

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 POWERFUL INDEPENDENCE TESTING ON HETERO- GENEOUS FEDERATED CLIENTS WITH THEORETICAL GUARANTEES

Anonymous authors

Paper under double-blind review

ABSTRACT

We propose a novel federated independence testing framework that addresses both theoretical and practical challenges arising from client heterogeneity. We begin by revisiting existing federated independence testing methods and showing why they often fail to provide valid guarantees or maintain statistical power under data distributional shift across clients. Building on this analysis, we introduce a copula-based marginal alignment technique together with a stacking-based aggregation strategy that amplifies intra-client dependence while mitigating inter-client variation, yielding a theoretically sound and powerful global test. For practicality, we further accelerate the aggregation step and incorporate a privacy-preserving mechanism. On the theoretical side, we establish both the correctness of our method and the validity of the test. Extensive experiments on both synthetic and real-world datasets demonstrate the superiority of our solution over existing methods.

1 INTRODUCTION

Testing statistical independence is a foundational task in machine learning and statistics, supporting causal discovery (Hoyer et al., 2008; Zhang et al., 2012), representation learning (Li et al., 2021), and feature selection (Camps-Valls et al., 2010). Given the observations from a joint distribution \mathbb{P}_{XY} , the goal of *independence testing* (IT) is to determine whether X and Y are independent. As data volume expands and governance tightens, data are frequently siloed across institutions. For instance, hospitals keep their own patient records (Kidd et al., 2023), which cannot be pooled together due to privacy and security concerns, and regulation requirements. This situation motivates the federated independence testing (FedIT), which is to determine the independence relationship among variables without sharing raw data.

Compared with the well-studied *independent and identically distributed (i.i.d.)* setting for independence testing (Gretton et al., 2005; Zhang et al., 2012; Székely et al., 2007), FedIT is considerably more challenging because heterogeneity may degrade test power (Huang et al., 2020). To the best of our knowledge, there are only a few works that explicitly address this issue. The most recent is (Li et al., 2024), hereafter FUIT, which proposes a kernel-based federated test that accelerates computation via random features (Rahimi & Recht, 2007) and aggregates covariance-based summary statistics in the random feature space. Although FUIT achieves competitive results for federated causal discovery, we show that substantial headroom remains: its aggregation strategy is actually equivalent to naively concatenating samples in the feature space, thereby ignoring cross-client heterogeneity, lacking rigorous theoretical guarantees, and risking power loss under distribution shift. These limitations call for a theoretically grounded redesign of FedIT together with heterogeneity-aware aggregation mechanisms. Please refer to Appendix B for further review on related work.

In this paper, we propose a novel framework for federated independence testing that directly tackles both theoretical and practical challenges posed by client heterogeneity. To ensure theoretical validity and practical robustness under heterogeneous marginal distributions and dependence structures, we introduce a unified approach that combines copula-based marginal alignment with a stacking-based aggregation mechanism. The copula-based alignment exploits the key property that copulas separates marginal distributions from dependence structures, as formalized by Sklar’s theorem (Sklar, 1959). This theorem ensures that any multivariate distribution can be uniquely decomposed into its

054 marginals and a copula that captures their dependence (Nelsen, 2006). By mapping local data into
 055 a shared copula space, our method preserves the dependence structure while mitigating discrepancies
 056 in the marginals. Complementing this, the stacking-based aggregation strategy enhances local
 057 dependence signals at each client and selectively integrates them based on their contributions to
 058 global test power. To ensure efficiency and privacy, we further design a fast and privacy-preserving
 059 aggregation protocol, making the method practical for real-world federated settings.

060 Our main contributions are summarized as follows: 1) We provide a systematic analysis of the
 061 challenges in FedIT under client heterogeneity and propose a novel framework that addresses both
 062 theoretical and practical challenges. 2) We introduce a copula-based marginal alignment technique
 063 combined with a stacking-based aggregation strategy that amplifies intra-client dependence while
 064 mitigating inter-client variation, resulting in a theoretically sound and powerful global test. To
 065 enhance its practicality, we further develop a fast and privacy-preserving aggregation protocol. 3)
 066 We provide theoretical guarantees on the correctness of our method and the validity of the test.
 067 4) We empirically validate the proposed methods on both synthetic and real-world benchmarks,
 068 demonstrating their practical effectiveness, and superiority over existing methods.

070 2 PRELIMINARIES AND PROBLEM FORMULATION

071 We begin by recalling the classical hypothesis-testing framework for statistical independence, and
 072 then formalize the FedIT setting with heterogeneous clients.

073 **The hypothesis testing framework.** The goal of independence testing is to decide whether two
 074 random variables X and Y are independent ($X \perp\!\!\!\perp Y$). Formally,

$$075 \mathcal{H}_0 : \mathbb{P}_{XY} = \mathbb{P}_X \mathbb{P}_Y \text{ versus } \mathcal{H}_1 : \mathbb{P}_{XY} \neq \mathbb{P}_X \mathbb{P}_Y. \quad (1)$$

076 The testing procedure is as follows: First, define the statistic ρ and calculate its estimated value
 077 using the samples. Then, choose a significance level α (typically set to 0.05), which represents the
 078 probability that the sampling of ρ under \mathcal{H}_0 is at least as extreme as the observed value. Finally, the
 079 null hypothesis \mathcal{H}_0 is rejected if the p -value is not greater than α .

080 In this procedure, two types of errors may occur. Type I error occurs when \mathcal{H}_0 is falsely rejected,
 081 while Type II error happens when \mathcal{H}_0 is incorrect but not rejected. A good test (Zhang et al., 2012)
 082 needs to control Type I error within α while maximizing the testing power (1 – Type II error rate).

083 **The federated setting with heterogeneous clients.** We consider a federated setting with K clients
 084 (distinct domains). Client $k \in [K]$ ¹ holds n_k samples $\mathbf{Z}_k = \{(x_i^{(k)}, y_i^{(k)})\}_{i=1}^{n_k}$ drawn from a
 085 joint distribution $\mathbb{P}_{X_k Y_k}$ on $X_k \in \mathbb{R}^{d_x}$ and $Y_k \in \mathbb{R}^{d_y}$. Let \mathbb{P}_{X_k} and \mathbb{P}_{Y_k} denote the corresponding
 086 marginals. All samples are mutually independent both intra- and inter-client. In federated indepen-
 087 dence testing and causal discovery (Huang et al., 2020; Li et al., 2024), it is common to assume that,
 088 although data distributions may vary by client, the dependence relationship between the variables is
 089 consistent.

090 **Assumption 1** (Consistent dependence assumption). *We assume that the dependence relationship
 091 between X_k and Y_k is consistent across clients. That is, either all clients satisfy independence
 092 ($X_k \perp\!\!\!\perp Y_k$) or all exhibit dependence ($X_k \not\perp\!\!\!\perp Y_k$).*

093 This assumption reflects many real-world federated applications (e.g., multi-hospital studies, cross-
 094 region deployments), where a common data-generating mechanism governs all domains, even as
 095 local conditions differ without flipping the underlying dependence status.

096 **Assumption 2** (Heterogeneous clients assumption). *The dependence mechanism (e.g., strength or
 097 functional relationship) and the marginal distributions \mathbb{P}_{X_k} and \mathbb{P}_{Y_k} may vary across clients.*

098 Together, these assumptions define a realistic yet challenging regime: the global dependence status
 099 is common, but local distributions are heterogeneous. Our goal is to design a test that aggregates
 100 cross-client evidence to infer the shared dependence status while handling client heterogeneity.

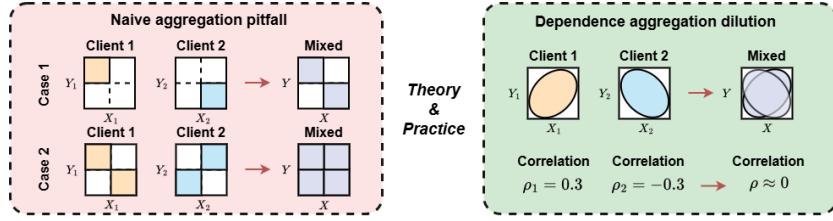
101
 102
 103
 104
 105
 106
 107
¹Throughout, the symbol $[m]$ denotes the set $\{1, 2, \dots, m\}$.

108 3 LIMITATIONS OF EXISTING FEDERATED INDEPENDENCE TESTS

110 In this section, we begin by identifying the aggregation challenges of federated independence testing
 111 (FedIT) under client heterogeneity and then show that existing methods not only face fundamental
 112 theoretical limitations but can also suffer substantial power loss in realistic scenarios.
 113

114 3.1 CHALLENGES OF FEDERATED AGGREGATION UNDER CLIENT HETEROGENEITY

116 Fig. 1 summarizes two key challenges. On the left, we illustrate the pitfall of naive aggregation
 117 strategies caused by heterogeneous marginal distributions. Two failure modes can occur: (i) inde-
 118 pendence relationships within individual clients lead to spurious dependence after aggregation; (ii)
 119 dependence relationships within individual clients lead to spurious independence after aggregation.
 120



121 Figure 1: (Left) Naive aggregation pitfall: local independence may appear dependent after aggregation,
 122 or local dependence may cancel and appear independent. (Right) Dependence aggregation dilution:
 123 strong local dependencies are weakened after aggregation due to client heterogeneity.
 124

125 On the right, we highlight a practical challenge stemming from heterogeneous functional rela-
 126 tionships across clients. Consider a simple example: Client 1's variables (X_1, Y_1) follow a bivariate
 127 Gaussian distribution with a correlation coefficient of 0.3, whereas Client 2's variables (X_2, Y_2) follow a bivariate
 128 Gaussian with a correlation coefficient of -0.3 . When combined, these opposing correlations cancel out, produc-
 129 ing an aggregated relationship that appears uncorrelated. This scenario poses a major difficulty for independence testing, as it requires detecting higher-order de-
 130 pendencies beyond linear correlation, which in turn reduces the statistical power of the test.
 131

132 Building on this, we later revisit existing methods and show that they are incapable of addressing
 133 either the theoretical aggregation pitfall or the practical signal dilution challenge described above.
 134

135 3.2 REVISITING EXISTING FEDERATED INDEPENDENCE TESTING METHODS

136 We focus on a representative class of FedIT methods (Li et al., 2024) that extend the Kernel-based
 137 Independence Test (KIT) (Zhang et al., 2012) to the federated setting, which we refer to as FUIT. In
 138 the following, we show that FUIT's aggregation strategy is essentially equivalent to naively concate-
 139 nating client samples in the feature space; consequently, it cannot overcome the limitations before.
 140

141 Formally, let $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n) \in \mathbb{R}^{d_x \times n}$ denote n samples of dimension d_x , and similarly
 142 let $\mathbf{y} \in \mathbb{R}^{d_y \times n}$. The statistic of KIT is defined as $T = n\|C_{xy}\|_F^2$, where the covariance matrix
 143 is $C_{xy} = \frac{1}{n}\tilde{\phi}(\mathbf{x})^T\tilde{\phi}(\mathbf{y}) \in \mathbb{R}^{h \times h}$. Here, $\tilde{\phi}(\mathbf{x}) \in \mathbb{R}^{n \times h}$ is the centered random feature matrix,
 144 given by $\tilde{\phi}(\mathbf{x}) := \mathbf{H}\phi(\mathbf{x})$, $\mathbf{H} = \mathbf{I} - \frac{1}{n}\mathbf{1}\mathbf{1}^T$ where $\mathbf{1} \in \mathbb{R}^{n \times 1}$ is the all-one vector. The feature
 145 map is $\phi(\mathbf{x}) := \sqrt{2/h} [\cos(w_1^T \mathbf{x} + b_1); \dots; \cos(w_h^T \mathbf{x} + b_h)]^T \in \mathbb{R}^{n \times h}$ with $w_i \sim \mathbb{P}(w)$ and
 146 $b_i \sim \text{Uniform}(0, 2\pi)$. Here, h denotes the number of random features. The same construction
 147 applies to $\phi(\mathbf{y})$. To determine the rejection threshold, a two-parameter Gamma distribution is used
 148 to approximate the null distribution under \mathcal{H}_0 , with parameters determined by the first two moments:
 149

$$\mathcal{E}_0 := \mathbb{E}_{\mathcal{H}_0}[T] = \text{Tr}(C_{xx}) \cdot \text{Tr}(C_{yy}), \quad \mathcal{V}_0 := \text{Var}_{\mathcal{H}_0}[T] = 2\|C_{xx}\|_F^2 \cdot \|C_{yy}\|_F^2, \quad (2)$$

150 where C_{xx} and C_{yy} are defined analogously as C_{xy} . Then, the critical threshold \widehat{c}_α can be obtained:
 151

$$\mathcal{H}_0 : n\|C_{xy}\|_F^2 \sim \frac{x^{\gamma-1}e^{-x/\beta}}{\beta^\gamma \Gamma(\gamma)}, \quad \gamma = \frac{\mathcal{E}_0^2}{\mathcal{V}_0}, \quad \beta = \frac{\mathcal{V}_0}{\mathcal{E}_0}, \quad \text{s.t. } \int_0^{\widehat{c}_\alpha} \frac{x^{\gamma-1}e^{-x}}{\Gamma(\gamma)} dx = 1 - \alpha, \quad (3)$$

152 where $\Gamma(\cdot)$ is the Gamma function. Finally, independence is decided by comparing T with \widehat{c}_α .
 153

162 For FUIT, the key distinction from KIT lies in the aggregation process that its cross-covariance
 163 matrix is computed via client-wise aggregation, $C_{xy} = \sum_k C_{xy}^{(k)}$, $n = \sum_k n_k$, where $C_{xy}^{(k)}$ is
 164 calculated by $C_{xy}^{(k)} = \frac{1}{n} \phi(\mathbf{x}^{(k)})^T \mathbf{H}_k^T \mathbf{H}_k \phi(\mathbf{y}^{(k)})$, and $\phi(\mathbf{x}^{(k)}) \in \mathbb{R}^{n_k \times h}$ is obtained by replacing \mathbf{x}
 165 with the local sample vector $\mathbf{x}^{(k)} := (x_{k;1}, x_{k;1}, \dots, x_{k,n_k}) \in \mathbb{R}^{d_x \times n_k}$ for client k . The centering
 166 matrix is $\mathbf{H}_k = \mathbf{I} - \frac{1}{n} \mathbf{1}_{n_k} \mathbf{1}_{n_k}^T$. The terms $\phi(\mathbf{y}^{(k)})$, $C_{xx}^{(k)}$ and $C_{yy}^{(k)}$ are defined by analogy.
 167

168 We now show that this aggregation is equivalent to applying the method to the simple concatenation
 169 of client features. Define $f_k := \mathbf{H}_k \phi(\mathbf{x}^{(k)}) \in \mathbb{R}^{n_k \times h}$, $f_{con} := [f_1; f_2; \dots; f_K] \in \mathbb{R}^{n \times h}$. It follows
 170 that $C_{xy} = \sum_k C_{xy}^{(k)} = \frac{1}{n} \sum_k f_k^T f_k = \frac{1}{n} f_{con}^T f_{con}$, and note that the term $\frac{1}{n} f_{con}^T f_{con}$ is exactly the
 171 same as computing the statistic on the fully concatenated features from all clients.
 172

173 As discussed earlier, such naive aggregation is problematic in the presence of heterogeneity. As
 174 a result, it can lead to uncontrolled Type I error or severely reduced test power, particularly when
 175 client-specific marginals or dependence structures differ. We therefore conclude that existing FedIT
 176 methods are inadequate for addressing the fundamental challenges posed by heterogeneous clients.
 177 In the next section, we introduce a new approach designed specifically to handle these limitations.
 178

179 4 METHODS

181 In this section, we present our solutions to the previously analyzed challenges. The overall frame-
 182 work is illustrated in Fig. 2, which outlines the key steps. The core module consists of a copula trans-
 183 form to achieve marginal alignment, together with a Canonical Correlation Analysis (CCA, Härdle
 184 & Simar (2007)) with random projections to strengthen intra-client dependencies. These intra-client
 185 procedures, in turn, enable a more effective aggregation process, thereby enhancing the power of the
 186 global test. In what follows, we introduce each component of the framework in detail.
 187

188 4.1 THE COPULA OF DISTRIBUTIONS

189 The copula (Nelsen, 2006) plays a crucial role when studying the dependence among random vari-
 190 ables. The copula contains all the information needed to measure dependence, and it is invariant to
 191 any nonlinear strictly increasing transformations of the marginal variables.
 192

193 **Definition 1** (Copula transformation (Sklar, 1959)). *Consider a d -dimensional random vector $\mathbf{X} =$
 194 (X_1, \dots, X_d) with continuous marginal cumulative distribution functions (cdfs) F_i , $i \in [d]$. Then,
 195 the joint cumulative distribution of \mathbf{X} is uniquely expressed as:*

$$196 \mathbf{F}(\mathbf{X}) := \mathbf{F}(X_1, \dots, X_d) = \mathbf{C}(F_1(X_1), \dots, F_d(X_d)), \quad (4)$$

197 where the distribution \mathbf{C} is known as the copula of \mathbf{X} .
 198

199 The copula has uniform marginals as shown in the following theorem:

200 **Theorem 1** (Probability integral transform (Nelsen, 2006)). *For a random variable X with cdf F ,
 201 the random variable $U = F(X)$ is uniformly distributed on $[0, 1]$.*
 202

203 Thus, the copula \mathbf{C} has d marginals $U_i = F_i(X_i) \sim \text{Uniform}[0, 1]$, $i \in [d]$. Given a sample
 204 matrix $[x_{j,i}]_{n \times d}$ with n samples, we can estimate F_i using the empirical marginal cdf defined as
 205 $F_{n,i}(x) := \frac{1}{n} \sum_{j=1}^n \mathbb{I}[x_{j,i} \leq x]$, $i \in [d]$, where \mathbb{I} is the indicator function. Then, for a d -dimensional
 206 vector \mathbf{x} , the empirical copula transformation is $\mathbf{F}_n(\mathbf{x}) := [F_{n,1}(x_1), F_{n,2}(x_2), \dots, F_{n,d}(x_d)]$,
 207 which converges to the true transformation as the sample size increases:
 208

209 **Theorem 2** (Convergence of the empirical copula Póczos et al. (2012)). *Let \mathbf{F} be the copula trans-
 210 formation defined above, and \mathbf{F}_n be the corresponding empirical copula transformation, then*
 211

$$212 \mathbb{P} \left[\sup_{\mathbf{x} \in \mathbb{R}^d} \|\mathbf{F}(\mathbf{x}) - \mathbf{F}_n(\mathbf{x})\|_2 > \epsilon \right] \leq 2d \exp \left(-\frac{2n\epsilon^2}{d} \right). \quad (5)$$

213 The speed of exponential convergence with respect to the sample size guarantees the performance
 214 of the copula transform method in practical applications. Calculating $\mathbf{F}_n(\mathbf{X})$ involves sorting the
 215 marginals of $\mathbf{X} \in \mathbb{R}^d$ with n samples, thus $\mathcal{O}(dn \log n)$ operations.
 216

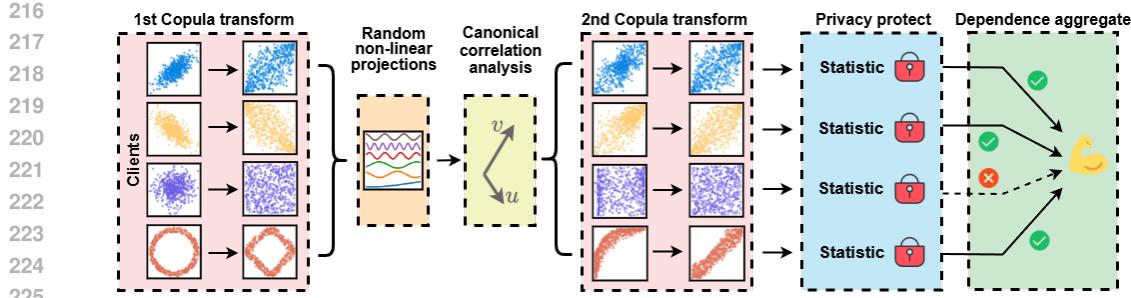


Figure 2: An overview of the process of our FedIT-CS framework. Each client first applies an empirical copula transformation to ensure translation and scale invariance, followed by random feature projection to capture the nonlinear dependency signal. The resulting features are combined linearly to maximize dependence strength. Then, to facilitate aggregation across heterogeneous clients, a second copula transformation aligns marginal distributions. A privacy-preserving module is adopted before aggregation, and a subset of clients are selected to maximize the overall test power.

4.2 INTRA-CLIENT DEPENDENCE MEASURE VIA RANDOM PROJECTIONS

The goal of this section is to extract the intra-client dependence signal, thereby enabling a more effective aggregation procedure. We build upon the Hirschfeld–Gebelein–Rényi Maximum Correlation Coefficient (HGR) (Gebelein, 1941), which defines dependence as

$$\text{hgr}(X, Y) = \sup_{f, g} \rho(f(X), g(Y)), \quad (6)$$

where the supremum is taken over all Borel-measurable functions f and g with finite variance, and ρ denotes Pearson’s correlation coefficient. Intuitively, HGR captures the maximal correlation attainable under nonlinear transformations of the variables. In practice, a common class of estimators approximates the transformation functions f and g using random projections, as proposed by (Lopez-Paz et al., 2013). This approach bypasses the need for an explicit optimization step, leveraging the properties of random projections as outlined below.

Theorem 3 (Approximation with random projections Póczos et al. (2012)). *Let $p(w)$ be a distribution on Ω and $\sup_{x, w} |\phi(x; w)| \leq 1$. Let $\mathcal{F} = \{f(x) = \int_{\Omega} u(w)\phi(x; w)dw \mid |u(w)| \leq Cp(w)\}$. Draw w_1, \dots, w_h i.i.d from $p(w)$. Further let $\delta > 0$, and c be some L -Lipschitz loss function, and consider data $\{x_i, o_i\}_{i=1}^n$ drawn i.i.d from some arbitrary \mathbb{P}_{XO} . The linear regression coefficient u_1, \dots, u_h for which $f_h(x) = \sum_{i=1}^h u_i\phi(x; w_i)$ minimizes the empirical risk $c(f_h(x), o)$ has a distance from the c -optimal estimator in \mathcal{F} bounded by*

$$\mathbb{E}_{\mathbb{P}}[c(f_h(x), o)] - \min_{f \in \mathcal{F}} \mathbb{E}_{\mathbb{P}}[c(f(x), o)] \leq O\left(\left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{h}}\right) LC \sqrt{\log \frac{1}{\delta}}\right) \quad (7)$$

with probability at least $1 - 2\delta$.

Intuitively, randomly selecting $\{w_i\}_{i=1}^n$ instead of optimizing them causes only bounded error. Therefore, Eq. (6) can be approximated as optimizing \mathbf{u} and \mathbf{v} to maximize $\rho(\mathbf{u}^T \phi(\mathbf{x}), \mathbf{v}^T \phi(\mathbf{y}))$, where $\phi(\mathbf{x})$ and $\phi(\mathbf{y})$ are random projections of \mathbf{x} and \mathbf{y} . The remaining task is to choose the non-linear projection functions and to optimize \mathbf{u} and \mathbf{v} . Following the choice of Lopez-Paz et al. (2013), we choose cosine projections, which are also called random Fourier feature (RFF) (Rahimi & Recht, 2007). Formally, the weights are drawn as $w_i \sim \mathcal{N}(0, s\mathbf{I})$, $b_i \sim \text{Uniform}(-\pi, \pi)$ for $i \in [h]$, where s is a tunable parameter, typically set empirically as a linear function of the input dimensionality. The corresponding RFF is then defined by $\phi(\mathbf{x}) := [\cos(w_1^T \mathbf{x} + b_1); \dots; \cos(w_h^T \mathbf{x} + b_h)]^T \in \mathbb{R}^{n \times h}$, and analogously for $\phi(\mathbf{y})$. The task of finding \mathbf{u} and \mathbf{v} then turns to a Canonical Correlation Analysis (CCA) problem (Härdle & Simar, 2007). Formally, let $C_{xy} := \text{cov}(\phi(\mathbf{x}), \phi(\mathbf{y})) \in \mathbb{R}^{h \times h}$ and define C_{xx} and C_{yy} analogously. The problem is thus equivalent to solving the eigenproblem:

$$\begin{bmatrix} 0 & C_{xx}^{-1} C_{xy} \\ C_{yy}^{-1} C_{yx} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix} = \rho^2 \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix}, \quad (8)$$

270 where the largest eigenvalue corresponds to the leading canonical correlation ρ_1 . As a result, after
 271 applying the nonlinear projections and identifying the canonical directions \mathbf{u} and \mathbf{v} , the nonlinear
 272 components of the dependence structure are effectively captured. This, in turn, facilitates the sub-
 273 sequent aggregation process. Specifically, the outputs of this procedure are 1-dimensional random
 274 variables $\mathbf{u}^T \phi(\mathbf{x}) \in \mathbb{R}^{1 \times n}$ and $\mathbf{v}^T \phi(\mathbf{y}) \in \mathbb{R}^{1 \times n}$ with the correlation ρ_1 .

275 **Remark.** This method is closely related to KIT in Sec. 3.2, as both rely on C_{xy} . The key difference
 276 is that KIT considers all eigenvalues (via the Frobenius norm), while our approach focuses on the
 277 largest one (through CCA). In federated settings, this helps avoid eigenvalue cancellation and depen-
 278 dence dilution. For instance, in Sec. 3.2, $\Sigma_{1,xy} = 0.3$ and $\Sigma_{2,xy} = -0.3$ sum to zero, but according
 279 to Eq. (8), our method still retains the largest eigenvalue of 0.3 for both clients, providing consistent
 280 dependence signals. Moreover, the resulting low-dimensional output reduces communication cost
 281 and enhances privacy, as it makes the reconstruction of a client’s raw data more difficult.

282 For subsequent aggregation, we again use the copula method to align the marginal distributions of
 283 $\mathbf{u}^T \phi(\mathbf{x})$ and $\mathbf{v}^T \phi(\mathbf{y})$. The resulting quantities are denoted as $(\mathbf{r}_x, \mathbf{r}_y)$, where $\mathbf{r}_x, \mathbf{r}_y \in \mathbb{R}^{1 \times n}$,
 284 with the corresponding random variables R_x and R_y , whose marginal distributions are given by
 285 $R_x, R_y \sim \text{Uniform}(0, 1)$. Next, we introduce the detailed process of aggregation.

287 4.3 STACKING-BASED AGGREGATION STRATEGY

289 For each client $k \in [K]$, after the intra-client dependence modeling process, we obtain the output
 290 copula samples $(\mathbf{r}_x^{(k)}, \mathbf{r}_y^{(k)})$. We then proceed to the aggregation process. For ease of exposition, we
 291 first ignore the client subset selection process (which will be introduced later) and focus on how to
 292 compute the sub-statistics transmitted to the server, as well as the server-side summary procedure.

293 **Computation of summary statistics.** Since the nonlinear dependencies have already been captured
 294 during the intra-client stage, the inter-client aggregation only needs to summarize linear correlations.
 295 Let the selected subset of client ids be denoted as \mathcal{I} , hence the total sample size is $n_{\mathcal{I}} = \sum_{k \in \mathcal{I}} n_k$.
 296 The global correlation coefficient can then be fully computed from the second-order moments statis-
 297 tics, which are obtained locally at each client. Formally, client k computes:

$$299 \quad e_x^{(k)} = \sum_{i=1}^{n_k} r_{x;i}^{(k)}, \quad m_{xy}^{(k)} = \sum_{i=1}^{n_k} r_{x;i}^{(k)} r_{y;i}^{(k)}, \quad m_{xx}^{(k)} = \sum_{i=1}^{n_k} r_{x;i}^{(k)} r_{x;i}^{(k)}, \quad m_{yy}^{(k)} = \sum_{i=1}^{n_k} r_{y;i}^{(k)} r_{y;i}^{(k)}. \quad (9)$$

302 The server then aggregates these local statistics to obtain:

$$304 \quad e_x^{\mathcal{I}} = \sum_{k \in \mathcal{I}} e_x^{(k)}, \quad m_{xy}^{\mathcal{I}} = \sum_{k \in \mathcal{I}} m_{xy}^{(k)}, \quad \rho_{xy}^{\mathcal{I}} = \frac{n_{\mathcal{I}} m_{xy}^{\mathcal{I}} - e_x^{\mathcal{I}} e_y^{\mathcal{I}}}{\sqrt{n_{\mathcal{I}} m_{xx}^{\mathcal{I}} - (e_x^{\mathcal{I}})^2} \sqrt{n_{\mathcal{I}} m_{yy}^{\mathcal{I}} - (e_y^{\mathcal{I}})^2}}. \quad (10)$$

307 **Privacy protection.** Although accessing the one-dimensional statistics already makes it difficult
 308 for an adversary to reconstruct the original data, we aim to provide stronger privacy guarantees.
 309 Since the aggregation requires only summation, we employ Homomorphic Encryption (HE) (Pail-
 310 lier, 1999), which ensures that no individual client statistics (e.g., $e_x^{(k)}$, $m_{xy}^{(k)}$) are exposed during
 311 communication. Due to space limit, we refer the reader to Appendix B for related work and Ap-
 312 pendix D for the complete procedure. This process fully preserves the privacy of client data.

314 **Client subset selection strategy.** The remaining problem is how to select a subset of clients that
 315 maximizes the power of the global test. Rather than relying on computationally expensive permuta-
 316 tion procedures (Good, 2013), we directly use the summary statistic computed once by each client,
 317 which already captures the essential dependence information. Aggregating these summaries pro-
 318 vides a practical approximation of the null distribution and yields a power score that guides subset
 319 selection. Importantly, our experiments confirm that this strategy is effective in practice (see Ap-
 320 pendix I.3). Given such a power score, a natural idea is to evaluate different subsets of clients and
 321 choose the one with the highest score. One straightforward approach is to enumerate all nonempty
 322 subsets and evaluate their power scores, selecting the subset with the highest score. However, this
 323 approach quickly becomes computationally intractable as the number of clients K grows, since the
 total number of subsets is 2^K . To address this challenge, we propose a soft relaxation that converts
 the discrete optimization problem into a continuous one. Specifically, we assign each client $k \in [K]$

324 a learnable parameter $p_k \in [0, 1]$, define $n_{\mathcal{P}} = \sum_{k \in [K]} p_k n_k$, and rewrite the corresponding aggregated statistics as
 325
 326

$$327 \quad e_x^{\mathcal{P}} = \sum_{k \in [K]} p_k e_x^{(k)}, \quad m_{xy}^{\mathcal{P}} = \sum_{k \in [K]} p_k m_{xy}^{(k)}, \quad \rho_{xy}^{\mathcal{P}} = \frac{n_{\mathcal{P}} m_{xy}^{\mathcal{P}} - e_x^{\mathcal{P}} e_y^{\mathcal{P}}}{\sqrt{n_{\mathcal{P}} m_{xx}^{\mathcal{P}} - (e_x^{\mathcal{P}})^2} \sqrt{n_{\mathcal{P}} m_{yy}^{\mathcal{P}} - (e_y^{\mathcal{P}})^2}}. \quad (11)$$

330 This continuous optimization problem can then be efficiently solved using gradient-based methods.
 331 This relaxation transforms the subset selection problem into a continuous optimization task, which
 332 can be efficiently solved with gradient-based methods. However, compared with the discrete case,
 333 the privacy-preserving component requires additional refinement: homomorphic encryption (HE)
 334 can still be applied to computing the gradients of the aggregated quantities with respect to p_k , thereby
 335 enabling each client to privately update its local weight parameter p_k (see Appendix D for details).
 336

337 4.4 THE OVERALL FRAMEWORK

339 Above, we introduced the intra-client modules and the aggregation process in detail. We now
 340 present the complete framework, named **FedIT-CS** (Federated Independence Testing with Cop-
 341 uula Alignment and Stacking Aggregation). Depending on the aggregation strategy, we distinguish
 342 two main variants: **FedIT-CS-M**, which enables maximum power selection over client subsets,
 343 and **FedIT-CS-ML**, which further generalizes the procedure by allowing mixed linear aggregation,
 344 while achieving linear-time complexity with respect to the number of clients.

345 Table 1: Comparison of FUIT (Li et al., 2024) and the variants of our proposed FedIT-CS.
 346

Method	FUIT	FedIT-CS-S (Ours)	FedIT-CS-M (Ours)	FedIT-CS-ML (Ours)
Theoretical soundness	✗	✗	✓	✓
Privacy protection	✗	✓	✓	✓
Maximum power selection	✗	✗	✓	✓
Local computation cost	$\mathcal{O}(nh^2)$	$\mathcal{O}(Bn \log n + Bnh^2)$	$\mathcal{O}(Bn \log n + Bnh^2)$	$\mathcal{O}(Bn \log n + Bnh^2)$
Aggregation cost	$\mathcal{O}(Kh^2)$	$\mathcal{O}(KB)$	$\mathcal{O}(2^K B)$	$\mathcal{O}(KB)$
Communication cost	$\mathcal{O}(Kh^2)$	$\mathcal{O}(KB)$	$\mathcal{O}(KB)$	$\mathcal{O}(KB)$

355 **Permutation-based testing.** To obtain p -value for hypothesis testing, we adopt a permutation-based
 356 procedure (Good, 2013). Formally, we generate B permuted samples $(\sigma_t(\mathbf{x}), \mathbf{y})$ with $t \in [B]$, where
 357 each σ_t is an independent derangement. These permuted pairs simulate samples under \mathcal{H}_0 . Each
 358 client can perform this procedure independently, producing local null samples which, after intra-
 359 client transformation obtain copula output, are aggregated to compute the global test statistic. This
 360 enables an approximation of the null distribution of the aggregated test.

361 **Sample splitting.** A key detail is that we cannot use the same data both for learning the aggregation
 362 strategy and for performing the test, as this would invalidate Type I error control. To address this,
 363 we adopt a straightforward data-splitting strategy (Jitkrittum et al., 2017; Liu et al., 2020), which is
 364 simple and direct but inevitably reduces statistical power. Actually, more advanced strategies such
 365 as (Schrab et al., 2022; Kübler et al., 2020) could be considered, and we leave this as an important
 366 direction for further work.

367 For comparison with FUIT, we also introduce a naive variant, **FedIT-CS-S**, which aggregates copula
 368 outputs by direct pooling to compute covariance, equivalent to applying FedIT-CS-M over the entire
 369 client set without selection. This variant does not require sample splitting, but sacrifices theoretical
 370 guarantees. Table 1 summarizes all variants of our proposed framework. The table highlights that
 371 only FedIT-CS-M and FedIT-CS-ML achieve both *theoretical soundness* and *maximum power se-
 372 lection*, while all FedIT-CS variants ensure *privacy protection*. From a computational perspective,
 373 FedIT-CS-S and FedIT-CS-ML achieve efficient aggregation with cost $\mathcal{O}(KB)$, whereas FedIT-CS-
 374 M incurs exponential cost $\mathcal{O}(2^K B)$ due to subset enumeration.

375 **Algorithm.** The overall procedure is summarized in Alg. 1. As a preprocessing step, each client
 376 splits its data into training Z_k^{tr} and testing Z_k^{te} (Line 1). The test consists of two phases: (i) intra-
 377 client dependency modeling and client subset selection using the training data (Lines 2–5), and (ii)
 a permutation test with the learned aggregation weights to compute the p -value and decide inde-

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
pendence on the testing data (Lines 6–9). The computational complexity of different variants is summarized in Table 1 and specific privacy-preserving schemes can be applied.

Algorithm 1 FedIT-CS Framework

Input: Number of clients K , federal samples $Z_k = \{(x_i^{(k)}, y_i^{(k)})\}_{i=1}^{n_k}, k \in [K]$, the number of feature sampling h , significance level α , the number of permutation B .

Output: Decision on $X \perp\!\!\!\perp Y$ or $X \not\perp\!\!\!\perp Y$.

- 1: Split client data into training and testing sets: $Z_k = Z_k^{tr} \cup Z_k^{te}$.
- 2: \triangleleft **Intra-client dependency modeling and subset selection with $Z_k^{tr}, k \in [K]$.**
- 3: Apply the first copula transform, random projections, and CCA as in Eq. (8).
- 4: Apply the second copula transform and aggregate with Eqs. (10) or (11).
- 5: Obtain the optimized aggregation weights $\mathbf{p}^* = (p_1^*, p_2^*, \dots, p_K^*)$.
- 6: \triangleleft **Permutation test with \mathbf{p}^* on $Z_k^{te}, k \in [K]$.**
- 7: Generate B permuted samples $(\sigma_t(\mathbf{x}), \mathbf{y})$, $t \in [B]$, then each perform intra-client transform.
- 8: Compute the aggregated statistic sequence $\{\rho_{xy}^P, \rho_{xy}^{P,\sigma_1}, \dots, \rho_{xy}^{P,\sigma_B}\}$.
- 9: Calculate the p -value by $p\text{-value} = [1 + \sum_{t=1}^B \mathbb{I}\{\rho_{xy}^{P,\sigma_t} \geq \rho_{xy}^P\}]/[1 + B]$.
- 10: Reject $X \perp\!\!\!\perp Y$ if $p\text{-value} \leq \alpha$; otherwise accept $X \perp\!\!\!\perp Y$.

5 THEORETICAL ANALYSIS

Let the aggregation algorithm be denoted by \mathcal{A} , which determines the optimal weights $p_k, k \in [K]$. Note that when $p_k \in \{0, 1\}$, this corresponds to the Fed-CS-M strategy, while allowing $p_k \in [0, 1]$ corresponds to Fed-CS-ML. We now consider the case where \mathcal{A} is theoretically optimal. In the asymptotic regime where the sample size and the number of random features are large enough, let the resulting aggregated coefficient be denoted by $\rho_{\mathcal{A}}$. Then, we have the following theorem to show that $\rho_{\mathcal{A}}$ is theoretically sound, with the proof given in Appendix F.

Theorem 4 (Soundness of aggregated statistics). *Let $\rho_{\mathcal{A}}$ denote the aggregated coefficient obtained by the aggregation algorithm \mathcal{A} . Assume \mathcal{A} is theoretically optimal. Then, under the null hypothesis \mathcal{H}_0 , we have $\rho_{\mathcal{A}} = 0$, whereas under the alternative hypothesis \mathcal{H}_1 , we have $\rho_{\mathcal{A}} > 0$.*

This result guarantees that our aggregated coefficient is theoretically correct in the idealized setting where sample estimation error and random approximation error are negligible and where the optimization procedure (in the case of FedIT-CS-ML) converges sufficiently well. In practice, by Theorems 2 and 3, the estimation and approximation errors vanish at rates $\mathcal{O}(1/\sqrt{n})$ and $\mathcal{O}(1/\sqrt{h})$ with high probability, thus acceptable. Moreover, the optimization step is effective due to the clear signal structure, as further validated in our experiments. Overall, this theoretical guarantee underpins the reliability of our framework, ensuring that both Type I and Type II error controls are meaningful. Next, we establish the Type I error bound of our test, with the proof being provided in Appendix G.

Theorem 5 (Type I error bound). *Assume the null hypothesis \mathcal{H}_0 is true. For any significance level $\alpha \in (0, 1)$, the bound for the Type I error is given by*

$$\mathbb{P}(p\text{-value} \leq \alpha | \mathcal{H}_0) \leq \alpha. \quad (12)$$

This establishes the validity of our test. Together with the theoretical soundness of the aggregated statistic, this result provides a strong foundation for the reliability of our framework.

6 PERFORMANCE EVALUATION

We compare the following tests: FUIT (Li et al., 2024), FedIT-CS-S, FedIT-CS-M, and FedIT-CS-ML. To further evaluate the potential loss of statistical power due to sample splitting, we additionally include two variants, FedIT-CS-M-F and FedIT-CS-ML-F, where the aggregation strategy is trained on extra data that is not used for testing. For fairness, all methods are implemented with the number of random features fixed at $h = 10$, the significance level set to $\alpha = 0.05$, and the data split ratio set to 0.2. We evaluate the methods on both synthetic and real-world datasets. Due to space limit,

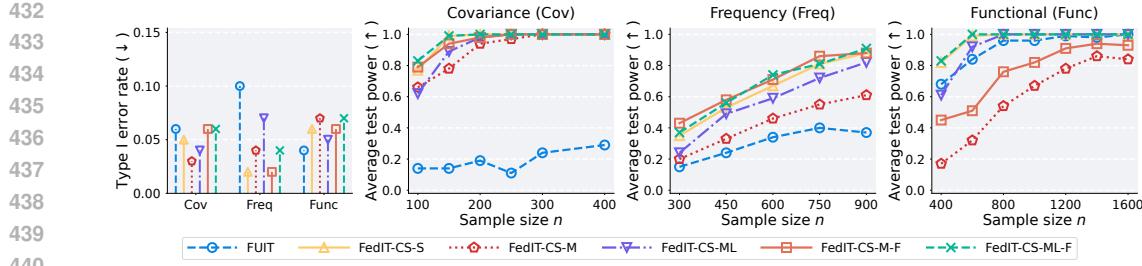


Figure 4: Left: The average Type I error rate on three synthetic datasets. The other three plots: The results of average test power on these three datasets.

detailed setup and additional results are provided in Appendices H and I, including experiments under more synthetic settings (with varying noise distributions and function generation processes), evaluations with larger numbers of clients, and comparisons of running time.

Performance on synthetic datasets. We consider three client heterogeneous scenarios. (i) *Covariance*: linear dependency with client-specific correlation coefficients 0.5, -0.5, and 0.02; sample size ratio $n_1 : n_2 : n_3 = 1 : 1 : 2$, with n_1 ranging from 100 to 400. (ii) *Frequency*: sinusoid model $(X, Y) \sim 1 + \sin(\omega x) \sin(\omega y)$ with $\omega = 2, 3, 4$ across clients; sample size ratio $n_1 : n_2 : n_3 = 1 : 1 : 1$, with n_1 from 300 to 900. (iii) *Functional*: nonlinear relations $Y = f(X) + \epsilon$, $f \in \{\sin(\cdot), \cos(\cdot), (\cdot)^2\}$ with $\epsilon \sim \mathcal{N}(0, 1)$; sample size ratio $n_1 : n_2 : n_3 = 4 : 2 : 1$, with n_1 from 400 to 1600. Type I error rate is evaluated using permuted samples. For each point, perform 100 repeated randomized experiments and report the average result. In all cases, figures are plotted with n_1 .

Results are presented in Fig. 4. Except for FUIT on the Frequency setting, all methods successfully control the Type I error rate. On both the Covariance and Frequency settings, our approach consistently outperforms FUIT, which can be attributed to the effectiveness of our aggregation strategy. Comparing the variants with and without additional training data (-F vs. non -F), we observe that data splitting indeed reduces statistical power, though FedIT-CS-ML still achieves better performance than FUIT. Interestingly, despite being designed primarily for efficiency, our linear-time variant FedIT-CS-ML outperforms FedIT-CS-M. This improvement may stem from the greater flexibility of its solution space, which provides additional benefits to strength dependency signal.

Figure 3: The results on Sachs.

Performance on real dataset. For real-world evaluation, we use the Sachs dataset (Sachs et al., 2005) under seven perturbation conditions, treating each condition as a distinct client. This dataset is widely used in independence testing (Zhang et al., 2023b) (see the Appendix H for visualization

of the distributions). The network consists of 11 nodes, yielding 55 node pairs: 18 independent (for Type I error evaluation) and 37 dependent (for Type II error evaluation). In each run, we randomly select 3 out of the 7 clients, evaluate all pairs, and compute the average result. This procedure is repeated 50 times with new client selections, and the results are reported. Results are shown in Fig. 3. Compared with FUIT, all variants of our method achieve tighter control of Type I error while simultaneously reducing Type II error, thereby demonstrating stronger detection power. These results provide empirical evidence supporting the theoretical advantage of our framework.

7 CONCLUSION

This paper presents FedIT-CS (Federated Independence Testing with Copula Alignment and Stacking Aggregation), a framework that overcomes both theoretical and practical challenges of client heterogeneity in federated testing. By analyzing the limitations of existing methods, FedIT-CS introduces copula-based marginal alignment and stacking-based aggregation to ensure validity with enhanced power, while also providing efficient and privacy-preserving implementations. Extensive experiments confirm its superiority over prior approaches. An interesting direction for future work is to extend FedIT-CS to conditional independence testing, further broadening its applicability.

486 REFERENCES
487

488 Amin Abyaneh, Nino Scherrer, Patrick Schwab, Stefan Bauer, Bernhard Scholkopf, and Arash
489 Mehrjou. Fed-cd: Federated causal discovery from interventional and observational data. *ArXiv*,
490 abs/2211.03846, 2022.

491 Francis R Bach and Michael I Jordan. Kernel independent component analysis. *Journal of machine*
492 *learning research*, 3(Jul):1–48, 2002.

493 Gustavo Camps-Valls, Joris Mooij, and Bernhard Scholkopf. Remote sensing feature selection by
494 kernel dependence measures. *IEEE Geoscience and Remote Sensing Letters*, 7(3):587–591, 2010.

495 Sourav Chatterjee. A new coefficient of correlation. *Journal of the American Statistical Association*,
496 116(536):2009–2022, 2021.

497 David Maxwell Chickering. Optimal structure identification with greedy search. *J. Mach. Learn.*
498 *Res.*, 3(null):507–554, March 2003. ISSN 1532-4435.

499 Max Chickering. Statistically efficient greedy equivalence search. In Jonas Peters and David Sontag
500 (eds.), *Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence (UAI)*, volume
501 124 of *Proceedings of Machine Learning Research*, pp. 241–249, 2020.

502 Israel Cohen, Yiteng Huang, Jingdong Chen, Jacob Benesty, Jacob Benesty, Jingdong Chen, Yiteng
503 Huang, and Israel Cohen. Pearson correlation coefficient. *Noise reduction in speech processing*,
504 pp. 1–4, 2009.

505 Cynthia Dwork and Aaron Roth. *The Algorithmic Foundations of Differential Privacy*. 2014.

506 Erdun Gao, Junjia Chen, Li Shen, Tongliang Liu, Mingming Gong, and Howard Bondell. FedDAG:
507 Federated DAG structure learning. *Transactions on Machine Learning Research*, 2023. ISSN
508 2835-8856.

509 Hans Gebelein. Das statistische problem der korrelation als variations-und eigenwertproblem und
510 sein zusammenhang mit der ausgleichsrechnung. *ZAMM-Journal of Applied Mathematics and*
511 *Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik*, 21(6):364–379, 1941.

512 Phillip Good. *Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses*.
513 Springer Science & Business Media, 2013.

514 Arthur Gretton, Alexander Smola, Olivier Bousquet, Ralf Herbrich, Andrei Belitski, Mark Augath,
515 Yusuke Murayama, Jon Pauls, Bernhard Schölkopf, and Nikos Logothetis. Kernel constrained
516 covariance for dependence measurement. In *International Workshop on Artificial Intelligence*
517 and *Statistics*, pp. 112–119. PMLR, 2005.

518 Arthur Gretton, Kenji Fukumizu, Choon Teo, Le Song, Bernhard Schölkopf, and Alex Smola. A
519 kernel statistical test of independence. *Advances in neural information processing systems*, 20,
520 2007.

521 Wolfgang Härdle and Léopold Simar. *Applied multivariate statistical analysis*. Springer, 2007.

522 Patrik Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, and Bernhard Schölkopf. Nonlinear
523 causal discovery with additive noise models. *Advances in neural information processing systems*,
524 21, 2008.

525 Biwei Huang, Kun Zhang, Yizhu Lin, Bernhard Schölkopf, and Clark Glymour. Generalized score
526 functions for causal discovery. In *Proceedings of the 24th ACM SIGKDD International Conference*
527 on *Knowledge Discovery & Data Mining*, KDD ’18, pp. 1551–1560, New York, NY, USA,
528 2018. Association for Computing Machinery. ISBN 9781450355520.

529 Biwei Huang, Kun Zhang, Jiji Zhang, Joseph Ramsey, Ruben Sanchez-Romero, Clark Glymour,
530 and Bernhard Schölkopf. Causal discovery from heterogeneous/nonstationary data. *Journal of*
531 *Machine Learning Research*, 21(89):1–53, 2020.

540 Jianli Huang, Xianjie Guo, Kui Yu, Fuyuan Cao, and Jiye Liang. Towards privacy-aware causal
 541 structure learning in federated setting. *IEEE Transactions on Big Data*, 9(6):1525–1535, December
 542 2023.

543

544 Wittawat Jitkrittum, Zoltán Szabó, and Arthur Gretton. An adaptive test of independence with
 545 analytic kernel embeddings. In Doina Precup and Yee Whye Teh (eds.), *Proceedings of the 34th
 546 International Conference on Machine Learning*, volume 70 of *Proceedings of Machine Learning
 547 Research*, pp. 1742–1751, 06–11 Aug 2017.

548 Iden Kalemaj, Shiva Kasiviswanathan, and Aaditya Ramdas. Differentially private conditional in-
 549 dependence testing. In Sanjoy Dasgupta, Stephan Mandt, and Yingzhen Li (eds.), *Proceedings
 550 of The 27th International Conference on Artificial Intelligence and Statistics*, volume 238 of *Pro-
 551 ceedings of Machine Learning Research*, pp. 3700–3708. PMLR, 02–04 May 2024.

552

553 Zeki Kazan, Kaiyan Shi, Adam Groce, and Andrew P Bray. The test of tests: A framework for
 554 differentially private hypothesis testing. In Andreas Krause, Emma Brunskill, Kyunghyun Cho,
 555 Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th Inter-
 556 national Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning
 557 Research*, pp. 16131–16151. PMLR, 23–29 Jul 2023.

558

559 Brian Kidd, Kunbo Wang, Yanxun Xu, and Yang Ni. Federated learning for sparse bayesian models
 560 with applications to electronic health records and genomics. *Pacific Symposium on Biocomputing*,
 28:484–495, 2023.

561

562 Ilmun Kim and Antonin Schrab. Differentially private permutation tests: Applications to kernel
 563 methods. *arXiv preprint arXiv:2310.19043*, 2023.

564

565 Jonas Kübler, Wittawat Jitkrittum, Bernhard Schölkopf, and Krikamol Muandet. Learning kernel
 566 tests without data splitting. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
 567 (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 6245–6255. Curran
 568 Associates, Inc., 2020.

569

570 Matt J. Kusner, Yu Sun, Karthik Sridharan, and Kilian Q. Weinberger. Private causal inference. In
 571 Arthur Gretton and Christian C. Robert (eds.), *Proceedings of the 19th International Conference
 572 on Artificial Intelligence and Statistics*, volume 51 of *Proceedings of Machine Learning Research*,
 573 pp. 1308–1317, Cadiz, Spain, 09–11 May 2016. PMLR.

574

575 Kristin Lauter, Adriana López-Alt, and Michael Naehrig. Private computation on encrypted genomic
 576 data. In Diego F. Aranha and Alfred Menezes (eds.), *Progress in Cryptology - LATINCRYPT 2014*,
 577 pp. 3–27, Cham, 2015. Springer International Publishing.

578

579 Loka Li, Ignavier Ng, Gongxu Luo, Biwei Huang, Guangyi Chen, Tongliang Liu, Bin Gu, and Kun
 580 Zhang. Federated causal discovery from heterogeneous data. *arXiv preprint arXiv:2402.13241*,
 581 2024.

582

583 Yazhe Li, Roman Pogodin, Danica J Sutherland, and Arthur Gretton. Self-supervised learning
 584 with kernel dependence maximization. *Advances in Neural Information Processing Systems*, 34:
 585 15543–15556, 2021.

586

587 Feng Liu, Wenkai Xu, Jie Lu, Guangquan Zhang, Arthur Gretton, and Danica J Sutherland. Learn-
 588 ing deep kernels for non-parametric two-sample tests. In *International conference on machine
 589 learning*, pp. 6316–6326. PMLR, 2020.

590

591 Lang Liu, Soumik Pal, and Zaid Harchaoui. Entropy regularized optimal transport independence
 592 criterion. In *International Conference on Artificial Intelligence and Statistics*, pp. 11247–11279.
 593 PMLR, 2022.

594

595 David Lopez-Paz, Philipp Hennig, and Bernhard Schölkopf. The randomized dependence coeffi-
 596 cient. *Advances in neural information processing systems*, 26, 2013.

597

598 Russell Lyons. Distance covariance in metric spaces. 2013.

594 H. B. McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
 595 Communication-efficient learning of deep networks from decentralized data. In *International*
 596 *Conference on Artificial Intelligence and Statistics*, 2016.

597

598 Osman Mian, David Kaltenpoth, Michael Kamp, and Jilles Vreeken. Nothing but regrets — privacy-
 599 preserving federated causal discovery. In Francisco Ruiz, Jennifer Dy, and Jan-Willem van de
 600 Meent (eds.), *Proceedings of The 26th International Conference on Artificial Intelligence and*
601 Statistics, volume 206 of *Proceedings of Machine Learning Research*, pp. 8263–8278. PMLR,
 25–27 Apr 2023.

602

603 Ilya Mironov. Rényi differential privacy. In *2017 IEEE 30th Computer Security Foundations Sym-*
 604 *posium (CSF)*, pp. 263–275, 2017.

605

606 Roger B Nelsen. *An introduction to copulas*. Springer, 2006.

607

608 Ignavier Ng and Kun Zhang. Towards federated bayesian network structure learning with continuous
 609 optimization. In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera (eds.), *Proceedings*
 610 *of The 25th International Conference on Artificial Intelligence and Statistics*, volume 151 of *Pro-*
ceedings of Machine Learning Research, pp. 8095–8111. PMLR, 28–30 Mar 2022.

611

612 Ignavier Ng, Biwei Huang, and Kun Zhang. Structure learning with continuous optimization: A
 613 sober look and beyond. In Francesco Locatello and Vanessa Didelez (eds.), *Proceedings of the*
614 Third Conference on Causal Learning and Reasoning, volume 236 of *Proceedings of Machine*
Learning Research, pp. 71–105. PMLR, 01–03 Apr 2024.

615

616 Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. *EURO-*
 617 *CRYPT’99*, pp. 223–238, Berlin, Heidelberg, 1999. Springer-Verlag. ISBN 3540658890.

618

619 Qi Pang, Lun Wang, Shuai Wang, Wenting Zheng, and Dawn Song. Secure federated correlation
 620 test and entropy estimation. In *Proceedings of the 40th International Conference on Machine*
621 Learning, ICML’23. JMLR.org, 2023.

622

623 Barnabás Póczos, Zoubin Ghahramani, and Jeff Schneider. Copula-based kernel dependency mea-
 sures. *arXiv preprint arXiv:1206.4682*, 2012.

624

625 Roman Pogodin, Antonin Schrab, Yazhe Li, Danica J. Sutherland, and Arthur Gretton. Practical
 kernel tests of conditional independence, 2024.

626

627 Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. *Advances in*
628 neural information processing systems, 20, 2007.

629

630 Yixin Ren, Hao Zhang, Yewei Xia, Jihong Guan, and Shuigeng Zhou. Multi-level wavelet mapping
 631 correlation for statistical dependence measurement: methodology and performance. In *Proceed-
 ings of the AAAI Conference on Artificial Intelligence*, volume 37(5), pp. 6499–6506, 2023.

632

633 Yixin Ren, Yewei Xia, Hao Zhang, Jihong Guan, and Shuigeng Zhou. Learning adaptive kernels for
 634 statistical independence tests. In *International Conference on Artificial Intelligence and Statistics*,
 pp. 2494–2502. PMLR, 2024.

635

636 Yixin Ren, Haocheng Zhang, Yewei Xia, Hao Zhang, Jihong Guan, and Shuigeng Zhou. Fast causal
 637 discovery by approximate kernel-based generalized score functions with linear computational
 638 complexity. In *Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and*
639 Data Mining V.I, pp. 1197–1208, 2025.

640

641 Alfréd Rényi. On measures of dependence. *Acta Mathematica Academiae Scientiarum Hungarica*,
 10:441–451, 1959.

642

643 Karen Sachs, Omar Perez, Dana Pe’er, Douglas A. Lauffenburger, and Garry P. Nolan. Causal
 644 protein-signaling networks derived from multiparameter single-cell data. *Science*, 308(5721):
 523–529, 2005.

645

646 Antonin Schrab, Ilmun Kim, Benjamin Guedj, and Arthur Gretton. Efficient aggregated kernel tests
 647 using incomplete u-statistics. In *Proceedings of the 36th International Conference on Neural*
Information Processing Systems, NIPS ’22. Curran Associates Inc., 2022. ISBN 9781713871088.

648 Dino Sejdinovic, Bharath Sriperumbudur, Arthur Gretton, and Kenji Fukumizu. Equivalence of
 649 distance-based and rkhs-based statistics in hypothesis testing. *The annals of statistics*, pp. 2263–
 650 2291, 2013.

651

652 M Sklar. Fonctions de répartition à n dimensions et leurs marges. In *Annales de l'ISUP*, volume 8,
 653 pp. 229–231, 1959.

654

655 Peter Spirtes. An anytime algorithm for causal inference. In Thomas S. Richardson and Tommi S.
 656 Jaakkola (eds.), *Proceedings of the Eighth International Workshop on Artificial Intelligence and
 657 Statistics*, volume R3 of *Proceedings of Machine Learning Research*, pp. 278–285. PMLR, 04–07
 658 Jan 2001.

659

660 Peter Spirtes, Clark N Glymour, and Richard Scheines. *Causation, prediction, and search*. MIT
 661 press, 2000.

662

663 Gábor J Székely and Maria L Rizzo. The distance correlation t-test of independence in high dimen-
 664 sion. *Journal of Multivariate Analysis*, 117:193–213, 2013.

665

666 GJ Székely, ML Rizzo, and NK Bakirov. Measuring and testing dependence by correlation of
 667 distances. *Annals of Statistics*, 35(6):2769–2794, 2007.

668

669 Ioannis Tsamardinos, Laura E. Brown, and Constantin F. Aliferis. The max-min hill-climbing
 670 bayesian network structure learning algorithm. 65(1):31–78, October 2006.

671

672 Lun Wang, Qi Pang, and Dawn Song. Towards practical differentially private causal graph discovery.
 673 In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural
 674 Information Processing Systems*, volume 33, pp. 5516–5526. Curran Associates, Inc., 2020.

675

676 Nathaniel Xu, Feng Liu, and Danica J. Sutherland. Learning representations for independence test-
 677 ing, 2025.

678

679 Qiaoling Ye, Arash A. Amini, and Qing Zhou. Federated learning of generalized linear causal
 680 networks. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 46(10):6623–6636,
 681 2024.

682

683 Yue Yu, Jie Chen, Tian Gao, and Mo Yu. DAG-GNN: DAG structure learning with graph neural
 684 networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th
 685 International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning
 686 Research*, pp. 7154–7163. PMLR, 09–15 Jun 2019.

687

688 Hao Zhang, Shuigeng Zhou, Kun Zhang, and Jihong Guan. Causal discovery using regression-based
 689 conditional independence tests. In *AAAI Conference on Artificial Intelligence*, pp. 1250–1256,
 690 2017.

691

692 Hao Zhang, Yewei Xia, Yixin Ren, Jihong Guan, and Shuigeng Zhou. Differentially private nonlin-
 693 ear causal discovery from numerical data. In *Proceedings of the Thirty-Seventh AAAI Conference
 694 on Artificial Intelligence*. AAAI Press, 2023a.

695

696 Hao Zhang, Yewei Xia, Kun Zhang, Shuigeng Zhou, and Jihong Guan. Conditional independence
 697 test based on residual similarity. *ACM Trans. Knowl. Discov. Data*, 17(8), June 2023b.

698

699 Kun Zhang, Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Kernel-based conditional
 700 independence test and application in causal discovery. *arXiv preprint arXiv:1202.3775*, 2012.

701

702 Qinyi Zhang, Sarah Filippi, Arthur Gretton, and Dino Sejdinovic. Large-scale kernel methods for
 703 independence testing. *Statistics and Computing*, 28:113–130, 2018.

704

705 Tao Zhang, Yaowu Zhang, and Tingyou Zhou. Statistical insights into hsic in high dimensions.
 706 In *Proceedings of the 37th International Conference on Neural Information Processing Systems*,
 707 NIPS ’23, Red Hook, NY, USA, 2023c. Curran Associates Inc.

708

709 Yaowu Zhang and Liping Zhu. Projective independence tests in high dimensions: the curses and the
 710 cures. *Biometrika*, 111(3):1013–1027, 11 2023.

702 Xun Zheng, Bryon Aragam, Pradeep Ravikumar, and Eric P. Xing. Dags with no tears: continu-
703 ous optimization for structure learning. In *Proceedings of the 32nd International Conference on*
704 *Neural Information Processing Systems*, NIPS’18, pp. 9492–9503, Red Hook, NY, USA, 2018.
705 Curran Associates Inc.

706 Fangting Zhou, Kejun He, and Yang Ni. Causal discovery with heterogeneous observational data.
707 In James Cussens and Kun Zhang (eds.), *Proceedings of the Thirty-Eighth Conference on Uncer-*
708 *tainty in Artificial Intelligence*, volume 180 of *Proceedings of Machine Learning Research*, pp.
709 2383–2393. PMLR, 01–05 Aug 2022.
710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 Appendix Organization

- 758 • Section A: List of Symbols and Notations.
- 759 • Section B: Related Work.
- 760 • Section C: Details of FedIT Methods.
- 761 • Section D: Details of the Homomorphic Encryption Procedure.
- 762 • Section E: Preliminaries and Auxiliary Lemmas.
- 763 • Section F: Proof of Theorem 4.
- 764 • Section G: Proof of Theorem 5.
- 765 • Section H: Details of Experimental Setup and Analysis of Results.
- 766 • Section I: Additional Experiment Results.
- 767 • Section J: Limitations and Broader Impacts.
- 768 • Section K: Use of Large Language Models: An Explanation.

771 A LIST OF SYMBOLS AND NOTATIONS

\mathcal{O}, o	big, small O notion
\mathcal{O}_p, o_p	big, small O notion in probability
<i>i.i.d.</i>	independent and identically distributed
\mathbb{R}	the set of real numbers
$\mathcal{B}(\mathbb{R})$	Borel σ -algebra on \mathbb{R}
\mathbb{P}_X	marginal distribution of X
\mathbb{P}_{XY}	joint distribution of X, Y
F_X	cumulative distribution function (cdf) of X
$\mathbb{E}[X]$	expectation of X
$\text{Var}(X)$	variance of X
$\text{Cov}(X, Y)$	covariance of X, Y
$X \perp\!\!\!\perp Y$	random variables X, Y are independent
$X \not\perp\!\!\!\perp Y$	random variables X, Y are not independent
$\text{Tr}(\cdot)$	the trace of a square matrix
$\mathbf{1}$	an vector of all ones
\mathbf{H}	centering matrix define as $\mathbf{H} = \mathbf{I} - \frac{1}{n}\mathbf{1}\mathbf{1}^T$
\odot	element-wise product
$[n]$	denotes the set $\{1, 2, \dots, n\}$
ρ	Pearson's correlation coefficient
$\Gamma(\cdot)$	Gamma function
\times	the product symbol of topological space
$\ \cdot\ _2$	spectral norm
$\ \cdot\ _F$	Frobenius norm
$\stackrel{d}{=}$	equality in distribution

798 B RELATED WORK

800 **Independence testing.** Traditional correlation-based measures such as Pearson's coefficient (Cohen
801 et al., 2009) and Kendall's τ capture only linear or monotonic associations, and therefore fail to de-
802 tect general nonlinear dependencies. To characterize more complex relationships, and handle more
803 high-dimensional settings (Liu et al., 2022; Zhang et al., 2023c; Zhang & Zhu, 2023), a wide range
804 of nonlinear dependence measures have been developed. These methods can be broadly categorized
805 into three groups. (i) Rank-based methods. Chatterjee (2021) extends traditional correlation ideas
806 by exploiting ranks, making it robust to outliers and invariant under monotone transformations of
807 the data. (ii) Distance-based methods. Popular representatives include distance covariance and re-
808 lated measures (Székely et al., 2007; Lyons, 2013; Székely & Rizzo, 2013; Ren et al., 2023), which
809 employ characteristic functions to quantify dependence. These methods are flexible and effective
for general nonlinear settings. (iii) Kernel-based methods. This family derives dependence criteria

810 from cross-covariance operators in reproducing kernel Hilbert spaces (RKHS). Early examples include Kernel Canonical Correlation (KCC) (Bach & Jordan, 2002), which maximizes the correlation
 811 between feature maps, and Constrained Covariance (COCO) (Gretton et al., 2005), which removes
 812 normalization constraints. The most widely used kernel-based approach is the Hilbert–Schmidt
 813 Independence Criterion (HSIC) (Gretton et al., 2007), which measures dependence via the squared
 814 Hilbert–Schmidt norm of the cross-covariance operator. Follow-up work has further improved HSIC
 815 by accelerating computation for large-scale data (Zhang et al., 2018) and by optimizing kernel pa-
 816 rameters to enhance test power (Jitkrittum et al., 2017; Ren et al., 2024; Xu et al., 2025).

817 Despite extensive progress in classical settings, independence testing under federated environments,
 818 especially under client heterogeneity remains underexplored. Motivated by this gap, we system-
 819 atically investigate the problem of Federated Independence Testing (FedIT). We identify the key
 820 challenges that arise in this setting and propose a principled framework to address them.

821 **Federated causal discovery.** Unlike traditional causal discovery methods (Spirtes, 2001; Yu et al.,
 822 2019; Ng et al., 2024) that assume data are independent and identically distributed (*i.i.d.*), federated
 823 causal discovery (FCD) must contend with decentralized and often heterogeneous data (Zhou et al.,
 824 2022). Existing methods can be grouped into three categories: (i) score-based methods, which
 825 evaluate candidate graphs with predefined scoring functions (Huang et al., 2018; Ren et al., 2025)
 826 and search strategies (Tsamardinos et al., 2006; Chickering, 2003; 2020). For example, DARLIS (Ye
 827 et al., 2024) employs distributed simulated annealing, while PERI (Mian et al., 2023) builds on
 828 local GES (Chickering, 2003) with worst-case regret aggregation; (ii) continuous optimization-based
 829 methods, which reformulate structure learning as an optimization problem. NOTEARS (Zheng
 830 et al., 2018) pioneered this in the centralized case, and its federated extensions include NOTEARS-
 831 ADMM (Ng & Zhang, 2022) using the alternating direction method of multipliers, FedDAG (Gao
 832 et al., 2023) based on the FedAvg (McMahan et al., 2016) paradigm, and Fed-CDI (Abyaneh et al.,
 833 2022) incorporating intervention-aware aggregation; and (iii) constraint-based methods, which rely
 834 on conditional independence tests (Zhang et al., 2012; 2017; Pogodin et al., 2024) and algorithms
 835 such as Peter Clark (PC) (Spirtes et al., 2000). In the federated setting, FedPC (Huang et al., 2023)
 836 aggregates skeletons and orientations via voting under homogeneous data, while FedCDH (Li et al.,
 837 2024) introduces a federated conditional independence test (FCIT) and a federated independent
 838 change principle (FICP) to handle heterogeneity, achieving state-of-the-art results in FCD.

839 Although FCD has made progress in handling heterogeneous data, a systematic study of FedIT is
 840 still lacking, even though its reliability is critical for the effectiveness of FCD methods themselves.
 841 In particular, the federated independence test used in FedCDH, referred to as FUIT, adopts a naive
 842 feature space aggregation strategy. In this work, we revisit FUIT and show that such aggregation
 843 suffers from inherent theoretical flaws and practical power degradation under heterogeneity. To
 844 overcome these limitations, we propose a new framework that directly addresses these challenges.

845 **Privacy-preserving hypothesis testing.** Research on privacy-preserving statistical testing has re-
 846 ceived growing attention. (i) In the non-federated setting, many works have developed differentially
 847 private (DP) techniques (Dwork & Roth, 2014; Mironov, 2017). For example, Kazan et al. (2023)
 848 proposed a black-box framework to privatize arbitrary hypothesis tests; Priv-PC (Wang et al., 2020)
 849 designed DP algorithms for discrete data via sensitivity analysis of conditional Kendall’s τ and
 850 Spearman’s ρ , later extended to numerical data (Zhang et al., 2023a); Kusner et al. (2016) ana-
 851 lyzed the sensitivity of HSIC; Kalemaj et al. (2024) added Laplace noise to regression residuals
 852 for conditional independence testing; and Kim & Schrab (2023) studied DP permutation tests for
 853 kernel-based methods, reducing noise while preserving power. In addition, homomorphic encryp-
 854 tion has also been applied, e.g., Lauter et al. (2015) proposed a private χ^2 test for independence
 855 testing. (ii) In the federated setting, Pang et al. (2023) developed a secure federated correlation test
 856 (FED- χ^2) and entropy estimation by reformulating computations as frequency moment estimation
 857 and enabling aggregation through stable projections.

858 Overall, most existing approaches rely on differential privacy, while a few employ homomorphic
 859 encryption but remain limited to discrete settings such as the χ^2 test. By contrast, our method can
 860 also apply to continuous and nonlinear scenarios. Through a client-side nonlinear transformation,
 861 we reduce aggregation to second-order moments in the FedIT task, which naturally aligns with
 862 homomorphic encryption and enables exact privacy-preserving computation.

863

864 C DETAILS OF FEDIT METHODS

866 In this section, we provide detailed explanations of the table presented in Sec. 4.4 of the main paper.
 867 For ease of reference, we reproduce the table below.

869 Table 2: Comparison of FUIT (Li et al., 2024) and our proposed FedIT-CS variants in terms of
 870 theoretical properties, privacy, power, and computational / communication costs.

Method	FUIT	FedIT-CS-S (Ours)	FedIT-CS-M (Ours)	FedIT-CS-ML (Ours)
Theoretical soundness	✗	✗	✓	✓
Privacy protection	✗	✓	✓	✓
Maximum power selection	✗	✗	✓	✓
Local computation cost	$\mathcal{O}(nh^2)$	$\mathcal{O}(Bn \log n + Bnh^2)$	$\mathcal{O}(Bn \log n + Bnh^2)$	$\mathcal{O}(Bn \log n + Bnh^2)$
Aggregation cost	$\mathcal{O}(Kh^2)$	$\mathcal{O}(KB)$	$\mathcal{O}(2^K B)$	$\mathcal{O}(KB)$
Communication cost	$\mathcal{O}(Kh^2)$	$\mathcal{O}(KB)$	$\mathcal{O}(KB)$	$\mathcal{O}(KB)$

879 The entries in Table 2 are derived as follows:

- **FUIT (Li et al., 2024):** This method directly aggregates local covariance matrices from all clients. As discussed in Sec. 3.2, such a naive aggregation lacks theoretical guarantees. Moreover, it provides neither privacy protection nor any form of client selection procedure. The local computation cost arises from computing the local covariance matrix $C_{xy}^{(k)} \in \mathbb{R}^{h \times h}$ based on features of X and Y with dimension $h \times n$. Since the aggregation step is simply a summation of $C_{xy}^{(k)}$, $k \in [K]$, the aggregation cost is $\mathcal{O}(Kh^2)$. Similarly, the communication cost is $\mathcal{O}(Kh^2)$, as each client must transmit its local covariance matrix $C_{xy}^{(k)}$ to the server.
- **FedIT-CS-S (Ours):** This is the naive aggregation variant, which directly sums all local statistics (i.e., the second-order moments), equivalent to pooling copula outputs. Consequently, it also lacks theoretical guarantees and does not involve any selection procedure. However, since only aggregated moments are transmitted, the process preserves privacy (see Appendix D). The local computation cost includes copula transformation via marginal sorting $\mathcal{O}(n \log n)$, covariance computation $\mathcal{O}(nh^2)$, and CCA $\mathcal{O}(h^3)$, yielding a total complexity of $\mathcal{O}(n \log n + nh^2)$. Note that this procedure is repeated for each permutation sample. The aggregation cost is simply summing the client-level second moments, with complexity $\mathcal{O}(KB)$, and the communication cost is also $\mathcal{O}(KB)$ for transmitting these statistics to the server.
- **FedIT-CS-M (Ours):** This variant extends FedIT-CS by enabling maximum power selection over client subsets. Specifically, it aggregates second-order moments from a chosen subset of clients and uses the resulting global statistic to optimize the selection strategy. Theoretical soundness is guaranteed by Theorem 4, and privacy protection holds as discussed in Appendix D. The local computation cost is the same as FedIT-CS-S, i.e., $\mathcal{O}(n \log n + nh^2)$, repeated for each permutation sample. In contrast, the aggregation step requires evaluating all possible client subsets, leading to $\mathcal{O}(2^K B)$ complexity, while the communication cost remains $\mathcal{O}(KB)$.
- **FedIT-CS-ML (Ours):** This variant further generalizes the aggregation scheme by allowing mixed linear combinations of clients, rather than restricting to subset selection. The aggregation weights are optimized over a continuous domain, enabling more flexible and efficient power maximization. Theoretical soundness is established in Theorem 4, with privacy protection guaranteed as in Appendix D. The local computation cost remains the same as FedIT-CS-S, i.e., $\mathcal{O}(n \log n + nh^2)$ for each permutation sample. Unlike FedIT-CS-M, the aggregation complexity reduces to $\mathcal{O}(KB)$, since the continuous optimization is performed in linear time with respect to the number of clients. The communication cost also remains $\mathcal{O}(KB)$.

911 In addition, we also consider several auxiliary variants used in the experiments: **FedIT-CS-M-F**,
 912 **FedIT-CS-ML-F**, and **FedIT-CS-MB**. The “-F” versions differ from their counterparts by employing
 913 extra data for training the aggregation strategy, thereby quantifying the power loss of sample
 914 splitting in FedIT-CS-M and FedIT-CS-ML. For **FedIT-CS-MB**, which is not included in the main
 915 paper, our correlation-based modeling of power strategy is replaced by a permutation-based ap-
 916 proach. As discussed in Sec. 4.3 and empirically validated in Appendix I.3, correlation coefficients
 917 already capture key dependency information efficiently. These variants are included mainly for aux-
 918 illiary comparison in the experimental study, see Appendix I for the detailed results.

918 **D DETAILS OF THE HOMOMORPHIC ENCRYPTION PROCEDURE**
919

920 In the main paper, we briefly introduced the use of Homomorphic Encryption (HE) to ensure privacy.
921 Here, we provide a more complete description of this process. Recall that HE is a cryptographic
922 method that enables computations to be performed directly on encrypted data without requiring
923 decryption. The decrypted result of these operations is identical to performing the same calculations
924 on the original plaintext. This property ensures privacy during processing, making HE particularly
925 useful in scenarios where sensitive information must remain encrypted even while being utilized.
926 Unlike DP, HE preserves privacy without sacrificing accuracy. Moreover, HE is especially suitable
927 for our FedIT-CS framework, as each client only needs to share a few one-dimensional quantities;
928 thus, the computational overhead introduced by HE remains relatively low.

929 We now describe the privacy-preserving component of our FedIT-CS framework. Since only linear
930 correlation statistics need to be aggregated across clients, we can leverage additive homomorphic
931 encryption, typically the Paillier cryptosystem (Paillier, 1999), to ensure that individual client
932 contributions remain private. Formally, let (pk, sk) denote a public-private key pair, and let $Enc(\cdot, pk)$
933 and $Dec(\cdot, sk)$ be the corresponding encryption and decryption functions. For two plaintext values
934 x and y , the additive homomorphic property guarantees that

935
$$x + y = Dec(Enc(x, pk) \star Enc(y, pk), sk), \quad (13)$$

936 where \star denotes the addition operation in the encrypted space. Below, we illustrate how HE is
937 applied in our framework. Prior to aggregation, each client $k \in [K]$ produces the copula samples
938 $(r_x^{(k)}, r_y^{(k)})$ as the output of the within-client dependence modeling stage.

939 **Privacy protection in FedIT-CS-M.** We introduce the privacy protection procedure in FedIT-CS-
940 M framework, which solves a discrete optimization problem to select a subset of clients. During
941 aggregation, each client computes its local summary statistics from these samples and transmits
942 only their encrypted versions to the server. Specifically, client k computes:

943
$$e_x^{(k)} = \sum_{i=1}^{n_k} r_{x;i}^{(k)}, \quad e_y^{(k)} = \sum_{i=1}^{n_k} r_{y;i}^{(k)}, \quad m_{xy}^{(k)} = \sum_{i=1}^{n_k} r_{x;i}^{(k)} r_{y;i}^{(k)}, \quad m_{xx}^{(k)} = \sum_{i=1}^{n_k} r_{x;i}^{(k)} r_{x;i}^{(k)}, \quad m_{yy}^{(k)} = \sum_{i=1}^{n_k} r_{y;i}^{(k)} r_{y;i}^{(k)}. \quad (14)$$

944 and send the encrypted list below to the server

945
$$Enc(n_k), \quad Enc(e_x^{(k)}), \quad Enc(e_y^{(k)}), \quad Enc(m_{xx}^{(k)}), \quad Enc(m_{xy}^{(k)}), \quad Enc(m_{yy}^{(k)}). \quad (15)$$

946 Then the server can calculate the encrypted aggregation results:

947
$$Enc(n_{\mathcal{I}}) = \sum_{k \in \mathcal{I}} Enc(n_k), \quad Enc(e_x^{\mathcal{I}}) = \sum_{k \in \mathcal{I}} Enc(e_x^{(k)}), \quad Enc(e_y^{\mathcal{I}}) = \sum_{k \in \mathcal{I}} Enc(e_y^{(k)}),$$
948
$$Enc(m_{xy}^{\mathcal{I}}) = \sum_{k \in \mathcal{I}} Enc(m_{xy}^{(k)}), \quad Enc(m_{xx}^{\mathcal{I}}) = \sum_{k \in \mathcal{I}} Enc(m_{xx}^{(k)}), \quad Enc(m_{yy}^{\mathcal{I}}) = \sum_{k \in \mathcal{I}} Enc(m_{yy}^{(k)}).$$

949 Here, all summations are performed directly in the encrypted space, not in the source domain. For
950 simplicity, we stipulate that the precise semantics of these operations are automatically determined
951 by the domain of the encrypted inputs, which avoids any ambiguity with their plaintext counterparts.
952 The server then transfers the encrypted statistics to one randomly selected client for decryption:

953
$$n_{\mathcal{I}} = Dec(Enc(n_{\mathcal{I}})), \quad e_x^{\mathcal{I}} = Dec(Enc(e_x^{\mathcal{I}})), \quad e_x^{\mathcal{I}} = Dec(Enc(e_x^{\mathcal{I}})),$$
954
$$m_{xy}^{\mathcal{I}} = Dec(Enc(m_{xy}^{\mathcal{I}})), \quad m_{xx}^{\mathcal{I}} = Dec(Enc(m_{xx}^{\mathcal{I}})), \quad m_{yy}^{\mathcal{I}} = Dec(Enc(m_{yy}^{\mathcal{I}})). \quad (16)$$

955 Once the plaintext statistics are obtained, the client can calculate the result and send it to the server:

956
$$\rho_{xy}^{\mathcal{I}} = \frac{n_{\mathcal{I}} m_{xy}^{\mathcal{I}} - e_x^{\mathcal{I}} e_y^{\mathcal{I}}}{\sqrt{n_{\mathcal{I}} m_{xx}^{\mathcal{I}} - (e_x^{\mathcal{I}})^2} \sqrt{n_{\mathcal{I}} m_{yy}^{\mathcal{I}} - (e_y^{\mathcal{I}})^2}}. \quad (17)$$

957 Throughout the entire process, no client-specific statistics (e.g., $e_x^{(k)}$, $m_{xx}^{(k)}$) are exposed. The server
958 only gets the final results, and the client selected for decryption knows the aggregated results but has
959 no idea which local statistics are included in the aggregated results.

972 **Privacy protection in FedIT-CS-ML.** We introduce the privacy protection procedure in FedIT-CS-
 973 ML framework, which solves a continuous optimization problem using gradient-based methods. We
 974 first recall that some related aggregated statistics:
 975

$$\begin{aligned} 976 \quad n_{\mathcal{P}} &= \sum_{k \in [K]} p_k n_k, \quad e_x^{\mathcal{P}} = \sum_{k \in [K]} p_k e_x^{(k)}, \quad e_y^{\mathcal{P}} = \sum_{k \in [K]} p_k e_y^{(k)}, \\ 977 \quad m_{xy}^{\mathcal{P}} &= \sum_{k \in [K]} p_k m_{xy}^{(k)}, \quad m_{xx}^{\mathcal{P}} = \sum_{k \in [K]} p_k m_{xx}^{(k)}, \quad m_{yy}^{\mathcal{P}} = \sum_{k \in [K]} p_k m_{yy}^{(k)}. \end{aligned} \quad (18)$$

981 Further, we denote

$$982 \quad \mathfrak{N} := n_{\mathcal{P}} m_{xy}^{\mathcal{P}} - e_x^{\mathcal{P}} e_y^{\mathcal{P}}, \quad \mathfrak{A} := n_{\mathcal{P}} m_{xx}^{\mathcal{P}} - (e_x^{\mathcal{P}})^2, \quad \mathfrak{B} := n_{\mathcal{P}} m_{yy}^{\mathcal{P}} - (e_y^{\mathcal{P}})^2, \quad (19)$$

984 and thus the optimizing criterion is given by

$$986 \quad \rho_{xy}^{\mathcal{P}} = \frac{n_{\mathcal{P}} m_{xy}^{\mathcal{P}} - e_x^{\mathcal{P}} e_y^{\mathcal{P}}}{\sqrt{n_{\mathcal{P}} m_{xx}^{\mathcal{P}} - (e_x^{\mathcal{P}})^2} \sqrt{n_{\mathcal{P}} m_{yy}^{\mathcal{P}} - (e_y^{\mathcal{P}})^2}} =: \frac{\mathfrak{N}}{\sqrt{\mathfrak{A}\mathfrak{B}}}. \quad (20)$$

989 Then the gradient of $\rho_{xy}^{\mathcal{P}} = \mathfrak{N}/\sqrt{\mathfrak{A}\mathfrak{B}}$ with respect to any p_k , $k \in [K]$ is given by

$$991 \quad \frac{\partial \rho_{xy}^{\mathcal{P}}}{\partial p_k} = \frac{1}{\sqrt{\mathfrak{A}\mathfrak{B}}} \left(d\mathfrak{N}_k - \frac{\mathfrak{N}}{2} \left(\frac{d\mathfrak{A}_k}{\mathfrak{A}} + \frac{d\mathfrak{B}_k}{\mathfrak{B}} \right) \right), \quad (21)$$

994 where the terms

$$\begin{aligned} 996 \quad d\mathfrak{N}_k &= \frac{\partial \mathfrak{N}}{\partial p_k} = n_k m_{xy}^{\mathcal{P}} + n_{\mathcal{P}} m_{xy}^{(k)} - e_x^{(k)} e_y^{\mathcal{P}} - e_x^{\mathcal{P}} e_y^{(k)}, \\ 997 \quad d\mathfrak{A}_k &= \frac{\partial \mathfrak{A}}{\partial p_k} = n_k m_{xx}^{\mathcal{P}} + n_{\mathcal{P}} m_{xx}^{(k)} - 2e_x^{\mathcal{P}} e_x^{(k)}, \\ 999 \quad d\mathfrak{B}_k &= \frac{\partial \mathfrak{B}}{\partial p_k} = n_k m_{yy}^{\mathcal{P}} + n_{\mathcal{P}} m_{yy}^{(k)} - 2e_y^{\mathcal{P}} e_y^{(k)}. \end{aligned} \quad (22)$$

1003 Blow, we detail the optimization process under the protection of HE. In each communication round,
 1004 client k sends the encrypted local statistics to the server:

$$1005 \quad Enc(p_k n_k), \quad Enc(p_k e_x^{(k)}), \quad Enc(p_k e_y^{(k)}), \quad Enc(p_k m_{xx}^{(k)}), \quad Enc(p_k m_{xy}^{(k)}), \quad Enc(p_k m_{yy}^{(k)}). \quad (23)$$

1007 Then the server aggregates local statistics and sends them back to all clients:

$$\begin{aligned} 1009 \quad Enc(n_{\mathcal{P}}) &= \sum_{k \in [K]} Enc(p_k n_k), \quad Enc(e_x^{\mathcal{P}}) = \sum_{k \in [K]} Enc(p_k e_x^{(k)}), \\ 1010 \quad Enc(m_{xy}^{\mathcal{P}}) &= \sum_{k \in [K]} Enc(p_k m_{xy}^{(k)}), \quad Enc(e_y^{\mathcal{P}}) = \sum_{k \in [K]} Enc(p_k e_y^{(k)}), \\ 1011 \quad Enc(m_{xx}^{\mathcal{P}}) &= \sum_{k \in [K]} Enc(p_k m_{xx}^{(k)}), \quad Enc(m_{yy}^{\mathcal{P}}) = \sum_{k \in [K]} Enc(p_k m_{yy}^{(k)}). \end{aligned} \quad (24)$$

1016 Once receives the aggregated results, client k could calculate the decryption to obtain the following
 1017 values:
 1018

$$\begin{aligned} 1019 \quad n_{\mathcal{P}} &= Dec(Enc(n_{\mathcal{P}})), \quad e_x^{\mathcal{P}} = Dec(Enc(e_x^{\mathcal{P}})), \quad e_x^{\mathcal{P}} = Dec(Enc(e_x^{\mathcal{P}})), \\ 1020 \quad m_{xy}^{\mathcal{P}} &= Dec(Enc(m_{xy}^{\mathcal{P}})), \quad m_{xx}^{\mathcal{P}} = Dec(Enc(m_{xx}^{\mathcal{P}})), \quad m_{yy}^{\mathcal{P}} = Dec(Enc(m_{yy}^{\mathcal{P}})). \end{aligned} \quad (25)$$

1022 Together with its local statistics, client k could compute the gradient $\frac{\partial \rho_{xy}^{\mathcal{P}}}{\partial p_k}$ by replacing the cor-
 1023 responding values into Eq. (19) and Eq. (22). Throughout the entire process, no client-specific
 1024 statistics (e.g., $e_x^{(k)}$, $m_{xx}^{(k)}$) are disclosed, which enables our gradient-based method to be computed
 1025 without any privacy leakage.

1026

E PRELIMINARIES AND AUXILIARY LEMMAS

1028 In this section, we provide a systematic overview of the entire procedure, introduce the notation used
 1029 throughout, and establish several auxiliary lemmas. These intermediate results serve as building
 1030 blocks for the proofs of our main theorems in the subsequent sections.

1031

E.1 ASSUMPTIONS

1032 Below, we outline the assumptions required for our analysis. The first two assumptions are specific
 1033 to the federated independence testing (FedIT) setting:

1034 **Assumption 1** (Consistent dependence assumption). *We assume that the dependence relationship
 1035 between X_k and Y_k is consistent across clients. That is, either all clients satisfy independence
 1036 ($X_k \perp\!\!\!\perp Y_k$) or all exhibit dependence ($X_k \not\perp\!\!\!\perp Y_k$).*

1037 **Assumption 2** (Heterogeneous clients assumption). *The dependence mechanism (e.g., strength or
 1038 functional relationship) and the marginal distributions \mathbb{P}_{X_k} and \mathbb{P}_{Y_k} may vary across clients.*

1039 Together, these assumptions define a realistic yet challenging regime: the global dependence status
 1040 is common, but local distributions are heterogeneous. Our goal is to design a test that aggregates
 1041 cross-client evidence to infer the shared dependence status while handling client heterogeneity.

1042 Furthermore, for intra-client part, we impose a mild restriction on the class of functions of the
 1043 Hirschfeld-Gebelein-Rényi (HGR) maximum correlation coefficient (Gebelein, 1941), defined as
 1044 $\text{hgr}(X, Y) = \sup_{f,g} \rho(f(X), g(Y))$, where ρ denotes Pearson’s correlation.

1045 **Assumption 3** (Function class assumption). *For each client $k \in [K]$, the optimal transformations f_k
 1046 and g_k that maximize dependence, i.e. $\arg \max_{f_k, g_k} \rho(f_k(X_k), g_k(Y_k))$ are assumed to lie within
 1047 a reproducing kernel Hilbert space (RKHS) \mathcal{F} as in Theorem 3, which is associated with a shift-
 1048 invariant, positive semi-definite and bounded kernel $k(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{F}} \leq C$.*

1049 This ensures that the transformations are sufficiently expressive to capture nonlinear dependencies,
 1050 while also allowing tractable analysis and approximation through random Fourier features.

1051

E.2 COPULA PROPERTIES: MARGINAL UNIFORMITY AND CONVERGENCE

1052 For completeness, we restate here some basic properties of copulas that will be used in the sub-
 1053 sequent analysis. In particular, we recall the fact that copulas have uniformly distributed margins and
 1054 summarize the convergence guarantees of their empirical estimators.

1055 **Theorem 1** (Probability integral transform (Nelsen, 2006)). *For a random variable X with cdf F ,
 1056 the random variable $U = F(X)$ is uniformly distributed on $[0, 1]$.*

1057 The above result directly implies that the margins of any copula are uniformly distributed on $[0, 1]$,
 1058 which forms the basis for the copula representation of dependence. Beyond this marginal property, it
 1059 is also important to understand how well the empirical copula estimates converge to their population
 1060 counterpart, since our method relies on finite-sample approximations.

1061 **Theorem 2** (Convergence of the empirical copula Póczos et al. (2012)). *Let \mathbf{F} be the copula trans-
 1062 formation defined above, and \mathbf{F}_n be the corresponding empirical copula transformation, then*

$$1063 \mathbb{P} \left[\sup_{\mathbf{x} \in \mathbb{R}^d} \|\mathbf{F}(\mathbf{x}) - \mathbf{F}_n(\mathbf{x})\|_2 > \epsilon \right] \leq 2d \exp \left(-\frac{2n\epsilon^2}{d} \right). \quad (26)$$

1064 Together, Theorems 1 and 2 establish that copulas not only provide uniform margins but also enjoy
 1065 strong concentration guarantees for their empirical estimators. These properties will be repeatedly
 1066 invoked in our subsequent theoretical analysis.

1067

E.3 RANDOM PROJECTION PROPERTIES: CONVERGENCE

1068 We next recall a key result on the convergence behavior of random projections, which underpins
 1069 their use in our framework. In particular, the following theorem shows that linear mixed models
 1070 built on random features can approximate the optimal estimator within a controlled error that decays
 1071 with both the sample size n and the number of projections h with high probability.

1080
1081 **Theorem 3** (Approximation with random projections [Póczos et al. \(2012\)](#)). *Let $p(w)$ be a distribution on Ω and $\sup_{x,w} |\phi(x; w)| \leq 1$. Let $\mathcal{F} = \{f(x) = \int_{\Omega} u(w)\phi(x; w)dw \mid |u(w)| \leq Cp(w)\}$.
1082 Draw w_1, \dots, w_h i.i.d from $p(w)$. Further let $\delta > 0$, and c be some L -Lipschitz loss function, and
1083 consider data $\{x_i, o_i\}_{i=1}^n$ drawn i.i.d from some arbitrary \mathbb{P}_{XO} . The linear regression coefficient
1084 u_1, \dots, u_h for which $f_h(x) = \sum_{i=1}^h u_i \phi(x; w_i)$ minimizes the empirical risk $c(f_h(x), o)$ has a dis-
1085 tance from the c -optimal estimator in \mathcal{F} bounded by*

1086
1087
$$\mathbb{E}_{\mathbb{P}}[c(f_h(x), o)] - \min_{f \in \mathcal{F}} \mathbb{E}_{\mathbb{P}}[c(f(x), o)] \leq O\left(\left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{h}}\right) LC \sqrt{\log \frac{1}{\delta}}\right) \quad (27)$$

1088
1089

1090 with probability at least $1 - 2\delta$.

1091 This result establishes that the approximation error decreases as the number of random features h
1092 increases and as the sample size n grows. Hence, random projections provide a computationally
1093 efficient way to approximate nonlinear function classes while retaining statistical guarantees.

1094
1095 **E.4 PROCEDURE AND PROPERTIES OF FEDIT-CS FRAMEWORK**

1096 In this section, we provide the preliminaries and several auxiliary lemmas that will facilitate the
1097 subsequent proofs. As a starting point, we restate the overall procedure and introduce the notation
1098 for the variables involved at each step. Specifically, for the k -th client, let (X_k, Y_k) denote its input
1099 variables. The within-client computation for client $k \in [K]$ proceeds in four steps:

1100 1. **First copula transform:** map (X_k, Y_k) to the copulas $(Q_{X;k}, Q_{Y;k})$ using the marginal cdfs
1101 $F_X^{(k)}$ and $F_Y^{(k)}$. Note that $Q_{X;k}, Q_{Y;k} \sim \text{Uniform}[0, 1]$ by [Theorem 1](#).
1102 2. **Random projection:** transform $(Q_{X;k}, Q_{Y;k})$ into feature-space variables $(\Phi_{X;k}, \Phi_{Y;k})$ using
1103 random parameters $(w_X^{(k)}, b_X^{(k)})$ and $(w_Y^{(k)}, b_Y^{(k)})$.
1104 3. **CCA step:** identify the canonical directions $u^{(k)}$ and $v^{(k)}$, and then project $(\Phi_{X;k}, \Phi_{Y;k})$ onto
1105 one-dimensional outputs $(\Psi_{X;k}, \Psi_{Y;k})$.
1106 4. **Second copula transform:** align the margins of $(\Psi_{X;k}, \Psi_{Y;k})$ using their cdfs $(F_{\Psi_X}^{(k)}, F_{\Psi_Y}^{(k)})$,
1107 yielding the final copulas $(R_{X;k}, R_{Y;k})$. Also, $R_{X;k}, R_{Y;k} \sim \text{Uniform}[0, 1]$ by [Theorem 1](#).

1108 For simplicity, we first set aside the aggregation procedure and focus on analyzing the properties of
1109 the correlation coefficient $\rho(R_{X;k}, R_{Y;k})$ obtained within client k . As discussed in the main paper,
1110 this coefficient is closely related to the Hirschfeld–Gebelein–Rényi (HGR) Maximum Correlation
1111 Coefficient ([Gebelein, 1941](#)), which is defined as $\text{hgr}(X, Y) = \sup_{f,g} \rho(f(X), g(Y))$, where the
1112 supremum is taken over all Borel-measurable functions f and g with finite variance, and ρ denotes
1113 Pearson’s correlation. The main difference is that, in our case, the optimal transformations f and
1114 g are restricted to the function class associated with a Reproducing Kernel Hilbert Space (RKHS),
1115 namely $\mathcal{F} = \{f(x) = \int_{\Omega} u(w)\phi(x; w)dw \mid |u(w)| \leq Cp(w)\}$ as specified in [Assumption 3](#).

1116 A well-known result is that $\text{hgr}(X, Y)$ satisfies seven desirable properties ([Rényi, 1959](#)):

1117 1. $\text{hgr}(X, Y)$ is defined for any pair of non-constant random variables X and Y .
1118 2. $\text{hgr}(X, Y) = \text{hgr}(Y, X)$.
1119 3. $0 \leq \text{hgr}(X, Y) \leq 1$.
1120 4. $\text{hgr}(X, Y) = 0$ iff X and Y are statistically independent.
1121 5. For bijective Borel-measurable functions $f, g : \mathbb{R} \rightarrow \mathbb{R}$, $\text{hgr}(X, Y) = \text{hgr}(f(X), g(Y))$.
1122 6. $\text{hgr}(X, Y) = 1$ if for Borel-measurable functions f or g , $Y = f(X)$ or $X = g(Y)$.
1123 7. If $(X, Y) \sim \mathcal{N}(\mu, \Sigma)$, then $\text{hgr}(X, Y) = |\rho(X, Y)|$, where ρ is the correlation coefficient.

1124 Since $\text{hgr}(X, Y)$ is invariant under bijective marginal transformations, the copula transform does
1125 not alter its value. Therefore, the coefficient $\rho(R_{X;k}, R_{Y;k})$ inherits these desirable properties. We
1126 summarize the key results in the following lemma.

1127 **Lemma 1** (Intra-client dependency properties). *Under Assumptions 1–3, for each client $k \in [K]$,
1128 the dependence coefficient $\rho(R_{X;k}, R_{Y;k})$ correctly characterizes dependence. Specifically, under
1129 \mathcal{H}_0 , we have $\rho(R_{X;k}, R_{Y;k}) = 0$, whereas under \mathcal{H}_1 , we have $\rho(R_{X;k}, R_{Y;k}) > 0$.*

1134 *Proof.* This follows directly from the discussion above on the properties of hgr and the restricted
 1135 function class in Assumption 3. \square
 1136

1137 Moreover, we can further characterize the output distribution under \mathcal{H}_0 , as stated in the next lemma.
 1138

1139 **Lemma 2** (Output copula under \mathcal{H}_0). *Under Assumptions 1–3, for each client $k \in [K]$, the trans-
 1140 formed outputs satisfy $R_{X;k}, R_{Y;k} \sim \text{Uniform}([0, 1] \times [0, 1])$.*
 1141

1142 *Proof.* By Lemma 1, under \mathcal{H}_0 , $R_{X;k}$ and $R_{Y;k}$ are independent. In addition, the copula transform
 1143 ensures that each marginal is uniformly distributed on $[0, 1]$. Combining independence with marginal
 1144 uniformity yields the stated result. \square
 1145

1146 Above, our discussion has focused on the idealized theoretical setting, where the estimation error
 1147 and approximation error are ignored. We now turn to the practical case with finite samples and
 1148 examine how the computation proceeds in this setting. For clarity, we restate the entire within-client
 1149 procedure, along with the notation used at each step:
 1150

1. **First copula transform:** given the input sample $\{(x_i^{(k)}, y_i^{(k)})\}_{i=1}^{n_k}$ corresponding to (X_k, Y_k) ,
 1151 compute the copula $\{(q_{x;i}^{(k)}, q_{y;i}^{(k)})\}_{i=1}^{n_k}$ using the empirical marginal cdfs $F_{x;n_k}^{(k)}$ and $F_{y;n_k}^{(k)}$.
 1152
2. **Random projection:** map $\{(q_{x;i}^{(k)}, q_{y;i}^{(k)})\}_{i=1}^{n_k}$ into features $\{(\phi_{x;i}^{(k)}, \phi_{y;i}^{(k)})\}_{i=1}^{n_k}$ using sampling pa-
 1153 rameters $(w_{x;h}^{(k)}, b_{x;h}^{(k)})$ and $(w_{y;h}^{(k)}, b_{y;h}^{(k)})$, where h denotes the number of random projections.
 1154
3. **CCA step:** compute the canonical directions $u_h^{(k)}$ and $v_h^{(k)}$, and project $\{\phi_{x;i}^{(k)}, \phi_{y;i}^{(k)}\}_{i=1}^{n_k}$ to obtain
 1155 one-dimensional outputs $\{\psi_{x;i}^{(k)}, \psi_{y;i}^{(k)}\}_{i=1}^{n_k}$.
 1156
4. **Second copula transform:** apply the empirical cdfs $F_{\psi_x;n_k}^{(k)}$ and $F_{\psi_y;n_k}^{(k)}$ to $\{(\psi_{x;i}^{(k)}, \psi_{y;i}^{(k)})\}_{i=1}^{n_k}$,
 1157 yielding the final copula samples $\{(r_{x;i}^{(k)}, r_{y;i}^{(k)})\}_{i=1}^{n_k}$, which are approximately uniform on $[0, 1]$.
 1158

1159 The above procedure can be applied to the permutation case as well. Following the notation in the
 1160 main paper, let σ_t denote the t -th permutation with $t \in [B]$. For each client k , define the sample
 1161 vectors
 1162

$$\mathbf{x}^{(k)} = (x_1^{(k)}, x_2^{(k)}, \dots, x_{n_k}^{(k)}), \quad \mathbf{y}^{(k)} = (y_1^{(k)}, y_2^{(k)}, \dots, y_{n_k}^{(k)}).$$

1163 Then $(\sigma_t \mathbf{x}^{(k)}, \mathbf{y}^{(k)})$ denotes the permuted sample pair. Since permutation only changes the order of
 1164 observations but not their empirical distribution, we have the following result.
 1165

1166 **Lemma 3** (Cumulative distribution function under permutation). *For all σ_t , $t \in [B]$, the permuted
 1167 samples yield the same empirical cumulative distribution function $F_{x;n_k}^{(k)}$.*
 1168

1169 *Proof.* By definition, the empirical cumulative distribution function (cdf) depends only on the mul-
 1170 tiset of sample values, not on their order. Since permutation reorders $\mathbf{x}^{(k)}$ without altering its ele-
 1171 ments, the resulting empirical cdf remains identical. \square
 1172

1173 This property ensures that permutations do not affect the marginal distributions. In addition, we can
 1174 further exploit the exchangeability property of the permuted sequences.
 1175

1176 **Lemma 4** (Exchangeability). *Let $\stackrel{d}{=}$ denote equality in distribution. Under \mathcal{H}_0 , the sequence for
 1177 client k , $(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}), (\sigma_1 \mathbf{x}^{(k)}, \mathbf{y}^{(k)}), \dots, (\sigma_B \mathbf{x}^{(k)}, \mathbf{y}^{(k)})$, is exchangeable.*
 1178

1179 *Proof.* Under \mathcal{H}_0 , X_k and Y_k are independent. Thus, for every permutation σ_t with $t \in [B]$, the pair
 1180 $(\sigma_t \mathbf{x}^{(k)}, \mathbf{y}^{(k)})$ has the same joint distribution as the original $(\mathbf{x}^{(k)}, \mathbf{y}^{(k)})$, i.e.,
 1181

$$(\sigma_t \mathbf{x}^{(k)}, \mathbf{y}^{(k)}) \stackrel{d}{=} (\mathbf{x}^{(k)}, \mathbf{y}^{(k)}).$$

1182 Since each element in the sequence has the same distribution and the joint law is invariant under
 1183 permutations of indices t , the sequence is exchangeable by definition. \square
 1184

1185 Together, Lemma 3 and Lemma 4 yield the following.
 1186

1188
 1189 **Lemma 5** (Exchangeability of client-level output copulas). *Let $\stackrel{d}{=}$ denote equality in distribution.*
 1190 *Fix a client k and consider the mapping \mathcal{T} defined by the four-step pipeline: (i) empirical copula*
 1191 *transform, (ii) random projection, (iii) CCA step, and (iv) a second empirical copula transform.*
 1192 *Under \mathcal{H}_0 (i.e., $X_k \perp\!\!\!\perp Y_k$), the sequence*

$$1193 \quad \mathcal{T}(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}), \mathcal{T}(\sigma_1 \mathbf{x}^{(k)}, \mathbf{y}^{(k)}), \dots, \mathcal{T}(\sigma_B \mathbf{x}^{(k)}, \mathbf{y}^{(k)})$$

1194 *is exchangeable.*

1196 *Proof.* We verify that each step of \mathcal{T} results in an exchangeable sequence under \mathcal{H}_0 . As a begin,
 1197 Lemma 4 show that the input sequence is exchangeable.

1199 *Step (i): First copula transform.* By Lemma 3, the empirical cdfs $F_{x;n_k}^{(k)}$ and $F_{y;n_k}^{(k)}$ are invariant
 1200 under permutations, so the copula samples are exchangeable.

1201 *Step (ii): Random projection.* The projection parameters $(w_{:;h}^{(k)}, b_{:;h}^{(k)})$ are drawn i.i.d. from the same
 1202 distribution. Applying them elementwise preserves exchangeability of the projected features.

1204 *Step (iii): CCA step.* The canonical directions depend only on the covariance structure of the pro-
 1205 jected features, which is unaffected since the input feature distributions are the same. Thus, the
 1206 resulting one-dimensional projections are also exchangeable.

1207 *Step (iv): Second copula transform.* For the same sample input, the empirical cdfs are the same.
 1208 As the outputs after CCA have the same distributions, thus in this step, exchangeable inputs yields
 1209 exchangeable copula outputs.

1210 Combining all steps, the sequence of outputs across permutations is exchangeable. \square

1212 As a consequence, the client-level output copula sequence is exchangeable, a property that we later
 1213 exploit to establish test validity, in particular Type I error control.

1215 F PROOF OF THEOREM 4

1217 Next, we turn to the theoretical properties of the aggregated statistic. For clarity, the client-level
 1218 results and the associated notation have been introduced in Appendix E. Here, we shift our focus
 1219 to the aggregation step. Let the aggregation algorithm be denoted by \mathcal{A} , which determines the
 1220 optimal weights p_k , $k \in [K]$. Note that when $p_k \in \{0, 1\}$, this corresponds to the Fed-CS-M
 1221 strategy, while allowing $p_k \in [0, 1]$ corresponds to Fed-CS-ML. We now consider the case where \mathcal{A}
 1222 is theoretically optimal. In the asymptotic regime where the sample size and the number of random
 1223 features are large enough, let the resulting aggregated coefficient be denoted by $\rho_{\mathcal{A}}$. Then, we have
 1224 the following theorem to show $\rho_{\mathcal{A}}$ is theoretical sound.

1225 **Theorem 4** (Soundness of aggregated statistic). *Let $\rho_{\mathcal{A}}$ denote the aggregated coefficient obtained
 1226 by the aggregation algorithm \mathcal{A} . Assume \mathcal{A} is theoretically optimal. Then, under the null hypothesis
 1227 \mathcal{H}_0 , we have $\rho_{\mathcal{A}} = 0$, whereas under the alternative hypothesis \mathcal{H}_1 , we have $\rho_{\mathcal{A}} > 0$.*

1229 *Proof.* We first consider the case under \mathcal{H}_0 . According to Lemma 1 and 2, for each client $k \in [K]$,
 1230 the dependence strength satisfies $\rho(R_{X;k}, R_{Y;k}) = 0$, and the output copulas follow the distribution
 1231 $R_{X;k}, R_{Y;k} \sim \text{Uniform}([0, 1] \times [0, 1])$. Consequently, the second-order moments are identical
 1232 across all clients. Therefore, regardless of how the aggregation algorithm assigns the weights, the
 1233 aggregated coefficient remains zero, thus $\rho_{\mathcal{A}} = 0$. Next, we consider the case under \mathcal{H}_1 . In this
 1234 setting, by Lemma 1, each client exhibits a strictly positive dependence coefficient $\rho(R_{X;k}, R_{Y;k}) >$
 1235 0, reflecting the underlying dependence between X_k and Y_k . Since the aggregation algorithm \mathcal{A} is
 1236 assumed to be theoretically optimal, it assigns weights $\{p_k\}_{k=1}^K$ in a way that maximizes the global
 1237 statistic, thus $\rho_{\mathcal{A}} \geq \max_k \rho(R_{X;k}, R_{Y;k}) > 0$, which completes the whole proof. \square

1238 G PROOF OF THEOREM 5

1240 In this section, we provide the proof for the Type I error bound of our proposed test. For clarity,
 1241 the client-level exchangeability results and the associated notation have already been introduced in

Appendix E. Let the optimized aggregation weights be denoted by $\mathbf{p}^* = (p_1^*, p_2^*, \dots, p_K^*)$. During the testing procedure, each client k produces the empirical copula vectors $\mathbf{r}_x^{(k)}$ and $\mathbf{r}_y^{(k)}$ from its local data $(\mathbf{x}^{(k)}, \mathbf{y}^{(k)})$. For the corresponding permutation samples $(\sigma_t \mathbf{x}^{(k)}, \mathbf{y}^{(k)})$, we denote the resulting copula vectors as $\sigma_t \mathbf{r}_x^{(k)}$ and $\sigma_t \mathbf{r}_y^{(k)}$. Based on these definitions, we now establish the exchangeability property of the aggregated statistic.

Proposition 1 (Exchangeability of aggregated statistic). *Let the optimized aggregation weights be $\mathbf{p}^* = (p_1^*, \dots, p_K^*)$, fixed with respect to the permutations. For each client k , let $(\mathbf{r}_x^{(k)}, \mathbf{r}_y^{(k)})$ be the empirical copula vectors computed from $(\mathbf{x}^{(k)}, \mathbf{y}^{(k)})$, and let $(\sigma_t \mathbf{r}_x^{(k)}, \sigma_t \mathbf{r}_y^{(k)})$ denote the copula vectors obtained from the permuted pair $(\sigma_t \mathbf{x}^{(k)}, \sigma_t \mathbf{y}^{(k)})$, for $t \in [B]$. Also, the aggregated first/second moments and effective sample size for $(\mathbf{x}^{(k)}, \mathbf{y}^{(k)})$, $k \in [K]$ is given by*

$$\begin{aligned} e_x^{\mathcal{P}} &= \sum_{k=1}^K p_k^* e_x^{(k)}, & e_y^{\mathcal{P}} &= \sum_{k=1}^K p_k^* e_y^{(k)}, & m_{xy}^{\mathcal{P}} &= \sum_{k=1}^K p_k^* m_{xy}^{(k)}, \\ m_{xx}^{\mathcal{P}} &= \sum_{k=1}^K p_k^* m_{xx}^{(k)}, & m_{yy}^{\mathcal{P}} &= \sum_{k=1}^K p_k^* m_{yy}^{(k)}, & n_{\mathcal{P}} &= \sum_{k=1}^K p_k^* n_k, \end{aligned} \quad (28)$$

and the aggregated Pearson-type statistic is then calculated as Eq. (11). For simplify, we denote $\rho_{xy}^{\mathcal{P}, \sigma_0} := \rho_{xy}^{\mathcal{P}}$. Under \mathcal{H}_0 , the sequence $\rho_{xy}^{\mathcal{P}, \sigma_0}, \rho_{xy}^{\mathcal{P}, \sigma_1}, \dots, \rho_{xy}^{\mathcal{P}, \sigma_B}$, constructed respectively from $\{(\mathbf{r}_x^{(k)}, \mathbf{r}_y^{(k)})\}_{k=1}^K$ and $\{(\sigma_t \mathbf{r}_x^{(k)}, \sigma_t \mathbf{r}_y^{(k)})\}_{k=1}^K, t \in [B]$, is exchangeable.

Proof. Step 1 (client-level exchangeability of copulas). By Lemma 3 and Lemma 4, for each client k , the sequence $(\mathbf{r}_x^{(k)}, \mathbf{r}_y^{(k)}), \{(\sigma_t \mathbf{r}_x^{(k)}, \mathbf{r}_y^{(k)})\}_{t=1}^B$ is exchangeable under \mathcal{H}_0 .

Step 2 (exchangeability of moments). The mappings

$$(\mathbf{u}, \mathbf{v}) \mapsto e_u = \sum_i u_i, \quad m_{uu} = \sum_i u_i^2, \quad m_{uv} = \sum_i u_i v_i$$

are sum operations over the sample index. Hence, for each k , the sequences $\{e_x^{(k, t)}\}_t, \{e_y^{(k, t)}\}_t, \{m_{xx}^{(k, t)}\}_t, \{m_{yy}^{(k, t)}\}_t$, and $\{m_{xy}^{(k, t)}\}_t$ computed from $(\sigma_t \mathbf{r}_x^{(k)}, \sigma_t \mathbf{r}_y^{(k)})$ are exchangeable.

Step 3 (fixed-weight aggregation preserves exchangeability). Because $e_{\mathcal{P}}$, $m_{\mathcal{P}}$, and $n_{\mathcal{P}}$ are fixed linear combinations of the client-level moments with deterministic weights $\{p_k^*\}$ that do not depend on t , the aggregated moment sequences across t remain exchangeable.

Step 4 (continuous mapping). The map $(e_x^{\mathcal{P}}, e_y^{\mathcal{P}}, m_{xx}^{\mathcal{P}}, m_{yy}^{\mathcal{P}}, m_{xy}^{\mathcal{P}}, n_{\mathcal{P}}) \mapsto \rho_{xy}^{\mathcal{P}}$ is a measurable deterministic function. Therefore, by the continuous mapping principle for exchangeable arrays, the sequence $\{\rho_{xy}^{\mathcal{P}, \sigma_t}\}_{t=0}^B$ is exchangeable. \square

As a direct consequence, the Type I error of our proposed test is provably controlled.

Theorem 5 (Type I error bound). *Assume the null hypothesis \mathcal{H}_0 is true. For any significance level $\alpha \in (0, 1)$, the bound for the Type I error is given by*

$$\mathbb{P}(p\text{-value} \leq \alpha | \mathcal{H}_0) \leq \alpha. \quad (29)$$

Proof. For simplify, we also write $\mathbb{P}(\cdot | \mathcal{H}_0)$ as $\mathbb{P}_{\mathcal{H}_0}$. For any given $\alpha \in (0, 1)$, we have

$$\begin{aligned} \mathbb{P}_{\mathcal{H}_0}(p\text{-value} \leq \alpha) &= \mathbb{P}_{\mathcal{H}_0} \left(\frac{1 + \sum_{t=1}^B \mathbb{I}\{\rho_{xy}^{\mathcal{P}, \sigma_t} \geq \rho_{xy}^{\mathcal{P}, \sigma_0}\}}{1 + B} \leq \alpha \right) \\ &\leq \mathbb{P}_{\mathcal{H}_0} \left(\sum_{t=1}^B \mathbb{I}\{\rho_{xy}^{\mathcal{P}, \sigma_t} \geq \rho_{xy}^{\mathcal{P}, \sigma_0}\} \leq \lfloor \alpha(1 + B) \rfloor \right). \end{aligned} \quad (30)$$

Since the sequence $\{\rho_{xy}^{\mathcal{P}, \sigma_t}\}_{t=0}^B$ is exchangeable, by the property of order statistics, we have

$$\mathbb{P}_{\mathcal{H}_0} \left(\sum_{t=1}^B \mathbb{I}\{\rho_{xy}^{\mathcal{P}, \sigma_t} \geq \rho_{xy}^{\mathcal{P}, \sigma_0}\} \leq \lfloor \alpha(1 + B) \rfloor \right) = \frac{\lfloor \alpha(1 + B) \rfloor}{1 + B} \leq \alpha, \quad (31)$$

which completes the proof. \square

1296 H DETAILS OF EXPERIMENTAL SETUP AND ANALYSIS OF RESULTS 1297

1298 In this section, we provide detailed descriptions of the experimental settings used in the main paper,
1299 including dataset specifications and implementation details. We also present extended results and
1300 further analyses to complement the findings reported in the main paper.

1301 **Implementation details.** All methods are implemented with the number of random features fixed
1302 at $h = 10$ and the significance level set to $\alpha = 0.05$. For FUIT, we use the median bandwidth
1303 setting. For methods requiring data splitting, namely FedIT-CS-M and FedIT-CS-ML, the split ratio
1304 is fixed at 0.2. For the two variants FedIT-CS-M-F and FedIT-CS-ML-F, where the aggregation
1305 strategy is trained on additional data not used for testing, the extra data are set to have the same size
1306 as the testing data by default. For FedIT-CS-ML and FedIT-CS-ML-F, which involve gradient-based
1307 optimization, the number of iterations is set to 100. And the permutation number B is set to 100 by
1308 default. All experiments are conducted on the same hardware platform equipped with 8-core CPU.
1309

1310 H.1 DETAILS ABOUT SYNTHETIC DATA EXPERIMENTS 1311

1312 Below, we provide the setup details of the synthetic datasets, which include three heterogeneous
1313 scenarios: covariance heterogeneity, frequency heterogeneity, and functional heterogeneity. These
1314 settings are designed to evaluate the capability of our method under different types of distributional
1315 shifts. For this part, the number of clients is $K = 3$.

1316 **Covariance.** We consider a heterogeneous scenario where clients follow distinct covariance struc-
1317 tures. The data generation process is specified as follows:

- 1318 • **Client 1:** $X \sim \mathcal{N}(0, 1)$, $Y = 0.5X + \epsilon_1$, $\epsilon_1 \sim \mathcal{N}(0, 1)$;
- 1319 • **Client 2:** $X \sim \mathcal{N}(0, 1)$, $Y = -0.5X + \epsilon_2$, $\epsilon_2 \sim \mathcal{N}(0, 1)$;
- 1320 • **Client 3:** $X \sim \mathcal{N}(0, 1)$, $Y = 0.02X + \epsilon_3$, $\epsilon_3 \sim \mathcal{N}(0, 1)$.

1322 The sample sizes follow the ratio $n_1 : n_2 : n_3 = 1 : 1 : 2$. We vary the sample size of Client 1 with
1323 $n_1 \in \{100, 150, 200, 250, 300, 400\}$, and scale the other clients proportionally.

1324 **Frequency.** We next consider a heterogeneous scenario where clients exhibit distinct frequency
1325 parameters. Specifically, we adopt the sinusoid model (Sejdinovic et al., 2013) with density

$$1327 (X, Y) \sim \mathbb{P}_{xy}(x, y) \propto 1 + \sin(\omega x) \sin(\omega y), \quad (x, y) \in [-\pi, \pi] \times [-\pi, \pi], \quad (32)$$

1328 where ω denotes the frequency. Larger ω values make the distribution closer to Uniform($[-\pi, \pi]^2$),
1329 thereby increasing the difficulty of detecting dependence for small sample sizes. We assign client-
1330 specific frequencies $\omega_1 = 2$, $\omega_2 = 3$, and $\omega_3 = 4$. The sample sizes follow the ratio $n_1 : n_2 : n_3 =$
1331 $1 : 1 : 1$. We vary the sample size of Client 1 with $n_1 \in \{100, 150, 200, 250, 300, 400\}$, and scale
1332 the other clients proportionally.

1333 **Functional.** Finally, we consider a heterogeneous scenario where clients follow distinct functional
1334 relationships. The data generation procedure is defined as follows:

- 1336 • **Client 1:** $X \sim \text{Uniform}(0, 1)$, $Y = \sin(X) + \epsilon_1$, $\epsilon_1 \sim \mathcal{N}(0, 1)$;
- 1337 • **Client 2:** $X \sim \text{Uniform}(0, 1)$, $Y = \cos(X) + \epsilon_2$, $\epsilon_2 \sim \mathcal{N}(0, 1)$;
- 1338 • **Client 3:** $X \sim \text{Uniform}(0, 1)$, $Y = X^2 + \epsilon_3$, $\epsilon_3 \sim \mathcal{N}(0, 1)$.

1339 The sample sizes for the three clients follow the ratio $n_1 : n_2 : n_3 = 4 : 2 : 1$. We vary the
1340 sample size of Client 1 with $n_1 \in \{400, 600, 800, 1000, 1200, 1400, 1600\}$, and scale the other
1341 clients proportionally. Note that in this case, all clients have strong intra-client dependency.

1343 H.2 DETAILS ABOUT REAL DATA EXPERIMENTS 1344

1345 **Sachs dataset.** To evaluate the effectiveness of our proposed method in real-world, we employed
1346 the well-known Sachs (Sachs et al., 2005) dataset under seven perturbation conditions: (i) anti-CD3
1347 + anti-CD28, (ii) anti-CD3/CD28 + ICAM-2, (iii) anti-CD3/CD28 + U0126, (iv) anti-CD3/CD28
1348 + AKT inhibitor, (v) anti-CD3/CD28 + G06976, (vi) anti-CD3/CD28 + Psitectorigenin, and (vii)
1349 anti-CD3/CD28 + LY294002. In our setting, each perturbation condition in the Sachs dataset is
regarded as a distinct client. These perturbations cover both general T-cell activation and specific

pathway-targeted interventions, thereby enabling a diverse range of causal effects within the signaling network. The detailed biological functions of individual reagents are summarized in Table 3. The causal network is presented in Fig. 5. This network comprises 11 nodes and 18 arcs, and is commonly recognized as a benchmark ground truth. It has been extensively adopted in prior studies on causal discovery (Zhang et al., 2023b). The 11 nodes of this network form 55 distinct node pairs in total. Among these pairs, 18 are independent of each other, whereas the remaining 37 exhibit a dependent relationship. As an illustrative example, the nodes Plcg and PKC are independent, while the relationship between Plcg and itself is dependent. We further visualize the distributions of all 11 variables under each experimental condition, and the results are presented in Fig. 6, where each row corresponds to one perturbation condition and each column corresponds to one variable. *From the marginal distributions, we can observe that the variable distributions change under different perturbation conditions, which aligns with our heterogeneity assumption.*

Table 3: Summary of reagents employed in the perturbation conditions and their biological effects.

Reagent	Class	Biological effect
Anti-CD3	General	Activates T-cell receptor (TCR) signaling, initiating proximal signaling cascades.
Anti-CD28	General	Provides co-stimulatory signal for T-cell activation, enhancing proliferation and cytokine production.
ICAM-2	General	Triggers LFA-1 adhesion signaling and cooperates with CD3/CD28 to enhance AP-1 and NFAT activation.
U0126	Specific	Noncompetitive inhibitor of MEK1/2; blocks Erk activation and arrests T-cell proliferation.
AKT inhibitor	Specific	Blocks AKT membrane translocation and phosphorylation, suppressing AKT-mediated survival signaling.
G06976	Specific	Inhibits PKC isozymes; blocks PKC-mediated T-cell activation.
Psitectorigenin	Specific	Inhibits phosphoinositide hydrolysis and phosphoinositol turnover.
LY294002	Specific	PI3K inhibitor; prevents subsequent activation of AKT.

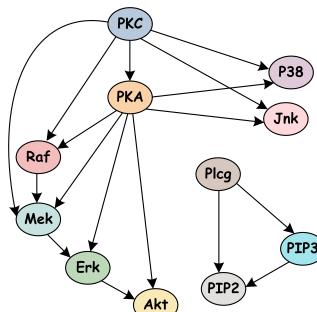


Figure 5: The causal graph of Sachs network.

Experimental setup. In our setting, each perturbation condition in the Sachs dataset is treated as a distinct client, yielding a total of seven clients. We compare our proposed methods against FUIT, FedIT-CS-S, FedIT-CS-M, and FedIT-CS-ML. At each iteration, 3 clients are randomly sampled from 7 clients, and we evaluate all 55 node pairs: 18 independent pairs for Type I error assessment and 37 dependent pairs for Type II error assessment. To ensure statistical reliability, this procedure is repeated 50 times with independent client selections, and we report the averaged performance across all trials. The results are summarized in Table 4.

Performance and analysis. Compared with FUIT, all variants of our method—FedIT-CS-S, FedIT-CS-M, and FedIT-CS-ML—achieve tighter control of Type I error while simultaneously reducing Type II error, thereby demonstrating stronger detection power. Notably, although the data splitting used in FedIT-CS-ML may degrade statistical power, it still achieves the best overall performance,



Figure 6: Distribution of the 11 variables across seven perturbation conditions in the Sachs dataset.

Table 4: Performance Comparison on the Sachs Dataset. Best in gray .

Method	Type I error (\downarrow)	Type II error (\downarrow)
FUIT	0.1011 ± 0.0595	0.6973 ± 0.0276
Fedit-CS-S (Ours)	0.0189 ± 0.0307	0.6968 ± 0.0312
Fedit-CS-M (Ours)	0.0589 ± 0.0375	0.6843 ± 0.0298
Fedit-CS-ML (Ours)	0.0333 ± 0.0458	0.6692 ± 0.0396

benefiting from our stacking-based aggregation strategy. These findings provide empirical evidence that supports the theoretical advantages of our framework.

I ADDITIONAL EXPERIMENT RESULTS

In this section, we present additional experimental results under a broader range of settings, including diverse distributional settings, varied functional relationships, and different numbers of clients. We also provide supplementary comparisons with more aggregation strategies, as well as the results on the computational runtime of each method.

I.1 RESULTS WITH DIVERSE DISTRIBUTIONS

In the synthetic data experiments under the *Covariance* setting, we assume the input noise follows a Gaussian distribution. In the following, we further examine the results under alternative noise distributions. Specifically, we fix the number of clients to $K = 3$, with their sample sizes following the ratio $n_1 : n_2 : n_3 = 1 : 1 : 2$. We vary the sample size of Client 1 with

$n_1 \in \{100, 150, 200, 250, 300, 400\}$. We conduct 100 independent trials and report the average results. For the alternative hypothesis \mathcal{H}_1 , the data are generated as follows:

- **Client 1:** $X \sim \text{Distribution}(\cdot)$, $Y = 0.5X + \epsilon$, $\epsilon \sim \text{Distribution}(\cdot)$;
- **Client 2:** $X \sim \text{Distribution}(\cdot)$, $Y = -0.5X + \epsilon$, $\epsilon \sim \text{Distribution}(\cdot)$;
- **Client 3:** $X \sim \text{Distribution}(\cdot)$, $Y = 0.02X + \epsilon$, $\epsilon \sim \text{Distribution}(\cdot)$.

For the null hypothesis \mathcal{H}_0 , the data are generated as follows:

- **Client 1:** $X \sim \text{Distribution}(\cdot)$, $Y \sim \text{Distribution}(\cdot)$;
- **Client 2:** $X \sim \text{Distribution}(\cdot)$, $Y \sim \text{Distribution}(\cdot)$;
- **Client 3:** $X \sim \text{Distribution}(\cdot)$, $Y \sim \text{Distribution}(\cdot)$.

Here, $\text{Distribution}(\cdot)$ is drawn from $\{\text{Laplace}(0, 1), \text{Uniform}(-2, 2)\}$.

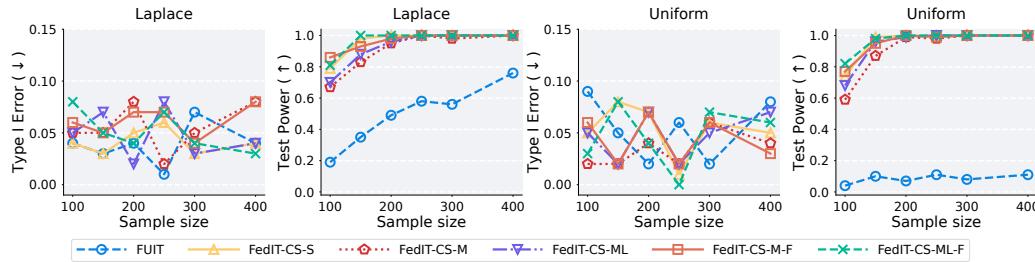


Figure 7: Results under Laplace and Uniform Distributions.

Performance and analysis. The experimental results are presented in Fig. 7. All methods successfully control the Type I error rate across various distributional settings and sample sizes. Compared with FUIT, our methods—FedIT-CS-S, FedIT-CS-M, FedIT-CS-ML, FedIT-CS-M-F, and FedIT-CS-ML-F—demonstrate strong performance under both Laplace and Uniform settings, thereby confirming the effectiveness of our stacking-based aggregation strategy. Furthermore, when comparing the “-F” and non-“F” variants, we observe a noticeable difference in detection power, highlighting an important direction for future improvement. Finally, although FedIT-CS-ML was originally designed as an accelerated version of FedIT-CS-M, the additional optimization space effectively leads to a softer solution, which in turn further enhances its detection capability.

I.2 RESULTS ACROSS FUNCTIONAL RELATIONSHIPS AND CLIENT SCALES

In the above experiments, the number of clients is fixed at three, and the functional relationships within each client are relatively simple, typically defined by predetermined coefficients. In the following, we extend our study with additional experiments under varying functional relationships and client scales. We consider two settings: linear and nonlinear.

Linear case. For the alternative hypothesis \mathcal{H}_1 , the data are generated as follows:

$$X \sim \mathcal{N}(0, 1), \quad Y = aX + \epsilon_0, \quad \epsilon_0 \sim \mathcal{N}(0, 1). \quad (33)$$

For the null hypothesis \mathcal{H}_0 , the data are generated as follows:

$$X \sim \mathcal{N}(0, 1), \quad Y = a\epsilon_1 + \epsilon_2, \quad \epsilon_1, \epsilon_2 \sim \mathcal{N}(0, 1). \quad (34)$$

where $a \sim \text{Uniform}(-0.5, 0.5)$ is a random slope parameter.

Non-linear case. For the alternative hypothesis \mathcal{H}_1 , the data are generated as follows:

$$X \sim \mathcal{N}(0, 1), \quad Y = f(X + \epsilon_0) + \epsilon_1, \quad \epsilon_0, \epsilon_1 \sim \mathcal{N}(0, 1). \quad (35)$$

For the null hypothesis \mathcal{H}_0 , the data are generated as follows:

$$X = f(\epsilon_2), \quad Y = f(\epsilon_3) + \epsilon_4, \quad \epsilon_2, \epsilon_3, \epsilon_4 \sim \mathcal{N}(0, 1). \quad (36)$$

where $f(\cdot)$ is random chosen from the set $\{\sin(\cdot), \cos(\cdot), \tanh(\cdot), \exp(-|\cdot|), (\cdot)^2\}$. are independent noise terms. This construction induces heterogeneous functional relationships across clients.

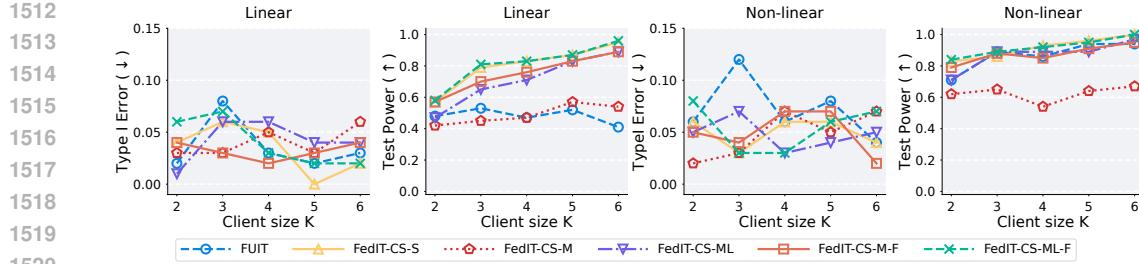


Figure 8: Results across functional relationships (Linear vs. Non-linear) and client scales.

To study the effect of client size, we fix the sample size per client to $n = 200$ and vary the number of clients as $K \in \{2, 3, 4, 5, 6\}$. For each configuration, we conduct 100 independent trials and report the average results. The experimental results are presented in Fig. 8.

Results of Linear case. In the linear setting, all methods successfully control the Type I error rate. Compared with FUIT and FedIT-CS-M, FedIT-CS-ML exhibits a clear advantage, demonstrating the effectiveness of its selection strategy. While the performance of FedIT-CS-M is comparable to FUIT, it gradually shows superiority as K increases. When comparing the “-F” and non-“F” variants, we observe a noticeable difference in detection power, highlighting an important direction for future improvement. This gap is particularly pronounced for FedIT-CS-M, likely because its selection component suffers from limited sample size and therefore fails to provide additional benefits. Moreover, FUIT does not gain from the increased sample size as K grows, which further corroborates our theoretical claim that its naive aggregation strategy leads to dependency dilution.

Results of the Nonlinear case. Except for FUIT under the nonlinear setting with $K = 3$, all methods successfully control the Type I error rate. Regarding detection power, FedIT-CS-S achieves the best performance in this setting, while FedIT-CS-ML and FUIT also perform well. In contrast, FedIT-CS-M shows inferior performance; comparing it with FedIT-CS-M-F suggests that sample splitting leads to a loss of power. Since our split ratio is set to 0.2, the selection component becomes ineffective with the resulting small training sample size (only $100 \times 0.2 = 20$ for each client), which explains the degraded performance. By contrast, FedIT-CS-ML, though based on the same sample size, still achieves strong results.

I.3 COMPARISON WITH MORE AGGREGATION STRATEGIES

In Sec. 4.3, we claimed that using only the aggregated coefficients for the selection step already yields satisfactory performance. In this section, we empirically validate this claim by comparing it against a permutation-based alternative, named FedIT-CS-MB. Specifically, FedIT-CS-MB is derived from FedIT-CS-M by replacing the correlation-based modeling of power with a permutation-based approach, where each client transmits $B + 1$ sets of statistics to the server, from which p -values are estimated to approximate the method’s power. We compare FedIT-CS-MB and FedIT-CS-M from two perspectives: performance and efficiency. For the error rate comparison, the experimental setup follows the covariance setting in Sec. H.1 with $n_1 = 150$. For the runtime comparison, we adopt the linear case described in Sec. I.2. In each experiment, the per-client sample size is fixed at $n = 200$, while the number of clients is varied as $K \in \{2, 4, 8, 16\}$ to evaluate scalability.

Performance and analysis. The experimental results are shown in the left two panels of Fig. 9. The leftmost panel compares the two methods in terms of Type I and Type II error rates. Both methods successfully control the Type I error rate; however, FedIT-CS-M achieves a lower Type II error rate than FedIT-CS-MB. This indicates that the correlation-coefficient-based aggregation criterion is already able to capture sufficient dependency signals, even without resorting to permutation-based modeling. Turning to the middle panel, note that both methods have a theoretical complexity of $O(2^K)$, but permutation introduces an additional factor B , which directly affects scalability. As shown, FedIT-CS-MB can only handle up to 8 clients within roughly 500 seconds, whereas FedIT-CS-M is able to process 16 clients in about 20 seconds. Overall, the aggregation strategy of FedIT-CS-M has been proved to be more effective than the permutation-based approach, achieving faster computation while maintaining competitive accuracy.

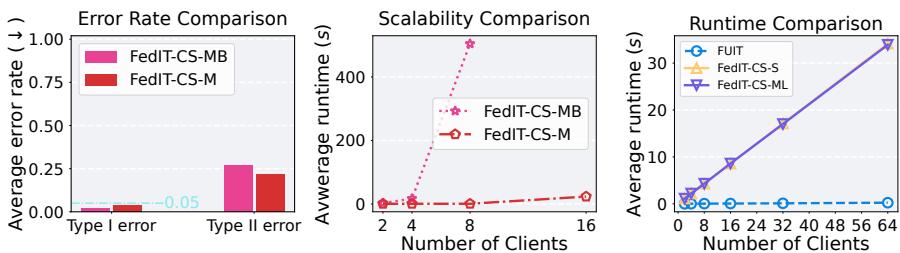


Figure 9: Left and Middle: The performance comparison between FedIT-CS-MB and FedIT-CS-M. Right: The average runtime results of large client set.

I.4 RUNTIME EVALUATION

In this section, we also provide a runtime comparison of the methods with linear-time complexity with respect to the number of clients, namely FUIT, FedIT-CS-S, and FedIT-CS-ML. For the runtime evaluation, we adopt the linear case described in Sec. I.2. In each experiment, the per-client sample size is fixed at $n = 200$, while the number of clients is varied as $K \in \{2, 4, 8, 16, 32, 64\}$.

Performance and analysis. The experimental results are presented in Fig. 9, shown in the rightmost panel. All three methods exhibit linear-time complexity with respect to the number of clients and can thus scale to large client number cases (e.g., $K = 64$). FUIT shows relatively competitive runtime performance. By contrast, FedIT-CS-S and FedIT-CS-ML require permutation-based testing to obtain p -values with theoretical guarantees, which introduces an additional computational factor of approximately $B = 100$. We adopt the permutation-based approach because of its strong empirical performance and its applicability to arbitrary input distributions. In the future, non-permutation alternatives, such as exact distributional estimation methods, may be developed to further improve efficiency, though their method design remains technically challenging at present.

Remark. From a practical perspective, although permutation incurs extra cost, the intra-client computations across the B samples are mutually independent and can therefore be parallelized. Such parallelization effectively mitigates the constant overhead, rendering our framework not only theoretically sound but also practically scalable in real-world distributed settings.

J LIMITATIONS AND BROADER IMPACTS

Limitations. As shown in both the main experiments and the additional results in Appendix I, some variants of our framework rely on data splitting to ensure Type I error control. However, this splitting inevitably reduces statistical power. We view this as a key limitation of the current design, and we hope future work will explore more advanced strategies to mitigate this trade-off and further improve the test’s effectiveness.

Broader impacts. This work proposes a novel framework for federated independence testing. The proposed linear-time aggregation strategy can be optimized in a data-driven manner, ensuring both effectiveness and efficiency. This could be beneficial for developing more reliable downstream algorithms in a variety of areas, including causal discovery, feature selection, and deep learning.

K USE OF LARGE LANGUAGE MODELS: AN EXPLANATION

During the preparation of this manuscript, we employed ChatGPT as a writing assistant. Specifically, we provided the prompt: “I am preparing a paper for submission to an international conference and would like your help to check for any grammatical issues and refine the wording or sentence structure where necessary to ensure conciseness and precision.” The model’s suggestions were applied on a paragraph-by-paragraph basis, and all outputs were carefully reviewed and edited by the authors to ensure accuracy and appropriateness.