centering

matrix is Hk = I− 1
n1nk

1Tnk
. The terms ϕ(y(k)), C(k)

xx and C(k)
yy are defined by analogy.

We now show that this aggregation is equivalent to applying the method to the simple concatenation
of client features. Define fk := Hkϕ(x

(k)) ∈ Rnk×h, fcon := [f1; f2; ...; fK ] ∈ Rn×h. It follows
that Cxy =

∑
k C

(k)
xy = 1

n

∑
k f

T
k fk = 1

nf
T
confcon, and note that the term 1

nf
T
confcon is exactly the

same as computing the statistic on the fully concatenated features from all clients.

As discussed earlier, such naive aggregation is problematic in the presence of heterogeneity. As
a result, it can lead to uncontrolled Type I error or severely reduced test power, particularly when
client-specific marginals or dependence structures differ. We therefore conclude that existing FedIT
methods are inadequate for addressing the fundamental challenges posed by heterogeneous clients.
In the next section, we introduce a new approach designed specifically to handle these limitations.

4 METHODS

In this section, we present our solutions to the previously analyzed challenges. The overall frame-
work is illustrated in Fig. 2, which outlines the key steps. The core module consists of a copula trans-
form to achieve marginal alignment, together with a Canonical Correlation Analysis (CCA, Härdle
& Simar (2007)) with random projections to strengthen intra-client dependencies. These intra-client
procedures, in turn, enable a more effective aggregation process, thereby enhancing the power of the
global test. In what follows, we introduce each component of the framework in detail.

4.1 THE COPULA OF DISTRIBUTIONS

The copula (Nelsen, 2006) plays a crucial role when studying the dependence among random vari-
ables. The copula contains all the information needed to measure dependence, and it is invariant to
any nonlinear strictly increasing transformations of the marginal variables.

Definition 1 (Copula transformation (Sklar, 1959)). Consider a d-dimensional random vector X =
(X1, ..., Xd) with continuous marginal cumulative distribution functions (cdfs) Fi, i ∈ [d]. Then,
the joint cumulative distribution of X is uniquely expressed as:

F (X) := F (X1, ..., Xd) = C(F1(X1), ..., Fd(Xd)), (4)

where the distribution C is known as the copula of X .

The copula has uniform marginals as shown in the following theorem:

Theorem 1 (Probability integral transform (Nelsen, 2006)). For a random variable X with cdf F ,
the random variable U = F (X) is uniformly distributed on [0, 1].

Thus, the copula C has d marginals Ui = Fi(Xi) ∼ Uniform[0, 1], i ∈ [d]. Given a sample
matrix [xj,i]n×d with n samples, we can estimate Fi using the empirical marginal cdf defined as
Fn,i(x) :=

1
n

∑n
j=1 I[xj,i ≤ x], i ∈ [d],where I is the indicator function. Then, for a d-dimensional

vector x, the empirical copula transformation is Fn(x) := [Fn,1(x1), Fn,2(x2), ..., Fn,d(xd)],
which converges to the true transformation as the sample size increases:

Theorem 2 (Convergence of the empirical copula Póczos et al. (2012)). Let F be the copula trans-
formation defined above, and Fn be the corresponding empirical copula transformation, then

P
[
sup
x∈Rd

∥F (x)− Fn(x)∥2 > ϵ

]
≤ 2d exp

(
−2nϵ2

d

)
. (5)

The speed of exponential convergence with respect to the sample size guarantees the performance
of the copula transform method in practical applications. Calculating Fn(X) involves sorting the
marginals of X ∈ Rd with n samples, thus O(dn log n) operations.

4
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Figure 2: An overview of the process of our FedIT-CS framework. Each client first applies an
empirical copula transformation to ensure translation and scale invariance, followed by random
feature projection to capture the nonlinear dependency signal. The resulting features are combined
linearly to maximize dependence strength. Then, to facilitate aggregation across heterogeneous
clients, a second copula transformation aligns marginal distributions. A privacy-preserving module
is adopted before aggregation, and a subset of clients are selected to maximize the overall test power.

4.2 INTRA-CLIENT DEPENDENCE MEASURE VIA RANDOM PROJECTIONS

The goal of this section is to extract the intra-client dependence signal, thereby enabling a more
effective aggregation procedure. We build upon the Hirschfeld–Gebelein–Rényi Maximum Corre-
lation Coefficient (HGR) (Gebelein, 1941), which defines dependence as

hgr(X,Y ) = sup
f,g

ρ(f(X), g(Y )), (6)

where the supremum is taken over all Borel-measurable functions f and g with finite variance,
and ρ denotes Pearson’s correlation coefficient. Intuitively, HGR captures the maximal correlation
attainable under nonlinear transformations of the variables. In practice, a common class of esti-
mators approximates the transformation functions f and g using random projections, as proposed
by (Lopez-Paz et al., 2013). This approach bypasses the need for an explicit optimization step,
leveraging the properties of random projections as outlined below.
Theorem 3 (Approximation with random projections Póczos et al. (2012)). Let p(w) be a distribu-
tion on Ω and supx,w |ϕ(x;w)| ≤ 1. Let F = {f(x) =

∫
Ω
u(w)ϕ(x;w)dw | |u(w)| ≤ Cp(w)}.

Draw w1, ..., wh i.i.d from p(w). Further let δ > 0, and c be some L-Lipschitz loss function, and
consider data {xi, oi}ni=1 drawn i.i.d from some arbitrary PXO. The linear regression coefficient
u1, ..., uh for which fh(x) =

∑h
i=1 uiϕ(x;wi) minimizes the empirical risk c(fh(x), o) has a dis-

tance from the c-optimal estimator in F bounded by

EP[c(fh(x), o)]−min
f∈F

EP[c(f(x), o)] ≤ O

((
1√
n
+

1√
h

)
LC

√
log

1

δ

)
(7)

with probability at least 1− 2δ.

Intuitively, randomly selecting {wi}ni=1 instead of optimizing them causes only bounded error.
Therefore, Eq. (6) can be approximated as optimizing u and v to maximize ρ(uTϕ(x),vTϕ(y)),
where ϕ(x) and ϕ(y) are random projections of x and y. The remaining task is to choose the non-
linear projection functions and to optimize u and v. Following the choice of Lopez-Paz et al. (2013),
we choose cosine projections, which are also called random Fourier feature (RFF) (Rahimi & Recht,
2007). Formally, the weights are drawn aswi ∼ N (0, sI), bi ∼ Uniform(−π, π) for i ∈ [h], where s
is a tunable parameter, typically set empirically as a linear function of the input dimensionality. The
corresponding RFF is then defined by ϕ(x) :=

[
cos(wT1 x+ b1); . . . ; cos(w

T
hx+ bh)

]T ∈ Rn×h,
and analogously for ϕ(y). The task of finding u and v then turns to a Canonical Correlation Anal-
ysis (CCA) problem (Härdle & Simar, 2007). Formally, let Cxy := cov(ϕ(x), ϕ(y)) ∈ Rh×h and
define Cxx and Cyy analogously. The problem is thus equivalent to solving the eigenproblem:[

0 C−1
xx Cxy

C−1
yy Cyx 0

] [
u
v

]
= ρ2

[
u
v

]
, (8)
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where the largest eigenvalue corresponds to the leading canonical correlation ρ1. As a result, after
applying the nonlinear projections and identifying the canonical directions u and v, the nonlinear
components of the dependence structure are effectively captured. This, in turn, facilitates the sub-
sequent aggregation process. Specifically, the outputs of this procedure are 1-dimensional random
variables uTϕ(x) ∈ R1×n and vTϕ(y) ∈ R1×n with the correlation ρ1.

Remark. This method is closely related to KIT in Sec. 3.2, as both rely on Cxy . The key difference
is that KIT considers all eigenvalues (via the Frobenius norm), while our approach focuses on the
largest one (through CCA). In federated settings, this helps avoid eigenvalue cancellation and depen-
dence dilution. For instance, in Sec. 3.2, Σ1,xy = 0.3 and Σ2,xy = −0.3 sum to zero, but according
to Eq. (8), our method still retains the largest eigenvalue of 0.3 for both clients, providing consistent
dependence signals. Moreover, the resulting low-dimensional output reduces communication cost
and enhances privacy, as it makes the reconstruction of a client’s raw data more difficult.

For subsequent aggregation, we again use the copula method to align the marginal distributions of
uTϕ(x) and vTϕ(y). The resulting quantities are denoted as (rx, ry), where rx, ry ∈ R1×n,
with the corresponding random variables Rx and Ry , whose marginal distributions are given by
Rx, Ry ∼ Uniform(0, 1). Next, we introduce the detailed process of aggregation.

4.3 STACKING-BASED AGGREGATION STRATEGY

For each client k ∈ [K], after the intra-client dependence modeling process, we obtain the output
copula samples (r(k)x , r

(k)
y ). We then proceed to the aggregation process. For ease of exposition, we

first ignore the client subset selection process (which will be introduced later) and focus on how to
compute the sub-statistics transmitted to the server, as well as the server-side summary procedure.

Computation of summary statistics. Since the nonlinear dependencies have already been captured
during the intra-client stage, the inter-client aggregation only needs to summarize linear correlations.
Let the selected subset of client ids be denoted as I, hence the total sample size is nI =

∑
k∈I nk.

The global correlation coefficient can then be fully computed from the second-order moments statis-
tics, which are obtained locally at each client. Formally, client k computes:

e(k)x =

nk∑
i=1

r
(k)
x;i , m(k)

xy =

nk∑
i=1

r
(k)
x;i r

(k)
y;i , m(k)

xx =

nk∑
i=1

r
(k)
x;i r

(k)
x;i , m(k)

yy =

nk∑
i=1

r
(k)
y;i r

(k)
y;i . (9)

The server then aggregates these local statistics to obtain:

eIx =
∑
k∈I

e(k)x , mI
xy =

∑
k∈I

m(k)
xy , ρIxy =

nIm
I
xy − eIxe

I
y√

nImI
xx − (eIx)

2
√
nImI

yy − (eIy )
2
. (10)

Privacy protection. Although accessing the one-dimensional statistics already makes it difficult
for an adversary to reconstruct the original data, we aim to provide stronger privacy guarantees.
Since the aggregation requires only summation, we employ Homomorphic Encryption (HE) (Pail-
lier, 1999), which ensures that no individual client statistics (e.g., e(k)x , m(k)

xy ) are exposed during
communication. Due to space limit, we refer the reader to Appendix B for related work and Ap-
pendix D for the complete procedure. This process fully preserves the privacy of client data.

Client subset selection strategy. The remaining problem is how to select a subset of clients that
maximizes the power of the global test. Rather than relying on computationally expensive permuta-
tion procedures (Good, 2013), we directly use the summary statistic computed once by each client,
which already captures the essential dependence information. Aggregating these summaries pro-
vides a practical approximation of the null distribution and yields a power score that guides subset
selection. Importantly, our experiments confirm that this strategy is effective in practice (see Ap-
pendix I.3). Given such a power score, a natural idea is to evaluate different subsets of clients and
choose the one with the highest score. One straightforward approach is to enumerate all nonempty
subsets and evaluate their power scores, selecting the subset with the highest score. However, this
approach quickly becomes computationally intractable as the number of clients K grows, since the
total number of subsets is 2K . To address this challenge, we propose a soft relaxation that converts
the discrete optimization problem into a continuous one. Specifically, we assign each client k ∈ [K]
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a learnable parameter pk ∈ [0, 1], define nP =
∑
k∈[K] pknk, and rewrite the corresponding aggre-

gated statistics as

ePx =
∑
k∈[K]

pke
(k)
x , mP

xy =
∑
k∈[K]

pkm
(k)
xy , ρ

P
xy =

nPm
P
xy − ePx e

P
y√

nPmP
xx − (ePx )

2
√
nPmP

yy − (ePy )
2
. (11)

This continuous optimization problem can then be efficiently solved using gradient-based methods.
This relaxation transforms the subset selection problem into a continuous optimization task, which
can be efficiently solved with gradient-based methods. However, compared with the discrete case,
the privacy-preserving component requires additional refinement: homomorphic encryption (HE)
can still be applied to computing the gradients of the aggregated quantities with respect to pk, thereby
enabling each client to privately update its local weight parameter pk (see Appendix D for details).

4.4 THE OVERALL FRAMEWORK

Above, we introduced the intra-client modules and the aggregation process in detail. We now
present the complete framework, named FedIT-CS (Federated Independence Testing with Cop-
ula Alignment and Stacking Aggregation). Depending on the aggregation strategy, we distinguish
two main variants: FedIT-CS-M, which enables maximum power selection over client subsets,
and FedIT-CS-ML, which further generalizes the procedure by allowing mixed linear aggregation,
while achieving linear-time complexity with respect to the number of clients.

Table 1: Comparison of FUIT (Li et al., 2024) and the variants of our proposed FedIT-CS.

Method FUIT FedIT-CS-S (Ours) FedIT-CS-M (Ours) FedIT-CS-ML (Ours)

Theoretical soundness ✗ ✗ ✓ ✓
Privacy protection ✗ ✓ ✓ ✓
Maximum power selection ✗ ✗ ✓ ✓

Local computation cost O(nh2) O(Bn logn+Bnh2) O(Bn logn+Bnh2) O(Bn logn+Bnh2)
Aggregation cost O(Kh2) O(KB) O(2KB) O(KB)
Communication cost O(Kh2) O(KB) O(KB) O(KB)

Permutation-based testing. To obtain p-value for hypothesis testing, we adopt a permutation-based
procedure (Good, 2013). Formally, we generateB permuted samples (σt(x),y) with t ∈ [B], where
each σt is an independent derangement. These permuted pairs simulate samples under H0. Each
client can perform this procedure independently, producing local null samples which, after intra-
client transformation obtain copula output, are aggregated to compute the global test statistic. This
enables an approximation of the null distribution of the aggregated test.

Sample splitting. A key detail is that we cannot use the same data both for learning the aggregation
strategy and for performing the test, as this would invalidate Type I error control. To address this,
we adopt a straightforward data-splitting strategy (Jitkrittum et al., 2017; Liu et al., 2020), which is
simple and direct but inevitably reduces statistical power. Actually, more advanced strategies such
as (Schrab et al., 2022; Kübler et al., 2020) could be considered, and we leave this as an important
direction for further work.

For comparison with FUIT, we also introduce a naive variant, FedIT-CS-S, which aggregates copula
outputs by direct pooling to compute covariance, equivalent to applying FedIT-CS-M over the entire
client set without selection. This variant does not require sample splitting, but sacrifices theoretical
guarantees. Table 1 summarizes all variants of our proposed framework. The table highlights that
only FedIT-CS-M and FedIT-CS-ML achieve both theoretical soundness and maximum power se-
lection, while all FedIT-CS variants ensure privacy protection. From a computational perspective,
FedIT-CS-S and FedIT-CS-ML achieve efficient aggregation with cost O(KB), whereas FedIT-CS-
M incurs exponential cost O(2KB) due to subset enumeration.

Algorithm. The overall procedure is summarized in Alg. 1. As a preprocessing step, each client
splits its data into training Ztr

k and testing Zte
k (Line 1). The test consists of two phases: (i) intra-

client dependency modeling and client subset selection using the training data (Lines 2–5), and (ii)
a permutation test with the learned aggregation weights to compute the p-value and decide inde-
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pendence on the testing data (Lines 6–9). The computational complexity of different variants is
summarized in Table 1 and specific privacy-preserving schemes can be applied.

Algorithm 1 FedIT-CS Framework

Input: Number of clients K, federal samples Zk = {(x(k)i , y
(k)
i )}nk

i=1, k ∈ [K], the number of
feature sampling h, significance level α, the number of permutation B.
Output: Decision on X ⊥⊥ Y or X ⊥̸⊥ Y .

1: Split client data into training and testing sets: Zk = Ztr
k ∪Zte

k .
2: ◁ Intra-client dependency modeling and subset selection with Ztr

k , k ∈ [K].
3: Apply the first copula transform, random projections, and CCA as in Eq. (8).
4: Apply the second copula transform and aggregate with Eqs. (10) or (11).
5: Obtain the optimized aggregation weights p∗ = (p∗1, p

∗
2, . . . , p

∗
K).

6: ◁ Permutation test with p∗ on Zte
k , k ∈ [K].

7: Generate B permuted samples (σt(x),y), t ∈ [B], then each perform intra-client transform.
8: Compute the aggregated statistic sequence {ρPxy, ρP,σ1

xy , ..., ρP,σB
xy }.

9: Calculate the p-value by p-value= [1 +
∑B
t=1 I{ρP,σt

xy ≥ ρPxy}]/[1 +B].
10: Reject X ⊥⊥ Y if p-value ≤ α; otherwise accept X ⊥⊥ Y .

5 THEORETICAL ANALYSIS

Let the aggregation algorithm be denoted by A, which determines the optimal weights pk, k ∈ [K].
Note that when pk ∈ {0, 1}, this corresponds to the Fed-CS-M strategy, while allowing pk ∈ [0, 1]
corresponds to Fed-CS-ML. We now consider the case where A is theoretically optimal. In the
asymptotic regime where the sample size and the number of random features are large enough, let
the resulting aggregated coefficient be denoted by ρA. Then, we have the following theorem to show
that ρA is theoretically sound, with the proof given in Appendix F.
Theorem 4 (Soundness of aggregated statistics). Let ρA denote the aggregated coefficient obtained
by the aggregation algorithm A. Assume A is theoretically optimal. Then, under the null hypothesis
H0, we have ρA = 0, whereas under the alternative hypothesis H1, we have ρA > 0.

This result guarantees that our aggregated coefficient is theoretically correct in the idealized set-
ting where sample estimation error and random approximation error are negligible and where the
optimization procedure (in the case of FedIT-CS-ML) converges sufficiently well. In practice, by
Theorems 2 and 3, the estimation and approximation errors vanish at rates O(1/

√
n) and O(1/

√
h)

with high probability, thus acceptable. Moreover, the optimization step is effective due to the clear
signal structure, as further validated in our experiments. Overall, this theoretical guarantee underpins
the reliability of our framework, ensuring that both Type I and Type II error controls are meaningful.
Next, we establish the Type I error bound of our test, with the proof being provided in Appendix G.
Theorem 5 (Type I error bound). Assume the null hypothesis H0 is true. For any significance level
α ∈ (0, 1), the bound for the Type I error is given by

P(p-value ≤ α|H0) ≤ α. (12)

This establishes the validity of our test. Together with the theoretical soundness of the aggregated
statistic, this result provides a strong foundation for the reliability of our framework.

6 PERFORMANCE EVALUATION

We compare the following tests: FUIT (Li et al., 2024), FedIT-CS-S, FedIT-CS-M, and FedIT-CS-
ML. To further evaluate the potential loss of statistical power due to sample splitting, we additionally
include two variants, FedIT-CS-M-F and FedIT-CS-ML-F, where the aggregation strategy is trained
on extra data that is not used for testing. For fairness, all methods are implemented with the number
of random features fixed at h = 10, the significance level set to α = 0.05, and the data split ratio
set to 0.2. We evaluate the methods on both synthetic and real-world datasets. Due to space limit,
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Figure 4: Left: The average Type I error rate on three synthetic datasets. The other three plots: The
results of average test power on these three datasets.

detailed setup and additional results are provided in Appendices H and I, including experiments
under more synthetic settings (with varying noise distributions and function generation processes),
evaluations with larger numbers of clients, and comparisons of running time.

Performance on synthetic datasets. We consider three client heterogeneous scenarios. (i) Covari-
ance: linear dependency with client-specific correlation coefficients 0.5, -0.5, and 0.02; sample size
ratio n1 : n2 : n3 = 1 : 1 : 2, with n1 ranging from 100 to 400. (ii) Frequency: sinusoid model
(X,Y ) ∝ 1 + sin(ωx) sin(ωy) with ω = 2, 3, 4 across clients; sample size ratio n1 : n2 : n3 =
1 : 1 : 1, with n1 from 300 to 900. (iii) Functional: nonlinear relations Y = f(X) + ϵ, f ∈
{sin(·), cos(·), (·)2} with ϵ ∼ N (0, 1); sample size ratio n1 : n2 : n3 = 4 : 2 : 1, with n1 from 400
to 1600. Type I error rate is evaluated using permuted samples. For each point, perform 100 repeated
randomized experiments and report the average result. In all cases, figures are plotted with n1.

FU
IT

Fed
IT-C

S-S

Fed
IT-C

S-M

Fed
IT-C

S-M
L

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Ty
pe

 I 
er

ro
r (

↓
)

FU
IT

Fed
IT-C

S-S

Fed
IT-C

S-M

Fed
IT-C

S-M
L

0.55

0.60

0.65

0.70

0.75

Ty
pe

 II
 e

rro
r (

↓
)

Figure 3: The results
on Sachs.

Results are presented in Fig. 4. Except for FUIT on the Frequency setting,
all methods successfully control the Type I error rate. On both the Co-
variance and Frequency settings, our approach consistently outperforms
FUIT, which can be attributed to the effectiveness of our aggregation strat-
egy. Comparing the variants with and without additional training data (-F
vs. non -F), we observe that data splitting indeed reduces statistical power,
though FedIT-CS-ML still achieves better performance than FUIT. Inter-
estingly, despite being designed primarily for efficiency, our linear-time
variant FedIT-CS-ML outperforms FedIT-CS-M. This improvement may
stem from the greater flexibility of its solution space, which provides ad-
ditional benefits to strength dependency signal.

Performance on real dataset. For real-world evaluation, we use the Sachs
dataset (Sachs et al., 2005) under seven perturbation conditions, treating
each condition as a distinct client. This dataset is widely used in indepen-
dence testing (Zhang et al., 2023b) (see the Appendix H for visualization

of the distributions). The network consists of 11 nodes, yielding 55 node pairs: 18 independent (for
Type I error evaluation) and 37 dependent (for Type II error evaluation). In each run, we randomly
select 3 out of the 7 clients, evaluate all pairs, and compute the average result. This procedure is re-
peated 50 times with new client selections, and the results are reported. Results are shown in Fig. 3.
Compared with FUIT, all variants of our method achieve tighter control of Type I error while si-
multaneously reducing Type II error, thereby demonstrating stronger detection power. These results
provide empirical evidence supporting the theoretical advantage of our framework.

7 CONCLUSION

This paper presents FedIT-CS (Federated Independence Testing with Copula Alignment and Stack-
ing Aggregation), a framework that overcomes both theoretical and practical challenges of client
heterogeneity in federated testing. By analyzing the limitations of existing methods, FedIT-CS in-
troduces copula-based marginal alignment and stacking-based aggregation to ensure validity with
enhanced power, while also providing efficient and privacy-preserving implementations. Extensive
experiments confirm its superiority over prior approaches. An interesting direction for future work
is to extend FedIT-CS to conditional independence testing, further broadening its applicability.
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Kristin Lauter, Adriana López-Alt, and Michael Naehrig. Private computation on encrypted genomic
data. In Diego F. Aranha and Alfred Menezes (eds.), Progress in Cryptology - LATINCRYPT 2014,
pp. 3–27, Cham, 2015. Springer International Publishing.

Loka Li, Ignavier Ng, Gongxu Luo, Biwei Huang, Guangyi Chen, Tongliang Liu, Bin Gu, and Kun
Zhang. Federated causal discovery from heterogeneous data. arXiv preprint arXiv:2402.13241,
2024.

Yazhe Li, Roman Pogodin, Danica J Sutherland, and Arthur Gretton. Self-supervised learning
with kernel dependence maximization. Advances in Neural Information Processing Systems, 34:
15543–15556, 2021.

Feng Liu, Wenkai Xu, Jie Lu, Guangquan Zhang, Arthur Gretton, and Danica J Sutherland. Learn-
ing deep kernels for non-parametric two-sample tests. In International conference on machine
learning, pp. 6316–6326. PMLR, 2020.

Lang Liu, Soumik Pal, and Zaid Harchaoui. Entropy regularized optimal transport independence
criterion. In International Conference on Artificial Intelligence and Statistics, pp. 11247–11279.
PMLR, 2022.

David Lopez-Paz, Philipp Hennig, and Bernhard Schölkopf. The randomized dependence coeffi-
cient. Advances in neural information processing systems, 26, 2013.

Russell Lyons. Distance covariance in metric spaces. 2013.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

H. B. McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
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Gábor J Székely and Maria L Rizzo. The distance correlation t-test of independence in high dimen-
sion. Journal of Multivariate Analysis, 117:193–213, 2013.
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• Section E: Preliminaries and Auxiliary Lemmas.
• Section F: Proof of Theorem 4.
• Section G: Proof of Theorem 5.
• Section H: Details of Experimental Setup and Analysis of Results.
• Section I: Additional Experiment Results.
• Section J: Limitations and Broader Impacts.
• Section K: Use of Large Language Models: An Explanation.

A LIST OF SYMBOLS AND NOTATIONS

O, o big, small O notion
Op, op big, small O notion in probability
i.i.d. independent and identically distributed
R the set of real numbers
B(R) Borel σ-algebra on R
PX marginal distribution of X
PXY joint distribution of X , Y
FX cumulative distribution function (cdf) of X
E[X] expectation of X
Var(X) variance of X
Cov(X,Y ) covariance of X , Y
X ⊥⊥ Y random variables X , Y are independent
X ⊥̸⊥ Y random variables X , Y are not independent
Tr(·) the trace of a square matrix
1 an vector of all ones
H centering matrix define as H = I− 1

n11
T

⊙ element-wise product
[n] denotes the set {1, 2, ..., n}
ρ Pearson’s correlation coefficient
Γ(·) Gamma function
× the product symbol of topological space
∥ · ∥2 spectral norm
∥ · ∥F Frobenius norm
d
= equality in distribution

B RELATED WORK

Independence testing. Traditional correlation-based measures such as Pearson’s coefficient (Cohen
et al., 2009) and Kendall’s τ capture only linear or monotonic associations, and therefore fail to de-
tect general nonlinear dependencies. To characterize more complex relationships, and handle more
high-dimensional settings (Liu et al., 2022; Zhang et al., 2023c; Zhang & Zhu, 2023), a wide range
of nonlinear dependence measures have been developed. These methods can be broadly categorized
into three groups. (i) Rank-based methods. Chatterjee (2021) extends traditional correlation ideas
by exploiting ranks, making it robust to outliers and invariant under monotone transformations of
the data. (ii) Distance-based methods. Popular representatives include distance covariance and re-
lated measures (Székely et al., 2007; Lyons, 2013; Székely & Rizzo, 2013; Ren et al., 2023), which
employ characteristic functions to quantify dependence. These methods are flexible and effective
for general nonlinear settings. (iii) Kernel-based methods. This family derives dependence criteria
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from cross-covariance operators in reproducing kernel Hilbert spaces (RKHS). Early examples in-
clude Kernel Canonical Correlation (KCC) (Bach & Jordan, 2002), which maximizes the correlation
between feature maps, and Constrained Covariance (COCO) (Gretton et al., 2005), which removes
normalization constraints. The most widely used kernel-based approach is the Hilbert–Schmidt
Independence Criterion (HSIC) (Gretton et al., 2007), which measures dependence via the squared
Hilbert–Schmidt norm of the cross-covariance operator. Follow-up work has further improved HSIC
by accelerating computation for large-scale data (Zhang et al., 2018) and by optimizing kernel pa-
rameters to enhance test power (Jitkrittum et al., 2017; Ren et al., 2024; Xu et al., 2025).

Despite extensive progress in classical settings, independence testing under federated environments,
especially under client heterogeneity remains underexplored. Motivated by this gap, we system-
atically investigate the problem of Federated Independence Testing (FedIT). We identify the key
challenges that arise in this setting and propose a principled framework to address them.

Federated causal discovery. Unlike traditional causal discovery methods (Spirtes, 2001; Yu et al.,
2019; Ng et al., 2024) that assume data are independent and identically distributed (i.i.d.), federated
causal discovery (FCD) must contend with decentralized and often heterogeneous data (Zhou et al.,
2022). Existing methods can be grouped into three categories: (i) score-based methods, which
evaluate candidate graphs with predefined scoring functions (Huang et al., 2018; Ren et al., 2025)
and search strategies (Tsamardinos et al., 2006; Chickering, 2003; 2020). For example, DARLIS (Ye
et al., 2024) employs distributed simulated annealing, while PERI (Mian et al., 2023) builds on
local GES (Chickering, 2003) with worst-case regret aggregation; (ii) continuous optimization-based
methods, which reformulate structure learning as an optimization problem. NOTEARS (Zheng
et al., 2018) pioneered this in the centralized case, and its federated extensions include NOTEARS-
ADMM (Ng & Zhang, 2022) using the alternating direction method of multipliers, FedDAG (Gao
et al., 2023) based on the FedAvg (McMahan et al., 2016) paradigm, and Fed-CDI (Abyaneh et al.,
2022) incorporating intervention-aware aggregation; and (iii) constraint-based methods, which rely
on conditional independence tests (Zhang et al., 2012; 2017; Pogodin et al., 2024) and algorithms
such as Peter Clark (PC) (Spirtes et al., 2000). In the federated setting, FedPC (Huang et al., 2023)
aggregates skeletons and orientations via voting under homogeneous data, while FedCDH (Li et al.,
2024) introduces a federated conditional independence test (FCIT) and a federated independent
change principle (FICP) to handle heterogeneity, achieving state-of-the-art results in FCD.

Although FCD has made progress in handling heterogeneous data, a systematic study of FedIT is
still lacking, even though its reliability is critical for the effectiveness of FCD methods themselves.
In particular, the federated independence test used in FedCDH, referred to as FUIT, adopts a naive
feature space aggregation strategy. In this work, we revisit FUIT and show that such aggregation
suffers from inherent theoretical flaws and practical power degradation under heterogeneity. To
overcome these limitations, we propose a new framework that directly addresses these challenges.

Privacy-preserving hypothesis testing. Research on privacy-preserving statistical testing has re-
ceived growing attention. (i) In the non-federated setting, many works have developed differentially
private (DP) techniques (Dwork & Roth, 2014; Mironov, 2017). For example, Kazan et al. (2023)
proposed a black-box framework to privatize arbitrary hypothesis tests; Priv-PC (Wang et al., 2020)
designed DP algorithms for discrete data via sensitivity analysis of conditional Kendall’s τ and
Spearman’s ρ, later extended to numerical data (Zhang et al., 2023a); Kusner et al. (2016) ana-
lyzed the sensitivity of HSIC; Kalemaj et al. (2024) added Laplace noise to regression residuals
for conditional independence testing; and Kim & Schrab (2023) studied DP permutation tests for
kernel-based methods, reducing noise while preserving power. In addition, homomorphic encryp-
tion has also been applied, e.g., Lauter et al. (2015) proposed a private χ2 test for independence
testing. (ii) In the federated setting, Pang et al. (2023) developed a secure federated correlation test
(FED-χ2) and entropy estimation by reformulating computations as frequency moment estimation
and enabling aggregation through stable projections.

Overall, most existing approaches rely on differential privacy, while a few employ homomorphic
encryption but remain limited to discrete settings such as the χ2 test. By contrast, our method can
also apply to continuous and nonlinear scenarios. Through a client-side nonlinear transformation,
we reduce aggregation to second-order moments in the FedIT task, which naturally aligns with
homomorphic encryption and enables exact privacy-preserving computation.
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C DETAILS OF FEDIT METHODS

In this section, we provide detailed explanations of the table presented in Sec. 4.4 of the main paper.
For ease of reference, we reproduce the table below.

Table 2: Comparison of FUIT (Li et al., 2024) and our proposed FedIT-CS variants in terms of
theoretical properties, privacy, power, and computational / communication costs.

Method FUIT FedIT-CS-S (Ours) FedIT-CS-M (Ours) FedIT-CS-ML (Ours)

Theoretical soundness ✗ ✗ ✓ ✓

Privacy protection ✗ ✓ ✓ ✓

Maximum power selection ✗ ✗ ✓ ✓

Local computation cost O(nh2) O(Bn logn+Bnh2) O(Bn logn+Bnh2) O(Bn logn+Bnh2)
Aggregation cost O(Kh2) O(KB) O(2KB) O(KB)
Communication cost O(Kh2) O(KB) O(KB) O(KB)

The entries in Table 2 are derived as follows:

• FUIT (Li et al., 2024): This method directly aggregates local covariance matrices from all
clients. As discussed in Sec. 3.2, such a naive aggregation lacks theoretical guarantees. More-
over, it provides neither privacy protection nor any form of client selection procedure. The local
computation cost arises from computing the local covariance matrix C(k)

xy ∈ Rh×h based on
features of X and Y with dimension h×n. Since the aggregation step is simply a summation of
C

(k)
xy , k ∈ [K], the aggregation cost is O(Kh2). Similarly, the communication cost is O(Kh2),

as each client must transmit its local covariance matrix C(k)
xy to the server.

• FedIT-CS-S (Ours): This is the naive aggregation variant, which directly sums all local statistics
(i.e., the second-order moments), equivalent to pooling copula outputs. Consequently, it also
lacks theoretical guarantees and does not involve any selection procedure. However, since only
aggregated moments are transmitted, the process preserves privacy (see Appendix D). The local
computation cost includes copula transformation via marginal sorting O(n log n), covariance
computation O(nh2), and CCA O(h3), yielding a total complexity of O(n log n + nh2). Note
that this procedure is repeated for each permutation sample. The aggregation cost is simply
summing the client-level second moments, with complexity O(KB), and the communication
cost is also O(KB) for transmitting these statistics to the server.

• FedIT-CS-M (Ours): This variant extends FedIT-CS by enabling maximum power selection
over client subsets. Specifically, it aggregates second-order moments from a chosen subset
of clients and uses the resulting global statistic to optimize the selection strategy. Theoretical
soundness is guaranteed by Theorem 4, and privacy protection holds as discussed in Appendix D.
The local computation cost is the same as FedIT-CS-S, i.e., O(n log n+nh2), repeated for each
permutation sample. In contrast, the aggregation step requires evaluating all possible client sub-
sets, leading to O(2KB) complexity, while the communication cost remains O(KB).

• FedIT-CS-ML (Ours): This variant further generalizes the aggregation scheme by allowing
mixed linear combinations of clients, rather than restricting to subset selection. The aggregation
weights are optimized over a continuous domain, enabling more flexible and efficient power
maximization. Theoretical soundness is established in Theorem 4, with privacy protection guar-
anteed as in Appendix D. The local computation cost remains the same as FedIT-CS-S, i.e.,
O(n log n+ nh2) for each permutation sample. Unlike FedIT-CS-M, the aggregation complex-
ity reduces to O(KB), since the continuous optimization is performed in linear time with respect
to the number of clients. The communication cost also remains O(KB).

In addition, we also consider several auxiliary variants used in the experiments: FedIT-CS-M-F,
FedIT-CS-ML-F, and FedIT-CS-MB. The “-F” versions differ from their counterparts by employ-
ing extra data for training the aggregation strategy, thereby quantifying the power loss of sample
splitting in FedIT-CS-M and FedIT-CS-ML. For FedIT-CS-MB, which is not included in the main
paper, our correlation-based modeling of power strategy is replaced by a permutation-based ap-
proach. As discussed in Sec. 4.3 and empirically validated in Appendix I.3, correlation coefficients
already capture key dependency information efficiently. These variants are included mainly for aux-
iliary comparison in the experimental study, see Appendix I for the detailed results.
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D DETAILS OF THE HOMOMORPHIC ENCRYPTION PROCEDURE

In the main paper, we briefly introduced the use of Homomorphic Encryption (HE) to ensure privacy.
Here, we provide a more complete description of this process. Recall that HE is a cryptographic
method that enables computations to be performed directly on encrypted data without requiring
decryption. The decrypted result of these operations is identical to performing the same calculations
on the original plaintext. This property ensures privacy during processing, making HE particularly
useful in scenarios where sensitive information must remain encrypted even while being utilized.
Unlike DP, HE preserves privacy without sacrificing accuracy. Moreover, HE is especially suitable
for our FedIT-CS framework, as each client only needs to share a few one-dimensional quantities;
thus, the computational overhead introduced by HE remains relatively low.

We now describe the privacy-preserving component of our FedIT-CS framework. Since only linear
correlation statistics need to be aggregated across clients, we can leverage additive homomorphic
encryption, typically the Paillier cryptosystem (Paillier, 1999), to ensure that individual client con-
tributions remain private. Formally, let (pk, sk) denote a public–private key pair, and let Enc(·, pk)
and Dec(·, sk) be the corresponding encryption and decryption functions. For two plaintext values
x and y, the additive homomorphic property guarantees that

x+ y = Dec(Enc(x, pk) ⋆ Enc(y, pk), sk), (13)

where ⋆ denotes the addition operation in the encrypted space. Below, we illustrate how HE is
applied in our framework. Prior to aggregation, each client k ∈ [K] produces the copula samples
(r

(k)
x , r

(k)
y ) as the output of the within-client dependence modeling stage.

Privacy protection in FedIT-CS-M. We introduce the privacy protection procedure in FedIT-CS-
M framework, which solves a discrete optimization problem to select a subset of clients. During
aggregation, each client computes its local summary statistics from these samples and transmits
only their encrypted versions to the server. Specifically, client k computes:

e(k)x =

nk∑
i=1

r
(k)
x;i , e

(k)
y =

nk∑
i=1

r
(k)
y;i , m

(k)
xy =

nk∑
i=1

r
(k)
x;i r

(k)
y;i , m

(k)
xx =

nk∑
i=1

r
(k)
x;i r

(k)
x;i , m

(k)
yy =

nk∑
i=1

r
(k)
y;i r

(k)
y;i .

(14)
and send the encrypted list below to the server

Enc(nk), Enc(e
(k)
x ), Enc(e(k)y ), Enc(m(k)

xx ), Enc(m
(k)
xy ), Enc(m

(k)
yy ). (15)

Then the server can calculate the encrypted aggregation results:

Enc(nI) =
∑
k∈I

Enc(nk), Enc(e
I
x) =

∑
k∈I

Enc(e(k)x ), Enc(eIy ) =
∑
k∈I

Enc(e(k)y ),

Enc(mI
xy) =

∑
k∈I

Enc(m(k)
xy ), Enc(m

I
xx) =

∑
k∈I

Enc(m(k)
xx ), Enc(m

I
yy) =

∑
k∈I

Enc(m(k)
yy ).

Here, all summations are performed directly in the encrypted space, not in the source domain. For
simplicity, we stipulate that the precise semantics of these operations are automatically determined
by the domain of the encrypted inputs, which avoids any ambiguity with their plaintext counterparts.
The server then transfers the encrypted statistics to one randomly selected client for decryption:

nI = Dec(Enc(nI)), e
I
x = Dec(Enc(eIx)), e

I
x = Dec(Enc(eIx)),

mI
xy = Dec(Enc(mI

xy)), m
I
xx = Dec(Enc(mI

xx)), m
I
yy = Dec(Enc(mI

yy)).
(16)

Once the plaintext statistics are obtained, the client can calculate the result and send it to the server:

ρIxy =
nIm

I
xy − eIxe

I
y√

nImI
xx − (eIx)

2
√
nImI

yy − (eIy )
2
. (17)

Throughout the entire process, no client-specific statistics (e.g., e(k)x , m(k)
xx ) are exposed. The server

only gets the final results, and the client selected for decryption knows the aggregated results but has
no idea which local statistics are included in the aggregated results.
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Privacy protection in FedIT-CS-ML. We introduce the privacy protection procedure in FedIT-CS-
ML framework, which solves a continuous optimization problem using gradient-based methods. We
first recall that some related aggregated statistics:

nP =
∑
k∈[K]

pknk, e
P
x =

∑
k∈[K]

pke
(k)
x , ePy =

∑
k∈[K]

pke
(k)
y ,

mP
xy =

∑
k∈[K]

pkm
(k)
xy , m

P
xx =

∑
k∈[K]

pkm
(k)
xx , m

P
yy =

∑
k∈[K]

pkm
(k)
yy .

(18)

Further, we denote

N := nPm
P
xy − ePx e

P
y , A := nPm

P
xx − (ePx )

2, B := nPm
P
yy − (ePy )

2, (19)

and thus the optimizing criterion is given by

ρPxy =
nPm

P
xy − ePx e

P
y√

nPmP
xx − (ePx )

2
√
nPmP

yy − (ePy )
2
=:

N√
AB

. (20)

Then the gradient of ρPxy = N/
√
AB with respect to any pk, k ∈ [K] is given by

∂ρPxy
∂pk

=
1√
AB

(
dNk −

N

2

(dAk
A

+
dBk

B

))
, (21)

where the terms

dNk =
∂N

∂pk
= nkm

P
xy + nPm

(k)
xy − e(k)x ePy − ePx e

(k)
y ,

dAk =
∂A

∂pk
= nkm

P
xx + nPm

(k)
xx − 2ePx e

(k)
x ,

dBk =
∂B

∂pk
= nkm

P
yy + nPm

(k)
yy − 2ePy e

(k)
y .

(22)

Blow, we detail the optimization process under the protection of HE. In each communication round,
client k sends the encrypted local statistics to the server:

Enc(pknk), Enc(pke
(k)
x ), Enc(pke

(k)
y ), Enc(pkm

(k)
xx ), Enc(pkm

(k)
xy ), Enc(pkm

(k)
yy ). (23)

Then the server aggregates local statistics and sends them back to all clients:

Enc(nP) =
∑
k∈[K]

Enc(pknk), Enc(ePx ) =
∑
k∈[K]

Enc(pke
(k)
x ),

Enc(mP
xy) =

∑
k∈[K]

Enc(pkm
(k)
xy ), Enc(e

P
y ) =

∑
k∈[K]

Enc(pke
(k)
y ),

Enc(mP
xx) =

∑
k∈[K]

Enc(pkm
(k)
xx ), Enc(m

P
yy) =

∑
k∈[K]

Enc(pkm
(k)
yy ).

(24)

Once receives the aggregated results, client k could calculate the decryption to obtain the following
values:

nP = Dec(Enc(nP)), e
P
x = Dec(Enc(ePx )), e

P
x = Dec(Enc(ePx )),

mP
xy = Dec(Enc(mP

xy)), m
P
xx = Dec(Enc(mP

xx)), m
P
yy = Dec(Enc(mP

yy)).
(25)

Together with its local statistics, client k could compute the gradient
∂ρPxy

∂pk
by replacing the cor-

responding values into Eq. (19) and Eq. (22). Throughout the entire process, no client-specific
statistics (e.g., e(k)x , m(k)

xx ) are disclosed, which enables our gradient-based method to be computed
without any privacy leakage.
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E PRELIMINARIES AND AUXILIARY LEMMAS

In this section, we provide a systematic overview of the entire procedure, introduce the notation used
throughout, and establish several auxiliary lemmas. These intermediate results serve as building
blocks for the proofs of our main theorems in the subsequent sections.

E.1 ASSUMPTIONS

Below, we outline the assumptions required for our analysis. The first two assumptions are specific
to the federated independence testing (FedIT) setting:
Assumption 1 (Consistent dependence assumption). We assume that the dependence relationship
between Xk and Yk is consistent across clients. That is, either all clients satisfy independence
(Xk ⊥⊥ Yk) or all exhibit dependence (Xk ⊥̸⊥ Yk).
Assumption 2 (Heterogeneous clients assumption). The dependence mechanism (e.g., strength or
functional relationship) and the marginal distributions PXk

and PYk
may vary across clients.

Together, these assumptions define a realistic yet challenging regime: the global dependence status
is common, but local distributions are heterogeneous. Our goal is to design a test that aggregates
cross-client evidence to infer the shared dependence status while handling client heterogeneity.

Furthermore, for intra-client part, we impose a mild restriction on the class of functions of the
Hirschfeld-Gebelein-Rényi (HGR) maximum correlation coefficient (Gebelein, 1941), defined as
hgr(X,Y ) = supf,g ρ(f(X), g(Y )), where ρ denotes Pearson’s correlation.
Assumption 3 (Function class assumption). For each client k ∈ [K], the optimal transformations fk
and gk that maximize dependence, i.e. argmaxfk,gk ρ(fk(Xk), gk(Yk)) are assumed to lie within
a reproducing kernel Hilbert space (RKHS) F as in Theorem 3, which associated with a shift-
invariant, positive semi-definite and bounded kernel k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩F ≤ C.

This ensures that the transformations are sufficiently expressive to capture nonlinear dependencies,
while also allowing tractable analysis and approximation through random Fourier features.

E.2 COPULA PROPERTIES: MARGINAL UNIFORMITY AND CONVERGENCE

For completeness, we restate here some basic properties of copulas that will be used in the subse-
quent analysis. In particular, we recall the fact that copulas have uniformly distributed margins and
summarize the convergence guarantees of their empirical estimators.
Theorem 1 (Probability integral transform (Nelsen, 2006)). For a random variable X with cdf F ,
the random variable U = F (X) is uniformly distributed on [0, 1].

The above result directly implies that the margins of any copula are uniformly distributed on [0, 1],
which forms the basis for the copula representation of dependence. Beyond this marginal property, it
is also important to understand how well the empirical copula estimates converge to their population
counterpart, since our method relies on finite-sample approximations.
Theorem 2 (Convergence of the empirical copula Póczos et al. (2012)). Let F be the copula trans-
formation defined above, and Fn be the corresponding empirical copula transformation, then

P
[
sup
x∈Rd

∥F (x)− Fn(x)∥2 > ϵ

]
≤ 2d exp

(
−2nϵ2

d

)
. (26)

Together, Theorems 1 and 2 establish that copulas not only provide uniform margins but also enjoy
strong concentration guarantees for their empirical estimators. These properties will be repeatedly
invoked in our subsequent theoretical analysis.

E.3 RANDOM PROJECTION PROPERTIES: CONVERGENCE

We next recall a key result on the convergence behavior of random projections, which underpins
their use in our framework. In particular, the following theorem shows that linear mixed models
built on random features can approximate the optimal estimator within a controlled error that decays
with both the sample size n and the number of projections h with high probability.
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Theorem 3 (Approximation with random projections Póczos et al. (2012)). Let p(w) be a distribu-
tion on Ω and supx,w |ϕ(x;w)| ≤ 1. Let F = {f(x) =

∫
Ω
u(w)ϕ(x;w)dw | |u(w)| ≤ Cp(w)}.

Draw w1, ..., wh i.i.d from p(w). Further let δ > 0, and c be some L-Lipschitz loss function, and
consider data {xi, oi}ni=1 drawn i.i.d from some arbitrary PXO. The linear regression coefficient
u1, ..., uh for which fh(x) =

∑h
i=1 uiϕ(x;wi) minimizes the empirical risk c(fh(x), o) has a dis-

tance from the c-optimal estimator in F bounded by

EP[c(fh(x), o)]−min
f∈F

EP[c(f(x), o)] ≤ O

((
1√
n
+

1√
h

)
LC

√
log

1

δ

)
(27)

with probability at least 1− 2δ.

This result establishes that the approximation error decreases as the number of random features h
increases and as the sample size n grows. Hence, random projections provide a computationally
efficient way to approximate nonlinear function classes while retaining statistical guarantees.

E.4 PROCEDURE AND PROPERTIES OF FEDIT-CS FRAMEWORK

In this section, we provide the preliminaries and several auxiliary lemmas that will facilitate the
subsequent proofs. As a starting point, we restate the overall procedure and introduce the notation
for the variables involved at each step. Specifically, for the k-th client, let (Xk, Yk) denote its input
variables. The within-client computation for client k ∈ [K] proceeds in four steps:

1. First copula transform: map (Xk, Yk) to the copulas (QX;k, QY ;k) using the marginal cdfs
F

(k)
X and F (k)

Y . Note that QX;k, QY ;k ∼ Uniform[0, 1] by Theorem 1.
2. Random projection: transform (QX;k, QY ;k) into feature-space variables (ΦX;k,ΦY ;k) using

random parameters (w(k)
X , b

(k)
X ) and (w

(k)
Y , b

(k)
Y ).

3. CCA step: identify the canonical directions u(k) and v(k), and then project (ΦX;k,ΦY ;k) onto
one-dimensional outputs (ΨX;k,ΨY ;k).

4. Second copula transform: align the margins of (ΨX;k,ΨY ;k) using their cdfs (F
(k)
ΨX

, F
(k)
ΨY

),
yielding the final copulas (RX;k, RY ;k). Also, RX;k, RY ;k ∼ Uniform[0, 1] by Theorem 1.

For simplicity, we first set aside the aggregation procedure and focus on analyzing the properties of
the correlation coefficient ρ(RX;k, RY ;k) obtained within client k. As discussed in the main paper,
this coefficient is closely related to the Hirschfeld–Gebelein–Rényi (HGR) Maximum Correlation
Coefficient (Gebelein, 1941), which is defined as hgr(X,Y ) = supf,g ρ(f(X), g(Y )), where the
supremum is taken over all Borel-measurable functions f and g with finite variance, and ρ denotes
Pearson’s correlation. The main difference is that, in our case, the optimal transformations f and
g are restricted to the function class associated with a Reproducing Kernel Hilbert Space (RKHS),
namely F = {f(x) =

∫
Ω
u(w)ϕ(x;w)dw | |u(w)| ≤ Cp(w)} as specified in Assumption 3.

A well-known result is that hgr(X,Y ) satisfies seven desirable properties (Rényi, 1959):

1. hgr(X,Y ) is defined for any pair of non-constant random variables X and Y .
2. hgr(X,Y ) = hgr(Y,X).
3. 0 ≤ hgr(X,Y ) ≤ 1.
4. hgr(X,Y ) = 0 iff X and Y are statistically independent.
5. For bijective Borel-measurable functions f, g : R → R, hgr(X,Y ) = hgr(f(X), g(Y )).
6. hgr(X,Y ) = 1 if for Borel-measurable functions f or g, Y = f(X) or X = g(Y ).
7. If (X,Y ) ∼ N (µ,Σ), then hgr(X,Y ) = |ρ(X,Y )|, where ρ is the correlation coefficient.

Since hgr(X,Y ) is invariant under bijective marginal transformations, the copula transform does
not alter its value. Therefore, the coefficient ρ(RX;k, RY ;k) inherits these desirable properties. We
summarize the key results in the following lemma.

Lemma 1 (Intra-client dependency properties). Under Assumptions 1–3, for each client k ∈ [K],
the dependence coefficient ρ(RX;k, RY ;k) correctly characterizes dependence. Specifically, under
H0, we have ρ(RX;k, RY ;k) = 0, whereas under H1, we have ρ(RX;k, RY ;k) > 0.
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Proof. This follows directly from the discussion above on the properties of hgr and the restricted
function class in Assumption 3.

Moreover, we can further characterize the output distribution under H0, as stated in the next lemma.

Lemma 2 (Output copula under H0). Under Assumptions 1–3, for each client k ∈ [K], the trans-
formed outputs satisfy RX;k, RY ;k ∼ Uniform([0, 1]× [0, 1]).

Proof. By Lemma 1, under H0, RX;k and RY ;k are independent. In addition, the copula transform
ensures that each marginal is uniformly distributed on [0, 1]. Combining independence with marginal
uniformity yields the stated result.

Above, our discussion has focused on the idealized theoretical setting, where the estimation error
and approximation error are ignored. We now turn to the practical case with finite samples and
examine how the computation proceeds in this setting. For clarity, we restate the entire within-client
procedure, along with the notation used at each step:

1. First copula transform: given the input sample {(x(k)i , y
(k)
i )}nk

i=1 corresponding to (Xk, Yk),
compute the copula {(q(k)x;i , q

(k)
y;i )}

nk
i=1 using the empirical marginal cdfs F (k)

x;nk and F (k)
y;nk .

2. Random projection: map {(q(k)x;i , q
(k)
y;i )}

nk
i=1 into features {(ϕ(k)x;i , ϕ

(k)
y;i )}

nk
i=1 using sampling pa-

rameters (w(k)
x;h, b

(k)
x;h) and (w

(k)
y;h, b

(k)
y;h), where h denotes the number of random projections.

3. CCA step: compute the canonical directions u(k)h and v(k)h , and project {ϕ(k)x;i , ϕ
(k)
y;i }

nk
i=1 to obtain

one-dimensional outputs {ψ(k)
x;i , ψ

(k)
y;i }

nk
i=1.

4. Second copula transform: apply the empirical cdfs F (k)
ψx;nk

and F (k)
ψy ;nk

to {(ψ(k)
x;i , ψ

(k)
y;i )}

nk
i=1,

yielding the final copula samples {(r(k)x;i , r
(k)
y;i )}

nk
i=1, which are approximately uniform on [0, 1].

The above procedure can be applied to the permuation case as well. Following the notation in the
main paper, let σt denote the t-th permutation with t ∈ [B]. For each client k, define the sample
vectors

x(k) = (x
(k)
1 , x

(k)
2 , . . . , x(k)nk

), y(k) = (y
(k)
1 , y

(k)
2 , . . . , y(k)nk

).

Then (σtx
(k),y(k)) denotes the permuted sample pair. Since permutation only changes the order of

observations but not their empirical distribution, we have the following result.
Lemma 3 (Cumulative distribution function under permutation). For all σt, t ∈ [B], the permuted
samples yield the same empirical cumulative distribution function F (k)

x;nk .

Proof. By definition, the empirical cumulative distribution function (cdf) depends only on the mul-
tiset of sample values, not on their order. Since permutation reorders x(k) without altering its ele-
ments, the resulting empirical cdf remains identical.

This property ensures that permutations do not affect the marginal distributions. In addition, we can
further exploit the exchangeability property of the permuted sequences.

Lemma 4 (Exchangeability). Let d
= denote equality in distribution. Under H0, the sequence for

client k, (x(k),y(k)), (σ1x
(k),y(k)), . . . , (σBx

(k),y(k)), is exchangeable.

Proof. Under H0, Xk and Yk are independent. Thus, for every permutation σt with t ∈ [B], the pair
(σtx

(k),y(k)) has the same joint distribution as the original (x(k),y(k)), i.e.,

(σtx
(k),y(k))

d
= (x(k),y(k)).

Since each element in the sequence has the same distribution and the joint law is invariant under
permutations of indices t, the sequence is exchangeable by definition.

Together, Lemma 3 and Lemma 4 yield the following.
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Lemma 5 (Exchangeability of client-level output copulas). Let d
= denote equality in distribution.

Fix a client k and consider the mapping T defined by the four-step pipeline: (i) empirical copula
transform, (ii) random projection, (iii) CCA step, and (iv) a second empirical copula transform.
Under H0 (i.e., Xk ⊥⊥ Yk), the sequence

T
(
x(k),y(k)

)
, T
(
σ1x

(k),y(k)
)
, . . . , T

(
σBx

(k),y(k)
)

is exchangeable.

Proof. We verify that each step of T results in an exchangeable sequence under H0. As a begin,
Lemma 4 show that the input sequence is exchangeable.

Step (i): First copula transform. By Lemma 3, the empirical cdfs F (k)
x;nk and F (k)

y;nk are invariant
under permutations, so the copula samples are exchangeable.

Step (ii): Random projection. The projection parameters (w(k)
·;h , b

(k)
·;h ) are drawn i.i.d. from the same

distribution. Applying them elementwise preserves exchangeability of the projected features.

Step (iii): CCA step. The canonical directions depend only on the covariance structure of the pro-
jected features, which is unaffected since the input feature distributions are the same. Thus, the
resulting one-dimensional projections are also exchangeable.

Step (iv): Second copula transform. For the same sample input, the empirical cdfs are the same.
As the outputs after CCA have the same distributions, thus in this step, exchangeable inputs yields
exchangeable copula outputs.

Combining all steps, the sequence of outputs across permutations is exchangeable.

As a consequence, the client-level output copula sequence is exchangeable, a property that we later
exploit to establish test validity, in particular Type I error control.

F PROOF OF THEOREM 4

Next, we turn to the theoretical properties of the aggregated statistic. For clarity, the client-level
results and the associated notation have been introduced in Appendix E. Here, we shift our focus
to the aggregation step. Let the aggregation algorithm be denoted by A, which determines the
optimal weights pk, k ∈ [K]. Note that when pk ∈ {0, 1}, this corresponds to the Fed-CS-M
strategy, while allowing pk ∈ [0, 1] corresponds to Fed-CS-ML. We now consider the case where A
is theoretically optimal. In the asymptotic regime where the sample size and the number of random
features are large enough, let the resulting aggregated coefficient be denoted by ρA. Then, we have
the following theorem to show ρA is theoretical sound.
Theorem 4 (Soundness of aggregated statistic). Let ρA denote the aggregated coefficient obtained
by the aggregation algorithm A. Assume A is theoretically optimal. Then, under the null hypothesis
H0, we have ρA = 0, whereas under the alternative hypothesis H1, we have ρA > 0.

Proof. We first consider the case under H0. According to Lemma 1 and 2, for each client k ∈ [K],
the dependence strength satisfies ρ(RX;k, RY ;k) = 0, and the output copulas follow the distribution
RX;k, RY ;k ∼ Uniform([0, 1] × [0, 1]). Consequently, the second-order moments are identical
across all clients. Therefore, regardless of how the aggregation algorithm assigns the weights, the
aggregated coefficient remains zero, thus ρA = 0. Next, we consider the case under H1. In this
setting, by Lemma 1, each client exhibits a strictly positive dependence coefficient ρ(RX;k, RY ;k) >
0, reflecting the underlying dependence between Xk and Yk. Since the aggregation algorithm A is
assumed to be theoretically optimal, it assigns weights {pk}Kk=1 in a way that maximizes the global
statistic, thus ρA ≥ maxk ρ(RX;k, RY ;k) > 0, which completes the whole proof.

G PROOF OF THEOREM 5

In this section, we provide the proof for the Type I error bound of our proposed test. For clarity,
the client-level exchangeability results and the associated notation have already been introduced in
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Appendix E. Let the optimized aggregation weights be denoted by p∗ = (p∗1, p
∗
2, . . . , p

∗
K). During

the testing procedure, each client k produces the empirical copula vectors r
(k)
x and r

(k)
y from its

local data (x(k),y(k)). For the corresponding permutation samples (σtx
(k),y(k)), we denote the

resulting copula vectors as σtr
(k)
x and σtr

(k)
y . Based on these definitions, we now establish the

exchangeability property of the aggregated statistic.
Proposition 1 (Exchangeablility of aggregated statistic). Let the optimized aggregation weights
be p∗ = (p∗1, . . . , p

∗
K), fixed with respect to the permutations. For each client k, let (r(k)x , r

(k)
y )

be the empirical copula vectors computed from (x(k),y(k)), and let (σtr
(k)
x , σtr

(k)
y ) denote the

copula vectors obtained from the permuted pair (σtx(k), σty
(k)), for t ∈ [B]. Also, the aggregated

first/second moments and effective sample size for (x(k),y(k)), k ∈ [K] is given by

ePx =

K∑
k=1

p∗ke
(k)
x , ePy =

K∑
k=1

p∗ke
(k)
y , mP

xy =

K∑
k=1

p∗km
(k)
xy ,

mP
xx =

K∑
k=1

p∗km
(k)
xx , mP

yy =

K∑
k=1

p∗km
(k)
yy , nP =

K∑
k=1

p∗knk,

(28)

and the aggregated Pearson-type statistic is then calculated as Eq. (11). For simplify, we denote
ρP,σ0
xy := ρPxy . Under H0, the sequence ρP,σ0

xy , ρP,σ1
xy , . . . , ρP,σB

xy , constructed respectively from

{(r(k)x , r
(k)
y )}Kk=1 and {(σtr(k)x , σtr

(k)
y )}Kk=1, t ∈ [B], is exchangeable.

Proof. Step 1 (client-level exchangeability of copulas). By Lemma 3 and Lemma 4, for each client
k, the sequence (r

(k)
x , r

(k)
y ), {(σtr(k)x , r

(k)
y )}Bt=1 is exchangeable under H0.

Step 2 (exchangeability of moments). The mappings

(u,v) 7→ eu =
∑
i ui, muu =

∑
i u

2
i , muv =

∑
i uivi

are sum operations over the sample index. Hence, for each k, the sequences {e(k,t)x }t, {e(k,t)y }t,
{m(k,t)

xx }t, {m(k,t)
yy }t, and {m(k,t)

xy }t computed from (σtr
(k)
x , σtr

(k)
y ) are exchangeable.

Step 3 (fixed-weight aggregation preserves exchangeability). Because eP· , mP
·· , and nP are fixed

linear combinations of the client-level moments with deterministic weights {p∗k} that do not depend
on t, the aggregated moment sequences across t remain exchangeable.

Step 4 (continuous mapping). The map (ePx , e
P
y ,m

P
xx,m

P
yy,m

P
xy, nP) 7→ ρPxy is a measurable

deterministic function. Therefore, by the continuous mapping principle for exchangeable arrays, the
sequence {ρP,σt

xy }Bt=0 is exchangeable.

As a direct consequence, the Type I error of our proposed test is provably controlled.
Theorem 5 (Type I error bound). Assume the null hypothesis H0 is true.For any significance level
α ∈ (0, 1), the bound for the Type I error is given by

P(p-value ≤ α|H0) ≤ α. (29)

Proof. For simplify, we also write P(·|H0) as PH0 . For any given α ∈ (0, 1), we have

PH0
(p-value ≤ α) = PH0

(
1 +

∑B
t=1 I{ρP,σt

xy ≥ ρP,σ0
xy }

1 +B
≤ α

)

≤ PH0

(
B∑
t=1

I{ρP,σt
xy ≥ ρP,σ0

xy } ≤ ⌊α(1 +B)⌋

)
.

(30)

Since the sequence {ρP,σt
xy }Bt=0 is exchangeable, by the property of order statistics, we have

PH0

(
B∑
t=1

I{ρP,σt
xy ≥ ρP,σ0

xy } ≤ ⌊α(1 +B)⌋

)
=

⌊α(1 +B)⌋
1 +B

≤ α, (31)

which completes the proof.
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H DETAILS OF EXPERIMENTAL SETUP AND ANALYSIS OF RESULTS

In this section, we provide detailed descriptions of the experimental settings used in the main paper,
including dataset specifications and implementation details. We also present extended results and
further analyses to complement the findings reported in the main paper.

Implementation details. All methods are implemented with the number of random features fixed
at h = 10 and the significance level set to α = 0.05. For FUIT, we use the median bandwidth
setting. For methods requiring data splitting, namely FedIT-CS-M and FedIT-CS-ML, the split ratio
is fixed at 0.2. For the two variants FedIT-CS-M-F and FedIT-CS-ML-F, where the aggregation
strategy is trained on additional data not used for testing, the extra data are set to have the same size
as the testing data by default. For FedIT-CS-ML and FedIT-CS-ML-F, which involve gradient-based
optimization, the number of iterations is set to 100. And the permutation number B is set to 100 by
default. All experiments are conducted on the same hardware platform equipped with 8-core CPU.

H.1 DETAILS ABOUT SYNTHETIC DATA EXPERIMENTS

Below, we provide the setup details of the synthetic datasets, which include three heterogeneous
scenarios: covariance heterogeneity, frequency heterogeneity, and functional heterogeneity. These
settings are designed to evaluate the capability of our method under different types of distributional
shifts. For this part, the number of clients is K = 3.

Covariance. We consider a heterogeneous scenario where clients follow distinct covariance struc-
tures. The data generation process is specified as follows:

• Client 1: X ∼ N (0, 1), Y = 0.5X + ϵ1, ϵ1 ∼ N (0, 1);
• Client 2: X ∼ N (0, 1), Y = −0.5X + ϵ2, ϵ2 ∼ N (0, 1);
• Client 3: X ∼ N (0, 1), Y = 0.02X + ϵ3, ϵ3 ∼ N (0, 1).

The sample sizes follow the ratio n1 : n2 : n3 = 1 : 1 : 2. We vary the sample size of Client 1 with
n1 ∈ {100, 150, 200, 250, 300, 400}, and scale the other clients proportionally.

Frequency. We next consider a heterogeneous scenario where clients exhibit distinct frequency
parameters. Specifically, we adopt the sinusoid model (Sejdinovic et al., 2013) with density

(X,Y ) ∼ Pxy(x, y) ∝ 1 + sin(ωx) sin(ωy), (x, y) ∈ [−π, π]× [−π, π], (32)

where ω denotes the frequency. Larger ω values make the distribution closer to Uniform([−π, π]2),
thereby increasing the difficulty of detecting dependence for small sample sizes. We assign client-
specific frequencies ω1 = 2, ω2 = 3, and ω3 = 4. The sample sizes follow the ratio n1 : n2 : n3 =
1 : 1 : 1. We vary the sample size of Client 1 with n1 ∈ {100, 150, 200, 250, 300, 400}, and scale
the other clients proportionally.

Functional. Finally, we consider a heterogeneous scenario where clients follow distinct functional
relationships. The data generation procedure is defined as follows:

• Client 1: X ∼ Uniform(0, 1), Y = sin(X) + ϵ1, ϵ1 ∼ N (0, 1);
• Client 2: X ∼ Uniform(0, 1), Y = cos(X) + ϵ2, ϵ2 ∼ N (0, 1);
• Client 3: X ∼ Uniform(0, 1), Y = X2 + ϵ3, ϵ3 ∼ N (0, 1).

The sample sizes for the three clients follow the ratio n1 : n2 : n3 = 4 : 2 : 1. We vary the
sample size of Client 1 with n1 ∈ {400, 600, 800, 1000, 1200, 1400, 1600}, and scale the other
clients proportionally. Note that in this case, all clients have strong intra-client dependency.

H.2 DETAILS ABOUT REAL DATA EXPERIMENTS

Sachs dataset. To evaluate the effectiveness of our proposed method in real-world, we employed
the well-known Sachs (Sachs et al., 2005) dataset under seven perturbation conditions: (i) anti-CD3
+ anti-CD28, (ii) anti-CD3/CD28 + ICAM-2, (iii) anti-CD3/CD28 + U0126, (iv) anti-CD3/CD28
+ AKT inhibitor, (v) anti-CD3/CD28 + G06976, (vi) anti-CD3/CD28 + Psitectorigenin, and (vii)
anti-CD3/CD28 + LY294002. In our setting, each perturbation condition in the Sachs dataset is
regarded as a distinct client. These perturbations cover both general T-cell activation and specific

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

pathway-targeted interventions, thereby enabling a diverse range of causal effects within the signal-
ing network. The detailed biological functions of individual reagents are summarized in Table 3.
The causal network is presented in Fig. 5. This network comprises 11 nodes and 18 arcs, and is
commonly recognized as a benchmark ground truth. It has been extensively adopted in prior studies
on causal discovery (Zhang et al., 2023b). The 11 nodes of this network form 55 distinct node pairs
in total. Among these pairs, 18 are independent of each other, whereas the remaining 37 exhibit a
dependent relationship. As an illustrative example, the nodes Plcg and PKC are independent, while
the relationship between Plcg and itself is dependent. We further visualize the distributions of all
11 variables under each experimental condition, and the results are presented in Fig. 6, where each
row corresponds to one perturbation condition and each column corresponds to one variable. From
the marginal distributions, we can observe that the variable distributions change under different
perturbation conditions, which aligns with our heterogeneity assumption.

Table 3: Summary of reagents employed in the perturbation conditions and their biological effects.

Reagent Class Biological effect

Anti-CD3 General Activates T-cell receptor (TCR) signaling, initiating proximal
signaling cascades.

Anti-CD28 General Provides co-stimulatory signal for T-cell activation, enhancing
proliferation and cytokine production.

ICAM-2 General Triggers LFA-1 adhesion signaling and cooperates with
CD3/CD28 to enhance AP-1 and NFAT activation.

U0126 Specific Noncompetitive inhibitor of MEK1/2; blocks Erk activation and
arrests T-cell proliferation.

AKT inhibitor Specific Blocks AKT membrane translocation and phosphorylation, sup-
pressing AKT-mediated survival signaling.

G06976 Specific Inhibits PKC isozymes; blocks PKC-mediated T-cell activation.
Psitectorigenin Specific Inhibits phosphoinositide hydrolysis and phosphoinositol

turnover.
LY294002 Specific PI3K inhibitor; prevents subsequent activation of AKT.

Figure 5: The causal graph of Sachs network.

Experimental setup. In our setting, each perturbation condition in the Sachs dataset is treated as
a distinct client, yielding a total of seven clients. We compare our proposed methods against FUIT,
FedIT-CS-S, FedIT-CS-M, and FedIT-CS-ML. At each iteration, 3 clients are randomly sampled
from 7 clients, and we evaluate all 55 node pairs: 18 independent pairs for Type I error assessment
and 37 dependent pairs for Type II error assessment. To ensure statistical reliability, this procedure
is repeated 50 times with independent client selections, and we report the averaged performance
across all trials. The results are summarized in Table 4.

Performance and analysis. Compared with FUIT, all variants of our method—FedIT-CS-S, FedIT-
CS-M, and FedIT-CS-ML—achieve tighter control of Type I error while simultaneously reducing
Type II error, thereby demonstrating stronger detection power. Notably, although the data splitting
used in FedIT-CS-ML may degrade statistical power, it still achieves the best overall performance,
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Figure 6: Distribution of the 11 variables across seven perturbation conditions in the Sachs dataset.

Table 4: Performance Comparison on the Sachs Dataset. Best in gray .

Method Type I error (↓) Type II error (↓)

FUIT 0.1011± 0.0595 0.6973± 0.0276

FedIT-CS-S (Ours) 0.0189± 0.0307 0.6968± 0.0312

FedIT-CS-M (Ours) 0.0589± 0.0375 0.6843± 0.0298

FedIT-CS-ML (Ours) 0.0333± 0.0458 0.6692± 0.0396

benefiting from our stacking-based aggregation strategy. These findings provide empirical evidence
that supports the theoretical advantages of our framework.

I ADDITIONAL EXPERIMENT RESULTS

In this section, we present additional experimental results under a broader range of settings, includ-
ing diverse distributional settings, varied functional relationships, and different numbers of clients.
We also provide supplementary comparisons with more aggregation strategies, as well as the results
on the computational runtime of each method.

I.1 RESULTS WITH DIVERSE DISTRIBUTIONS

In the synthetic data experiments under the Covariance setting, we assume the input noise fol-
lows a Gaussian distribution. In the following, we further examine the results under alternative
noise distributions. Specifically, we fix the number of clients to K = 3, with their sample sizes
following the ratio n1 : n2 : n3 = 1 : 1 : 2. We vary the sample size of Client 1 with
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n1 ∈ {100, 150, 200, 250, 300, 400}. We conduct 100 independent trials and report the average
results. For the alternative hypothesis H1, the data are generated as follows:

• Client 1: X ∼ Distribution(·), Y = 0.5X + ϵ, ϵ ∼ Distribution(·);
• Client 2: X ∼ Distribution(·), Y = −0.5X + ϵ, ϵ ∼ Distribution(·);
• Client 3: X ∼ Distribution(·), Y = 0.02X + ϵ, ϵ ∼ Distribution(·).

For the null hypothesis H0, the data are generated as follows:

• Client 1: X ∼ Distribution(·), Y ∼ Distribution(·);
• Client 2: X ∼ Distribution(·), Y ∼ Distribution(·);
• Client 3: X ∼ Distribution(·), Y ∼ Distribution(·).

Here, Distribution(·) is drawn from {Laplace(0, 1),Uniform(−2, 2)}.
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Figure 7: Results under Laplace and Uniform Distributions.

Performance and analysis. The experimental results are presented in Fig. 7. All methods success-
fully control the Type I error rate across various distributional settings and sample sizes. Compared
with FUIT, our methods—FedIT-CS-S, FedIT-CS-M, FedIT-CS-ML, FedIT-CS-M-F, and FedIT-CS-
ML-F—demonstrate strong performance under both Laplace and Uniform settings, thereby confirm-
ing the effectiveness of our stacking-based aggregation strategy. Furthermore, when comparing the
“-F” and non-“F” variants, we observe a noticeable difference in detection power, highlighting an
important direction for future improvement. Finally, although FedIT-CS-ML was originally de-
signed as an accelerated version of FedIT-CS-M, the additional optimization space effectively leads
to a softer solution, which in turn further enhances its detection capability.

I.2 RESULTS ACROSS FUNCTIONAL RELATIONSHIPS AND CLIENT SCALES

In the above experiments, the number of clients is fixed at three, and the functional relationships
within each client are relatively simple, typically defined by predetermined coefficients. In the
following, we extend our study with additional experiments under varying functional relationships
and client scales. We consider two settings: linear and nonlinear.

Linear case. For the alternative hypothesis H1, the data are generated as follows:

X ∼ N (0, 1), Y = aX + ϵ0, ϵ0 ∼ N (0, 1). (33)

For the null hypothesis H0, the data are generated as follows:

X ∼ N (0, 1), Y = aϵ1 + ϵ2, ϵ1, ϵ2 ∼ N (0, 1). (34)

where a ∼ Uniform(−0.5, 0.5) is a random slope parameter.

Non-linear case. For the alternative hypothesis H1, the data are generated as follows:

X ∼ N (0, 1), Y = f(X + ϵ0) + ϵ1, ϵ0, ϵ1 ∼ N (0, 1). (35)

For the null hypothesis H0, the data are generated as follows:

X = f(ϵ2), Y = f(ϵ3) + ϵ4, ϵ2, ϵ3, ϵ4 ∼ N (0, 1). (36)

where f(·) is random chosen from the set {sin(·), cos(·), tanh(·), exp(−| · |), (·)2}. are independent
noise terms. This construction induces heterogeneous functional relationships across clients.
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Figure 8: Results across functional relationships (Linear vs. Non-linear) and client scales.

To study the effect of client size, we fix the sample size per client to n = 200 and vary the number of
clients as K ∈ {2, 3, 4, 5, 6}. For each configuration, we conduct 100 independent trials and report
the average results. The experimental results are presented in Fig. 8.

Results of Linear case. In the linear setting, all methods successfully control the Type I error rate.
Compared with FUIT and FedIT-CS-M, FedIT-CS-ML exhibits a clear advantage, demonstrating
the effectiveness of its selection strategy. While the performance of FedIT-CS-M is comparable
to FUIT, it gradually shows superiority as K increases. When comparing the “-F” and non-“F”
variants, we observe a noticeable difference in detection power, highlighting an important direc-
tion for future improvement. This gap is particularly pronounced for FedIT-CS-M, likely because
its selection component suffers from limited sample size and therefore fails to provide additional
benefits. Moreover, FUIT does not gain from the increased sample size as K grows, which further
corroborates our theoretical claim that its naive aggregation strategy leads to dependency dilution.

Results of the Nonlinear case. Except for FUIT under the nonlinear setting with K = 3, all
methods successfully control the Type I error rate. Regarding detection power, FedIT-CS-S achieves
the best performance in this setting, while FedIT-CS-ML and FUIT also perform well. In contrast,
FedIT-CS-M shows inferior performance; comparing it with FedIT-CS-M-F suggests that sample
splitting leads to a loss of power. Since our split ratio is set to 0.2, the selection component becomes
ineffective with the resulting small training sample size (only 100×0.2 = 20 for each client), which
explains the degraded performance. By contrast, FedIT-CS-ML, though based on the same sample
size, still achieves strong results.

I.3 COMPARISON WITH MORE AGGREGATION STRATEGIES

In Sec. 4.3, we claimed that using only the aggregated coefficients for the selection step already
yields satisfactory performance. In this section, we empirically validate this claim by comparing
it against a permutation-based alternative, named FedIT-CS-MB. Specifically, FedIT-CS-MB is de-
rived from FedIT-CS-M by replacing the correlation-based modeling of power with a permutation-
based approach, where each client transmitsB+1 sets of statistics to the server, from which p-values
are estimated to approximate the method’s power. We compare FedIT-CS-MB and FedIT-CS-M
from two perspectives: performance and efficiency. For the error rate comparison, the experimental
setup follows the covariance setting in Sec. H.1 with n1 = 150. For the runtime comparison, we
adopt the linear case described in Sec. I.2. In each experiment, the per-client sample size is fixed at
n = 200, while the number of clients is varied as K ∈ {2, 4, 8, 16} to evaluate scalability.

Performance and analysis. The experimental results are shown in the left two panels of Fig. 9. The
leftmost panel compares the two methods in terms of Type I and Type II error rates. Both methods
successfully control the Type I error rate; however, FedIT-CS-M achieves a lower Type II error
rate than FedIT-CS-MB. This indicates that the correlation-coefficient-based aggregation criterion is
already able to capture sufficient dependency signals, even without resorting to permutation-based
modeling. Turning to the middle panel, note that both methods have a theoretical complexity of
O(2K), but permutation introduces an additional factor B, which directly affects scalability. As
shown, FedIT-CS-MB can only handle up to 8 clients within roughly 500 seconds, whereas FedIT-
CS-M is able to process 16 clients in about 20 seconds. Overall, the aggregation strategy of FedIT-
CS-M has been proved to be more effective than the permutation-based approach, achieving faster
computation while maintaining competitive accuracy.
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Figure 9: Left and Middle: The performance comparison between FedIT-CS-MB and FedIT-CS-M.
Right: The average runtime results of large client set.

I.4 RUNTIME EVALUATION

In this section, we also provide a runtime comparison of the methods with linear-time complexity
with respect to the number of clients, namely FUIT, FedIT-CS-S, and FedIT-CS-ML. For the runtime
evaluation, we adopt the linear case described in Sec. I.2. In each experiment, the per-client sample
size is fixed at n = 200, while the number of clients is varied as K ∈ {2, 4, 8, 16, 32, 64}.

Performance and analysis. The experimental results are presented in Fig. 9, shown in the rightmost
panel. All three methods exhibit linear-time complexity with respect to the number of clients and
can thus scale to large client number cases (e.g., K = 64). FUIT shows relatively competitive run-
time performance. By contrast, FedIT-CS-S and FedIT-CS-ML require permutation-based testing to
obtain p-values with theoretical guarantees, which introduces an additional computational factor of
approximately B = 100. We adopt the permutation-based approach because of its strong empiri-
cal performance and its applicability to arbitrary input distributions. In the future, non-permutation
alternatives, such as exact distributional estimation methods, may be developed to further improve
efficiency, though their method design remains technically challenging at present.

Remark. From a practical perspective, although permutation incurs extra cost, the intra-client com-
putations across the B samples are mutually independent and can therefore be parallelized. Such
parallelization effectively mitigates the constant overhead, rendering our framework not only theo-
retically sound but also practically scalable in real-world distributed settings.

J LIMITATIONS AND BROADER IMPACTS

Limitations. As shown in both the main experiments and the additional results in Appendix I,
some variants of our framework rely on data splitting to ensure Type I error control. However, this
splitting inevitably reduces statistical power. We view this as a key limitation of the current design,
and we hope future work will explore more advanced strategies to mitigate this trade-off and further
improve the test’s effectiveness.

Broader impacts. This work proposes a novel framework for federated independence testing. The
proposed linear-time aggregation strategy can be optimized in a data-driven manner, ensuring both
effectiveness and efficiency. This could be beneficial for developing more reliable downstream
algorithms in a variety of areas, including causal discovery, feature selection, and deep learning.

K USE OF LARGE LANGUAGE MODELS: AN EXPLANATION

During the preparation of this manuscript, we employed ChatGPT as a writing assistant. Specifi-
cally, we provided the prompt: “I am preparing a paper for submission to an international conference
and would like your help to check for any grammatical issues and refine the wording or sentence
structure where necessary to ensure conciseness and precision.” The model’s suggestions were ap-
plied on a paragraph-by-paragraph basis, and all outputs were carefully reviewed and edited by the
authors to ensure accuracy and appropriateness.

30


	Introduction
	Preliminaries and Problem Formulation
	Limitations of Existing Federated Independence Tests
	Challenges of Federated Aggregation under Client Heterogeneity
	Revisiting Existing Federated Independence Testing Methods

	Methods
	The Copula of Distributions
	Intra-Client Dependence Measure via Random Projections
	Stacking-based Aggregation Strategy
	The Overall Framework

	Theoretical Analysis
	Performance Evaluation
	Conclusion
	List of Symbols and Notations
	Related Work
	Details of FedIT Methods
	Details of the Homomorphic Encryption Procedure
	Preliminaries and Auxiliary Lemmas
	Assumptions
	Copula properties: marginal uniformity and convergence
	Random Projection Properties: Convergence
	Procedure and Properties of FedIT-CS Framework

	Proof of Theorem 4
	Proof of Theorem 5
	Details of Experimental Setup and Analysis of Results
	Details about Synthetic Data Experiments
	Details about Real Data Experiments

	Additional Experiment Results
	Results with Diverse Distributions
	Results across Functional Relationships and Client Scales
	Comparison with More Aggregation Strategies
	Runtime evaluation

	Limitations and broader impacts
	Use of Large Language Models: An Explanation

