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Abstract

Multimodal Machine Translation (MMT) en-
hances translation quality by incorporating vi-
sual context, helping to resolve textual am-
biguities. While existing MMT methods
perform well in bilingual settings, extend-
ing them to multilingual translation remains
challenging due to cross-lingual interference
and ineffective parameter-sharing strategies.
To address this, we propose LLaVA-NeuMT,
a novel multimodal multilingual translation
framework that explicitly models language-
specific and language-agnostic representations
to mitigate multilingual interference. Our ap-
proach consists of a layer selection mecha-
nism that identifies the most informative lay-
ers for different language pairs and a neuron-
level adaptation strategy that dynamically se-
lects language-specific and agnostic neurons
to improve translation quality while reducing
redundancy. We conduct extensive experiments
on the M3-Multi30K and M3-AmbigCaps
datasets, demonstrating that LLaVA-NeuMT,
while fine-tuning only 40% of the model pa-
rameters, surpasses full fine-tuning approaches
and ultimately achieves SOTA results on both
datasets. Our analysis further provides insights
into the importance of selected layers and neu-
rons in multimodal multilingual adaptation, of-
fering an efficient and scalable solution to cross-
lingual adaptation in multimodal translation.

1 Introduction

Machine translation has become increasingly cru-
cial in our interconnected world, yet achieving ac-
curate translations remains challenging due to the
inherent ambiguities in natural language (Dabre
et al., 2020; Klouchek and Batista-Navarro, 2024).
A single word or phrase often carries multiple po-
tential meanings, making it difficult for transla-
tion systems to select the appropriate interpretation
without additional context. Multimodal Machine
Translation (MMT) addresses this challenge by in-
corporating visual information alongside textual
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Figure 1: Challenges in MMT.

input, helping to resolve ambiguities and improve
translation accuracy (Chen et al., 2021; Ma et al.,
2022; Tayir et al., 2024). For example, as shown
in Figure 1 (a), when translating the English sen-
tence "There is a small house beside the bank" into
German, purely text-based systems often misinter-
pret "bank" as a financial institution, producing
"Neben der Bank steht ein kleines Haus." However,
with access to the corresponding image, the system
correctly recognizes "bank" as a riverbank and gen-
erates the accurate translation "Es gibt ein kleines
Haus neben dem Ufer."

While MMT has demonstrated promising results
in bilingual settings through various techniques
such as multi-task learning, knowledge distilla-
tion, and attention mechanisms, extending these
approaches to multilingual scenarios presents sig-
nificant challenges(Fan et al., 2021; Wang et al.,
2024c). Multilingual Neural Machine Translation
(MNMT) has made progress in text-only transla-
tion by leveraging cross-lingual parameter sharing,
evolving from simple parameter sharing to more so-
phisticated approaches like adaptive scheduling and
language-specific modules(Jean et al., 2019; Pan
et al., 2021; Feng et al., 2023). Recently, Mixture-



of-Experts (MoE) models have attempted to dy-
namically allocate computational resources across
languages, but often struggle with overfitting and
inefficient parameter utilization(Fedus et al., 2022;
Li et al., 2023). Despite these advances, existing
MNMT methods exclusively focus on text-based
translation and do not address the unique complex-
ities introduced by multimodal information.

As illustrated in Figure 1 (b), multimodal trans-
lation in multilingual settings introduces additional
challenges beyond those found in either bilingual
MMT or text-only MNMT. Recent studies have
highlighted that indiscriminate parameter sharing
in MNMT can lead to interference between lan-
guages, where high-resource languages dominate
and degrade the performance of low-resource lan-
guages (Shaham et al., 2023; Li et al., 2023; Chen
et al., 2024a). Furthermore, empirical analysis re-
veals that different layers in neural translation mod-
els serve distinct functions - lower layers often cap-
ture general linguistic patterns shared across lan-
guages, while higher layers learn language-specific
and task-specific features (Tan et al., 2024; Zhu
et al., 2024b). This layered hierarchy becomes
particularly crucial in multilingual settings, as dif-
ferent language pairs may rely more heavily on
certain layers for effective translation. However,
current approaches treat all layers equally when
sharing parameters across languages (Ma et al.,
2023b; Lan et al., 2023; Tian et al., 2023), poten-
tially leading to sub-optimal use of model capac-
ity and increased interference. These observations
raise critical questions: How can we identify and
leverage the most relevant layers for each language
pair? How should we balance parameter sharing
across different layers to minimize interference
while maintaining translation quality?

To address these challenges, we propose LLaVA-
NeuMT, a framework designed to systematically
identify and optimize the most relevant model com-
ponents for each language pair. Our key insight is
that selective parameter sharing at both the layer
and neuron levels is crucial for balancing effective
knowledge transfer and interference mitigation. In-
stead of sharing all parameters across languages in-
discriminately, our method selectively determines
which parts of the model are critical for each lan-
guage pair. First, we introduce a layer selection
mechanism that identifies the most informative lay-
ers for different language pairs, allowing the model
to retain essential representations while reducing
computational redundancy. Second, we propose

a neuron-level adaptation strategy, where neurons
within the selected layers are categorized as either
language-specific or language-agnostic based on
their activation and gradient variance. Finally, we
design a training framework that selectively up-
dates neurons based on the input language pair,
mitigating inter-language interference while main-
taining computational efficiency.

To validate our approach, we conduct exten-
sive experiments on the M3-Multi30K (Guo et al.,
2022) and M3-AmbigCaps (Li et al., 2021) datasets.
The results show that LLaVA-NeuMT, utilizing
only 40% of the model parameters, surpasses full
fine-tuning baselines. By selecting key layers and
fine-tuning language-specific and agnostic neurons,
our approach achieves more effective multilingual
adaptation. Furthermore, we visualize the impor-
tance of selected layers and neurons across lan-
guages, offering insights into the adaptation of mul-
timodal translation models.

Our key contributions are as follows:

* We propose LLaVA-NeuMT, a multimodal
multilingual translation framework that explic-
itly models language-specific and language-
agnostic representations to mitigate cross-
lingual interference in multimodal translation.

* We introduce a layer and neuron selection
mechanism that identifies the most informa-
tive layers and neurons for each language pair,
effectively preserving critical representations
while reducing redundancy.

* We achieve SOTA translation performance
across multiple language pairs while fine-
tuning a subset of model parameters. Addi-
tionally, our analysis provides insights into
the importance of different layers and neurons
in multimodal multilingual adaptation.

2 Related Work

Multimodal Machine Translation Multimodal
Machine Translation (MMT) enhances transla-
tion quality by integrating visual context to re-
solve linguistic ambiguities. Prior research has
explored four primary approaches: multi-task learn-
ing, knowledge distillation, contrastive learning,
and attention-based mechanisms. Multi-task learn-
ing integrates OCR and translation models to im-
prove cross-modal representation learning, but
these methods often struggle with efficient mul-
tilingual adaptation (Chen et al., 2021; Ma et al.,



2022; Su et al., 2021). To address this, adaptive
mechanisms have been introduced to bridge modal-
ity gaps and enhance translation consistency (Ma
et al., 2023b; Lan et al., 2023). Knowledge distilla-
tion has been widely used to transfer multimodal
knowledge from teacher to student models, ensur-
ing better generalization but often increasing com-
putational overhead (Chen et al., 2023; Ma et al.,
2023c). Contrastive learning further refines OCR-
text alignment and improves robustness in transla-
tion tasks, yet remains constrained by reliance on
predefined feature mappings (Ma et al., 2024; Peng
et al., 2022). Attention-based mechanisms dynami-
cally focus on relevant image regions, improving
semantic grounding, but they lack efficient param-
eter selection for multilingual translation (Mansi-
mov et al., 2020; Hinami et al., 2021; Jain et al.,
2021; Tian et al., 2023). While these methods en-
hance machine translation performance, they often
overlook computational efficiency in large-scale
multimodal models. As computational demands
grow with model size and multilingual adaptation,
recent works have emphasized the need to balance
model capacity with efficiency (Liu et al., 2022; Ma
et al., 2023a). However, existing approaches still
lack fine-grained control over language-specific
and agnostic parameters. To address these chal-
lenges, we propose a layer-aware neuron modula-
tion framework that improves translation efficiency
while optimizing parameter utilization.

Multilingual Neural Machine Translation Mul-
tilingual Neural Machine Translation (MNMT) en-
ables translation across multiple languages within
a single model but faces challenges such as inter-
language interference and capacity bottlenecks
(Aharoni et al., 2019; Fan et al., 2021; Wei et al.,
2024). Prior works address these issues through
adaptive scheduling (Jean et al., 2019; Pan et al.,
2021), gradient-based optimization (Wang et al.,
2020; Feng et al., 2023), and language-specific
modules (Philip et al., 2020; Zhang et al., 2021).
Mixture-of-Experts (MoE) models allocate capac-
ity dynamically (Fedus et al., 2022; Li et al., 2023),
though overfitting remains a concern. Recent stud-
ies highlight that indiscriminate parameter shar-
ing degrades high-resource language performance
(Huang et al., 2024; Nimma et al., 2024; Javed et al.,
2025), leading to strategies such as binary masks
(Poppi et al., 2024) and contrastive learning (Liang
et al., 2024) to mitigate interference. However,
these approaches often introduce additional com-

plexity and computational costs. While research
on multilingual interference has primarily focused
on text-based models (Jean et al., 2019; Li et al.,
2023; Javed et al., 2025), its implications for multi-
modal translation remain insufficiently studied. In
contrast, we introduce a selective layer and neuron-
level modulation framework to optimize multilin-
gual adaptation, reducing interference while main-
taining efficiency in multimodal MNMT.

3 Methodology
3.1 Multimodal Machine Translation

Multimodal machine translation extends traditional
machine translation by incorporating visual infor-
mation to enhance contextual understanding. Given
a source sentence X ° in language s, a correspond-
ing image I, and a target language ¢, the objective
is to generate a translated sentence Y that pre-
serves the semantics of the source sentence while
leveraging visual context. The translation process
can be formulated as a function F that maps the
source text and image to the target text:

Y= F(X51,s,t;0), (1)

where 6 represents the model parameters. The
model encodes textual features through a text en-
coder &; and extracts visual features using a vision
encoder &,:

T =&(X%), vV==~&(U). )

The extracted textual and visual features are com-
bined within a multimodal translation model, pro-
ducing an intermediate representation that is subse-
quently decoded into the target language.

3.2 Selecting Effective Layers of the Model

In MMT, different layers of the model contribute
differently to text and image processing. To im-
prove efficiency while maintaining translation qual-
ity, and inspired by (Li et al., 2024; Wang et al.,
2024b), we introduce a layer selection method
that identifies and retains the most informative lay-
ers in both the vision-language connector and the
large language model (LLM). Given a model with
L layers, the objective is to determine a subset
£ C {1,2,..., L} that maximizes task relevance
while reducing redundancy.

The importance of each layer is assessed based
on activation similarity before and after supervised
fine-tuning (SFT), as illustrated in Figure 2 (a).
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Figure 2: LLaVA-NeuMT Model Architecture.

Given activations from layer [ in the pretrained
model (X lA) and the fine-tuned model (X ZB ), the
redundancy-based importance score R; is com-
puted as:

(X7 - XP)?

X 21X )12 + e

where X lA and X lB are the activations from layer
! in the pretrained and fine-tuned models, and e
is a small constant to avoid numerical instability.
A lower R; value suggests that a layer undergoes
significant adaptation during fine-tuning, indicating
its importance for the translation task. Layers are
ranked based on R;, and a subset L, is selected
corresponding to the top « fraction of layers, where
« is a tunable hyperparameter.

3.3 Selecting Important Neurons of the Model

In MMT, different neurons within each selected
layer contribute differently to various language
pairs (Zhu et al., 2024a). To further optimize the
model, we introduce a neuron selection mechanism
that identifies the most relevant neurons for each
language pair while preserving generalizable neu-
rons across all languages. Given a layer [ with
N neurons, our objective is to classify neurons
into two categories: language-specific neurons and
language-agnostic neurons.

Neuron selection is performed on the previously
selected layers, as illustrated in Figure 2 (b). The

importance of each neuron n is evaluated based
on its activation and gradient values during fine-
tuning. Specifically, for each training instance, we
compute the importance score as:

T, = |4, x Gy @

where A,, and G, represent the activation and
backpropagation gradient of neuron n, respectively.
Given K language pairs, we aggregate the impor-
tance scores over 7' training samples and compute
the variance across languages as:

1 & 2
2 E_ 7
on) == (In —In) 5)
k=1
where Z¥ denotes the importance score of neu-
ron n for language pair k, and Z,, represents the
mean importance score across all language pairs.
To classify neurons, we first define N as the set
of all neurons in the selected layers:

N={n|neN,leL} 6)
where L is the selected layer set and N the
neurons in layer /. We then define two subsets:
Sp={neN|I}=maxT}} (]
J

where Sy, represents the set of language-specific
neurons, which exhibit the highest importance for
a single language pair k.



A={necN|o*(n)<e} (8)

where A represents the set of language-agnostic
neurons, which maintain relatively stable impor-
tance scores across all language pairs, with a vari-
ance threshold e.

3.4 LLaVA-NeuMT

LLaVA-NeuMT performs neuron-level adaptation
based on the previously selected layers and classi-
fied neurons, as illustrated in Figure 2 (c). Given
a source sentence X ° in language s, an image I,
and a target language ¢, the model extracts features
using a text encoder &; and a vision encoder &, pro-
ducing textual and visual representations as defined
in Equation (2). These representations are passed
through the selected layers L (Section 3.2), where
neuron updates are applied selectively. Based on
the classification of neurons into language-specific
(Sk) and language-agnostic (A) categories (Sec-
tion 3.3), only relevant neurons receive parameter
updates during fine-tuning.

To achieve this, a gradient masking mechanism
is applied to constrain updates to neurons belonging
to Si or A. Specifically, for each neuron n, the
gradient is modified as follows:

n

Gp, if us
o :{ ifne AUS, ©)

0, otherwise

where G, represents the computed gradient of
neuron n. Neurons outside these sets are frozen,
preventing unnecessary parameter updates.

The final model update is performed using:

O < 0, — NG, (10)

where 7 is the learning rate. By restricting up-
dates to selected neurons, LLaVA-NeuMT effi-
ciently adapts the model while maintaining stability
across different language pairs. This fine-tuning
strategy ensures that multimodal representations
are effectively adapted, allowing both textual and
visual features to be optimized for MNMT.

4 Experiments

4.1 Experimental Setting

Datasets We evaluate our approach on two multi-
modal MNMT datasets: M3-Multi30K (Guo et al.,
2022) and M3-AmbigCaps (Li et al., 2021). M3-
Multi30K consists of 29,000 image-text translation
pairs for training and 1,000 for testing, covering

multiple language pairs. M3-AmbigCaps is a larger
dataset with 89,600 training pairs and 1,000 test
pairs, designed for evaluating multimodal transla-
tion performance.

Experimental Setup We adopt LLaVA-1.5-
7B (Liu et al., 2024) as the pretrained backbone
and optimize training using DeepSpeed ZeRO-3 on
4 x A100 (80GB) GPUs. The model is trained for
4 epochs with a per-device batch size of 16 and a
gradient accumulation step of 1. Mixed precision
training with BF16 is applied to reduce memory
overhead. The optimizer is AdamW with a learn-
ing rate of 2e-5 and a cosine annealing scheduler,
with 3% warmup. Weight decay is set to 0. The
maximum text sequence length is 2048, and image
inputs are resized to a fixed aspect ratio, with visual
features extracted from the second-to-last layer of
the Vision Transformer (ViT) (Nguyen et al., 2024).

Evaluation Metrics & Baselines We evaluate
translation performance using BLEU-4. Base-
lines include Text-only MT models: Text Trans-
former (Fan et al., 2021); Open-source MMT
models: Qwen2-VL (Wang et al., 2024a),
MiniCPM (Yao et al., 2024), InternVL (Chen
et al., 2024b); Closed-source MMT models: GPT-
40 (Achiam et al., 2023), Gemini-1.5-Pro (Team
et al., 2024); and Multimodal MNMT models: Vi-
sion Matters (Gated Fusion) (Li et al., 2021), Vi-
sion Matters (Concatenation) (Li et al., 2021), LVP-
M3 (Guo et al., 2022), and the multilingual fine-
tuned version of LLaVA-1.5 (Liu et al., 2024).

4.2 Main Results and Analysis

We evaluate the performance of different models
across four categories, as shown in Table 1 and
Table 2, Text-only MT achieves strong results,
demonstrating that textual models alone can pro-
vide high-quality translations. However, it still
underperforms compared to Multimodal MNMT,
which integrates visual context to improve transla-
tion quality. Open-source MMT models show sig-
nificantly lower performance, particularly in low-
resource languages such as Latvian, Hindi, and
Turkish, likely due to the lack of multimodal multi-
lingual training data, which limits their generaliza-
tion in multilingual settings. Closed-source MMT
models, such as GPT-40, achieve competitive re-
sults in high-resource languages but show a notice-
able drop in low-resource scenarios, suggesting that
general-purpose multimodal models are not opti-
mized for multilingual translation. In contrast, Mul-



Type Model (En—X) Fr Cs De Lv Hi Tr Avg-all
Text-only MT Text Transformer (Fan et al., 2021) 61.8 32.8 406 51.2 59.0 53.8 498
Qwen2-VL-7B (Wang et al., 2024a) 441 7.8 335 0.1 06 08 14.5

Open-source MMT  MiniCPM-2.6-8b (Yao et al., 2024) 262 40 272 01 02 03 97

InternVL-2.5-7b (Chen et al., 2024b) 352 82 258 01 33 1.0 123
Closed-source MMT GPT-40 (Achiam et al., 2023) 53.8 374 443 394 283 28.6 386
u Gemini-1.5-Pro (Team et al., 2024) 385 222 235 243 104 224 236
Vision Matters (Gated fusion) (Li et al., 2021) 625 329 412 521 59.6 542 504
. Vision Matters (Concatenation) (Li et al., 2021) 59.7 33.1 39.8 50.3 57.6 514 48.6
Multimodal MNMT Vb V13 Guo et al., 2022) 637 346 432 535 614 556 520
LLaVA-1.5-SFT(default) (Liu et al., 2024) 66.5 359 422 56.1 615 57.8 533
Ours LLaVA-NeuMT (40%) 67.0 36.0 42.0 57.3 60.0 58.3 534
) LLaVA-NeuMT (80%) 66.8 359 42.6 58.2 61.8 60.7 54.3

Table 1: BLEU scores on the M3-Multi30K test set. Best results are in bold, second-best are underlined.

Type Model (En—X) Fr Cs De Lv Hi Tr Avg_all
Text-only MT Text Transformer (Fan et al., 2021) 623 478 49.0 466 524 359 49.0
Qwen2-VL-7B (Wang et al., 2024a) 40.3 2.7 273 0.3 06 0.7 12.0
Open-source MMT ~ MiniCPM-2.6-8b (Yao et al., 2024) 326 28 198 0.1 0.5 02 93
InternVL-2.5-7b (Chen et al., 2024b) 31.6 6.16 10.7 0.1 3.3 0.8 8.8
GPT-40 (Achiam et al., 2023) 436 29.6 38.0 265 249 16.7 299
Closed-source MMT  Geini-1.5-Pro (Team et al., 2024) 288 13.6 183 159 122 122 16.8
Vision Matters (Gated fusion) (Li et al., 2021)  64.3 50.3 512 485 54.1 387 51.2
) Vision Matters (Concatenation) (Li et al., 2021) 62.6 47.6 48.7 459 527 36.0 48.9
Multimodal MNMT  1vp_M3 (Guo et al., 2022) 657 529 537 516 563 427 538
LLaVA-1.5-SFT(default) (Liu et al., 2024) 72.1 573 603 56.5 56.8 452 58.0
Ours LLaVA-NeuMT (40%) 732 57.0 609 56.2 565 46.2 58.3
LLaVA-NeuMT (80%) 741 584 61.7 578 584 479 59.7

Table 2: BLEU scores on the M3-AmbigCaps test set. Best results are in bold, second-best are underlined.

timodal MNMT models consistently achieve better
BLEU scores, confirming that incorporating mul-
timodal signals benefits multilingual translation.
Among them, LLaVA-1.5-SFT enhances transla-
tion quality through supervised fine-tuning. Our
proposed LLaVA-NeuMT further improves perfor-
mance while fine-tuning only 40% of the model
parameters, demonstrating the efficiency of selec-
tive layer adaptation. When increasing the fine-
tuned layers to 80%, LLaVA-NeuMT achieves the
best results, showing that balancing layer selection
and neuron modulation enhances translation perfor-
mance while maintaining efficiency. Additionally,
our fine-tuning strategy, which adjusts language-
specific and agnostic neurons at a 1:9 ratio, en-
sures effective multilingual adaptation. In terms
of language-specific trends, GPT-40 performs well
on high-resource languages such as French, Czech,
and German in the M3-Multi30K test set but strug-
gles in lower-resource languages. The performance
gap is more evident in the M3-AmbigCaps test set,

where the larger dataset scale and increased task
complexity further challenge general-purpose mod-
els. By contrast, LLaVA-NeuMT consistently out-
performs other models across both datasets, demon-
strating its robustness in Multimodal MNMT.

4.3 Effect of Layer Selection on MMT

To investigate the role of layer selection in multi-
modal multilingual translation, we evaluate perfor-
mance by selecting the top 20%, 40%, 60%, 80%,
and 100% most important layers, ranked by im-
portance scores computed in Section 3.2. In this
experiment, the neuron selection strategy remains
fixed, with language-specific and agnostic neurons
adjusted at a 1:9 ratio, ensuring that the only vari-
able is the number of selected layers. As shown in
Figure 3, BLEU scores increase as more layers are
included, reaching the highest performance at 80%
selection. Beyond this point, performance declines,
suggesting that retaining all layers introduces re-
dundancy or noise, negatively impacting transla-
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Figure 3: Effect of layer selection on translation. x%
indicates the top X% most important layers.

En—X Fr Cs De Lv Hi Tr Avg_all

Standard 66.4 357 423 58.1 613 60.5 54.1
Agnostic  65.8 35.6 412 563 61.1 59.7 533
Specific 659 352 420 57.0 605 613 53.7

Table 3: Effect of agnostic and specific neurons on mul-
timodal multilingual translation on the M3-Multi30K
dataset. "Standard" denotes a 1:9 specific-to-agnostic
neuron ratio, while "Agnostic" and "Specific" refer to
models fine-tuning only agnostic or specific neurons.

tion quality. Using only 20% of the layers leads to
significantly lower BLEU scores, indicating that a
minimal subset is insufficient for effective multi-
modal multilingual adaptation. Between 40% and
80%, all language pairs exhibit consistent improve-
ments, with the most pronounced gains observed
in low-resource languages such as Latvian, Hindi,
and Turkish. For high-resource languages such as
French, Czech, and German, performance stabi-
lizes beyond 60% and slightly decreases at 100%,
reinforcing that excessive layers do not necessarily
contribute positively to translation. These findings
demonstrate that an optimal layer selection strategy
enhances translation quality while maintaining effi-
ciency, with 80% selection striking the best balance
between performance and computational cost.

4.4 Effect of Neuron Selection on MMT

To analyze the impact of agnostic and specific
neurons in multimodal multilingual translation,
we conduct experiments where all layers are se-
lected while varying the neurons that are fine-tuned.
As shown in Table 3, the highest BLEU score is
achieved when both neuron types are optimized in a
1:9 ratio. Fine-tuning only agnostic neurons results
in a slight performance drop, while fine-tuning only
specific neurons leads to a further decline. This sug-
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Figure 4: Impact of specific-to-agnostic neuron ratio on
translation performance on the M3-Multi30K dataset.

gests that while specific neurons contribute to trans-
lation quality, agnostic neurons play a more crucial
role in ensuring multilingual adaptation. The rela-
tively competitive performance of fine-tuning spe-
cific neurons alone indicates that language-specific
features remain valuable, particularly in distin-
guishing linguistic variations. However, the per-
formance gap between agnostic-only and specific-
only settings reinforces the greater importance of
agnostic neurons in maintaining stable multilingual
translation. Examining language-specific trends,
Czech benefits more from fine-tuning agnostic neu-
rons, suggesting a stronger dependence on cross-
lingual representations, whereas Turkish achieves
its highest accuracy when only specific neurons
are fine-tuned, indicating that some languages rely
more on task-specific adaptation.

To further examine the effect of adjusting the
ratio of specific to agnostic neurons, we conduct
experiments while keeping all layers selected. As
shown in Figure 4, increasing the proportion of spe-
cific neurons initially improves BLEU scores, peak-
ing at a 1:9 ratio. Beyond this point, performance
declines as the proportion of agnostic neurons de-
creases, suggesting that excessive specific neurons
may reduce generalization ability. However, at
extreme ratios (e.g., 10:0), performance slightly
rebounds, indicating that in certain cases, heavily
relying on specific neurons can still capture relevant
translation patterns. This suggests that while an op-
timal balance of neuron types is necessary, models
exhibit some degree of robustness when specific
neurons dominate. Across different language pairs,
Czech exhibits a steady decline when agnostic neu-
rons are reduced, confirming its reliance on agnos-
tic representations. In contrast, Hindi and Turkish
maintain relatively stable performance across dif-
ferent neuron ratios, demonstrating adaptability to
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Figure 5: Layer importance visualization in multimodal
multilingual translation on the M3-Multi30K dataset.

both neuron types. These findings emphasize the
necessity of a well-balanced allocation of agnostic
and specific neurons for optimal MMT.

4.5 Visualization of Layer Importance

To investigate the role of different layers in mul-
timodal multilingual translation, we visualize the
layer importance scores across multiple language
pairs in Figure 5. The x-axis represents model
layers, the y-axis denotes language pairs, and the
color intensity indicates relative importance. The
heatmap reveals significant variations in layer im-
portance across the model, demonstrating that se-
lecting key layers is necessary rather than uni-
formly fine-tuning all layers. From a horizontal per-
spective, the first 250 layers (approximately 80%
of the model depth) exhibit relatively high impor-
tance scores, consistently exceeding 0.5. This trend
aligns with the findings in Section 4.3, where se-
lecting the top 40-80% of layers resulted in optimal
translation performance. The concentration of im-
portance in these layers suggests that they capture
essential multimodal and multilingual representa-
tions. From a vertical perspective, the importance
scores remain relatively stable across different lan-
guage pairs, indicating that layer selection is pri-
marily influenced by architectural properties rather
than specific language characteristics. This con-
firms that an effective layer selection can enhance
computational efficiency without significantly af-
fecting translation quality across languages.

4.6 Analysis of Specific and agnostic neurons

To investigate the distinction between specific and
agnostic neurons in multimodal multilingual trans-
lation, we visualize neuron importance variance
across six language pairs in Figure 6. We select
the top 40% of layers (108 layers) and observe that
in each layer, a small subset of neurons exhibits
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Figure 6: Neuron importance in multimodal multilin-
gual translation on M3-Multi30K dataset.

significantly higher variance, indicating their lan-
guage specificity. This confirms the necessity of
differentiating specific and agnostic neurons rather
than treating them uniformly. From a distribution
perspective, the first 10% of neurons in each layer
(dashed lines) display high variance, while the re-
maining 90% (solid lines) maintain stable scores.
This supports our choice of a 1:9 ratio between
specific and agnostic neurons, ensuring an optimal
balance between language adaptability and cross-
lingual generalization. Furthermore, we identify
key neuron types critical to multimodal multilin-
gual translation, including attention projection lay-
ers and MLP down-projection layers. Unlike con-
ventional large language models, which primarily
rely on deep linguistic representations, multimodal
translation models emphasize connector layers for
effective cross-modal alignment, underscoring their
importance in improving translation quality.

5 Conclusion

In this work, we tackled multilingual interference
in MMT by introducing LLaVA-NeuMT, a frame-
work that selectively optimizes layers and neu-
rons to enhance efficiency and translation qual-
ity. Our approach integrates a layer selection
mechanism to retain the most informative lay-
ers and a neuron-level adaptation strategy to bal-
ance language-specific and agnostic representa-
tions. Experiments on the M3-Multi30K and M3-
AmbigCaps datasets show that LLaVA-NeuMT
achieves SOTA performance while fine-tuning
fewer parameters. Further analysis reveals that
selecting 40-80% of layers yields optimal results,
and a 1:9 specific-to-agnostic neuron ratio effec-
tively balances generalization and adaptation. Fu-
ture work will explore adaptive parameter-sharing
strategies and extend our approach to broader mul-
tilingual and multimodal scenarios.



Limitations

While our proposed LLaVA-NeuMT framework
has demonstrated strong performance in multi-
modal MNMT, several aspects remain worth ex-
ploring. Our current approach selects layers and
neurons based on fixed thresholds, such as choos-
ing the top 40% of layers and applying a predefined
ratio of specific to agnostic neurons. While effec-
tive, this static strategy may not be optimal across
different language pairs and translation contexts.
Future work could explore more adaptive selec-
tion mechanisms to further enhance efficiency and
generalization. Additionally, beyond multilingual
settings, our approach could be extended to bal-
ance general-purpose language tasks with domain-
specific translation challenges in multimodal sce-
narios, addressing broader applications of multi-
modal translation.
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