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Abstract001

Multimodal Machine Translation (MMT) en-002
hances translation quality by incorporating vi-003
sual context, helping to resolve textual am-004
biguities. While existing MMT methods005
perform well in bilingual settings, extend-006
ing them to multilingual translation remains007
challenging due to cross-lingual interference008
and ineffective parameter-sharing strategies.009
To address this, we propose LLaVA-NeuMT,010
a novel multimodal multilingual translation011
framework that explicitly models language-012
specific and language-agnostic representations013
to mitigate multilingual interference. Our ap-014
proach consists of a layer selection mecha-015
nism that identifies the most informative lay-016
ers for different language pairs and a neuron-017
level adaptation strategy that dynamically se-018
lects language-specific and agnostic neurons019
to improve translation quality while reducing020
redundancy. We conduct extensive experiments021
on the M3-Multi30K and M3-AmbigCaps022
datasets, demonstrating that LLaVA-NeuMT,023
while fine-tuning only 40% of the model pa-024
rameters, surpasses full fine-tuning approaches025
and ultimately achieves SOTA results on both026
datasets. Our analysis further provides insights027
into the importance of selected layers and neu-028
rons in multimodal multilingual adaptation, of-029
fering an efficient and scalable solution to cross-030
lingual adaptation in multimodal translation.031

1 Introduction032

Machine translation has become increasingly cru-033

cial in our interconnected world, yet achieving ac-034

curate translations remains challenging due to the035

inherent ambiguities in natural language (Dabre036

et al., 2020; Klouchek and Batista-Navarro, 2024).037

A single word or phrase often carries multiple po-038

tential meanings, making it difficult for transla-039

tion systems to select the appropriate interpretation040

without additional context. Multimodal Machine041

Translation (MMT) addresses this challenge by in-042

corporating visual information alongside textual043
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Figure 1: Challenges in MMT.

input, helping to resolve ambiguities and improve 044

translation accuracy (Chen et al., 2021; Ma et al., 045

2022; Tayir et al., 2024). For example, as shown 046

in Figure 1 (a), when translating the English sen- 047

tence "There is a small house beside the bank" into 048

German, purely text-based systems often misinter- 049

pret "bank" as a financial institution, producing 050

"Neben der Bank steht ein kleines Haus." However, 051

with access to the corresponding image, the system 052

correctly recognizes "bank" as a riverbank and gen- 053

erates the accurate translation "Es gibt ein kleines 054

Haus neben dem Ufer." 055

While MMT has demonstrated promising results 056

in bilingual settings through various techniques 057

such as multi-task learning, knowledge distilla- 058

tion, and attention mechanisms, extending these 059

approaches to multilingual scenarios presents sig- 060

nificant challenges(Fan et al., 2021; Wang et al., 061

2024c). Multilingual Neural Machine Translation 062

(MNMT) has made progress in text-only transla- 063

tion by leveraging cross-lingual parameter sharing, 064

evolving from simple parameter sharing to more so- 065

phisticated approaches like adaptive scheduling and 066

language-specific modules(Jean et al., 2019; Pan 067

et al., 2021; Feng et al., 2023). Recently, Mixture- 068
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of-Experts (MoE) models have attempted to dy-069

namically allocate computational resources across070

languages, but often struggle with overfitting and071

inefficient parameter utilization(Fedus et al., 2022;072

Li et al., 2023). Despite these advances, existing073

MNMT methods exclusively focus on text-based074

translation and do not address the unique complex-075

ities introduced by multimodal information.076

As illustrated in Figure 1 (b), multimodal trans-077

lation in multilingual settings introduces additional078

challenges beyond those found in either bilingual079

MMT or text-only MNMT. Recent studies have080

highlighted that indiscriminate parameter sharing081

in MNMT can lead to interference between lan-082

guages, where high-resource languages dominate083

and degrade the performance of low-resource lan-084

guages (Shaham et al., 2023; Li et al., 2023; Chen085

et al., 2024a). Furthermore, empirical analysis re-086

veals that different layers in neural translation mod-087

els serve distinct functions - lower layers often cap-088

ture general linguistic patterns shared across lan-089

guages, while higher layers learn language-specific090

and task-specific features (Tan et al., 2024; Zhu091

et al., 2024b). This layered hierarchy becomes092

particularly crucial in multilingual settings, as dif-093

ferent language pairs may rely more heavily on094

certain layers for effective translation. However,095

current approaches treat all layers equally when096

sharing parameters across languages (Ma et al.,097

2023b; Lan et al., 2023; Tian et al., 2023), poten-098

tially leading to sub-optimal use of model capac-099

ity and increased interference. These observations100

raise critical questions: How can we identify and101

leverage the most relevant layers for each language102

pair? How should we balance parameter sharing103

across different layers to minimize interference104

while maintaining translation quality?105

To address these challenges, we propose LLaVA-106

NeuMT, a framework designed to systematically107

identify and optimize the most relevant model com-108

ponents for each language pair. Our key insight is109

that selective parameter sharing at both the layer110

and neuron levels is crucial for balancing effective111

knowledge transfer and interference mitigation. In-112

stead of sharing all parameters across languages in-113

discriminately, our method selectively determines114

which parts of the model are critical for each lan-115

guage pair. First, we introduce a layer selection116

mechanism that identifies the most informative lay-117

ers for different language pairs, allowing the model118

to retain essential representations while reducing119

computational redundancy. Second, we propose120

a neuron-level adaptation strategy, where neurons 121

within the selected layers are categorized as either 122

language-specific or language-agnostic based on 123

their activation and gradient variance. Finally, we 124

design a training framework that selectively up- 125

dates neurons based on the input language pair, 126

mitigating inter-language interference while main- 127

taining computational efficiency. 128

To validate our approach, we conduct exten- 129

sive experiments on the M3-Multi30K (Guo et al., 130

2022) and M3-AmbigCaps (Li et al., 2021) datasets. 131

The results show that LLaVA-NeuMT, utilizing 132

only 40% of the model parameters, surpasses full 133

fine-tuning baselines. By selecting key layers and 134

fine-tuning language-specific and agnostic neurons, 135

our approach achieves more effective multilingual 136

adaptation. Furthermore, we visualize the impor- 137

tance of selected layers and neurons across lan- 138

guages, offering insights into the adaptation of mul- 139

timodal translation models. 140

Our key contributions are as follows: 141

• We propose LLaVA-NeuMT, a multimodal 142

multilingual translation framework that explic- 143

itly models language-specific and language- 144

agnostic representations to mitigate cross- 145

lingual interference in multimodal translation. 146

• We introduce a layer and neuron selection 147

mechanism that identifies the most informa- 148

tive layers and neurons for each language pair, 149

effectively preserving critical representations 150

while reducing redundancy. 151

• We achieve SOTA translation performance 152

across multiple language pairs while fine- 153

tuning a subset of model parameters. Addi- 154

tionally, our analysis provides insights into 155

the importance of different layers and neurons 156

in multimodal multilingual adaptation. 157

2 Related Work 158

Multimodal Machine Translation Multimodal 159

Machine Translation (MMT) enhances transla- 160

tion quality by integrating visual context to re- 161

solve linguistic ambiguities. Prior research has 162

explored four primary approaches: multi-task learn- 163

ing, knowledge distillation, contrastive learning, 164

and attention-based mechanisms. Multi-task learn- 165

ing integrates OCR and translation models to im- 166

prove cross-modal representation learning, but 167

these methods often struggle with efficient mul- 168

tilingual adaptation (Chen et al., 2021; Ma et al., 169
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2022; Su et al., 2021). To address this, adaptive170

mechanisms have been introduced to bridge modal-171

ity gaps and enhance translation consistency (Ma172

et al., 2023b; Lan et al., 2023). Knowledge distilla-173

tion has been widely used to transfer multimodal174

knowledge from teacher to student models, ensur-175

ing better generalization but often increasing com-176

putational overhead (Chen et al., 2023; Ma et al.,177

2023c). Contrastive learning further refines OCR-178

text alignment and improves robustness in transla-179

tion tasks, yet remains constrained by reliance on180

predefined feature mappings (Ma et al., 2024; Peng181

et al., 2022). Attention-based mechanisms dynami-182

cally focus on relevant image regions, improving183

semantic grounding, but they lack efficient param-184

eter selection for multilingual translation (Mansi-185

mov et al., 2020; Hinami et al., 2021; Jain et al.,186

2021; Tian et al., 2023). While these methods en-187

hance machine translation performance, they often188

overlook computational efficiency in large-scale189

multimodal models. As computational demands190

grow with model size and multilingual adaptation,191

recent works have emphasized the need to balance192

model capacity with efficiency (Liu et al., 2022; Ma193

et al., 2023a). However, existing approaches still194

lack fine-grained control over language-specific195

and agnostic parameters. To address these chal-196

lenges, we propose a layer-aware neuron modula-197

tion framework that improves translation efficiency198

while optimizing parameter utilization.199

Multilingual Neural Machine Translation Mul-200

tilingual Neural Machine Translation (MNMT) en-201

ables translation across multiple languages within202

a single model but faces challenges such as inter-203

language interference and capacity bottlenecks204

(Aharoni et al., 2019; Fan et al., 2021; Wei et al.,205

2024). Prior works address these issues through206

adaptive scheduling (Jean et al., 2019; Pan et al.,207

2021), gradient-based optimization (Wang et al.,208

2020; Feng et al., 2023), and language-specific209

modules (Philip et al., 2020; Zhang et al., 2021).210

Mixture-of-Experts (MoE) models allocate capac-211

ity dynamically (Fedus et al., 2022; Li et al., 2023),212

though overfitting remains a concern. Recent stud-213

ies highlight that indiscriminate parameter shar-214

ing degrades high-resource language performance215

(Huang et al., 2024; Nimma et al., 2024; Javed et al.,216

2025), leading to strategies such as binary masks217

(Poppi et al., 2024) and contrastive learning (Liang218

et al., 2024) to mitigate interference. However,219

these approaches often introduce additional com-220

plexity and computational costs. While research 221

on multilingual interference has primarily focused 222

on text-based models (Jean et al., 2019; Li et al., 223

2023; Javed et al., 2025), its implications for multi- 224

modal translation remain insufficiently studied. In 225

contrast, we introduce a selective layer and neuron- 226

level modulation framework to optimize multilin- 227

gual adaptation, reducing interference while main- 228

taining efficiency in multimodal MNMT. 229

3 Methodology 230

3.1 Multimodal Machine Translation 231

Multimodal machine translation extends traditional 232

machine translation by incorporating visual infor- 233

mation to enhance contextual understanding. Given 234

a source sentence Xs in language s, a correspond- 235

ing image I , and a target language t, the objective 236

is to generate a translated sentence Y t that pre- 237

serves the semantics of the source sentence while 238

leveraging visual context. The translation process 239

can be formulated as a function F that maps the 240

source text and image to the target text: 241

Y t = F(Xs, I, s, t; θ), (1) 242

where θ represents the model parameters. The 243

model encodes textual features through a text en- 244

coder Et and extracts visual features using a vision 245

encoder Ev: 246

T = Et(Xs), V = Ev(I). (2) 247

The extracted textual and visual features are com- 248

bined within a multimodal translation model, pro- 249

ducing an intermediate representation that is subse- 250

quently decoded into the target language. 251

3.2 Selecting Effective Layers of the Model 252

In MMT, different layers of the model contribute 253

differently to text and image processing. To im- 254

prove efficiency while maintaining translation qual- 255

ity, and inspired by (Li et al., 2024; Wang et al., 256

2024b), we introduce a layer selection method 257

that identifies and retains the most informative lay- 258

ers in both the vision-language connector and the 259

large language model (LLM). Given a model with 260

L layers, the objective is to determine a subset 261

L ⊆ {1, 2, . . . , L} that maximizes task relevance 262

while reducing redundancy. 263

The importance of each layer is assessed based 264

on activation similarity before and after supervised 265

fine-tuning (SFT), as illustrated in Figure 2 (a). 266
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Figure 2: LLaVA-NeuMT Model Architecture.

Given activations from layer l in the pretrained267

model (XA
l ) and the fine-tuned model (XB

l ), the268

redundancy-based importance score Rl is com-269

puted as:270

Rl =
(XA

l ·XB
l )2

∥XA
l ∥2∥XB

l ∥2 + ϵ
, (3)271

where XA
l and XB

l are the activations from layer272

l in the pretrained and fine-tuned models, and ϵ273

is a small constant to avoid numerical instability.274

A lower Rl value suggests that a layer undergoes275

significant adaptation during fine-tuning, indicating276

its importance for the translation task. Layers are277

ranked based on Rl, and a subset Ls is selected278

corresponding to the top α fraction of layers, where279

α is a tunable hyperparameter.280

3.3 Selecting Important Neurons of the Model281

In MMT, different neurons within each selected282

layer contribute differently to various language283

pairs (Zhu et al., 2024a). To further optimize the284

model, we introduce a neuron selection mechanism285

that identifies the most relevant neurons for each286

language pair while preserving generalizable neu-287

rons across all languages. Given a layer l with288

N neurons, our objective is to classify neurons289

into two categories: language-specific neurons and290

language-agnostic neurons.291

Neuron selection is performed on the previously292

selected layers, as illustrated in Figure 2 (b). The293

importance of each neuron n is evaluated based 294

on its activation and gradient values during fine- 295

tuning. Specifically, for each training instance, we 296

compute the importance score as: 297

In = |An ×Gn| (4) 298

where An and Gn represent the activation and 299

backpropagation gradient of neuron n, respectively. 300

Given K language pairs, we aggregate the impor- 301

tance scores over T training samples and compute 302

the variance across languages as: 303

σ2(n) =
1

K

K∑
k=1

(
Ikn − Īn

)2
(5) 304

where Ikn denotes the importance score of neu- 305

ron n for language pair k, and Īn represents the 306

mean importance score across all language pairs. 307

To classify neurons, we first define N as the set 308

of all neurons in the selected layers: 309

N = {n | n ∈ Nl, l ∈ Ls} (6) 310

where Ls is the selected layer set and Nl the 311

neurons in layer l. We then define two subsets: 312

Sk = {n ∈ N | Ikn = max
j
Ijn} (7) 313

where Sk represents the set of language-specific 314

neurons, which exhibit the highest importance for 315

a single language pair k. 316
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A = {n ∈ N | σ2(n) ≤ ϵ} (8)317

where A represents the set of language-agnostic318

neurons, which maintain relatively stable impor-319

tance scores across all language pairs, with a vari-320

ance threshold ϵ.321

3.4 LLaVA-NeuMT322

LLaVA-NeuMT performs neuron-level adaptation323

based on the previously selected layers and classi-324

fied neurons, as illustrated in Figure 2 (c). Given325

a source sentence Xs in language s, an image I ,326

and a target language t, the model extracts features327

using a text encoder Et and a vision encoder Ev, pro-328

ducing textual and visual representations as defined329

in Equation (2). These representations are passed330

through the selected layers Ls (Section 3.2), where331

neuron updates are applied selectively. Based on332

the classification of neurons into language-specific333

(Sk) and language-agnostic (A) categories (Sec-334

tion 3.3), only relevant neurons receive parameter335

updates during fine-tuning.336

To achieve this, a gradient masking mechanism337

is applied to constrain updates to neurons belonging338

to Sk or A. Specifically, for each neuron n, the339

gradient is modified as follows:340

G′
n =

{
Gn, if n ∈ A ∪ Sk
0, otherwise

(9)341

where Gn represents the computed gradient of342

neuron n. Neurons outside these sets are frozen,343

preventing unnecessary parameter updates.344

The final model update is performed using:345

θn ← θn − ηG′
n (10)346

where η is the learning rate. By restricting up-347

dates to selected neurons, LLaVA-NeuMT effi-348

ciently adapts the model while maintaining stability349

across different language pairs. This fine-tuning350

strategy ensures that multimodal representations351

are effectively adapted, allowing both textual and352

visual features to be optimized for MNMT.353

4 Experiments354

4.1 Experimental Setting355

Datasets We evaluate our approach on two multi-356

modal MNMT datasets: M3-Multi30K (Guo et al.,357

2022) and M3-AmbigCaps (Li et al., 2021). M3-358

Multi30K consists of 29,000 image-text translation359

pairs for training and 1,000 for testing, covering360

multiple language pairs. M3-AmbigCaps is a larger 361

dataset with 89,600 training pairs and 1,000 test 362

pairs, designed for evaluating multimodal transla- 363

tion performance. 364

Experimental Setup We adopt LLaVA-1.5- 365

7B (Liu et al., 2024) as the pretrained backbone 366

and optimize training using DeepSpeed ZeRO-3 on 367

4 × A100 (80GB) GPUs. The model is trained for 368

4 epochs with a per-device batch size of 16 and a 369

gradient accumulation step of 1. Mixed precision 370

training with BF16 is applied to reduce memory 371

overhead. The optimizer is AdamW with a learn- 372

ing rate of 2e-5 and a cosine annealing scheduler, 373

with 3% warmup. Weight decay is set to 0. The 374

maximum text sequence length is 2048, and image 375

inputs are resized to a fixed aspect ratio, with visual 376

features extracted from the second-to-last layer of 377

the Vision Transformer (ViT) (Nguyen et al., 2024). 378

Evaluation Metrics & Baselines We evaluate 379

translation performance using BLEU-4. Base- 380

lines include Text-only MT models: Text Trans- 381

former (Fan et al., 2021); Open-source MMT 382

models: Qwen2-VL (Wang et al., 2024a), 383

MiniCPM (Yao et al., 2024), InternVL (Chen 384

et al., 2024b); Closed-source MMT models: GPT- 385

4o (Achiam et al., 2023), Gemini-1.5-Pro (Team 386

et al., 2024); and Multimodal MNMT models: Vi- 387

sion Matters (Gated Fusion) (Li et al., 2021), Vi- 388

sion Matters (Concatenation) (Li et al., 2021), LVP- 389

M3 (Guo et al., 2022), and the multilingual fine- 390

tuned version of LLaVA-1.5 (Liu et al., 2024). 391

4.2 Main Results and Analysis 392

We evaluate the performance of different models 393

across four categories, as shown in Table 1 and 394

Table 2, Text-only MT achieves strong results, 395

demonstrating that textual models alone can pro- 396

vide high-quality translations. However, it still 397

underperforms compared to Multimodal MNMT, 398

which integrates visual context to improve transla- 399

tion quality. Open-source MMT models show sig- 400

nificantly lower performance, particularly in low- 401

resource languages such as Latvian, Hindi, and 402

Turkish, likely due to the lack of multimodal multi- 403

lingual training data, which limits their generaliza- 404

tion in multilingual settings. Closed-source MMT 405

models, such as GPT-4o, achieve competitive re- 406

sults in high-resource languages but show a notice- 407

able drop in low-resource scenarios, suggesting that 408

general-purpose multimodal models are not opti- 409

mized for multilingual translation. In contrast, Mul- 410
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Type Model (En→X) Fr Cs De Lv Hi Tr Avg-all

Text-only MT Text Transformer (Fan et al., 2021) 61.8 32.8 40.6 51.2 59.0 53.8 49.8

Open-source MMT
Qwen2-VL-7B (Wang et al., 2024a) 44.1 7.8 33.5 0.1 0.6 0.8 14.5
MiniCPM-2.6-8b (Yao et al., 2024) 26.2 4.0 27.2 0.1 0.2 0.3 9.7
InternVL-2.5-7b (Chen et al., 2024b) 35.2 8.2 25.8 0.1 3.3 1.0 12.3

Closed-source MMT
GPT-4o (Achiam et al., 2023) 53.8 37.4 44.3 39.4 28.3 28.6 38.6
Gemini-1.5-Pro (Team et al., 2024) 38.5 22.2 23.5 24.3 10.4 22.4 23.6

Multimodal MNMT

Vision Matters (Gated fusion) (Li et al., 2021) 62.5 32.9 41.2 52.1 59.6 54.2 50.4
Vision Matters (Concatenation) (Li et al., 2021) 59.7 33.1 39.8 50.3 57.6 51.4 48.6
LVP-M3 (Guo et al., 2022) 63.7 34.6 43.2 53.5 61.4 55.6 52.0
LLaVA-1.5-SFT(default) (Liu et al., 2024) 66.5 35.9 42.2 56.1 61.5 57.8 53.3

Ours
LLaVA-NeuMT (40%) 67.0 36.0 42.0 57.3 60.0 58.3 53.4
LLaVA-NeuMT (80%) 66.8 35.9 42.6 58.2 61.8 60.7 54.3

Table 1: BLEU scores on the M3-Multi30K test set. Best results are in bold, second-best are underlined.

Type Model (En→X) Fr Cs De Lv Hi Tr Avg_all

Text-only MT Text Transformer (Fan et al., 2021) 62.3 47.8 49.0 46.6 52.4 35.9 49.0

Open-source MMT

Qwen2-VL-7B (Wang et al., 2024a) 40.3 2.7 27.3 0.3 0.6 0.7 12.0
MiniCPM-2.6-8b (Yao et al., 2024) 32.6 2.8 19.8 0.1 0.15 0.2 9.3
InternVL-2.5-7b (Chen et al., 2024b) 31.6 6.16 10.7 0.1 3.3 0.8 8.8

Closed-source MMT
GPT-4o (Achiam et al., 2023) 43.6 29.6 38.0 26.5 24.9 16.7 29.9
Gemini-1.5-Pro (Team et al., 2024) 28.8 13.6 18.3 15.9 12.2 12.2 16.8

Multimodal MNMT

Vision Matters (Gated fusion) (Li et al., 2021) 64.3 50.3 51.2 48.5 54.1 38.7 51.2
Vision Matters (Concatenation) (Li et al., 2021) 62.6 47.6 48.7 45.9 52.7 36.0 48.9
LVP-M3 (Guo et al., 2022) 65.7 52.9 53.7 51.6 56.3 42.7 53.8
LLaVA-1.5-SFT(default) (Liu et al., 2024) 72.1 57.3 60.3 56.5 56.8 45.2 58.0

Ours
LLaVA-NeuMT (40%) 73.2 57.0 60.9 56.2 56.5 46.2 58.3
LLaVA-NeuMT (80%) 74.1 58.4 61.7 57.8 58.4 47.9 59.7

Table 2: BLEU scores on the M3-AmbigCaps test set. Best results are in bold, second-best are underlined.

timodal MNMT models consistently achieve better411

BLEU scores, confirming that incorporating mul-412

timodal signals benefits multilingual translation.413

Among them, LLaVA-1.5-SFT enhances transla-414

tion quality through supervised fine-tuning. Our415

proposed LLaVA-NeuMT further improves perfor-416

mance while fine-tuning only 40% of the model417

parameters, demonstrating the efficiency of selec-418

tive layer adaptation. When increasing the fine-419

tuned layers to 80%, LLaVA-NeuMT achieves the420

best results, showing that balancing layer selection421

and neuron modulation enhances translation perfor-422

mance while maintaining efficiency. Additionally,423

our fine-tuning strategy, which adjusts language-424

specific and agnostic neurons at a 1:9 ratio, en-425

sures effective multilingual adaptation. In terms426

of language-specific trends, GPT-4o performs well427

on high-resource languages such as French, Czech,428

and German in the M3-Multi30K test set but strug-429

gles in lower-resource languages. The performance430

gap is more evident in the M3-AmbigCaps test set,431

where the larger dataset scale and increased task 432

complexity further challenge general-purpose mod- 433

els. By contrast, LLaVA-NeuMT consistently out- 434

performs other models across both datasets, demon- 435

strating its robustness in Multimodal MNMT. 436

4.3 Effect of Layer Selection on MMT 437

To investigate the role of layer selection in multi- 438

modal multilingual translation, we evaluate perfor- 439

mance by selecting the top 20%, 40%, 60%, 80%, 440

and 100% most important layers, ranked by im- 441

portance scores computed in Section 3.2. In this 442

experiment, the neuron selection strategy remains 443

fixed, with language-specific and agnostic neurons 444

adjusted at a 1:9 ratio, ensuring that the only vari- 445

able is the number of selected layers. As shown in 446

Figure 3, BLEU scores increase as more layers are 447

included, reaching the highest performance at 80% 448

selection. Beyond this point, performance declines, 449

suggesting that retaining all layers introduces re- 450

dundancy or noise, negatively impacting transla- 451
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Figure 3: Effect of layer selection on translation. x%
indicates the top x% most important layers.

En→X Fr Cs De Lv Hi Tr Avg_all

Standard 66.4 35.7 42.3 58.1 61.3 60.5 54.1
Agnostic 65.8 35.6 41.2 56.3 61.1 59.7 53.3
Specific 65.9 35.2 42.0 57.0 60.5 61.3 53.7

Table 3: Effect of agnostic and specific neurons on mul-
timodal multilingual translation on the M3-Multi30K
dataset. "Standard" denotes a 1:9 specific-to-agnostic
neuron ratio, while "Agnostic" and "Specific" refer to
models fine-tuning only agnostic or specific neurons.

tion quality. Using only 20% of the layers leads to452

significantly lower BLEU scores, indicating that a453

minimal subset is insufficient for effective multi-454

modal multilingual adaptation. Between 40% and455

80%, all language pairs exhibit consistent improve-456

ments, with the most pronounced gains observed457

in low-resource languages such as Latvian, Hindi,458

and Turkish. For high-resource languages such as459

French, Czech, and German, performance stabi-460

lizes beyond 60% and slightly decreases at 100%,461

reinforcing that excessive layers do not necessarily462

contribute positively to translation. These findings463

demonstrate that an optimal layer selection strategy464

enhances translation quality while maintaining effi-465

ciency, with 80% selection striking the best balance466

between performance and computational cost.467

4.4 Effect of Neuron Selection on MMT468

To analyze the impact of agnostic and specific469

neurons in multimodal multilingual translation,470

we conduct experiments where all layers are se-471

lected while varying the neurons that are fine-tuned.472

As shown in Table 3, the highest BLEU score is473

achieved when both neuron types are optimized in a474

1:9 ratio. Fine-tuning only agnostic neurons results475

in a slight performance drop, while fine-tuning only476

specific neurons leads to a further decline. This sug-477
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Figure 4: Impact of specific-to-agnostic neuron ratio on
translation performance on the M3-Multi30K dataset.

gests that while specific neurons contribute to trans- 478

lation quality, agnostic neurons play a more crucial 479

role in ensuring multilingual adaptation. The rela- 480

tively competitive performance of fine-tuning spe- 481

cific neurons alone indicates that language-specific 482

features remain valuable, particularly in distin- 483

guishing linguistic variations. However, the per- 484

formance gap between agnostic-only and specific- 485

only settings reinforces the greater importance of 486

agnostic neurons in maintaining stable multilingual 487

translation. Examining language-specific trends, 488

Czech benefits more from fine-tuning agnostic neu- 489

rons, suggesting a stronger dependence on cross- 490

lingual representations, whereas Turkish achieves 491

its highest accuracy when only specific neurons 492

are fine-tuned, indicating that some languages rely 493

more on task-specific adaptation. 494

To further examine the effect of adjusting the 495

ratio of specific to agnostic neurons, we conduct 496

experiments while keeping all layers selected. As 497

shown in Figure 4, increasing the proportion of spe- 498

cific neurons initially improves BLEU scores, peak- 499

ing at a 1:9 ratio. Beyond this point, performance 500

declines as the proportion of agnostic neurons de- 501

creases, suggesting that excessive specific neurons 502

may reduce generalization ability. However, at 503

extreme ratios (e.g., 10:0), performance slightly 504

rebounds, indicating that in certain cases, heavily 505

relying on specific neurons can still capture relevant 506

translation patterns. This suggests that while an op- 507

timal balance of neuron types is necessary, models 508

exhibit some degree of robustness when specific 509

neurons dominate. Across different language pairs, 510

Czech exhibits a steady decline when agnostic neu- 511

rons are reduced, confirming its reliance on agnos- 512

tic representations. In contrast, Hindi and Turkish 513

maintain relatively stable performance across dif- 514

ferent neuron ratios, demonstrating adaptability to 515
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Figure 5: Layer importance visualization in multimodal
multilingual translation on the M3-Multi30K dataset.

both neuron types. These findings emphasize the516

necessity of a well-balanced allocation of agnostic517

and specific neurons for optimal MMT.518

4.5 Visualization of Layer Importance519

To investigate the role of different layers in mul-520

timodal multilingual translation, we visualize the521

layer importance scores across multiple language522

pairs in Figure 5. The x-axis represents model523

layers, the y-axis denotes language pairs, and the524

color intensity indicates relative importance. The525

heatmap reveals significant variations in layer im-526

portance across the model, demonstrating that se-527

lecting key layers is necessary rather than uni-528

formly fine-tuning all layers. From a horizontal per-529

spective, the first 250 layers (approximately 80%530

of the model depth) exhibit relatively high impor-531

tance scores, consistently exceeding 0.5. This trend532

aligns with the findings in Section 4.3, where se-533

lecting the top 40-80% of layers resulted in optimal534

translation performance. The concentration of im-535

portance in these layers suggests that they capture536

essential multimodal and multilingual representa-537

tions. From a vertical perspective, the importance538

scores remain relatively stable across different lan-539

guage pairs, indicating that layer selection is pri-540

marily influenced by architectural properties rather541

than specific language characteristics. This con-542

firms that an effective layer selection can enhance543

computational efficiency without significantly af-544

fecting translation quality across languages.545

4.6 Analysis of Specific and agnostic neurons546

To investigate the distinction between specific and547

agnostic neurons in multimodal multilingual trans-548

lation, we visualize neuron importance variance549

across six language pairs in Figure 6. We select550

the top 40% of layers (108 layers) and observe that551

in each layer, a small subset of neurons exhibits552
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Figure 6: Neuron importance in multimodal multilin-
gual translation on M3-Multi30K dataset.

significantly higher variance, indicating their lan- 553

guage specificity. This confirms the necessity of 554

differentiating specific and agnostic neurons rather 555

than treating them uniformly. From a distribution 556

perspective, the first 10% of neurons in each layer 557

(dashed lines) display high variance, while the re- 558

maining 90% (solid lines) maintain stable scores. 559

This supports our choice of a 1:9 ratio between 560

specific and agnostic neurons, ensuring an optimal 561

balance between language adaptability and cross- 562

lingual generalization. Furthermore, we identify 563

key neuron types critical to multimodal multilin- 564

gual translation, including attention projection lay- 565

ers and MLP down-projection layers. Unlike con- 566

ventional large language models, which primarily 567

rely on deep linguistic representations, multimodal 568

translation models emphasize connector layers for 569

effective cross-modal alignment, underscoring their 570

importance in improving translation quality. 571

5 Conclusion 572

In this work, we tackled multilingual interference 573

in MMT by introducing LLaVA-NeuMT, a frame- 574

work that selectively optimizes layers and neu- 575

rons to enhance efficiency and translation qual- 576

ity. Our approach integrates a layer selection 577

mechanism to retain the most informative lay- 578

ers and a neuron-level adaptation strategy to bal- 579

ance language-specific and agnostic representa- 580

tions. Experiments on the M3-Multi30K and M3- 581

AmbigCaps datasets show that LLaVA-NeuMT 582

achieves SOTA performance while fine-tuning 583

fewer parameters. Further analysis reveals that 584

selecting 40-80% of layers yields optimal results, 585

and a 1:9 specific-to-agnostic neuron ratio effec- 586

tively balances generalization and adaptation. Fu- 587

ture work will explore adaptive parameter-sharing 588

strategies and extend our approach to broader mul- 589

tilingual and multimodal scenarios. 590
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Limitations591

While our proposed LLaVA-NeuMT framework592

has demonstrated strong performance in multi-593

modal MNMT, several aspects remain worth ex-594

ploring. Our current approach selects layers and595

neurons based on fixed thresholds, such as choos-596

ing the top 40% of layers and applying a predefined597

ratio of specific to agnostic neurons. While effec-598

tive, this static strategy may not be optimal across599

different language pairs and translation contexts.600

Future work could explore more adaptive selec-601

tion mechanisms to further enhance efficiency and602

generalization. Additionally, beyond multilingual603

settings, our approach could be extended to bal-604

ance general-purpose language tasks with domain-605

specific translation challenges in multimodal sce-606

narios, addressing broader applications of multi-607

modal translation.608
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